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Abstract. Over the last decades, shared mobility systems have become an integral part of
inner-city mobility. Modern systems allow one-way rentals, that is, customers can drop off
the vehicle at a different location to where they began their trip. A prominent example is
car sharing. Indeed, this work was motivated by the insight we gained in collaborating
closely with Europe’s largest car sharing provider, Share Now. In car sharing, as well as in
shared mobility systems in general, pricing optimization has turned out to be a promising
means of increasing profit while challenged by limited vehicle supply and asymmetric
demand across time and space. Thus, in practice, providers increasingly useminute pricing
that is differentiated according to where a rental originates, that is, considering its location
and the time of day. In research, however, such approaches have not been considered yet.
In this paper, we therefore introduce the corresponding origin-based differentiated, profit-
maximizing pricing problem for sharedmobility systems. The problem is to determine spa-
tially and temporally differentiated minute prices, taking network effects on the supply
side and several practice relevant aspects into account. Based on a deterministic network
flowmodel, we formulate the problem as a mixed-integer linear program and prove that it
is NP-hard. For its solution, we propose a temporal decomposition approach based on
approximate dynamic programming. The approach integrates a value function approxima-
tion to incorporate future profits and account for network effects. Extensive computational
experiments demonstrate the benefits of capturing such effects in pricing generally, as well
as showing our value function approximation’s ability to anticipate them precisely. Fur-
thermore, in a case study based on Share Now data from Florence in Italy, we observe
profit increases of around 9% compared with constant uniform minute prices, which are
still the de facto industry standard.

Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International
License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this
work as “Transportation Science. Copyright © 2022 The Author(s). https://doi.org/10.1287/trsc.2022.
1131, used under a Creative Commons Attribution License: https://creativecommons.org/licenses/
by/4.0/.”
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1. Introduction
Shared mobility systems (SMSs) such as car sharing or
bike sharing offer flexible short-term rentals in many
major cities of the world. Globally, the number of car
sharing vehicles has increased from 11,500 in 2006 to
112,000 in 2015, with 427,000 cars forecast for 2025
(ACEAFrost& Sullivan 2016). In terms of annual growth,
projections for the global car sharing market were
recently at 30%. Also, bike sharing systems have experi-
enced a strong market growth of 20% per year (Roland
Berger 2014). Their increasing importance, as well as the

challenge to operate such systems profitably, have led to
an ongoing academic interest, as survey papers by Jorge
and Correia (2013) and Laporte, Meunier, and Wolfler
Calvo (2018), among others, demonstrate.

Because the fleet is the most important cost driver,
high utilization is key to profitably operating an SMS.
This, however, is difficult to achieve because of ex-
isting imbalances between supply and demand. First,
customers’ demand varies across time and space.
Second, a rental not only instantly decreases available
capacity at its origin but also influences future supply
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across the whole system. These supply-side network
effects result from the fact that modern systems mostly
allow one-way trips; that is, the customer does not
need to return the vehicle to the same location as
where the trip originated. A practical consequence is
that in most real-world systems, because of asymmet-
ric demand, rental vehicles tend to accumulate at cer-
tain locations, usually in the city’s outskirts.

The described imbalances are widely addressed by
supply-oriented operational control mechanisms such
as vehicle relocation. However, as relocations are quite
costly, pricing has been identified as a promising
demand-oriented means in practice and in research.
Most recently, Huang et al. (2020) compare relocation
and pricing optimization (also see Di Febbraro, Sacco,
and Saeednia 2012; Jorge, Molnar, and Correia 2015;
Lippoldt, Niels, and Bogenberger 2018, 2019). Although
the existing research tends to focus on pricing problems
with a high degree of details and high pricing flexibil-
ity, current practical implementations strive for simple,
more restrictive pricing mechanisms that are more
easily applied and communicated to customers. Inter-
estingly, the restriction to simple pricing mechanisms
while network effects prevail turns out to create its
own challenges.

Three dimensions characterize pricing mechanisms
for SMSs, all of which impact the mentioned tradeoff
between flexibility and practicability, as explicated
here.

• Pricing basis: The first pricing dimension concerns
the basis on which rental fees are calculated. The rental
duration is usually central. Usage-based pricing, for
example with prices in cents per minute, is most com-
monly used and therefore we focus on this in our
work. The final rental fee is then determined by the
rental duration and the price that is valid at the start of
the journey. In addition, some SMS providers offer
package pricing for long rentals of multiple hours, fixed
rental fees, or monthly membership fees that are not
linked to usage.

• Spatio-temporal pricing features: The second pricing
dimension refers to whether the SMS provider sets pri-
ces depending on a rental’s time and the location of
start (origin), end (destination), or a combination of
these (trip). In this terminology, origin and destination
consider both spatial and temporal aspects, that is, two
rentals that begin at the same location but at different
times of the day have different origins. Trip-based pric-
ing mechanisms use prices that depend on origin and
destination, allowing a very detailed level of pricing.
By contrast, origin-based and destination-based mecha-
nisms only depend on the origin or destination, respec-
tively. Although trip-based pricing may seem most
powerful, there are several practical disadvantages.
First, the customer’s destination is usually unknown
in advance (Lippoldt, Niels, and Bogenberger 2018,

2019). Second, pricing mechanisms that include the
destination become much more complicated (Lippoldt,
Niels, and Bogenberger 2018). Third, prices need to
be transparently communicated to the customer before
a rental. Attempts to prepare all origin-destination
combinations in a price table are impractical. The SMS
provider then would have to ask a user to (truthfully)
disclose the intended destination, which would consid-
erably change the user experience of most real SMSs
and thus would be unacceptable in most practical set-
tings. Because of these drawbacks, trip-based pricing
seems not to be realizable in practice, and we are not
aware of a single SMS provider who has actually
implemented such trip-based pricing (see Online
Appendix I). This paper therefore focuses on origin-
based pricing as a mechanism most commonly used in
current practice, because the SMS provider then
requires less information than otherwise. It also entails
a more efficient user-provider interaction process and
fairly simple implementation.

• State dependency: The third pricing dimension dis-
tinguishes between dynamic and differentiated pricing.
Dynamic pricing mechanisms determine prices in real-
time and have the theoretical advantage of recurrently
adjusting prices to the current state of the system, in
particular, the current spatial vehicle distribution. Dif-
ferentiated pricing mechanisms also allow for temporal
and spatial price variations, but prices are determined
offline and do not depend on the current state of the
system (Agatz et al. 2013). Some authors use the term
static pricing for this pricing mechanism (Waserhole
and Jost 2012). For SMSs, these differentiated pricing
mechanisms, on which we focus in this paper, are pre-
ferred in practice. This is mainly because differentiated
mechanisms are easier to implement and again, quite
importantly, easy to communicate transparently to cus-
tomers, for example, via price tables.

The problem we consider in this paper can therefore
be summarized as follows: A one-way SMS provider
applies origin-based differentiated pricing by varying
minute prices across different locations and depending
on the time of day to scale demand. Consistent with the
common situation in practice, there are no parallel
operational steering means beyond pricing (pure pricing
assumption). In particular, there is no availability control;
that is, whenever vehicle and customer match, a rental
results. However, if at a certain location and point in
time, demand exceeds supply, demand for all destina-
tions is served proportionally (proportional demand fulfil-
ment assumption) and excess demand is lost. This can be
interpreted as customers with different destinations
arriving in random order. Resulting rentals evoke net-
work effects in the aforementioned sense of influencing
supply at their destinations later in the day. To ensure
simple and transparent customer communication, prices
must originate from a predefined discrete price set.

Soppert et al.: Differentiated Pricing of Shared Mobility Systems
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Given this setting, the optimization task is now to set pri-
ces optimally for all location-time combinations, with
the SMS provider’s overall objective being profit maxi-
mization. We refer to this optimization problem as the
origin-based differentiated pricing problem (OBDPP) in
SMSs.

Given its broad relevance to practice and across all
SMS types, it is remarkable that the problem has not
yet been addressed in the academic literature. Our
contributions, more precisely, are the following:

• To the best of our knowledge, we are the first to
focus on origin-based differentiated pricing, which is
highly relevant for various SMS types in practice
because the corresponding pricing mechanism is trans-
parent to the customer and relatively easy for the pro-
vider to implement. In addition, we include other novel
problem characteristics such as a realistic modeling of
the SMS provider’s control ability. The problem’s prac-
tical relevance is ensured by, among other things, close
cooperation we have established with Share Now,
Europe’s largest car sharing provider operating in eight
countries and 16 cities (Share Now 2021).

• Second, we prove that the problem is NP-hard and
therefore computationally intractable for real-life
instances. Although some authors (Waserhole and Jost
2012, Ren et al. 2019) discuss the computational effort
SMS pricing problems require, to the best of our knowl-
edge, we are the first to derive a formal proof of com-
putational complexity for such a problem to validly
justify the development of solution heuristics.

• Third, we develop a problem-specific, temporal
decomposition heuristic based on approximate dynamic
programming (ADP). The approach is scalable and
applicable to real-world problems. Its integrated value
function approximation (VFA) anticipates the network
effects of the entire problem endogenously in the opti-
mization, although only parts of the original problem
are explicitly optimized during the decomposition. This
is enabled by specifying piece-wise linear VFAs that
reflect the available vehicles’ decreasing marginal value
while maintaining linearity for efficiently integrating it
in the decomposed optimization problems.

• Fourth, we generate a number of relevant manage-
rial insights based on extensive computational experi-
ments with different problem sizes, considering many
relevant parameter settings and demand patterns, and
on a real-world case study of Share Now. In particular,
we demonstrate that origin-based pricing is capable of
substantially increasing profit compared with the de
facto industry standard of constant uniform pricing. Fur-
thermore, we show that our approach can adequately
capture both short-term and long-term network effects
because of its VFA.

The remainder of the paper is organized as follows.
In Section 2, we review the relevant literature, focus-
ing on pricing problems. In Section 3, we formalize

the origin-based differentiated pricing problem,
derive its model formulation, and discuss its complex-
ity. We present the proposed solution approach in
Section 4. Section 5 contains the computational experi-
ments, and Section 6 presents the Share Now case
study. Based on the obtained results, Section 7 dis-
cusses the managerial insights we derived. Section 8
concludes the paper and gives an outlook on future
research. The appendix contains the complexity proof,
as well as additional data and results for the computa-
tional experiments and case study.

2. Literature Review
General overviews on SMS problems have been given
in survey papers on bike sharing (DeMaio 2009, Fish-
man, Washington, and Haworth 2013, Ricci 2015), car
sharing (Jorge and Correia 2013; Ferrero et al. 2015a),
b; Illgen and Höck 2019), and shared mobility in gen-
eral (Laporte, Meunier, and Wolfler Calvo 2015, 2018).
We begin by reviewing the literature on differentiated
pricing problems in Section 2.1 and dynamic pricing
problems in Section 2.2. Then, we give a detailed
delineation of our work from the papers most closely
related in Section 2.3. Please note that because most
pricing mechanisms are not limited to a single SMS
type like bike sharing or car sharing, we refrain from
mentioning whether the authors considered a specific
SMS type. Also, we do not state explicitly whether the
authors considered other optimization problems
besides pricing, such as fleet sizing or relocation.

2.1. Differentiated Pricing
The literature on optimizing differentiated pricing for
SMSs focuses on trip-based pricing.

Waserhole and Jost (2012) propose a fluid approxi-
mation for the revenue-maximizing trip-based pricing
problem, which is the limit of the stochastic model
when demand and supply are scaled to infinity. In
another paper from the same research group, Waser-
hole, Jost, and Brauner (2012) present a model opti-
mizing revenue in a single scenario; that is, they focus
on solving the discrete problem with perfect hindsight
information. This can be used to derive an upper
bound for the stochastic problem. They also consider
pick-up and drop-off fees. To our knowledge, this
paper is the only one in the related literature that has
investigated computational complexity.

