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Abstract. This paper describes an approach for Structure from Motion
(SfM) for wide baselines image sets and its combination with the dense
Semiglobal Matching (SGM) 3D reconstruction approach. Our approach
for SfM relies on given information concerning image overlap, but can
deal with large baselines and produces highly precise camera parameters
and 3D points. At the core of our contribution is robust least squares ad-
justment with full exploitation of the covariance information from affine
point matching to bundle adjustment. Reweighting for robust adjust-
ment is based on covariance information for each individual residual. We
use points detected based on Differences of Gaussians including scale and
orientation information as well as a variant of the five point algorithm.
A strategy similar to the Expectation Maximization (EM) algorithm is
employed to extend partial solutions. The key characteristics of the ap-
proach is reliability obtained by aiming at a high precision in every step.
The capabilities of our approach are demonstrated by presenting results
for sets consisting of images from the ground and from small Unmanned
Aircraft Systems (UASs).

1 Introduction

Structure from Motion (SfM) from sets of images in combination with dense 3D
reconstruction forms a good basis for photo realistic visualization. For example,
Leberl et al. [14] show that high quality models can be generated from aerial
images, in particular for Microsoft Bing Maps. Leberl et al. term the resulting
model extended by semantic information, for instance concerning windows and
cars, ‘Virtual habitat’. For generating semantic information, terrestrial images
and derived 3D models can be used as well, e.g., for buildings and trees [24,11].

Pollefeys et al. [22] presented one of the first approaches dealing with SfM
for a larger number of images in a general configuration, i.e., without known
approximate pose. It employed uncalibrated images, i.e., images for which the
intrinsic camera parameters such as principal distance (focal length) and prin-
cipal point are not known. This makes the approach very flexible, yet, on the
other hand, reliant on sufficient 3D structure in the scene for the determination
of intrinsic parameters.

With the five point algorithm [19], it became feasible to directly compute
SfM from calibrated images, i.e., for which the intrinsic parameters are known.
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Pollefeys et al. [20] have used it to build a system that was employed for recon-
structing 3D structure from more than one hundred thousand images.

Commonly, image overlap is either known implicitly in the form of the order in
a sequence, or explicitly, e.g., from an aerial flight plan. Schaffalitzky and Zisser-
man [25] presented one of the first approaches which automatically determined
the image overlap in image sets.

This has led to methods for very large image collections, the so called ‘Commu-
nity Photo Collections’ – CPC [6] on the Internet. These techniques mostly use
information from the Exif (Exchangeable image file format) tags of the images
to derive approximate intrinsic camera parameters and thus conduct calibrated
SfM. Agarwal et al. [1] have approached the challenge of CPC with a large cloud
of computers. Yet, ‘Building Rome on a Cloudless Day’ [5] has dealt with millions
of images, for which the only thing known to start with is a tag linking them to
a place / city such as Rome. It was shown that the images can be organized in
terms of visual similarity. This is used for 3D reconstruction of parts with many
images. Everything is computed in one day on one standard computer, albeit
with several powerful GPUs – Graphical Processing Units.

While the above work is impressive, one has to note that it is based on certain
characteristics of the data and a couple of assumptions which make it tractable:

– Many images at tourist attractions are taken from nearly the same spot and
thus look alike, i.e., many similar images can be found even for extremely
downscaled versions of the images. Frahm et al. [5] use the GIST operator
on 4×4 images, i.e., very little information on texture and color is available.

– The goal is to reconstruct the obvious 3D structure, leading to impressive
3D reconstructions of highlights, such as the Colosseum in Rome. Yet, there
might be images, possibly with wider baselines, that could be used to extend
the geometrical coverage or even to link the tourist attractions. This is not
considered, as it would mean a detailed comparison of many more images.

A preliminary version of our work, comprising also absolute pose estimation,
has been published earlier [2]. It focuses on image sets with possibly very large
baselines. For the registration of these images, we have to either supply the
sequence of images, or sets of overlapping triplets.

The basis of our work (Figure 1) are points with scale and rotation detected
based on Difference of Gaussians (Section 2). We start by removing unlikely
matches by cross correlation with a very low threshold. Matches are refined
by least squares matching [7] using an affine geometric model. This results in
subpixel accurate point positions including covariance information.

