
Applied Mathematical Modelling 124 (2023) 414–444

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

A multiphysics model for fluid-structure-electrophysiology 

interaction in rowing propulsion

Alessandro Nitti a,∗, Michele Torre b, Alessandro Reali c, Josef Kiendl c, 
Marco D. de Tullio a

a Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Re David 200, Bari, 70125, Italy
b Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, Pavia, 27100, Italy
c Institute of Mechanics and Structural Analysis, Bundeswehr University, Werner-Heisenberg-Weg 39, Neubiberg, 85577, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

Jellyfish

Immersed boundary

Isogeometric analysis

Active strain

Finite differences

Jellyfish are one of the earliest example of animal that actively regulate swimming, but 
the mechanisms governing the locomotion are still a matter of research. Jellyfish obtain 
locomotion by activating the subumbrellar muscle layer. Sensory inputs trigger the contraction 
of the bell and the fluid-structure interaction effects driving locomotion. These have been 
extensively studied, whereas a representation of the full neuro-mechanical locomotion chain, 
with focus on the actuation-locomotion dynamics, has not been proposed yet. A model of such a 
complex multi-physical phenomenon would be informative for several purposes, ranging from the 
comprehension of behavioral aspects to the design of soft actuators and bio-inspired devices. In 
this regard, we propose a computational framework to address the coupled electrophysiological, 
elastic, and fluid aspects of the locomotion of the Scyphozoan group. This relies on the sequential 
coupling of segregated solvers, such that each sub-problem can be addressed with the most 
computationally effective technique. The spatial discretization is addressed by isogeometric 
analysis for the electrophysiological and elastic sub-problems, and by finite differences for the 
fluid sub-problem. The active strain approach allows to distribute the active contraction of radial 
and coronal muscle fibers following the biological architecture.

The inherent multi-scale nature of the model is addressed by means of a nested grid approach and 
multiple time-advancement lines. In view of a reasonable computational effort, we enforce the 
hypothesis of axial symmetry limiting the number of degrees of freedom used in the simulations. 
The effectiveness of the scheme employed for each sub-problem is verified against different test-

cases of engineering and biologic inspiration. Finally, we carry out an extensive comparison 
between the simulation output and the in-vivo measurements on a 3-cm specimen of Aurelia 
Aurita.

1. Introduction

Jellyfish have extensively played as inspirational test-cases for building bio-inspired and bio-hybrid robotic actuators [1–3]. Their 
inherent propulsive features make the Medusozoan ancestor a perfect model for drafting engineered solutions for soft actuators and 
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soft swimmers [4,5]. The latter are employed for monitoring and exploration purposes [6], by virtue of their superiority over hard 
devices in the maneuverability in narrow spaces and robustness under extreme pressure. This work proposes a multiphysics model for 
elucidating the actuation-locomotion relations of oblate jellyfish species in order to advance the comprehension of some behavioral 
aspects and possibly provide further guidelines for the design of modern soft actuators.

The jellyfish propulsion results from the alternation of the contraction of thin muscle bundles in the subumbrellar cavity and the 
shape recovery driven by the elastic energy stored in the Mesoglea, an extracellular matrix composed of collagen fibers. The flow 
field resulting from the volume change in the subumbrellar cavity and the vortices shed from the bell margin contribute to generate 
thrust. From a biologic perspective, the rowing locomotion of oblate species has proven an extraordinary low cost of transport in 
the low-speed cruising regime, thanks to the additional thrust obtained in the passive elastic recovery phase without extra metabolic 
cost [7]. The locomotion efficiency is further enhanced when considering that the active tissue contraction only comes from a single 
muscle layer lining the subumbrellar cavity [8]. These features endow oblate jellyfish with a simple and efficient propulsion sys-

tem without recurring to agonist-antagonist muscle dynamics. The latter requires more sophisticated engineering solutions, generally 
used in a hard robotics design environment. Jellyfish also exhibit an inherently simple neuro-muscular architecture. All medusozoans 
present a distributed nervous system composed by several neuron networks located over the bell, the tentacles, and the endoderm 
(the part supplying the digestive and respiratory functions). In Scyphozoans the neuronal stimulation comes from the Rhopalia, 
which consist of sensory structures distributed around the bell margin [9], and it is transmitted to the innervated muscle bundles. 
Current advances in experimental neurobiological techniques allowed to dissect the electrophysiological functionalities and conse-

quently draw behavioral considerations [10–13].