The following papers apply a certainty equivalent
approach that replaces stochastic quantities (i.e., rentals)
with a deterministic value (Bertsektas 2019, chapter
2.3.2). Jorge, Molnar, and Correia (2015) use a continu-
ous (expected) demand function and round rentals
to the next integer value in the model. They formulate a
profit-maximizing trip-based pricing problem as mixed-
integer nonlinear program and propose an iterated local
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search meta-heuristic solution approach. Building on
this work, Ren et al. (2019) integrate the vehicle-grid
interaction of electric vehicles into the model and use a
nonlinear solver for the resulting problem. The next two
papers simply require rentals to be integral values not
exceeding a continuous demand function. Xu, Meng,
and Liu (2018) formulate a mixed-integer nonlinear and
nonconvex program. On this basis, they develop a com-
putationally tractable convex model that has the same
objective in the optimum and solve the latter arbitrarily
close to optimality. Huang et al. (2020) use a determinis-
tic, continuous demand function. They discuss two pric-
ing approaches that they compare with relocation.
Although the first is a classic trip-based pricing
approach, the second involves simultaneously opti-
mizing pick-up and drop-off fees. They formulate
mixed-integer nonlinear programs and solve them
with a combined rolling horizon and iterated local
search heuristic, which the authors point out can also
be applied in a dynamic context.

Lu et al. (2021) use yet another formulation, that
is, a bilevel nonlinear program based on a fluid approx-
imation in which the provider determines profit-
maximizing prices on the upper level. The lower level’s
objective minimizes customers’ total cost by a binary
choice between two modes of transportation, namely
shared vehicles and private cars. In an unusual interpre-
tation of a discrete choice model, rentals are addition-
ally bounded from above by a logit model. The authors
transform the bilevel problem to a single-level one
using Karush-Kuhn-Tucker conditions and heuristically
solve it with a genetic algorithm.

Finally, there are two other more distant lines of
work, parallel to the aforementioned. One analytically
investigated the steady state of highly stylized, sta-
tionary settings with time-invariant demand using
techniques from closed-queuing networks. Waserhole
and Jost (2016) maximize the number of trips taken,
assuming null travel time. They approximate the
problem and show a bound for the solution quality.
Banerjee, Freund, and Lykouris (2021) basically
extended this result using a different proof and
approximation techniques. A second parallel line of
work considered pricing in SMSs but without optimi-
zation. For example, Brendel et al. (2017) developed a
framework for a decision support system that could
help to define contingent areas with low or high
demand. The provider can then manually choose
pick-up and drop-off discounts and fees for these
areas.

2.2. Dynamic Pricing
Dynamic pricing problems make up most pricing
problems considered in the literature on SMSs. We
structure the discussion along the spatio-temporal
pricing features (second dimension introduced in

Section 1). We begin with the dynamic mechanisms
that exclusively use either origin-based or destination-
based pricing. Next, we refer to a class of approaches
that simultaneously considers dynamic origin- and
destination-based pricing, after which we discuss
those using classic trip-based pricing.

Giorgione, Ciari, and Viti (2019) are the first schol-
ars to have considered pure origin-based dynamic
pricing. They analyze a dynamic pricing policy that
links the price to the availability of vehicles at a rent-
al’s origin and demonstrate the advantage of dynamic
pricing over a constant uniform price. Neijmeijer et al.
(2020) propose an optimization model that dynami-
cally adjusts prices with the objective to balance
vehicles’ idle times while minimizing incentive costs.
In a real-life free-floating SMS, the authors demon-
strate the effectiveness of origin-based pricing incen-
tives. Most recently, Hardt and Bogenberger (2021)
and Müller et al. (2021) proposed dynamic origin-
based pricing approaches for free-floating SMSs, both
with the objective to maximize profit. The former uses
a model predictive control approach that recurrently
optimizes prices for subareas of the operating area.
The latter proposes customer-centric pricing where
prices are optimized individually for each customer,
thereby considering the available vehicles within a
customer’s reach and the choice behavior.

Destination-based dynamic pricing was first investi-
gated by Di Febbraro, Sacco, and Saeednia (2012). In a
first step, they determine a service maximizing fleet
distribution, whereas the second step determines opti-
mal drop-off discounts that incentivize customers to
return their vehicle to a specific destination. Following
up on this work, Di Febbraro, Sacco, and Saeednia
(2019) changed the second step’s objective to profit
maximization. Brendel, Brauer, and Hildebrandt
(2016) proposed a dynamic drop-off incentive for
users who accept the option of returning their vehicle
to a different location than that initially intended.
Pfrommer et al. (2014) suggest a model predictive con-
trol approach. The objective is a weighted sum of the
deviation from an optimal vehicle distribution and the
cost of incentive payments. Wagner et al. (2015) pro-
pose a system that dynamically suggests alternative
rental destinations and incentivizes customers with
free minutes. Chemla et al. (2013) consider a service
maximizing fleet utilization, measured by successful
and unsuccessful intended customer interactions like
finding an available vehicle. They suggest dynamic
drop-off fees to influence customer behavior. Mare-
cek, Shorten, and Yu (2016) propose a dynamic pric-
ing scheme that derives drop-off fees to incentivize
drivers to distribute cars more evenly.

Some authors simultaneously consider dynamic origin-
and destination-based pricing. Singla et al. (2015) investi-
gate the problemofminimizing customers’dissatisfaction

Soppert et al.: Differentiated Pricing of Shared Mobility Systems
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about not finding an available vehicle or parking slot
under a given budget restriction. They propose dynamic
pick-up and drop-off fees to incentivize users to choose
an alternative origin or destination. Kamatani, Nakata,
and Arai (2019) take a reinforcement learning approach
to derive dynamic pick-up and drop-off fees with the
objective of maximizing fleet utilization. Wang and Ma
(2019) consider the objective of keeping inventories in a
certain range, and they determine dynamic pick-up and
drop-off rewards and charges by a quadratic program-
ming formulation.

Finally, there are papers that use a dynamic trip-
based pricing mechanism. Barth, Todd, and Xue
(2004) consider maximizing fleet utilization by incen-
tivizing customers with the same journey to share a
ride or to split up and use multiple vehicles. Prices are
reduced according to a simple rule-based mechanism
without any optimization. For example, if two users
are asked to take two cars, each pays half-price.
Angelopoulos et al. (2016) consider the problem of
dynamically setting budget-constrained trip-based
incentives in an SMS to balance the vehicle inventory.
The approach uses graph-theoretic modeling and
proposes a heuristic method to solve the resulting
weighted packing problem. Haider et al. (2018)
dynamically set trip-based prices to minimize the
number of unbalanced stations, that is, SMS stations
with a surplus or lack of vehicles, to ease the subse-
quent need to reposition using trucks. In their bilevel
programming approach, the upper level sets prices
and minimizes the imbalance, whereas the lower level
represents customers’ cost minimization route choices.
They convert the problem to a single-level problem
and propose a heuristic that iteratively adjusts prices
and customer decisions.

2.3. Delineation from Closest Related Work
In this section, we discuss that the closest related
works cannot be simply adapted to meet the given
characteristics of the origin-based differentiated pric-
ing problem this paper considers.

Among the papers discussed here, which all focus
on trip-based pricing, we identify two groups that dif-
fer regarding the modeling of demand and rentals.
For both groups, we conclude that central structural
differences impede an inclusion of the OBDPP’s
characteristics.

The first group of papers does not distinguish
between demand and rentals. It encompasses Jorge,
Molnar, and Correia (2015), Ren et al. (2019), Waser-
hole and Jost (2012), and Haider et al. (2018), who
study differentiated and dynamic trip-based pricing.
The former three consider unrestricted, continuous
prices that scale demand. Thus, it is always optimal to
set prices such that capacity is not scarce and therefore
that demand will equal rentals. The key issue is that,

with the restricted and especially discrete price points
prevalent in practice, this equivalence of demand and
rentals no longer holds and is usually even infeasible.
Allowing for discrete prices requires a differentiation
between demand and rentals, as well as explicitly
incorporating the pure pricing and proportional demand
fulfillment assumptions. Thus, it would require major
modeling changes.

By contrast, Haider et al. (2018) do not scale
demand by continuous prices; they only influence
customers’ route choices in a bilevel problem with an
infinite fleet size. Moreover, their model is optimistic,
that is, if customers are indifferent, the provider choo-
ses the itinerary for them. Although including discrete
prices with demand scaling, profit maximization, and
origin-based pricing in their model seems possible,
this alone would yield an entirely new model. How-
ever, there are two key issues. First, incorporating a
limited fleet size would also necessitate accounting for
the pure pricing assumption. Second, the problem that
we consider with its proportional demand fulfillment
assumption is neither optimistic nor pessimistic. As
optimistic approaches are usually the most tractable
ones, including these two assumptions appears to be
complex.

The second group of papers encompasses Xu, Meng,
and Liu (2018), Lu et al. (2021), and Huang et al. (2020),
who distinguish between demand and rentals in their
models, but do not satisfy the pure pricing and propor-
tional demand fulfillment assumptions. Xu, Meng, and
Liu (2018) and Huang et al. (2020) include demand
scaling with continuous prices. Their models bound
rentals only from above by supply and demand.
Thus, the provider can freely choose the number of
rentals going to the different destinations up to these
bounds, as it is beneficial in the long term. This vio-
lates the pure pricing and proportional demand fulfil-
ment assumptions. An extension of their models that
includes the assumptions in respective constraints
seems possible, but the changes would be so ex-
tensive that basically any network flow model could
be used.

Slightly similar to Haider et al. (2018), Lu et al.
(2021) do not scale total demand by continuous prices,
but only influence customers’ mode choices on the
lower level of their bilevel problem, where they work
with the assumption of customers collectively mini-
mizing cost. As in Haider et al. (2018), the key issue is
that the model is optimistic. If customers’ costs are
the same for carsharing and private cars on a trip, the
provider can choose the number of customers up to
the logit model’s bound. Even more importantly, if
this holds for several trips, the provider can freely
choose the number of customers for each trip. Again,
there is no clear path to include the two assumptions.
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The work of Giorgione, Ciari, and Viti (2019) is not
closely related. Although they do analyze a pure origin-
based pricing problem, they do so without pricing opti-
mization, without considering network effects, and in a
dynamic context which fundamentally differs from the
differentiated pricing problem that we analyze.

3. Origin-Based Differentiated Pricing
Problem in Shared Mobility Systems

In this section, we define and analyze the origin-based
differentiated pricing problem in SMSs (OBDPP). Sec-
tion 3.1 formally states the problem and introduces the
notation. In Section 3.2, we present a mixed-integer lin-
ear programming formulation for the OBDPP based on
a fluid network flow model. Section 3.3 investigates the
computational complexity of the problem.

3.1. Problem Statement and Notation
We take the perspective of a one-way SMS provider
whose task is to apply differentiated pricing to deter-
mine minute prices over a given time interval, for
example, one day. The SMS consists of locations
Z � {1, 2, : : : ,Z}. The considered time interval is dis-
cretized into periods T � {0, 1, : : : ,T − 1}. For all rent-
als that originate at a specific combination of location
i ∈ Z and period t ∈ T , the same minute price pit is
charged, regardless of a trip’s destination (origin-
based pricing). The minute prices have to be selected
from M given price points pm ∈ R

+
0 with m ∈M �

{1, 2: : : ,M}. Now, the provider’s objective is to set the
prices such that they maximize the profit generated
from the resulting rentals over the given time interval.
The corresponding solution to the problem, that is,
the optimized prices, can be presented in the form of a
price table, as shown in Table 1.

On a more detailed level, additional key aspects of
the problem definition are the assumptions regarding
demand, rental realization, and system dynamics,
which we now discuss in more detail.

• Demand: We considered the demand and its
dependence on the price points on an aggregate level
as described, for example, in Talluri and van Ryzin
(2004, chapter 7.3). More specifically, the base demand
for every location-location-time combination, from

location i to location j at period t, is given by dijt ∈ R
+
0

and builds the base demand matrix d � [dijt]Z×Z×T.
Each entry is scaled by an i-j-t specific sensitivity factor
f mijt , depending on the price pm, to obtain the actual
demand dmijt � dijt · f mijt . The price where f mijt � 1 and
thereby dmijt � dijt is denoted as base price.