The points and their covariance information are employed for SfM from pairs
and triplets (Section 3). It is based on a variant of the five point algorithm em-
bedded into RANdom SAmple Consensus – RANSAC [4] using the Geometric
Robust Information Criterion – GRIC [27]. A strategy similar to the Expectation
Maximization (EM) algorithm is used to extend partial solutions. We employ ro-
bust bundle adjustment (Section 4), where we reweight based on residuals (dis-
tance between reprojected 3D point and measured 2D point) and, particularly,
covariance information for each individual residual.
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Determination of relative pose and n−fold points
Addition of new 3D points

Linking of triplets to image set
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Triplet matching using epipolar constraint

Structure from motion for triplets based on 5−point
algorithm and a strategy similar to the EM algorithm

Essential matrix estimation (5−point algorithm)
and a strategy similar to the EM algorithm

Point detection (Difference of Gaussians)

Pair matching

Fig. 1. Structure from Motion based on least squares matching and robust bundle
adjustment

Triplets are linked either sequentially or hierarchically to image sets (Section
5). This results in highly precise poses, improved intrinsic parameters, and 3D
points including covariance information.

Section 6 presents results for terrestrial images and images acquired from small
Unmanned Aircraft Systems (UASs) with a size of less than one meter and a
weight of approximately one kilogram. We demonstrate the precision obtained
by our approach by means of a loop closing experiment. Wide baseline matching
capabilities are shown with results for a combination of terrestrial images and
images from a UAS.

The poses and intrinsic parameters are input for Semiglobal Matching – SGM
[9] (Section 7) which leads to dense 3D point sets and detailed 2.5D, or 3D
surfaces. Finally, results for dense matching with SGM are given. Section 8 con-
cludes the paper with an outlook.

2 Point Detection and Matching

The basis for our approach are points based on Differences of Gaussians (DOG)
as proposed by Lowe [15] and implemented in SiftGPU [29]. As we want to deal
with situations with very low contrast, such as weak structures on facades, we
employ a very low threshold.

We start with image pairs. The point centers as well as their estimated scale
and rotation are employed to cut out image patches of size 13×13 pixels from the
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images. These patches are correlated by means of (normalized) cross correlation.
For all best matches for points in the master image, which exceed a low threshold
of 0.5, we compute a histogram of the rotation differences. The histogram is
smoothed and its mode determined. As the mode of the histogram was found
to rather reliably describe the in-image-plane rotation between image pairs, we
use it for normalization: We cut out unrotated patches (though with individual
scale) in one image and rotate all patches in the second image according to the
difference of rotation as given by the mode of the histogram.

Cross correlation between patches is computed again and the same low thresh-
old of 0.5 is used. Yet, this time the best matches for all points in the master
image exceeding the threshold are subject to least squares matching [7]: The
sum of the squared intensity differences between patches around the points is
minimized by varying the parameters for a geometric and a radiometric trans-
formation between the patches.

We use an affine geometric model with six parameters (ai0, . . . , b
i
2) describing

the translation in x- and y-direction as well as two rotations and two scales. Given
a square patch in master image 0, this leads to a parallelogram in the matching
images (Figure 2). While the general model for a linear mapping between image
patches is a homography, we found that the eight parameters of a homography
usually cannot be reliably determined for small patches. Small patches are a
must, though, because the region around a point in the scene does not have
to be planar and the farther one goes from a point, the higher becomes the
likelihood for discontinuities and occlusion.

Δ

Δ

Matching image 1 Master image 0 Matching image i

parallelogram

y

x

transformation 0 − 1
affine affine

transformation 0 − i

parallelogram

square patch

Fig. 2. Least squares matching is based on an affine geometric model. Individual pixels
(small dots) of image patches around subpixel precise points (large dots) are trans-
formed based on the affine model. Given a square patch in the master image this leads
to parallelograms in the matching images.