A step towards the effective and systematic design of jellyfish-inspired swimmers can be taken by drafting the functional rela-

tionships between actuation and locomotion features, which are not fully understood. This is certainly necessary to implement a 
forward-inverse design strategy, by which a hierarchical biologic function is unpacked into consequential events and replicated by 
simple engineering solutions [14].

Significant advances in the comprehension of jellyfish locomotion mechanisms came from the analysis of the interaction of the 
unsteady flow field and the body’s elastic response. Both state-of-the-art experimental measurements [15,16,7] and time-resolved 
multiphysics simulations [17–19] played a crucial role in elucidating the Fluid-Structure Interaction (FSI) process in jellyfish propul-

sion. Nevertheless, locomotion performance have been assessed neglecting the efficiency of the actuation mechanisms in the total 
energy balance. This might lead to a limited perspective on the propulsion scenario [20]. A thorough understanding of the energy 
partitioning in the actuation-locomotion framework can also lead to a fair comparison with artificially actuated robots [4]. In this 
connection, a neuro-mechanical computational model can play as a cost-effective platform to draw the necessary energetic estimates.

In this work, we propose a computational tool to explore the actuation-locomotion scenario of an oblate jellyfish. The FSI problem 
of jellyfish-like swimmers has been tackled with successful implementations [17,18,21] which brought to light many useful insights 
about their behavior. However, most of these numerical simulations coped with the muscle actuation by applying a time-varying 
tension on the outer surface of the jellyfish bell. In the pursuit of a biophysically realistic framework we couple a fluid-structure inter-

action system with an electrophysiological activation model which aims at replicating the space-time pattern of neuronal stimulation 
and the consequent muscle excitation. The product of this numerical experiment is an actively-swimming jellyfish, whose propulsive 
features are only dictated by the neuromuscular organization and the activation pattern of the pacemaker cells in the Rhopalia. 
Both muscle activation parameters and material properties have been tuned to match in-vivo measurements. Most of the biological 
features replicated by the model are abstracted from the group Scyphozoa, and in particular from the genus Aurelia. Scyphozoans 
differ from Hydrozoans and Cubomedusae by morphological, behavioral and reproductive features, although several sub-classes do 
not fulfill this categorization. To the best of our knowledge, a comparably sophisticated modeling approach is currently under de-

velopment for multiphysics cardiac simulations [22,23], where the replication of pathological states requires a mutual connection 
between electrophysiological features and fluid pumping activity.

The excitation of the neuromuscular tissue is addressed by the monodomain approach [24], which results in a reaction-diffusion 
Partial Differential Equation (PDE), that must be solved over a surface representing the epitheliomuscular tissue layer lining the 
subumbrellar cavity [16]. The reaction effects are driven by an Hodgkin-Huxley type neuron model, specifically tailored for Scypho-

zoans [25]. The electrophysiological activity drives the active contraction of the subumbrellar muscles, which in turn is described by 
an Active Strain (AS) approach [26], in light of an accurate and realistic representation of the muscular actuation. The AS method is 
based on the multiplicative decomposition of the deformation gradient into an active and a passive part, with the former resulting 
from an arbitrary combination of coronal and radial fiber stretch. Conversely, the passive strain, mimicking the elastic response of the 
Mesoglea, follows an hyperelastic strain energy function. The electrophysiological and mechanical problems are numerically tackled 
by an isogeometric approach [27]. Isogeometric analysis (IgA) proposes a new computational paradigm for a direct integration of 
Computer Aided Design and Galerkin-based analyses. Within an isoparametric framework, IgA allows to adopt the spline functions 
used to define the geometry as basis functions for the solution. Among the fundamental advantages brought by NURBS-based IgA, in 
this context we count on the superior accuracy guaranteed by the high regularity of basis functions with respect to standard Lagrange 
polynomials employed in finite element analyses. These advantages take place in the approximation of sharp action potential waves, 
as well as in the solution of non-linearly elastic problems with limited locking effects [28,27].

The flow field is resolved by means of a direct numerical simulation approach over a staggered Cartesian grid. The incompressible 
Navier-Stokes equations are discretized by second-order accurate centered differences and solved following the fractional step scheme 
[29]. This approach allows to preserve circulation and kinetic energy in absence of time-differencing errors and viscosity [30], mak-

ing it an ideal choice for solving the complex vortex dynamics arising from the rowing propulsion. The computational scenario is 
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completed by the Immersed-Boundary (IB) treatment used to enforce the fluid-solid interface condition without cumbersome mesh 
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adaptation procedures. Following the approach presented by [31], the Eulerian forcing field necessary to get the no-slip condition is 
obtained on Lagrangian markers laying on the immersed interface in the form of a volume force field, and then transferred to the 
Eulerian nodes. Information at the Lagrangian marker location is interpolated by means of a Moving-Least Squares (MLS) method 
[32,33], which is acknowledged to attenuate spurious oscillations of hydrodynamic loads for moving interfaces, while preserving 
second-order accuracy in space.