• Rental realization: The rentals rmit that realize for a
specific origin, meaning a location-time (i-t) combina-
tion, and price pit, are determined by the minimum of
the available vehicle count ait and the prevailing actual
demand, meaning rmit �min(ait,∑j∈Zd

m
ijt). This implicit

realization of rentals based on the prevailing supply
and demand implies that the SMS provider can only
influence rentals via prices (pure pricing assumption).
We assume that rentals at period t in location i, that is,
rmit , split up proportionally to demand regarding their
destination into the i-j-t specific rentals rmijt. This means
that we model rmijt as a fraction of rmit proportional to
dmijt=

∑
j∈Zd

m
ijt (proportional demand fulfillment assumption).

We assume rentals have a variable cost per minute
c ∈ R

+
0 .• Dynamics: We think of the SMS dynamics as a

sequential process with successive periods, as it is done
in practice and commonly found in the literature, for
example, in Xu, Meng, and Liu (2018). More precisely,
we assume that rentals start at the beginning of a period
and the vehicles, at latest, always become available
again at the beginning of the respective next period. The
average rental duration lij ∈ R

+
0 (in minutes) is shorter

than the period length but can vary according to the
spatial distance between different locations i-j.

Finally, the initial vehicle distribution at the begin-
ning of the considered time interval (beginning of the
day) âi0 for every location i is given as a consequence
of regular relocation activity (usually performed dur-
ing the night). Thus, fixed costs related to these regu-
lar relocations are out of the problem’s scope.

3.2. Mathematical Model
We formulate the OBDPP based on a deterministic
network flow problem in which vehicles move
through a spatio-temporal network (Figure 1). The
resulting fluid model considers expected values of the
vehicle movements and available vehicles in the SMS.
Deterministic models for pricing decisions are stand-
ard in pricing and revenue management (Talluri and
van Ryzin 2004, chapter 3.3.1) and are applied in SMS
optimization (Waserhole and Jost 2012, Illgen and
Höck 2019).

The model contains multiple continuous variables:
As depicted in Figure 1, rentals from location i to loca-
tion j in period t that are charged with minute price
pm are represented by the continuous variable rmijt;
these build the elements of the vector r � [rmijt]Z×Z×T×M.
Vehicles that are not rented in location i at period t
and therefore remain in that location are represented

Table 1. Structure of the Origin-Based, Differentiated Price
Table

T

Z 0 1 2 … T – 1

1 p10 p11 p12 … p1(T−1)
2 p20 p21 p22 … p2(T−1)
… … … … … …
Z pZ0 pZ1 pZ2 … pZ(T−1)
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by the continuous variable sit and are the elements of
s � [sit]Z×T. The number of vehicles at the beginning of
a period t in a certain location i is represented by the
continuous variable ait with the corresponding vector
a � [ait]Z×(T+1).

Additionally, the model contains the following
binary decision variables. The pricing decisions build
the elements of y � [ymit ]Z×T×M. A specific decision vari-
able ymit takes the value of one if and only if price pm is
set in location i at period t. To formulate all necessary
constraints, in particular that vehicle movements and
availabilities are the result of existing demand and
selected prices (see pure pricing and proportional
demand fulfillment assumptions in Sections 1 and 3.1),
additional auxiliary binary variables are required, rep-
resented by q � [qit]Z×T.

Based on the decision variables and the parameters
defined thus far, the model can be stated as a mixed-
integer linear program (MILP) as follows:

max
y,q, r, a, s

∑

t∈T
∑

i∈Z
∑

j∈Z
∑

m∈M
rmijt · lij · (pm − c) (1)

s:t: ait � ∑

j∈Z
∑

m∈M
rmijt + sit ∀i ∈ Z, t ∈ T , (2)

∑

i∈Z
∑

m∈M
rmijt + sjt � aj(t+1) ∀j ∈ Z, t ∈ T , (3)

ai0 � âi0 ∀i ∈ Z, (4)

∑

m∈M
ymit � 1 ∀i ∈ Z, t ∈ T , (5)

rmijt ≤ dmijt · ymit ∀i, j ∈ Z, t ∈ T ,

m ∈ M, (6)

rmijt ≤ dmijt=
∑

k∈Z
dmikt · ait ∀i, j ∈ Z, t ∈ T ,

m ∈ M, (7)
∑

j∈Z
∑

m∈M
dmijt · ymit − ait ≤ M̄ · qit ∀i ∈ Z, t ∈ T , (8)

∑

j∈Z
∑

m∈M
−dmijt · ymit + ait ≤ M̄ · (1 − qit)

∀i ∈ Z, t ∈ T , (9)
∑

m∈M
dmijt · ymit ≤

∑

m∈M
rmijt + M̄ · qit ∀i, j ∈ Z, t ∈ T , (10)

sit ≤ M̄ · (1 − qit) ∀i ∈ Z, t ∈ T , (11)

ymit ∈ {0, 1} ∀i ∈ Z, t ∈ T ,
m ∈ M, (12)

qit ∈ {0, 1} ∀i ∈ Z, t ∈ T , (13)

rmijt ∈ R
+
0 ∀i, j ∈ Z, t ∈ T ,

m ∈ M, (14)

sit ∈ R
+
0 ∀i ∈ Z, t ∈ T , (15)

ait ∈ R
+
0 ∀i ∈ Z,

t ∈ {0, 1, : : : ,T}:
(16)

The objective function (1) maximizes the contribu-
tion margin across all periods and results from the
rentals at different prices minus the variable costs.
Because decisions related to fixed costs cannot be
made at this point and are therefore out of scope,
maximizing the contribution margin is equivalent to
optimizing profit here. Constraints (2) and (3) form
the flow conservation that ensure a constant fleet size
at all periods. More precisely, (2) connects the avail-
able vehicles ait in location i at the beginning of period
t to the rentals at all possible prices rmijt that originate at
this specific spatio-temporal node plus the vehicles
not rented sit. Constraints (3) determine the available
vehicles at the beginning of the next period aj(t+1) by
summing up the arriving rentals and the vehicles not
moved. Clearly, (2) and (3) could be formulated in
one set of constraints; however, the description of the
solution approach in Section 4 becomes more com-
prehensible with an explicit decision variable ait. The
initial vehicle distribution is set by Constraints (4).
Constraints (5) ensure that at every location-time com-
bination only one price pm is set.

Constraints (6) and (7) define upper bounds on the
rentals, depending on whether demand or supply limits
the rentals. For every i-j-t combination, Constraints (6)
limit the rentals observed at a certain price to the actual
demand at this price. Additionally, these constraints
ensure that only those variables rmijt whose correspond-
ing price pm was selected can be positive. Constraints (7)
limit the rentals to the number of available vehicles for
every location-time combination. More specifically, the
rentals from location i to location j at period t and price
pm must not exceed the fraction dmijt=

∑
k∈Zd

m
ikt · ait of

available vehicles. The factor dmijt=
∑

k∈Zd
m
ikt splits the

Figure 1. Structure of the Spatio-Temporal Network

Note. Columns, time periods; rows, locations.
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available vehicles proportionally into vehicle flows
according to the demand relation.

Constraints (8)–(11) are necessary to enforce
lower bounds on the rentals, which thereby ensure
that if pit � pm, rentals realize according to rmit �
min(ait,∑j∈Zd

m
ijt) (see pure pricing and proportional

demand fulfillment assumptions in Sections 1 and 3.1; see
Soppert et al. (2022) for detailed discussions on match-
ing functions that determine rmit , including variants to
the min-operator applied here). They incorporate a
sufficiently large number M̄. Constraints (8) and (9)
force qit to one if the demand exceeds the available
vehicles and to zero otherwise. Now, if demand
exceeds the supply, such that qit � 1, Constraints (11)
ensure that all available vehicles are rented. In the
other case where qit�0, Constraints (10) set the de-
mand as a lower bound for the rentals. As described
in the review of the closest related literature in Section
2.3, to the best of our knowledge, none of the existing
works on SMS pricing optimization enforces such
lower bounds on the rentals. Consequently, these
models have a degree of freedom that allows them to
reject certain rentals. They therefore do not adequately
reflect the real decision problem.

From a technical viewpoint, the OBDPP falls into
the class of deterministic sequential decision prob-
lems, which are characterized by the fact that they can
be divided into stages (Winston and Goldberg 2004,
chapter 18.2). In the OBDPP, these stages correspond
to the multiple time periods. The corresponding
model given in (1)–(16) has the same structure as the
general deterministic sequential decision problem
stated, for example, in Powell (2011, chapter 4.8.4).

3.3. Computational Complexity

Theorem 1. The origin-based differentiated pricing opti-
mization problem in SMSs (OBDPP) (1)–(16) is NP-hard.

Proof. See Online Appendix A.

The proof is performed by polynomial-time reduc-
tion of the three-satisfiability problem (3-SAT), which is
well known to be NP-hard (Garey and Johnson 1990),
to the OBDPP. In 3-SAT, multiple clauses of three liter-
als each build a Boolean formula, where the clauses are
connected by conjunctions and the literals in each
clause by disjunctions, meaning that the formula is in
conjunctive normal form (CNF). 3-SAT now asks
whether a given 3-CNF formula is satisfiable, thus ask-
ing whether there exists a consistent truth assignment
of TRUE/FALSE to the literals, such that the formula
is TRUE. The idea of the proof is to construct an
OBDPP instance where location-time combinations
correspond to a 3-SAT instance’s clauses. For each
location-time combination, the price selection corre-
sponds to the selection of a literal that is guaranteed

to be TRUE. For the constructed OBDPP instance,
determining the optimal solution implies deciding sat-
isfiability of the corresponding 3-SAT instance.

4. Approximate Dynamic Programming
Decomposition Approach

Given that the OBDPP is NP-hard, in this section, we
develop a problem-specific heuristic approach for its
solution. More precisely, we propose a decomposition
approach based on approximate dynamic program-
ming (ADP). We start by explaining the theoretical
foundation of the approach in Section 4.1, followed by
its formal description in Section 4.2. In Section 4.3, we
describe the specific design of the VFA, which is a cen-
tral element of the approach. We explain the estima-
tion process of the VFA parameters in Section 4.4.

4.1. Theoretical Foundation
The solution approach builds on the general idea of
using ADP as a decomposition technique. As Powell
(2011) noted, although ADP is known as a solution
framework for solving stochastic dynamic decision
problems, it can also be applied as a decomposition tech-
nique for deterministic sequential decision problems
(Powell 2011, chapter 4.8.4), like the OBDPP. Through
this technique, multiple smaller problems are solved
instead of the original large problem, with each smaller
problem containing a VFA that attempts to compensate
for the neglected parts of the original problem (Powell
2009, 2016). These VFAs are functions of the decision
variables, such that the profits-to-come they approxi-
mate are endogenously incorporated within the optimi-
zation of the smaller problems. Powell points out that
ADP decomposition approaches in principle allow to
solve extremely large mathematical programs, which
even modern commercial solvers find difficult, but the
challenge is to design effective, problem-specific VFAs
that yield adequate solution quality.

The ADP decomposition approach we developed
for the OBDPP in this study implies a time-based
decomposition of the original problem. That is,
although in the original problem (1)–(16), all periods
t ∈ T are optimized simultaneously, our approach is
based on the iterative solution of multiple smaller and
adapted versions of the original problem (termed sub-
stitute problem). More precisely, the approach loops
chronologically across all periods τ ∈ T , and for each
τ, a substitute problem with fewer explicitly consid-
ered periods (termed horizon) but with a period-
specific VFA at the end of the horizon is optimized.

It is important to note that the ADP decomposition
approach goes beyond the basic rolling horizon solu-
tion approach for deterministic sequential decision
problems, as it is described by Grossmann (2012). In
fact, the key idea is to integrate sophisticated VFAs
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that allow us to implicitly consider all remaining parts
of the original problem that are not considered explic-
itly in the optimized substitute problem. In our case,
these VFAs are functions of the vehicle distribution
(decision variables in the substitute problems) such
that for any resulting vehicle distribution at the end of
the horizon, the approximated profit-to-come is endo-
genously incorporated in the optimization. Thereby,
the ADP decomposition approach has an obvious
advantage over the basic rolling-horizon approach
and comes along with the theoretical potential, in case
of perfect VFAs, to indeed find the optimal solution of
the overall problem. We describe the details of the
approach next.