The pixel raster of the patch in the master image is defined by Δx and Δy
as well as the indices j and k (−N ≤ j ≤ N and −N ≤ k ≤ N with N = 6).
Δx and Δy depend on the scale known from point detection. The coordinates
of the pixels in the master image 0 and the matching image i are described by
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x0
jk = x0 + jΔx

x0
jk = y0 + kΔy

xi
jk = xi + ai0 + ai1jΔx+ ai2kΔy (1)

yijk = yi + bi0 + bi1jΔx+ bi2kΔy , (2)

with x0, y0 and xi, yi denoting the centers of the patches in master image 0 and
matching image i, respectively. We use subpixel coordinates also for x0 and y0

to optimally center the patch around the point.
For the subpixel precise point positions, the intensity of the pixels has to

be determined by (in our case bilinear) interpolation. Additionally to the six
parameters ai0, . . . , b

i
2 for the geometry we use bias ri0 and contrast ri1 for the

intensity to radiometrically adapt the patch in matching image i. This leads to
the following residuals vijk for least squares adjustment (I0() and Ii() denote the
intensity function in master image 0 and matching image i, respectively):

vijk = I0(x0
jk, y

0
jk)− [ri0 + ri1I

i(xi
jk, y

i
jk)] (3)

The goal of least squares matching is to estimate affine parameters ai0, . . . , b
i
2

and radiometric parameters ri0, r
i
1 minimizing the sum of all squared residuals

N∑

j=−N

N∑

k=−N

[vijk]
2 . (4)

Equation (4) is linear with respect to the radiometric parameters ri0 and ri1.
It is nonlinear in terms of the geometric parameters, because Ii() is nonlinear
in general. As there is no closed-form solution, first order Taylor expansion is
employed to linearize Equation (4) based on initial values for the parameters.
We assume no translation (ai0 = bi0 = 0), a similar intensity (ri0 = 0 and ri1 = 1)
and take the known scale difference and rotation into account for ai1, a

i
2, b

i
1 and

bi2. Setting the derivative to zero, one obtains a linear system

Aβ = y . (5)

Matrix A consists of the Jacobian of the intensity function in the matching
image i with respect to the unknown geometric and radiometric parameters
concatenated in vector β. Vector y comprises the negative measurement errors.

While the linear system (5) can be solved directly, we employ the normal
equations

Nβ = (ATA)β = ATy (6)

and compute β = N−1ATy. By this means we obtain C = N−1, i.e., the relative
covariance matrix for the unknown parameters. Because the problem is nonlin-
ear, the solution is obtained iteratively. For optimization we use the Levenberg
Marquardt algorithm.

The criteria for a valid match obtained by least squares matching are that the
cross correlation value is larger than 0.8 as well as that the estimated variance



290 H. Mayer et al.

for the shift is below 0.1 pixels. For the latter, one has to consider that from our
experience the estimated variance is always highly optimistic. Cross correlation is
known to be not a good descriptor for stronger geometrical distortions. Though,
it was found to be very useful if the geometrical distortions are small [18], which
is the case after least squares matching.

For more than two images, we link least squares matching for pairs. The
image in which the patch is closest to the image center is used as master, as
this improves the chance for a frontal view. The patch in the master image is
geometrically kept as square and the affine transformations relative to the other
images are estimated (Figure 2).

The solutions are linked by substituting I0() in equation (3) by the average
intensity in all images. To account for different average intensities and contrasts
of the patches, we take the estimated radiometric parameters ri0 and ri1 for each
patch into account when computing the average. As the problem is nonlinear
and solved iteratively, the average intensity changes due to different geometric
transformations as well as different radiometric parameters for each iteration.

Output for the accepted matches are the improved coordinates xi + ai0 and
yi + bi0 as well as their relative covariance information. The latter can improve
SfM estimation particularly for stronger in-image-plane rotations [17].

While least squares matching entails more effort than just using the point
centers of the SIFT points, we found that the relative coordinates obtained are
more precise. This is probably due to the fact, that we look for optimum matches.
This reduces the influence of geometrical deformations, partial occlusions, and
noise, which influence point centers when they are estimated independently.

3 Two and Three View Geometry

In the remainder of this paper we assume that we have at least an approximate
knowledge of the intrinsic parameters. We also implemented an uncalibrated
approach in the spirit of Pollefeys et al. [21]. Yet, we found it to be only reliable
if sufficient 3D structure is present. Only then, the intrinsic parameters can be
reliably determined.

Triplets are the basic geometric building block of our approach due to the
following reasons:

– Opposed to pairs where points can only be checked in one dimension by
means of their distance from their respective epipolar lines, triplets allow for
an unambiguous geometric check of points. This does not only lead to much
more reliable points, but also to improved, more reliable information for the
cameras.

– Triplets can be directly linked into larger sets by determining their relative
pose (translation, rotation, and scale) based on two common images.