4.2. Formal Description
We begin the more formal description of the ADP
decomposition approach by formalizing the substitute
problem at a specific period τ. To reduce the problem
size, the number of explicitly modeled periods in the
substitute problem at period τ is limited to the hori-
zon length H that has to be prespecified. For a certain
H, the explicitly considered periods in the substitute
problem at τ are the elements of the horizon
Hτ � {τ,τ+ 1, : : : ,min(τ+H− 1,T − 1)}. In otherwords,
this means that periods t < τ and t >min(τ+H − 1,T−
1) are not considered explicitly and that the number
of periods in the substitute problem can also be fewer
than H in case it would otherwise exceed T – 1. To
compensate for the reduction of explicitly considered
periods, theVFA is additionally integrated in the objective
function.

To obtain a formulation of the substitute problem
on the basis of the original OBDPP (1)–(16), it must be
adapted to the considered periods in Hτ and the VFA
should be integrated. For that purpose, the decision
variable vectors y,q, r,a, s are replaced by τ-specific
vectors with appropriate time dimension, that is,
yHτ

� [ymit ]Z×Hτ×M, qHτ
� [qit]Z×Hτ×M, rHτ

� [rmijt]Z×Z×Hτ×M, sHτ
� [sit]Z×Hτ

,
where Hτ �min(H,T− τ− 1), and aHτ

� [ait]Z×(Hτ+1)×M,
respectively. For each horizon Hτ with τ ∈ T , a corre-
sponding substitute problem with initial vehicle dis-
tribution âτ is then given by the following MILP:

max
yHτ

,qHτ
,

rHτ
,aHτ

, sHτ

∑

t∈Hτ

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c)

+ 1{τ+H<T−1} · V̄τ+H(aτ+H) (17)

s:t: Constraints (2)–(3); (5)–(15) with T replaced
by Hτ, and (16) with {0, 1, : : : ,T} replaced
by {τ,τ+ 1, : : :min(τ+H,T)}, (18)

Constraints (4) with vehicle distribution âτ, (19)

Constraints depending on choice of V̄τ+H(aτ+H):
(20)

Compared with the original OBDPP (1)–(16), the
objective function in the substitute problem (17) con-
tains the additional VFA V̄τ+H(aτ+H). For each substi-
tute problem, the function V̄τ+H(aτ+H) approximates the
value at the end of the horizon (i.e., from period t �
τ+H until the end of the day), referring to the optimal
profit-to-come in the original problem for the re-
maining periods Rτ+H � {τ+H,τ+H + 1, : : : ,T − 1}.
Because the VFA depends on the vehicle distribution
aτ+H � [ai(τ+H)]Z×1, the approximated profit-to-come is
endogenously incorporated in the optimization of the
substitute problem. More formally, the link between
the approximation V̄τ+H(aτ+H) and the original prob-
lem for a certain period t � τ+H under the respective
constraints is

V̄τ+H(aτ+H) ≈ max
yRτ+H ,qRτ+H , rRτ+H ,

aRτ+H ,sRτ+H

∑

t∈Rτ+H

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c),

(21)

again with adapted vectors of decision variables that
now contain the respective variables for all remaining
periods t ∈Rτ+H. The indicator function 1{τ+H<T−1} in
(17) ensures that the VFA is not used beyond the
last period of the original problem. We present the
details of the VFA design, as well as of determining
the function parameters in Section 4.3 and Section 4.4,
respectively.

Furthermore, although Constraints (18) in the sub-
stitute problem in principle correspond to the original
constraints (2)–(3) and (5)–(16), they now account for
the new time periods considered explicitly, meaning
that T is replaced by Hτ and {0, 1, : : : ,T} is replaced
by {τ,τ+ 1, : : : ,min(τ+H,T)}. Likewise, Constraints
(19) concerning the substitute problem’s initial vehicle
distribution remain largely unchanged from (4), but
the initial vehicle distribution âτ � [âiτ]Z×1 at τ now is
the distribution at the beginning of the substitute
problem’s horizon. Depending on the specific choice
of the VFA V̄τ+H(aτ+H), additional constraints might
be necessary (Constraints (20)). We discuss these
regarding our specific VFA design in Section 4.3.

Given the formulation of the substitute problem, we
can now solve the original problem using the decom-
position approach by chronologically looping over T ,
from τ � 0 to τ � T − 1. In each iteration, we solve a
substitute problem (17)–(20) at period τ with horizon
Hτ. For τ � 0, the vehicle distribution is initialized
with the vehicle distribution of the original problem
â0. For all other substitute problems at τ > 0, the
respective initial vehicle distribution âτ is determined
by the vehicle distribution aτ that realized after one
period in the previous substitute problem with hori-
zon Hτ−1. The prices pτ � [piτ]Z×1 that result from the
optimization for the first period of each substitute
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problem at τ are the final prices to be recorded in col-
umn τ of the price table (Table 1), whereas all other
calculated prices are discarded. Similarly, vehicle dis-
tributions are computed for the entire horizon, but
only the vehicle distribution aτ+1 of the next period
τ+ 1 is used as initial vehicle distribution âτ+1 for the
next substitute problem. From a technical perspective,
already calculated future prices and spatial vehicle
distributions can be used as part of a warm start solu-
tion in the following substitute problem to speed up
the overall solution process.

The general ADP decomposition approach is de-
picted as pseudo-code in Algorithm 1. The substitute
problem including VFA given by (17)–(20) can be
solved using a standard mixed-integer programming
(MIP) solver. Remember that it is not fully specified
yet. We still need to choose a specific VFA to be inte-
grated in Objective (17) and add its corresponding
constraints as indicated by (20). We describe our
choice of this VFA and the corresponding elements to
add in the next section. The computation times for the
entire process of pricing solution determination are
discussed in Online Appendix D.

Algorithm 1 (Approximate Dynamic Programming De-
composition Approach)

– start with initial vehicle distribution â0 according
to original problem

for τ � 0 to τ � T − 1 do
– solve substitute problem including VFA (17)–
(20) with respective horizonHτ

– store prices pτ in price table
– update initial vehicle distribution: âτ+1 ← aτ+1

end for

4.3. Design of the Value Function Approximation
Here we propose and discuss a problem-specific VFA
to be used for V̄τ+H in (17) and state the additional
constraints it requires (cf. (20)). The main focus in our
VFA design is to effectively approximate the network
effects of the OBDPP. Please remember that the idea is
to use the VFA to be able to evaluate any vehicle dis-
tribution that might arise in the substitute problem.

Basically, the VFA V̄τ+H can be any function that
maps the decision variables at the end of the horizon
to the desired value. In general, three alternative VFA
types can be used in ADP: lookup tables, nonparamet-
ric value functions, and parametric value functions
(Powell 2011, chapter 6). We decided to follow the lat-
ter type, that is, a parametric approach, because, dif-
ferent to the others, it can be incorporated in our
MILP framework without excessively using auxiliary
variables.

The choice of a specific VFA depends on two
aspects. First, and most importantly, the VFA should
be a good approximation of the true value function

and capture all properties relevant for decision mak-
ing. The second is tractability. As we integrate the
VFA into a MILP, we aim as much as possible to
reduce the additional complexity that inevitably
results from the VFA integration with its additional
decision variables and potential constraints. The first
step of the VFA design is known as feature selection
in the ADP realm. It determines the variables (a subset
of the state) of which the VFA is a function. The
vehicle distribution aτ+H is the natural choice, as it is
central to the SMS’s state, and determines the poten-
tial for future rentals. The second step that defines the
actual function is a bit more complicated. The key
property here is that each additional vehicle in a spe-
cific location at time τ+H has a positive additional
value, but as the number of vehicles increases, the
marginal value of each additional available vehicle
decreases. This is because the finite demand causes
saturation and limits the profit that can be realized
with additional vehicles, also taking future demand at
other locations through network effects into account.
Thus, a concave function seems appropriate. Regard-
ing tractability, linearity in the vehicle distribution
aτ+H is desirable.

Combining these arguments and computational
tests, we propose a piecewise linear function of the
number of vehicles in each location at time τ+H.
Additional constraints ensure concavity. Thus, the
VFA captures the decreasing marginal value of avail-
able vehicles and retains linearity. In particular, the
VFA (incorporated in the substitute problem (17)–(20))
is the following Z-dimensional piecewise linear func-
tion with K pieces in each dimension.

V̄τ+H(aτ+H) :�
∑

i∈Z

∑

k∈K
v̄ki(τ+H) ·Δaki(τ+H) + v̄constτ+H (22)

Technically speaking, the VFA (22) for a specific
period τ+H is a function of the respective spatial
vehicle distribution aτ+H and additive over the Z loca-
tions. For a specific location i, the present vehicles
ai(τ+H) are divided into K buckets that each represent a
common marginal value per vehicle and correspond
to the pieces of the piecewise linear function. The
number of vehicles in these buckets is modeled by
additional decision variables Δaki(τ+H) (� pieces) with
ai(τ+H) � ∑

k∈KΔa
k
i(τ+H) ∀i ∈ Z, where K � {1, : : : ,K}.

Thus, a specific share Δaki(τ+H) of the vehicles at loca-
tion i, period (τ+H) now corresponds to piece k and
contributes with the respective marginal value v̄ki(τ+H)
to the overall value of the VFA. Additionally, the VFA
contains the time specific constant v̄constτ+H .

The VFA parameters, meaning v̄ki(τ+H) for i ∈
Z,τ+H ∈ T , k ∈K, as well as v̄constτ+H for (τ+H) ∈ T , are
derived in an estimation process that we describe in
Section 4.4. Because of the decreasing marginal value
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of vehicles discussed previously, during estimation,
we enforce concavity of the function in each dimension
i by requiring v̄ki(τ+H) ≥ v̄k+1i(τ+H) ∀i ∈ Z and ∀k ∈ {1, : : : ,
K− 1}. Furthermore, we require v̄ki(τ+H) ≥ 0 ∀i ∈ Z,
k ∈K and v̄constτ+H ≥ 0 for obvious reasons.

As a side note, for an efficient VFA of our problem,
considering i-t–specific parameters v̄ki(τ+H) is indeed
decisive. The intuition behind this is that a vehicle’s
value depends on both location and time. In particu-
lar, parameters that were only time-specific would
result in a valuation of the fleet at the end of the horizon
which is identical for all possible fleet distributions.

Now, to plug the VFA (22) into the substitute prob-
lem (17)–(20) for period τ with horizon Hτ, we obvi-
ously substitute (22) into the objective function (17).
Moreover, additional continuous and nonnegative
decision variables Δaki(τ+H) ∀i ∈ Z, k ∈K are intro-
duced. To ensure a correct evaluation of the vehicle
distribution at+H with (22), the following additional
constraints need to be integrated in the substitute
problem for (20):

ai(τ+H) �
∑

k∈K
Δaki(τ+H) ∀ i ∈ Z (20a)

Δaki(τ+H) ≤ Δã ∀i ∈ Z, ∀k ∈ {1, 2, : : : ,K− 1}: (20b)

Constraints (20a) ensure that the Δaki(τ+H) indeed sum
up to the vehicle count. By Constraints (20b), the num-
ber of vehicles in each bucket, except for the last
bucket (ΔaKi(τ+H)), is limited to the respective prede-
fined bucket size Δã. Because of the concavity of the
VFA, the buckets are “automatically” filled in the cor-
rect order, beginning with k � 1.

To solve the substitute problem (17)–(20) incorpo-
rating this VFA, we still need values for its parame-
ters. We describe their estimation in the next section.

4.4. Parameter Estimation
The estimation process we propose for the VFA
parameters is performed before we loop over the time
periods and iteratively solve the substitute problems
as described in Sections 4.1 and 4.2. We followed the
traditional idea of parameter estimation based on
observed data, which, in our case, is artificial sample
data generated from simulations, as common in ADP-
based approaches. For the purpose of sample generation,
we exploit that for a given spatial vehicle distribution at
a certain period and with a given price table for the
remaining periods, the resulting rentals of the remaining
periods and thus the corresponding profit-to-come are
easily calculated algorithmically. This profit-to-come
evaluation is computationally efficient, even for real-life
instances. The overall process can roughly be outlined as
follows: First, we generate samples of vehicle distribu-
tions. Second, for each sample, we calculate the resulting
profit-to-come. Finally, these data are used to estimate

the VFA parameters by an adapted least squares estima-
tion procedure.

More formally, for each period (τ+H) ∈ {1, 2, : : : ,
T − 1}, multiple samples n ∈N � {1, 2, : : : ,N} of vehi-
cle distributions ânτ+H � [âni(τ+H)]Z×1 are drawn by ran-
domly splitting up the fleet among the Z locations.
For each of these vehicle distribution samples ânτ+H, a
corresponding profit-to-come V̂

n
τ+H(ânτ+H) is deter-

mined by evaluating a known (suboptimal) price
table; for example, one that only consists of a constant
uniform price, over the remaining periods. This could
be done by applying a solver to evaluate the original
problem (1)–(16) with fixed prices for the remaining
periods in Rτ+H, but an equivalent algorithmic solu-
tion is straightforward and much faster. Moreover, for
each vehicle distribution the number of vehicles in
each bucket, Dânτ+H � [Δâk,ni(τ+H)]Z×1×K×N is calculated.
In particular, for each location, we simply assign as
many vehicles as possible up to the bucket size
Δâk,ni(τ+H) to a bucket and then continue with the next
with increased k.

Given the resulting sample data, the respective param-
eters v̄τ+H � [v̄ki(τ+H)]Z×1×K and v̄constτ+H from the VFA (22)
are simultaneously determined by constrained least
squares estimation, that is, a variant of ordinary least
squares estimation with additional equality and inequal-
ity constraints. More precisely, we minimize the mean
squared error over the N-generated data points by the
following quadratic optimization problem:

min
v̄τ+H, v̄constτ+H

1
N

∑

n∈N
(V̂n

τ+H(ânτ+H) − V̄
n
τ+H(Dâni(τ+H)))2 (23)

s:t: V̄n
τ+H(Δâni(τ+H)) �

∑

i∈Z

∑

k∈K
v̄ki(τ+H) ·Δâk,ni(τ+H) + v̄constτ+H

∀n ∈N , (24)

v̄ki(τ+H) ≥ 0 ∀i ∈ Z, k ∈ K, (25)

v̄constτ+H ≥ 0, (26)

v̄ki(τ+H) ≥ v̄k+1i(τ+H) ∀i ∈ Z,

k ∈ {1, 2, : : : ,K− 1}: (27)

The error minimized in (23) is the mean of the
squared difference between the observed (evaluated)
profits-to-come V̂

n
τ+H and the profits-to-come V̄n

τ+H
predicted with (22) (identical to (24)), for the respec-
tive observed (randomly drawn) spatial vehicle distri-
bution, over all samples N. Constraints (25)–(26)
ensure the nonnegativity of the parameters, and Con-
straints (27) ensure the VFA’s concavity. Remember
that v̄τ+H and v̄constτ+H are parameters in their eventual
use as parts of the VFA in the substitute problem
(17)–(20), but here in (23)–(27), they are the decision
variables to be determined.

The parameter estimation is performed individually
for each period (τ+H) ∈ T but simultaneously over
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all Z locations each (τ+H) such that spatio-temporal
interdependencies are captured by the VFA parame-
ters. The process is depicted as pseudo-code in Algo-
rithm 2. We solve (23)–(27) using a standard MIP
solver. Computation times for the parameter estima-
tion process are discussed in Online Appendix D.

Algorithm 2 (Parameter Estimation Algorithm)
for (τ+H) � 1 to T – 1 do

for n � 1 to N do
– randomly divide fleet into spatial vehicle dis-
tribution ânτ+H

– determine profit-to-come V̂
n
τ+H by algorith-

mic evaluation of original problem (1)–(16)
for remaining periods Rτ+H with known
(suboptimal) price solution

– for each location, calculate number of vehicles
in each bucket (Dânτ+H)

end for

– determine VFA parameters v̄τ+H and v̄constτ+H by
(23)–(27)

end for

5. Computational Experiments
We investigate the performance of the ADP decompo-
sition approach presented in Section 4 in comprehen-
sive computational experiments. We vary the most
relevant influencing factors systematically to triangu-
late the approach’s performance. Section 5.1 introdu-
ces the scenarios and parameter values. In Section 5.2,
we state all solution approaches that we investigate,
including benchmarks, as well as the metrics we use
for their evaluation. In Section 5.3, we present and dis-
cuss the computational results.

5.1. Scenarios and Parameters
We consider three settings of a free-floating SMS that
primarily differ in the number of zones (� locations),
Z � 9, Z � 16, and Z � 25, but also regarding the
demand pattern. The process used to generate the
base demand matrix d with values for all zone-zone-
period combinations allows to incorporate typical
demand characteristics that we observed in practice,
namely a typical demand pattern over the course of
the day and differentiation between zone types, like
city center zones or peripheral zones (Reiss and
Bogenberger 2016). The exact procedure is explained
in Online Appendix B. The remaining parameters are
constant over all three settings: we discretize the time
interval of one day into T � 48 periods of 30 minutes
each, in line with practice and literature (Ferrero et al.
2015b, Kaspi et al. 2016). The parameters âi0 � 2 ∀i ∈
Z represent a realistic number of vehicles per zone.
We select the M � 3 price points pm according to typi-
cal prices in practice and literature (Lippoldt, Niels,
and Bogenberger 2018): we choose a base price of
p(2) � 30 ct/min and price differences of 20% to the

low and high price, such that p(1) � 24 ct/min and
p(3) � 36 ct/min. The corresponding sensitivity factors
f (1)ijt � 1:25, f (2)ijt � 1, f (3)ijt � 0:75 ∀i, j ∈ Z, t ∈ T are chosen
according to observations from practice. Variable
costs of c � 7.5 ct/min made up 25% of the base price.
The average rental time was set to lij � 15 minutes
∀i, j ∈ Z, again in line with literature (Xu, Meng, and
Liu 2018) and after discussions with our practice
partner.

To generate different scenarios within a setting, the
overall demand level can be adjusted by the demand-
supply-ratio δ, which determines the ratio of the maxi-
mum period demand during the day d̄ and the fleet
size

∑
i∈Z âi0. Although the fleet size remains constant

for all scenarios within a setting, the overall demand
varies according to δ, that is, d̄ �∑

i∈Z âi0 · δ. The
required (base) demand of a scenario for every loca-
tion-location-period combination dijt is then simply
determined by scaling d̄ according to the given
demand pattern, which is defined by ratios of the dijt
among one another. As a result, d̄ �maxt(∑i,j∈Zdijt)
holds. We use demand patterns that replicate typical
spatio-temporal differences, for example, that show
the two characteristic demand peaks over the course
of a day, as observed in practice by our practice part-
ner. This is typical for SMSs and has been similarly
reported in many other studies, such as Reiss and
Bogenberger (2016). Although the maximum period
demand only reflects the demand of a single period, it
is a representative, yet simple, metric for the overall
demand, because all SMSs in practice show a compa-
rable course of demand across the day. The demand-
supply-ratios we use are δ ∈ {2=6, 4=6, 6=6, 8=6}. Fur-
thermore, as already mentioned, each combination of
a certain settingwith a specific δ forms a scenario.

5.2. Investigated Solution Approaches and
Evaluation Metrics

Here, we describe the solution approaches that we investi-
gate. Besides our ADP decomposition approach with
three different configurations, we investigate four bench-
mark approaches, of which one again has three configura-
tions (the approaches are summarized in Table 2):

•ADP-H is the ADP decomposition solution approach
we presented in Section 4 and is configured with differ-
ent horizon lengthsH (ADP-1, ADP-4, ADP-8).

• CUP denotes a lower benchmark using constant
uniform pricing. Because of its wide adoption over all
SMS types, this pricing can be considered as the de
facto standard applied in practice. Here we used the
base price pit � p(2) for all i ∈ Z and t ∈ T .

• OPT denotes the optimal solution of the OBDPP in
which all 48 periods are optimized simultaneously. It
provides an upper bound. This benchmark can be cal-
culated for some of the scenarios.
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• UB denotes the best known upper bound that the
solver returned after a computation time limit.

• ROL-H is a basic rolling-horizon approach. In the
context of our work, it is best described as a variant of
the ADP decomposition approach without the VFA at
the end of the horizon, that is, V̄τ+H � 0 ∀(τ+H) ∈ T .
We considered this benchmark to analyze the impact
of the VFA in our approach. Like ADP-H, it can be con-
figured for different horizon lengths H (ROL-1, ROL-4,
ROL-8). This benchmark with H � 1 represents the
myopic solution that only considers one period in each
substitute problem without anticipating any network
effects.

Each combination of scenario and solution
approach configuration forms a test instance in our
experiments. Table 7 in Online Appendix C summa-
rizes the test instances that we evaluate.

Regarding the VFA, we define the parameters that
specify the structure of the function and the estima-
tion process as follows. The number of buckets
(pieces) is K � 10, and the bucket size is Δã � 2. For
each scenario, we perform the parameter estimation
as described in Section 4.4 on n � 10,000 samples. In
each period (τ+H) ∈ T , we randomly generate the
initial vehicle distribution ânτ+H following the Dirichlet
distribution and use the CUP solution for evaluating
the original problem (1)–(16) for the remaining peri-
ods inRτ+h to obtain V̂

n(ânτ+H).
We use various metrics to evaluate the solution

approaches and to discuss further insights. We de-
scribe these metrics in the following exposition. We
summarize them in Table 3, as well as formally define
them in Table 8 in Online Appendix C. Profit (PRrel

(·) ),
revenue (RVrel

(·) ), and rentals (RTrel
(·) ) are stated as rela-

tive improvements to the respective value from the
uniform pricing solution. Depending on the analysis,
we consider the overall improvements across all

periods t ∈ T (e.g., PRrel) or one particular period t
(e.g., PRrel

t ). Furthermore, we consider the proportion
of location-time combinations in which a particular
price pm is selected (Pprop

(·) ) and the proportion of rent-
als that occur at price pm (RTprop

(·) ) for all periods t ∈ T
(Pprop

pm ,RTprop
pm ) and for a specific period t (Pprop

pmt ,RT
prop
pmt ).

We implement the algorithms in Python 3.7 and
solve all MILPs with Gurobi 9.0.2. In all scenarios
with nine zones, we set the target optimality gap
to zero in Gurobi and no time limit in any of the
approaches is imposed. In all scenarios with 16 and 25
zones, the time limit is set at one hour for the substi-
tute problems of the ADP-H and ROL-H approaches
and at 48 hours for UB. Additionally, we use the CUP
solution as a warm start solution in all instances. We
execute our computations on a workstation with two
Intel Xeon E7-8890 v3 2.5 GHz processors with a total
of 36 cores, and 512 GB RAM.

5.3. Results
In the following sections, we present and discuss our
computational results. First, we determine how much
improvement is possible beyond myopic pricing
(ROL-1; Section 5.3.1). Next, we investigate how much
of this potential can be realized with the ADP-H and
ROL-H approaches (Section 5.3.2) and in this context
we show the importance of the VFA by comparing
ADP-H to ROL-H. Then, we discuss the impact of
accounting for network effects on the pricing (Section
5.3.3) and intuitively illustrate how the VFA captures
network effects, as well as the future value of avail-
able vehicles (Section 5.3.4). Finally, we analyze the
robustness of the results by considering a stochastic
environment (Section 5.3.5).