Because the combinatorics is worse for triplets than for pairs, we start with pairs
and determine essential matrices and thus epipolar lines for them. For known in-
trinsic parameters, the relative pose of the image pair is determined directly, i.e.,
with no need for approximate values, by means of the five point algorithm [19].
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As usually only a possibly small part of the matched point pairs is actually
correct, we employ RANSAC in conjunction with GRIC [27]. The later means,
that instead of counting the number of inliers, we attribute a constant penalty
to outliers and values proportional to their squared residuals v2 to inliers. A
threshold is used to define where the transition from inliers to outliers occurs.
While in RANSAC the number of inliers is maximized, GRIC aims at a minimum
corresponding to many points with small residuals. By means of GRIC one can
distinguish between solutions with a low precision, but more points, and highly
precise solutions, with possibly less points, but smaller residuals, which are more
likely correct.

The above combination of RANSAC and GRIC works well for more or less
well behaved scenes. Yet, we found that for complex scenes, e.g., involving many
very similar points, the above combination is not sufficient to tell good from
bad solutions. This happens, e.g., for window corners on facades of buildings,
possibly in conjuction with camera movements which conspire with repetitions
on the facade. Inspired by Chum et al. [3], we compute a maximum likelihood,
i.e., robust bundle adjustment, solution for the best of every couple of hundred
RANSAC iterations. Eventually, the bundle solution which leads to the lowest
GRIC value is taken as the final result.

But even this gives only a partial solution to the problem. While RANSAC
produces a solution from only inliers with a certain probability, it is not guar-
anteed, that this solution is accurate. Even worse, inaccurate solutions can also
be not representative for all, or even the majority of the inliers. E.g., consider a
larger image and RANSAC selecting in one sample only inliers from the center
of the image. While the geometric solution (of the five point algorithm) will be
correct, it will not be precise enough to find also the correct matches closer to the
margin of the image. A way to counteract this is to force RANSAC only to use
points with a certain minimum distance. Though, this is problematic, because
in certain cases there might be just correct matches in the center of the image.

We have devised a strategy similar to the EM algorithm (Figure 3) which em-
ploys robust bundle adjustment (cf. next Section) to mitigate the above problem.
We robustly bundle adjust the initial direct solution using the inliers determined
by RANSAC. The obtained, geometrically improved, solution is employed to
compute new inliers based on GRIC. This is iterated until either a predefined
number of iterations (here 5) is reached, or no significant improvement in terms
of GRIC is obtained.

The above procedure is used for pairs and triplets. For the latter, we employ
the result for image pairs to restrict the search space via epipolar lines derived
from the essential matrices. This strongly reduces the number of hypotheses for
image triplets.

For the geometric computation of triplets, we use one image as master and
compute translation and rotation towards the other two images via the five point
algorithm for five conjugate points in the three images. This fixes all but one pa-
rameter, namely the relative base length between the two pairs. At the moment
we assume that we only work with images with a significant base between them.
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Expectation (E): Determination of inliers

Approximate Solution

until no improvement or maximum number of iterations

Maximization (M): Improvement of solution by robust bundle adjustment

Improved solution with more inliers with higher accuracy

Fig. 3. Strategy similar to the Expectation Maximization (EM) algorithm

While this is a limitation of our approach, we note that there is only a problem
with the infinite homography, not with homographies for real planes. Particu-
larly, we triangulate the five points in both pairs and compute the distance from
the master image. The ratio of the distances in both pairs is proportional to
the ratio of the base lengths. To make the computation robust, we employ the
median value of the five ratios computed for the five conjugate points.

4 Robust Bundle Adjustment

While bundle adjustment [28] has not been seen as crucial for early approaches
on multi view geometry, since a couple of years it is acknowledged that it is
useful and even necessary for large image sets.

This is demonstrated by recent work on generalized preconditioners [13]. They
allow for an efficient use of conjugate gradient based solutions for bundle adjust-
ment for very large systems also for the general configurations encountered when
collecting data from the ground or in CPC.

Our work goes into another direction, namely robustifying bundle adjustment
by means of reweighting. I.e., least squares are generalized in the form of an
M-estimator [12]. The particular contribution is, that we compute an estimate
for the variance of each individual residual and use this for reweighting when
implementing the M-estimator.