We discuss the results for all demand-supply ratios
δ here but depict only those of the profit for δ � 2/6,
illustratively. All other results are depicted in Online

Table 2. Overview of Solution Approaches Investigated

Description Configurations

ADP-H ADP decomposition approach with horizon length H ADP-1, ADP-4, ADP-8
CUP Benchmark: constant uniform pricing —
OPT Benchmark: optimal pricing —
UB Benchmark: best upper bound after a computation time limit —
ROL-H Benchmark: rolling-horizon approach with horizon length H ROL-1, ROL-4, ROL-8

Table 3. Evaluation Metrics

Description Variant

PRrel Relative profit increase w.r.t. CUP Time specific: PRrel
t

RVrel Relative revenue increase w.r.t. CUP Time specific: RVrel
t

RTrel Relative rentals increase w.r.t. CUP Time specific: RTrel
t

Pprop
pm Proportion of price pm in pricing solution Time specific: Pprop

pmt
RTprop

pm Proportion of rentals at price pm in pricing solution Time specific: RTprop
pmt
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Appendices E (9-zone setting) and F (16- and 25-zones
settings). Computation times are discussed in Online
Appendix D.

5.3.1. Improvement Potential over Myopic Pricing. We
begin by identifying the improvement potential over
myopic pricing, that is, the relative difference in profit
PRrel between the myopic (ROL-1) and upper bench-
marks. For the nine-zones setting, we use the optimal
(OPT) solution as upper benchmark. For the 16-
and 25-zones setting, the optimal solution cannot be
determined in reasonable time; therefore, we use the
best known upper bound (UB) as benchmark. The
idea is that the range between the lower and upper
benchmarks is an upper bound on the potential of
PRrel that can be achieved by the ADP decomposition
approach. We consider the latter approach in Sec-
tion 5.3.2.

This potential is graphically given in Figure 2. It
depicts the profit obtained with the different solution
approaches (in dependence of the horizon length H
for ADP-H and ROL-H, see Section 5.3.2) relative to
the profit with CUP, which the 0% line marks. The
profits obtained by OPT and UB are horizontal lines
because they do not depend on H. We observe that
OPT and UB yield a profit increase of about 15% over
CUP. The myopic solution ROL-1 provides about 5%
more profit than CUP. Thus, the potential improve-
ment over myopic pricing is about 10 percentage
points. We return to Figure 2 in the following section
to discuss the other results included.

Figure 14 in Online Appendix E depicts the results
for all scenarios with δ from 2/6 to 8/6 (rows) in the
nine-zones setting. The potential for improvement
between ROL-1 and OPT decreases from 10.1 percent-
age points for δ � 2/6 to 2.3 percentage points for δ �
8/6. The scenarios with δ < 6/6 are especially relevant
for practice (Section 6.1). These results are also valid
for the 16- and 25-zones settings (see Figure 15 in
Online Appendix F).

What makes the difference between the scenarios is
obviously the relevance of network effect anticipation,
because ROL-1 considers only one period in each sub-
stitute problem and includes no VFA and therefore no
network effects. The intuition is that in high-demand
scenarios (large δ), there is almost always demand for
an available vehicle, because the demand is never the
limiting factor. In low-demand scenarios, however,
vehicles remain unused more often. This conclusion is
supported by the comparison of rentals (RTrel) in the
third column of Figure 14, which shows a substantial
difference of 3.8 percentage points between ROL-1
and OPT for δ � 2/6 and almost no difference for δ �
8/6.

5.3.2. Performance of the ADP Decomposition Appro-
ach. After identifying the potential of up to 10 per-
centage points for improvement over the myopic
solution ROL-1, we now analyze the performance of
the proposed ADP decomposition approach (ADP-H).
To do so, we revisit Figure 2(a) and consider the profit
PRrel of ADP-1, ADP-4, and ADP-8. In the nine-zones
setting, we observe that as the horizon length H
increases, PRrel increases from 11.4% (ADP-1) to 15.1%
(ADP-8). Additionally, the improvement potential
identified in Section 5.3.1 is almost entirely exploited.
The results for the 16- and 25-zones settings are simi-
lar. An additional profit increase does not necessarily
go hand in hand with a revenue RVrel and rentals RTrel

increase, as depicted for the nine-zones setting in the
second and third columns of Figure 14 in Online
Appendix E. Sometimes profit increases because of a
quantity effect when the differentiated pricing enables
more rentals while the average price remains more or
less constant. The underlying reason is a better posi-
tioning of vehicles because of the network effect con-
sideration. At other times, profit increases because of
a price effect at rather constant rentals with increase
average price or even at fewer rentals when the aver-
age price decreases underproportionally.

Figure 2. (Color online) Relative Profit Increase in Settings with 9, 16, and 25 Zones

(a) (b) (c)

Notes. Demand-supply-ratio δ � 2=6. (a) Z � 9. (b) Z � 16. (c) Z � 25.
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Again referring to Figure 2(a), we see that the inte-
grated VFA in ADP-1 and ADP-4 has a substantial
benefit of 5.8 and 2.4 percentage points over their
ROL-H counterparts. For ROL-8/ADP-8, the benefit is
smaller. For smaller horizon lengths, the potential for
improvement by the VFA is obviously higher than for
larger horizon lengths because both the explicit con-
sideration of additional periods in a longer horizon
and the VFA aim to consider the spatio-temporal net-
work effects. As settings become larger, the benefit of
ADP-H over ROL-H increases, and with 16- and
25-zones even ADP-1 performs considerably better
than the ROL-8 benchmark procedure (Figure 2, (b)
and (c)).

The results for all scenarios in the 9-zones setting
(Figure 14, Online Appendix E) and all scenarios in the
16- and 25-zones settings (Figure 15, Online Appendix
F) confirm the findings discussed previously. Most
importantly, the profits obtained with ADP-H are at
least as high as the respective variant of ROL-H, but
especially for the practice-relevant scenarios with low
δ, there is substantial improvement. This demonstrates
that integrating the VFAs can partly compensate for
not considering all spatio-temporal network effects
explicitly. The fewer network effects are captured
within the horizon, the stronger the effect.

Another benefit of the ADP decomposition approach
concerns its scalability to large problem instances. As
preliminary studies have shown, problem complexity
(NP-hardness of the OBDPP) takes its toll, and finding
good solutions in reasonable time cannot be guaran-
teed. By contrast, ADP-H benefits from the decomposi-
tion and can therefore cope with the larger problem
size while simultaneously considering network effects.

5.3.3. Investigation of Pricing. The differences in con-
sidering network effects of the myopic (ROL-1) and
the optimal solution (OPT) identified in Section 5.3.1
are also reflected in the pricing decisions, depicted as

price tables in Figure 3, (a) and (b), for the nine-zones
setting with δ � 2/6. On an aggregate level, these dif-
ferences become obvious in comparing the propor-
tions of the ROL-1 and OPT prices PRprop in the fourth
column of Figure 14 in Online Appendix E. For δ � 2/6,
for example, the ROL-1 solution consists of 1.6% low,
76.9% base, and 21.5% high prices. The OPT solution
consists of 34.5% low, 28.7% base, and 36.8%
high prices.

The better network effects are captured, the more
the resulting pricing decisions resemble the optimal
pricing, as the price tables for ADP-1 and ADP-8
depicted in Figure 3 (c) and (d), demonstrate. Espe-
cially the difference between ROL-1 and ADP-1 is
insightful. Again, the aggregate price proportions
Pprop
pm which are depicted in Figure 14 (Online Appen-

dix E) and Figure 15 (Online Appendix F) underline
how the network effect integration, especially with
ADP-H, affects the pricing.

5.3.4. Investigation of the Value Function Approxima-
tion. Integrating the VFA that captures the spatio-
temporal network effects beyond the explicitly considered
horizon’s end is an integral component of the ADP
decomposition approach. In this section, we illustrate
how the VFA works and illustratively interpret the esti-
mated values we obtained. In particular, the following
analyses demonstrate how the VFA’s parameters reflect
the demand pattern and thus capture short-term and
long-term vehicle values. For ease of readability, we first
repeat theVFAgiven in Section 4.3:

V̄τ+H(aτ+H) �
∑

i∈Z

∑

k∈K
v̄ki(τ+H) · Δaki(τ+H) + v̄constτ+H: (28)

For the sake of clearer analyses, we define its zone-
specific parts as

V̄part
i(τ+H)(ai(τ+H)) �

∑

k∈K
v̄ki(τ+H) · Δaki(τ+H) (29)

Figure 3. (Color online) Pricing with Different Solution Approaches in Nine-Zones Setting

(a) (b)

(c) (d)

Notes. Demand-supply-ratio δ � 2/6. B, base price; H, high price; L, low price. (a) ROL-1. (b) OPT. (c) ADP-1. (d) ADP-8.
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such that

V̄τ+H(aτ+H) �
∑

i∈Z
V̄

part
i(τ+H)(ai(τ+H)) + v̄constτ+H : (30)

Table 4 contains an extract of the slope parameters
v̄ki(τ+H) and the constants v̄constτ+H for two periods
((τ+H) � 16 at morning peak time and (τ+H) � 32 at
evening peak time) and two zones (center zone i � 5
and peripheral zone i � 1). The values result from the
estimation process of the scenario with Z � 9 zones
and demand-supply-ratio δ � 2/6. The biggest abso-
lute difference between the respective parameters con-
cerns the constants with v̄const16 � 140:63 and v̄const32 �
1:36. As the value function V̄τ+H approximates the
profit-to-come from a certain period (τ+H) onwards,
the difference in the constants reflects the higher
demand-to-come at an earlier time. This time depend-
ence of v̄constτ+H is also visible in Figure 4. The close connec-
tion to the demand-to-come is obvious from comparing
its course over the day, as depicted in Figure 5.

The slope parameters v̄ki(τ+H) during the evening
peak period (τ+H) � 32 take larger values for the cen-
ter zone i � 5 than for the peripheral zone i � 1, reflect-
ing that vehicles in the center have a higher value.
This is because demand in the center zone is higher
during the evening peak. This is reflected in the VFA
by the parts V̄1,32(a1,32) and V̄5,32(a5,32) for zones 1 and
5, which are depicted in Figure 6(b). Both curves, the
solid one representing the value in zone i � 1 and
the dashed one for zone i � 5, are concave with a posi-
tive slope in the origin and a saturation with zero

slope from a certain vehicle count ait onward. Concav-
ity and saturation represent the diminishing marginal
value of additional vehicles and the assumptions
imposed in the estimation process.

During the morning peak period at (τ+H) � 16,
the zone-specific VFAs V̄i16(ai16) for the same two
zones i � 1 and i � 5 are depicted in Figure 6(a). There
is also concavity and saturation, but the functions
intersect. As the slope parameters in Table 4 show, the
first slope parameter for zone 1 takes higher values
than the corresponding values of zone 5, meaning
v̄k1,16 > v̄k5,16 for k � 1. For k > 1, however, the order of
slope values switches, such that v̄k1,16 ≤ v̄k5,16. These
parameters and the resulting curves can be explained
by analyzing the demand. Figure 6(c) shows that at
(τ+H) � 16, the demand of zone 1 is slightly higher
than that of zone 5. The demand-to-come from (τ+
H) � 16 on in zone 5, however, is much higher, as
Figure 6(d) displays. Because the demand after the
morning peak in zone 1 is low, putting more than two
vehicles in that zone will not deliver high value, and for
more than 12 vehicles zero additional value will accrue.
In contrast, the higher demand-to-come in zone 5 will
lead to a positive value for additional vehicles, which
explains the later saturation of V̄5,16(a5,16) at higher
vehicle count a5,16. This shows how the VFA reflects
short-term and long-term network effects because
of temporal demand variations. The magnitudes of
the v̄ki(τ+H) values and v̄constτ+H values (with an average of
two vehicles per zone) in Table 4 indicate that they both
represent decisive VFA features.