The estimation of individual variances for the residuals is costly in terms of
computation per iteration. Yet, we found that at least for systems with a limited
number of images, i.e., tens of images, it is actually faster in the aggregated
run time, because much fewer iterations are needed. What is more, one usually
obtains a more precise solution consisting of more points.

Following Jian et al. [13], we define P = {Pi; i = 1, . . . ,M} as the camera pa-
rameters, X = {Xj; j = 1, . . . , N} as the 3D points, and x = {xk; k = 1, . . . ,K}
as the measurement of 3D point Xj in camera Pi). Function fk(Pi, Xj) projects
a 3D point to an image. By

vk = fk(Pi, Xj)− xk
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we define the residual between the projected 3D point and the measured im-
age point. The goal of bundle adjustment is to reduce the sum of the squared
residuals

K∑

k=1

[vk]
2 . (7)

Equation (7) is nonlinear. It can be linearized by means of first order Taylor
expansion, assuming that appropriate initial estimates for the camera parameters
Pi and the 3D points Xj are available:

K∑

k=1

[fk(Pi, Xj) +
∂fk(Pi, Xj)

∂Pi
dPi +

∂fk(Pi, Xj)

∂Xj
dXj − xk]

2 . (8)

As above for least squares matching, a linear solution (5) can be obtained by
setting the derivatives in (8) to zero. The system consists of a sparse matrix A
made up of the Jacobian of the measurements with respect to cameras and 3D
points, the vector β concatenating the parameters of cameras and 3D points,
and finally, the vector y consisting of the negative measurement errors.

While (5) can be solved directly, we solve the normal equations (6). By this
means we can introduce the estimated accuracy of the measured image points as
derived by least squares matching in Section 2 in the form of a weight matrix.
Particularly, we employ as weight the inverse of the relative covariance matrix
of the measurements C, leading to

Nβ = (ATC−1A)β = ATC−1y . (9)

For optimizing the solution, we again use the Levenberg Marquardt algorithm.
Please note, that C is a positive definite block diagonal matrix consisting of 2×2
blocks describing the variance of the measured points in x- and y-direction as
well as their x-y covariance.

In the M-estimator, we reweight C by

w =
√
2 + v2 ,

with v = v/σv. I.e., the residual is divided by its standard deviation. While
usually a common variance is used, we compute an estimate of the covariance of
the individual residuals Cv as follows:

Cv = C−A(ATC−1A)−1AT = C−AN−1AT (10)

For an efficient solution, we employ the Schur complement and split up the
design matrix in a part for 3D points AX and a part for the cameras AC . This
results in the following (symmetric) matrix N and its inverse M

N =

[
NXX NXC

NT
XC NCC

]
and M = N−1 =

[
MXX MXC

MT
XC MCC

]
.
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We solve forMCC = (NCC−NT
XCNXXNXC)

−1, i.e., the inverse for the cameras,
at the core of the bundle adjustment. The computation of MXX = N−1

XX +
N−1

XXNXCMCCN
T
XCN

−1
XX can be done very efficiently, as it only involves the

inversion of 3×3 matrices in the block diagonal matrix NXX and multiplications
with 3×6 and 6×6 matrices. The covariance between points and cameras MXC

is for most applications not needed and, thus, not calculated. From N ·M = I
(with I the unit matrix) one can derive

MXC = N−1
XXNXCMCC ,

giving the full matrix M = N−1 needed to solve Equation (10).
As the measurements are 2D image coordinates, the covariance information for

residuals corresponds to 2D ellipses. Thus, v = v/σv is computed as ratio of the
length of the residual vector and the standard deviation of the residual in the di-
rection of the residual σv as shown in Figure 4. v is employed to reweight the 2× 2
block in matrix C corresponding to the residual.

v

σv

Fig. 4. Error ellipse for residual, direction of the residual and the standard deviation
in the direction of the residual σv

5 Structure from Motion for Image Sets

We link image sets based on camera information for two common images. We
start by linking triplets, but depending on the strategy (cf. below), also sets are
linked to sets.

For obtaining approximate values, we first relate the camera information for
an image in one set, i.e., the master set, to the camera information for the
same image in the other set, i.e., the slave set. As we assume that we know the
intrinsic parameters, we can translate and rotate the slave into the master set.
The remaining unknown is scale. It is derived from the camera parameters for a
second common image, for which in both images the distance to the first common
camera is computed. The ratio of the distances gives the ratio in scale of the
two coordinate systems. With the obtained approximate values for translation,
rotation, and scale, we transform all camera parameters and 3D points from the
slave into the master set.