Table 4. Parameter Estimates of VFA for Two Exemplary Periods and Zones

v̄k
i(τ+H)

v̄constτ+HPeriod Zone k � 1 k � 2 k � 3 k � 4 k � 5 k � 6 k � 7 k � 8 k � 9 k � 10

(τ+H) � 16 i � 1 9.79 2.30 1.54 1.54 1.42 1.27 0.00 0.00 0.00 0.00 140.63
i � 5 6.45 5.82 5.82 5.66 5.44 5.44 5.22 3.49 0.00 0.00

(τ+H) � 32 i � 1 3.31 3.25 3.25 3.25 3.25 3.25 3.25 0.00 0.00 0.00 1.36
i � 5 7.33 7.28 7.17 7.06 6.96 6.85 6.85 0.00 0.00 0.00

Figure 4. (Color online) Value of the Constant v̄constt in the
VFA

Figure 5. (Color online) Base Demand-to-Come
∑T−1

τ�t
∑

i,j∈Zdijτ
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5.3.5. Stochastic Demand. To analyze the robustness
of the results, we additionally evaluate the pricing
resulting from different solution approaches in a sto-
chastic environment. For this purpose, we apply a
multiplicative stochastic demand function, which is one
of the standard approaches of modeling demand as
described, for example, in Talluri and van Ryzin
(2004, chapter 7.3.4). More precisely, base demand is
now a random variable Dijt with

Dijt � ξ · dijt, (31)

where ξ is a stochastic error term that is assumed to
follow a normal distributionN (1,σ2).

Based on this demand model, we evaluate all sce-
narios from Section 5.1, that is, the 9-, 16-, and
25-zones settings with all demand-supply-ratios δ. For
each scenario, we consider different degrees of sto-
chasticity, expressed by different standard deviations
σ ∈ {0, 0:1, 0:2, 0:3, 0:4} of the factor ξ. These values are
in the range of demand uncertainties we observed in
practice. For each of the resulting combinations of sce-
nario and degree of stochasticity, we draw S � 1,000
demand matrices ds with s ∈ {1, : : : ,S} as realizations
of [Dijt]Z×Z×T and use them to evaluate the ADP-H
and ROL-H solution approaches, that is, to evaluate
the price table that was optimized for the correspond-
ing base demand matrix d. Online Appendix G con-
tains all results with confidence intervals.

Figure 7 illustratively depicts the results for δ � 2=6
and the three different zone numbers. On the vertical
axis, the mean value of the relative profit increase
with respect to the CUP benchmark (0% line) is
depicted for ROL-1, ROL-8, ADP-1, and ADP-8. On
the horizontal axis, the standard deviation σ is varied.

Overall, the proposed pricing approaches and our
results are robust to the stochasticity of demand.
However, all profit increases tend to decrease sligh-
tly with increasing stochasticity. The more sophisti-
cated procedures are obviously more sensitive to
stochasticity than CUP. However, these reductions
in profit increase amount to at most two percentage
points compared with zero stochasticity (σ� 0), and
the order of the different approaches regarding their
performance does not change with increasing sto-
chasticity. All proposed approaches still perform
substantially better than the benchmark CUP, and as
in Section 5.3.2, the anticipatory approach ADP-8 we
propose is always the best.

As a technical remark, in the stochastic demand
model, demand realization Dijt < 0 could potentially
result, in particular, for high values of σ (see the corre-
sponding discussion in Talluri and van Ryzin 2004,
chapter 7.3.4). We correct for this by setting negative
draws to zero. The small positive bias resulting from
this truncation is not relevant to our study, because
for each degree of stochasticity, we use the same 1,000
scenarios for all approaches we compare.

Figure 6. (Color online) Parts of the VFA for Two Selected Zones at Periods 16 (a) and 32 (b), Base Demand (c), and Cumulated
Base Demand (d) over the Course of the Day

(a) (b)

(c) (d)
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5.3.6. Assessment of Pricing Approaches Covered in
the Literature. As stated in Section 1, the OBDPP,
despite its relevance for practice, which we trace to
the pricing approach’s advantages compared with
others, is a novel problem that has not been discussed
in the literature yet. Thus, a direct comparison with
pricing approaches covered in the literature is not fea-
sible. Still, in this section, we assess pricing solutions
derived from pricing approaches suggested in the liter-
ature to determine whether they could be applied to
the problem at hand.

We explained in Section 2.3 that all the closest
related studies differ from the OBDPP on two decisive
points: The existing studies consider trip-based pricing
instead of origin-based pricing, and they do not make
the two central assumptions of pure pricing and propor-
tional demand fulfillment (see Section 1). Therefore, we
formulate two variants of the original OBDPP model
(1)–(16):

• TBDPP-RLX mimics trip-based pricing (TBDPP)
as the closest related work suggests (see Section 2.3).
Similar to all of these studies, the model omits, or
technically speaking, relaxes (RLX), the pure pricing
and proportional demand fulfillment assumptions that are
operative in the original OBDPP model. The TBDPP-
RLX is formulated by (34)–(44) in Online Appendix H.1.

• OBDPP-RLX considers origin-based pricing as in
the OBDPP but also relaxes the pure pricing and propor-
tional demand fulfillment assumptions. By relaxing the
OBDPP’s two central assumptions, this model allows
us to asses the two assumptions’ realistic modeling in
the OBDPP in isolation. The OBDPP-RLX is formulated
by (45)–(55) in Online Appendix H.2.

To assess the pricing solutions derived from the
TBDPP-RLX and the OBDPP-RLX, we evaluate the re-
sulting pricing solutions in the OBDPP and compare the
resulting profits with the result we achieved by solving
the OBDPP with our ADP decomposition approach
(ADP-8). For the TBDPP-RLX, we determine origin-based
prices from the trip-based pricing solution as follows:

In a first step, for every location-period combination, all
corresponding trip-based prices are averaged. In the sec-
ond step, the nearest price point from the given price set
is determined. Regarding the solution methods for the
OBDPP-RLX and the TBDPP-RLX, all periods of the
respective problems are solved simultaneously (as for
OPT and UB) with a computation time limit of 48 hours.
Because of the reduced complexity of these two problems
compared with the OBDPP, they can be solved close to
optimally for all settings and scenarios: All solutions have
a gap of less than 0.5% to the respective best knownupper
bound.

Figure 8 states the results for the three settings with 9,
16, and 25 zones, where each has four scenarios with dif-
ferent demand-supply ratios. Independent of the setting
and scenario, the pricing determined by TBDPP-RLX
performs worst of all pricing approaches. Also, the pric-
ing determined by OBDPP-RLX is consistently worse
than the one that OBDPP determined. In terms profit
PRrel (percentage points with respect to (w.r.t.) CUP),
pricing solutions delivered by OBDPP-RLX perform 0.1
to 7.2 percentage points worse than those of ADP-8, and
the ones delivered by TBDPP-RLX perform 7.8 to 12.8
percentage points worse than those of ADP-8. This is
because the OBDPP-RLX and especially the TBDPP-
RLX suppose too high an influence on the resulting rent-
als than is possible in reality. Without the pure pricing
and proportional demand fulfillment assumptions, the
models can perform a kind of availability control (see Sec-
tion 1). This means that rentals do not, as in reality, real-
ize solely from dependence on the prevailing supply
and demand but that the model can decide to reject cer-
tain rentals and to favor others that have specific desti-
nations. For the TBDPP-RLX, this effect is even stronger,
because the model can influence demand more flexibly
with trip-based prices (location-location-period level),
whereas in reality, prices are limited to being origin
based (location-period level).

Overall, these results clearly justify two findings:
First, pricing approaches such as those suggested in

Figure 7. (Color online) Stochastic Evaluation of Solution Approaches in 9-, 16-, and 25-Zones Setting with Demand-Supply-
Ratio δ � 2=6

(a) (b) (c)

Notes. (a) Z � 9. (b) Z � 16. (c) Z � 25.
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the literature (TBDPP-RLX) cannot be applied to
determine prices for the OBDPP. Second, the exact
modeling of the two central assumptions as they are
prevalent in the reality of the OBDPP is indeed deci-
sive in determining the best possible pricing solutions.

These results do not allow any statements regarding
the effectiveness of origin-based pricing in compari-
son with actual trip-based pricing of an SMS. Clearly,
if an SMS provider were able to put trip-based pricing
into practice, this cannot perform worse than origin-
based pricing, simply because of the additional flexi-
bility. However, as explained in Section 1, practice, for
very good reasons, exclusively applies origin-based
pricing.

6. Case Study
In this section, we consider a real-world scenario that
reflects the origin-based differentiated pricing optimi-
zation of Share Now for a weekday in Florence, Italy.
On the one hand, this case study allows us to con-
clude results and managerial insights in an instance of
real-world size. On the other hand, compared with
the rather stylized scenarios given in Section 5, all

parameters in this case study are based on real historic
data that were collected over several months at Share
Now. We introduce the scenario in Section 6.1 and
discuss the results in Section 6.2.

6.1. Scenario and Parameters
Share Now’s area of operation in Florence is divided
into 59 zones, as shown in Figure 9(a). To respect the
nondisclosure agreement, we only share values for
demand and rentals that are normalized to the maxi-
mum period demand max(dt), where dt �∑

i,j∈Zdijt.
Figure 9(b) depicts the normalized base demand
(dt=max(dt) ∀t ∈ T ) and the resulting normalized
rentals with the uniform pricing solution (

∑
i,j∈Zr

(2)
ijt =

max(dt) ∀t ∈ T ) during the course of the day. The day
is discretized into 48 periods of 30 minutes each. The
demand curve shows the typical pattern with two
peaks at the rush hour times, in the morning at t � 17
(0830 hours) and in the evening at t � 39 (2130 hours),
with the lowest level during the night at t � 8 (0400
hours). The rental curve follows the general course of
the demand curve, with less pronounced peaks. Dur-
ing the night, the difference between demand and

Figure 8. (Color online) Comparison of Profit Obtained by Pricing Solutions with OBDPP, OBDPP-RLX, and TBDPP-RLX in Set-
tings of 9, 16, and 25 Zones with Different Demand-Supply-Ratios δ

(a) (b) (c)

Notes. (a) Z � 9. (b) Z � 16. (c) Z � 25.

Figure 9. (Color online) Share Now Scenario in Florence, Italy

(a) (b)

Notes. (a) Operating area with 59 zones. (b) Normalized demand and rentals over the course of the day.
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rentals is smaller than during the day. This can be
explained by the higher availability of vehicles during
the night, implying that potential customers almost
always find an available vehicle. During the day, in
particular during peak times, the probability that
demand results in a rental is lower because of the rela-
tively high number of vehicles in use. The demand-
supply-ratio in this scenario is approximately δ � 0:7,
which is in the range of scenarios with δ < 1 on which
we focused in the computational experiments we
described in Section 5.

Demand parameters are obtained from data Share
Now recorded in April and May 2018. More precisely,
the base demand matrix dwith entries dijt results from
unconstraining the constrained demand, that is, the
observed rentals. Unconstraining is a standard issue
in revenue management (Talluri and van Ryzin 2004,
chapter 9.4). We chose all other parameters as in the
computational experiments (Section 5.1). The only dif-
ference concerns the VFA design and its parameter
estimation process. We increased the number of pieces
to K � 20 to adapt to the larger fleet size. Finally, we
compared our ADP decomposition approach’s results
in the ADP-4 configuration to the myopic benchmark
ROL-1.

6.2. Results
Section 6.2.1 discusses the profit increase from ADP-4.
Section 6.2.2 analyzes the resulting pricing decisions,
rentals, and revenue.

6.2.1. Profit. Table 5 summarizes the PRrel results for
the Florence scenario. With our ADP decomposition

approach (ADP-4), the profit improvement PRrel is
9.2%. Thus, the explicit and implicit consideration of
network effects in ADP-4 realized an additional
improvement of 5.3 percentage points compared with
the myopic solution ROL-1 and an improvement of
2.4 percentage points over the ROL-4 benchmark.
These results demonstrate the scalability of our
solution approach to real-life scenarios and show a
substantial improvement potential compared with the
de facto standard of CUP through network effect
consideration.

6.2.2. Pricing Decisions, Rentals, Revenue. We now
analyze the effect of optimization on the pricing deci-
sions, the rentals, and the revenue. Figure 10(a)
depicts the PRprop

pmt results of ADP-4 during the course
of the day and shows that the prices vary consider-
ably. The largest proportion of highly priced rentals is
set at demand peak times t � 17 and t � 40. At non-
peak times, the base price accounts for the largest pro-
portion of rentals, with an exception in the very first
period only. Table 5 shows the price proportions Pprop

pm

over the whole day. We observe that, on average,
ADP-4 leads to higher prices compared with the CUP
benchmark, lower average prices compared with the
myopic solution ROL-1, and comparable prices with
ROL-4.