Additionally, we transform also points from the master into the slave set,
to obtain more than threefold, i.e., n-fold points1. The higher n, the more ge-
ometrically stable the solution becomes. For computing n-fold points, we first

1 The terms twofold, threefold, and n-fold point are used for expressing that the pro-
jection of a 3D scene point is detected in two, three, or n images.
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note, that it is not useful to compare points in 3D space, because its metric is
in general not well defined. Thus, we conduct the comparison in image space.
Particularly, we employ trifocal tensors computed from the camera matrices [8]
of the slave set and project points from the two common images of the master
set into the third, etc., image of the slave set. There, multi-image least squares
matching (Section 2) is conducted leading to n-fold points. Finally, we compute
a robust bundle adjustment (Section 4) based on the approximate values for
translation, rotation, and scale, as well as the n-fold points.

This gives an improved solution for the overlapping part of the combined set.
Yet, novel points in the slave set are still missing. Therefore, we compare for the
two common images the image coordinates from the slave set with the image
coordinates in the master set. Only when there is no nearby point found in image
space as implemented by dilation with a radius of two pixels, the corresponding
3D point is introduced. Eventually, again a robust bundle adjustment is com-
puted, this time also including the estimation of improved intrinsic parameters.

We note that the above procedure tracks a point only as long it is visible.
While this means that points which are occluded in a frame are lost and possi-
bly re-introduced, we found that this is superior to projecting 3D points into the
images. The problem with the latter is, that if one goes around an object, re-
peating structures, possibly even on the backside, can by chance be at the same
location and match very well. As these points are wrong, they can introduce a
serious bias in the estimation.

For linking sets, we have implemented a

– sequential strategy and a
– hierarchical strategy.

The sequential strategy is very simple: We just link one triplet after the other
to the set with an overlap of always two images. The basic problem with this
simple strategy is, that at least for wide baseline sets we found it is necessary
that we conduct a robust bundle adjustment each time we add a triplet. This
makes the strategy computationally very intensive.

On the other hand, in the hierarchical strategy, sub-sets are grown in parallel
and linked one by one (Table 1). As we need two common images, this means
that we can extend the set by 2i−2 images. Starting with 3, we obtain sets with
4, 6, 10, 18, 34, etc. images. This is obviously much more efficient as it entails
much fewer robust bundle solutions.

It is less obvious, though, that the hierarchical strategy is also very useful
in terms of robust bundle adjustment, particularly for large sets. For robust
reweighting (Section 4), it is important, that the variances of the residuals are
comparable. If this is not the case, e.g., when linking a large set with multiple
overlap and high internal precision with a small set and thus with low precision,
there is a strong tendency, that a considerable number of the weaker, but correct
points of the smaller set will be thrown out. All this is avoided by hierarchical
linking, where sets of approximately the same size and, thus, precision are linked.



296 H. Mayer et al.

Table 1. Hierarchical linking eight image triplets for ten images

1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10
1 [2 3] 4 3 [4 5] 6 5 [6 7] 8 7 [8 9] 10

1 2 [3 4] 5 6 5 6 [7 8] 9 10
1 2 3 4 [5 6] 7 8 9 10

This was demonstrated by Mayer [16] for a loop of ninety images taken inside
the Zwinger, Dresden, Germany. Hierarchical linking has been seven times faster.
More important, it produced not only 32,783 compared to 28,582 points for
sequential linking, but also many more many-fold points.

6 Results of Structure from Motion

All experiments reported in this section have been conducted using the sequential
strategy and the same parameters.

The sequence castle-R20 of Ettlingen castle in Germany consists of twenty im-
ages [26]. Some of them are shown at the top of Figure 5. Our SfM approach results
in an estimated average back-projection error σ0 of 0.14 pixels. For demonstrating
the high precision of our results, we conducted a loop closing experiment, i.e., we
took the last image of the twenty images sequence to be the same as the first image.
SfM was conducted without closing the sequence. This means that the differences
between the camera parameters for the first and the last image, which should be
the same, give an indication of the precision obtained.

Firstly, we note that Figure 5 visually shows, that the differences are small.
Table 2 gives a quantitative evaluation. The upper part shows the translation
error. It is in the range of 0.1 % of the maximum distance between the camera
centers. In terms of an absolute distance this means about 4 centimeters. The
absolute angular error after twenty images is only 0.14◦. This means that we
obtained a relative angular error per image of 0.007◦, demonstrating the high
precision achieved.

The top of Figure 6 shows three pairs of near infrared images of size 1392×1040
pixel of a sequence of 400 images taken by a mobile mapping system. The pairs
have a small overlap due to a diverging imaging configuration and the images
a limited quality due to the near infrared. In spite of this and even though
the images were not explicitly treated as pairs in SfM, but as sequence, the
local geometry of the pairs could be estimated very well. This is mainly due to
robustly tracking points over many frames resulting in highly precise many-fold
points and camera poses.

The third example is based on images acquired for a village in southern Ger-
many by a small UAS. In one experiment, a building has been captured by
terrestrial images which have been linked via ascending images (center of Fig-
ure 7 bottom) to a flight line above the village. In spite of the partially strong
wide baseline geometry (Figure 7, center row), we could still compute valid and
precise camera poses and 3D points.



Dense 3D Reconstruction from Wide Baseline Image Sets 297

Fig. 5. Top: Images four, seven, and eight of image sequence castle-R20 of Ettlingen
castle in Germany, with twenty images [26]. Bottom: Result for SfM (σ0 = 0.14 pixels).
Cameras are given as pyramids and points are colored from the images. For the loop
closing experiment, the first and the last image of the sequence were taken to be the
same, depicted in red and blue with numbers 0 and 20. The overlap of the latter
demonstrates the high quality of the reconstruction.

7 Dense Reconstruction

For dense reconstruction we employ Semiglobal Matching – SGM [9]. It is based
on

– mutual information (MI) or the Census filter for cost computation and

– the substitution of a 2D smoothness term by a combination of 1D constraints
(semiglobal).

The mutual information miI1,I2 is the sum of the entropies in the two images to
be matched hI1(i) and hI2(k) minus their joint entropy hI1,I2(i, k)

miI1,I2 = hI1(i) + hI2(k)− hI1,I2(i, k) . (11)
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Table 2. Evaluation for castle-R20 in terms of loop closing error – Top: Translation
in terms of maximum distance of projection centers as well as in absolute distance;
Bottom: Absolute angular error (after twenty images) and relative angular error (per
image)

Translation x y z

% of maximum distance 0.124 -0.011 -0.053

absolute distance [m] 0.041 -0.004 -0.017

Absolute angular error 0.1398◦

Relative angular error per image 0.0070◦

Fig. 6. Top: Image pairs of an infrared sequence of 400 images taken by a mobile
mapping system given in the form top / bottom from left to right: Pairs 4 / 5, 118 /
119, and 180 / 181. Bottom: Result of SfM. Points are given with the color taken from
the images and camera positions and orientations are marked by colored pyramids.

This leads to the following matching cost (fD transforms the matching image
Im with an initial disparity image D)

CMI(p, d) = −miIb,fD(Im)(Ibp, Imq) , (12)
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Fig. 7. Top: Images of a German village taken from the ground and from an ascending
UAS. Please note the wide baselines between the left and the other two images of
the triplet shown on the second row. Bottom: Result for SfM estimation. Cameras are
given as pyramids and points are colored from the images. For the building in the
center terrestrial images have been linked to the flight line above via ascending images.

where q is the pixel in the matching image Im corresponding to the pixel p in
the reference image Ib and the disparity d.

In essence, MI gives the conditional probability distribution for the inten-
sities in the matching image given an intensity in the reference image without
resorting to a parametric model. Thus, MI can compensate a large class of global
radiometric differences. Though, one has to note that the conditional probability
is computed for the whole image which can be a problem for local radiometric
changes, e.g., if materials with very different reflection characteristics exist in
the scene or lighting conditions change.

The Census filter was found by Hirschmüller and Scharstein [10] to be the
most robust variant for matching cost computation. It defines a bit string with
each bit corresponding to a pixel in the local neighborhood of a given pixel. A bit
is set if the intensity is lower than that of the given pixel. Census thus encodes
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Fig. 8. Top: Dense 3D points generated by SGM. Bottom: Part

the spatial neighborhood structure. A 7 × 9 neighborhood can be encoded in
a 64 bit integer. Matching is conducted via computing the Hamming distance
between corresponding bit strings.