To gain more insight, we now illustratively consider
four zones in more detail. Figure 11 depicts absolute
demand, absolute available vehicles, and the prices of
the ADP decomposition solution ADP-4 over all peri-
ods for the four zones with indexes 2, 7, 49, and 59.
Zones 2 and 59 are characterized by relatively low

Table 5. Results from a Real-Life Scenario in Florence, Italy (59 Zones)

Solution approach

Change w.r.t. CUP Pprop
pm RTprop

pm

PRrel RVrel RTrel Low Base High Low Base High

ROL-1 3.9% 0.9% −8.2% 11.1% 45.7% 43.2% 8.5% 33.5% 58.1%
ADP-1 7.0% 4.1% −4.4% 8.8% 54.0% 37.1% 6.0% 43.2% 50.8%
ROL-4 6.8% 4.0% −4.3% 8.4% 56.1% 35.5% 5.4% 45.5% 49.1%
ADP-4 9.2% 6.2% −2.8% 13.7% 45.3% 41.0% 6.4% 41.1% 52.5%

Figure 10. (Color online) Prices (a) and Rentals (b) over the Course of the Day (ADP-4)

(a) (b)
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demand, zone 49 has the highest demand of the
four, and zone 7’s demand lies approximately halfway
between the two extremes. During the first half of the
day, especially during the morning peak time, zone 2
has relatively many vehicles available: more than the
demand requires. This results in low prices at the
beginning of the day and a declining vehicle count
toward midday. During the evening peak, the levels
of supply and demand are largely balanced, and high
prices are set. Zone 7 shows the typical demand pat-
tern, with two peaks that exceed the available vehicle
count at these times. The resulting prices also show
this shortage of vehicles at peak times, as high prices
are set during these periods. Zone 49 has a higher
demand than vehicle supply during most periods of
the day and therefore often has high prices. The only
exception is during the morning peak, when many
vehicles arrive in that zone and lower prices are set to
compensate for the oversupply. Zone 59 is character-
ized by relatively low demand and only a few avail-
able vehicles throughout the day, with high prices at
peak times and low prices in the first periods. These
observations show that the resulting pricing decisions
differ considerably in their patterns. To some extent
they can be explained by current supply and demand,
but regarding the previously mentioned differences
between the Pprop

pm of the myopic benchmark and the
ADP decomposition approach, they are also the result
of network effect considerations.

Table 5 shows that RTrel decreases by 8.2% with the
myopic solution and by 2.8% with the ADP decomposi-
tion approach solution, whereas RVrel increases by 0.9%
and 6.2%, respectively. Considering these figures in
combination with the Pprop

pm discussed previously, the

additional PRrel increase through network effect consid-
eration of ADP-4 with respect to ROL-1 is a result of
overall lower prices with more rentals and revenue. Fig-
ure 10(b) displays the RTprop

pmt of ADP-4. Their courses
over the day resemble the courses of the respective
PRprop

pmt . More precisely, during peak times, most of the
rentals take place at a high price and in almost all other
timesmost rentals are at the base price.

To summarize the results of the case study of Share
Now in Florence, our solution approach generates
considerably higher profits compared with the de
facto standard of constant uniform prices and, more
importantly, to the myopic benchmark. In fact, our
solution even gets quite close to a theoretical upper
bound. This increase is realized by a considerable
price differentiation that allows for generating more
revenue with fewer rentals in comparison with CUP
at base price. High prices exploit the higher demand
at peak times, and the larger proportion of low and
base prices under network effect consideration allows
for creating a more favorable fleet distribution and
more rentals compared with the myopic solution.

7. Managerial Insights
The systematic computational experiments (abbrevi-
ated as experiments) of OBDPP scenarios given in Sec-
tion 5 in combination with the analyses of the Share
Now case study (abbreviated as case) given in Section 6
reveal important managerial insights for shared mobi-
lity providers, which we summarize in this section.

Benefit of origin-based differentiated minute pricing:
The results demonstrate that origin-based differenti-
ated minute pricing is more advantageous than con-
stant uniform pricing that is still the de facto industry

Figure 11. (Color online) Base Demand (a), Available Vehicles (b), and Prices (c) in Four Selected Zones (ADP-4)

(a) (b)

(c)

Notes. B, base price; H, high price; L, low price. (a) Base demand dit. (b) Available vehicles ait. (c) Prices pit.
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standard. With our approximate dynamic program-
ming decomposition solution approach, profits consis-
tently increased throughout the considered instances,
that is, in both experiments (10%–15%) and in the case
(9%). For SMS providers, this is an insightful outcome,
because origin-based differentiated minute prices are
the first natural extension going beyond constant uni-
form prices. This is mainly because compared with
other pricing mechanisms, origin-based differentiated
pricing is relatively simple to implement, does not
require upfront information about a trip’s destination,
and, very importantly, is easy to communicate to
customers.

Scalability requires sophisticated solution approaches: The
problem is computationally complex. More precisely,
determining profit-maximizing pricing solutions is
NP-hard. This is reflected by the fact that a straightfor-
ward solution using out-of-the-box commercial solvers
is not possible. The supposedly obvious idea of directly
solving the pricing problem in an integrated way, that
is, simultaneously for all locations and in a reasonable
time frame (e.g., a day), already fails for the smallest
SMS that consists of only a few dozen locations. The
standard next step is temporal decomposition, that is,
consideringmultiple smaller problemswith fewer peri-
ods instead of the entire day. This has a reasonable run
time but in general lacks in solution quality. We show
that more sophisticated approaches are necessary and
possible, thereby striking a balance between the ideas of
integrated and decomposed problem solving. In particu-
lar, our approximate dynamic programming decomposi-
tionapproachprovidesacomputationally tractablemeans
for SMSproviders applicable in instances of real-life size.

Importance of network effect consideration: The consid-
eration of network effects is decisive for high-quality
solutions. Our results demonstrate that SMSs are char-
acterized by a complex interaction between supply and
demand. Consequently, vehicle values differ consider-
ably across locations and time. Furthermore, additional
available vehicles at the same location and time have a
decreasing marginal value because of limited demand.
In contrast to straightforward pricing approaches like a
myopic optimization, our approximate dynamic pro-
gramming decomposition approach yields very good
solutions that are close to an upper bound for the opti-
mal solution. Key is its design for and ability to capture
these network effects. This led to a profit increase over
myopic pricing of up to 9.4 percentage points in the
experiments and up to 5.3 percentage points in the case.
These profit improvements depend on the instance.
Especially for ratios of supply and demand prevalent
in practice, there is a considerable improvement. Mar-
ginal vehicle values vary considerably in the range of 0
to 9.8 monetary units, which is equivalent to two to
three rentals at base price where profit is 3.4 monetary

units. For SMS providers, the different marginal vehicle
values provide a means of quantifying short- and long-
term network effects, and they are also informative for
other planning tasks, such as relocation.

Profit increase because of price and quantity effect: Profit
maximization is not always equivalent to an increase
in rentals. In the experiments, we indeed observed an
increase of both profit and rentals for the best solu-
tions we found. In the case, however, the profit
increase was realized with less rentals and higher
prices. For SMS providers, this is an important obser-
vation, because it also affects other service-oriented
metrics like the availability of vehicles.

High degree of price differentiation: Finally, we observe
that the best pricing solutions have a high degree of
differentiation across time and space. In the case, for
example, over all location-time combinations, we have
an average of 15% low, 45% base, and 40% high pri-
ces. These proportions do not remain constant
throughout the day. A deeper analysis of the price
table revealed that some zones have high prices dur-
ing the morning and evening rush hours, whereas
others have lower prices at these times. We showed
that these different pricing patterns result from the
supply and demand level in these zones over time but
are also a consequence of network effects. All these
aspects indicate that the optimal price tables are com-
plex. From a customer perspective, switching from
constant uniform pricing to origin-based differenti-
ated minute pricing means that prices now vary fre-
quently. Therefore, it is important for SMS providers
to accompany the introduction of origin-based minute
price differentiation with a communications campaign
that thoroughly explains the reasons for and benefits
of the new approach, that is, to ensure customer satis-
faction and loyalty.

8. Conclusion and Outlook
Motivated by our collaboration with Share Now, in this
paper, we defined and analyzed the problem of origin-
based differentiated pricing for SMSs. The paper has
addressed the problem of determining spatially and
temporally differentiated origin-based minute prices to
maximize profit. Despite such price differentiation
increasingly being adopted in practice, the research lit-
erature has not yet focused on these origin-based pric-
ingmechanisms.

To model the SMS, we proposed a MILP based on a
fluid formulation in which vehicle movements are
described as flows through a spatio-temporal net-
work. It naturally incorporates network effects, that is,
the complex interactions between the moving vehicle
supply and varying demand in an SMS. The problem
turns out to be NP-hard; thus, heuristic solution
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approaches are warranted. We therefore proposed an
approach that simultaneously scales to real-life sce-
narios and approximately incorporates the network
effects. We designed the approach in such a way that
it combines the benefits of decomposition on the one
hand and VFA from the realm of approximate
dynamic programming on the other. The decomposi-
tion allows providers to quickly solve multiple
smaller problems with limited time horizons instead
of the original problem that simultaneously considers
all periods. At the end of the considered horizon, a
VFA allows for endogenously incorporating the
profit-to-come in dependence of any resulting vehicle
distribution.

Extensive computational experiments with a vary-
ing number of zones, demand patterns, and overall
demand levels demonstrated the benefit of our
approach. It considerably improves profit (up to 15%)
compared with the de facto standard of constant uni-
form prices and compared with a myopic benchmark
without consideration of network effects (up to 10
percentage points). In settings where the optimal solu-
tion can be determined, our approach finds a solution
close to optimality. The resulting price tables show
high similarity to the optimal price tables, in contrast
to the price tables from the myopic pricing approach.
We further demonstrated that the proposed VFA
structure can reflect the decreasing marginal value of
vehicles, which allows taking into account both short-
term and long-term network effects.

In a real-life case study based on Share Now data,
we demonstrated the scalability and performance of
our solution approach. Profits increase 9% with
respect to the de facto industry standard, although
rentals decrease by 3%, leading to higher vehicle
availability and 6% more revenue: two additional
important operative indicators for SMS providers.
Therefore, this illustrates that profit increases can
result from price and quantity effect to the extent that
profit increases can also realize with reduced rentals.
A detailed analysis of prices showed considerable dif-
ferentiation across the location-time combinations and
that there are various price patterns in the different
zones. SMS providers should bear this in mind when
introducing origin-based differentiated minute pric-
ing, as frequent price changes could affect the cus-
tomer experience. Also, the consideration of network
effects in our approach causes an overall price reduc-
tion compared with the myopic solution, resulting in
more rentals and revenue. Considering both profit
and pricing, we conclude that simple pricing rules
cannot exploit the total potential for increased profit. We
refer the reader to Section 7 for a generalized discussion
of managerial insights that follow from jointly consider-
ing our computational experiments and the case.

To summarize, this work demonstrates the potential
of origin-based differentiated minute pricing in SMSs
and the importance of considering network effects.
Our ADP decomposition approach provides a scalable
means for integrating these effects successfully.

Based on the presented results and methodology,
we believe there are several promising directions for
future work. First, the fleet of car sharing providers
typically consists of different vehicle types that could
be represented in a formulation based on multicom-
modity network flow problems. Second, although our
approach has already proved to be robust in a sto-
chastic setting, developing approaches explicitly
based on stochastic optimization models could be
another useful way of extending our work and poten-
tially further improving the promising results. Third,
we believe that integrating VFAs in the vast field of
other tactical and operational decision-making prob-
lems in SMSs is promising. This applies in particular
to dynamic problems that require decision making in
real time and reveals the problem of provider-based
relocation, potentially in combination with pricing, as
a relevant topic for future work.
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