The smoothness term punishes changes of neighboring disparities (operator
T [] is 1 if its argument is true and 0 otherwise):

E(D) =
∑

p

⎛

⎝C(p, Dp) +
∑

q∈Np

P1T [|Dp −Dq| = 1]

+
∑

q∈Np

P2T [|Dp −Dq| > 1]

⎞

⎠ (13)
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Fig. 9. Result for dense 3D surface mesh reconstruction using SGM of parts of image
sequence castle-R20 (Figure 5) – shaded (top) and textured (bottom)

– The first term consists of pixel matching costs for all disparities of D.
– The second term adds a constant penalty P1 for all pixels q from the neigh-

borhood Np of p, for which the disparity changes only slightly (1 pixel).
– The third term adds a larger constant penalty P2 for bigger changes of the

disparities. Because it is independent of the size of the disparities, it preserves
discontinuities.

– As discontinuities in disparity are often visible as intensity changes, P2 is
calculated depending on the intensity gradient in the reference image (with
P2 ≥ P1).

In 2D, global minimization is NP hard for many discontinuity preserving ener-
gies E(D). In 1D, minimization can be done in polynomial time via dynamical
programing, which is usually applied within image lines. Unfortunately, because
the solutions for neighboring lines are computed independently, this can lead to
streaking.
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For the semiglobal solution, 1Dmatching costs are computed in different, (prac-
tically 8) directions which are aggregated without weighting. In the reference im-
age, straight lines are employed, which are deformed in the matching image.

By computing D for exchanged reference and matching image one can infer
occlusions or matching errors by means of a consistency check. If more than
one pair with the same reference image is matched, the consistency check is
conducted for all pairs only once.

With the above methodology, dense disparities can be computed. By using the
camera parameters all points can be projected into 3D leading to dense 3D point
clouds. While the original work of Hirschmüller [9] has shown how to derive 2.5D
surface models, work on the derivation of a 3D surface by means of triangulation
of the 3D points dealing also with outliers has been started only recently.

For parts of the village for which camera poses and 3D point clouds have been
estimated (Section 6, Figure 7), SGM was used to compute dense 3D points from
several pairs. Figure 8 gives an impression of the very high point density and
quality obtained.

Finally, Figure 9 shows first results for dense 3D surface mesh reconstruction
using SGM. Particularly the shaded visualization shows, that the indentations
of the windows could be determined reliably.

8 Conclusions and Outlook

In this paper we have presented an approach for dense reconstruction from wide
baseline image sets. As key characteristics it aims at a high precision in every
step of the approach from least squares matching to robust bundle adjustment.
Particularly for the latter, we take into account the estimated covariance for the
residuals, leading to more precise solutions with more points in less time.

Even though we have demonstrated that we can compute SfM for larger scenes
consisting of hundreds of images with wide baselines, there are still a couple of
shortcomings. The most basic is, that we rely on given information concerning
image overlap. While Agarwal et al. [1] and Frahm et al. [5] have shown how
the problem can be solved in principle, it is still not clear how to deal with wide
baselines. The most obvious way is to compare all possible pairs, but for larger
sets this seems to be not feasible even using GPUs.

Yet, also for large scenes with small baselines problems exist. One is in the
line of thought of our hierarchical approach for linking image sets (Section 5).
Particularly, the question is, which parts of the unordered sets should be linked
when, i.e., at which level of the hierarchy.

Then, there are problems with objects of the real world with specific charac-
teristics. E.g., some objects have symmetries, such as that front and back look
very similar. This is hard for current approaches for unordered sets, where miss-
ing matches are usually attributed to unmodeled occlusions. Thus, the questions
arises, how much semantic information is needed for a reliable 3D reconstruction?
Should ordering information from the camera, e.g., in terms of known acquisition
time be used? If location information, e.g., from GPS is available and reliable,
it could be used to circumvent the problem.
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Finally, there are also a couple of smaller or larger details in our approach
which could be solved in a better way. E.g., at the moment we use one standard
value for RANSAC / GRIC for pairs and triplets. While this works in nearly
all cases, it can be far from optimal as it does not account for the different
precisions possible for images of different sizes, distortions, lighting, contrast
and scene characteristics (e.g., facade planes versus trees). Here, estimation by
means of RECON [23] could give a more general solution.
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