The inherent multiphysic and multi-scale nature of the modeled electrophysiological and mechanical phenomena would result in 
a discrete implementation with a prohibitive number of degrees of freedom, requiring for exascale computing solutions. As a first 
three-way coupled model we restrict the solution fields to be axisymmetric, such that multiple swimming cycles can be obtained with 
a limited number of degrees of freedom. In the core of the manuscript it will be highlighted that within the appropriate subset of 
the parameter space the axisymmetric assumption leads to a realistic representation of the forward locomotion. The key novelty of 
the present work lies in the fully coupled framework including fluid-structure-electrophysiology interactions and the related axisym-

metric formulation. In light of the heterogeneity of the applied methodologies, this paper only emphasizes key modeling aspects. A 
thorough verification and validation campaign is presented for each sub-problem, individually. Subsequently, the kinematics of our 
active jellyfish model is compared with the in-vivo measurements of a 3 cm Aurelia Aurita specimen [7], showing a good agreement. 
Additionally, we explore different muscular activation patterns to assess the effect of the contractility pattern on the propulsion 
features.

The manuscript is organized as follows: section 2 provides a description of the designed mathematical model and the simplifications 
with respect to the biological scenario. Elucidations on the jellyfish zoological features are included. Section 3 brings a description of 
the numerical techniques used to solve the partial differential equations drafted in section 2. The implementation of each sub-solver 
is verified and discussed in Appendix A by a broad set of benchmark problems. Section 4 presents a detailed comparison of the 
fully coupled jellyfish simulations with the available experimental data and discusses the output of the exploration of the actuation 
parameter space. Eventually, conclusions are drawn in section 5.

2. Mathematical model

Two reference frames are used in the formulation of the differential equations occurring in the present model: a Cartesian frame, 
defined by the base vectors {𝐞1, 𝐞2, 𝐞3}, and a convective curvilinear frame, locally identified by the covariant base vectors {𝐠1, 𝐠2, 𝐠3}. 
The former refers to the directions {𝑥, 𝑦, 𝑧}, whereas the latter to the convective coordinates {𝜃1, 𝜃2, 𝜃3}. The sketch in Fig. 1 shows 
both reference frames as well as the domain topology for the electrophysiological, elastic, and fluid sub-problems.

2.1. Body geometry and kinematics

Following the assumption of an axisymmetric deformation field, any radial section along the axis of symmetry is assumed to 
remain planar under axisymmetric loads. However, any radial displacement induces a tangential strain, therefore an out-of-plane 
component of strain and of the associated stress must be considered [34]. A point in the body continuum can be identified in the 
Cartesian frame by the position vector 𝐫. Then, the covariant tangent base vectors are obtained by 𝐠𝑖 = 𝜕𝐫∕𝜕𝜃𝑖. We emphasize that 
the bases of the curvilinear frame are neither orthonormal, nor unitary.

The assumption of axisymmetric displacement field lets the curvilinear coordinate 𝜃3 describes a circumference. Consequently, it 
yields:

𝐫 = 𝑟cos
(
𝜃3∕𝑟

)
𝐞1 + 𝑟 sin

(
𝜃3∕𝑟

)
𝐞3 + 𝑦 𝐞2 , (1)

𝐠3 = −𝑟 sin
(
𝜃3∕𝑟

)
𝐞1 + 𝑟cos

(
𝜃3∕𝑟

)
𝐞3 . (2)

The metric tensor of an arbitrary point in the solid continuum is defined by the first fundamental form of surfaces:

𝐺𝑖𝑗 = 𝐠𝑖 ⋅ 𝐠𝑗 . (3)

The axial symmetry yields the coefficients:

𝐺𝛼𝛽 ≠ 0 , 𝐺𝛼3 = 𝐺3𝛼 = 0 , 𝐺33 = 𝑟2 . (4)

When expressing strain and stress variables as a function of the metric tensor coefficients, Eq. (4) allows a fully curvilinear formulation 
without the need for coordinate transformations. The tensor deformation gradient is consistently defined as:

𝐅 = 𝐠𝑖 ⊗ �̊�𝑖 , (5)

where the symbol (⋅̊) indicates a quantity in the reference configuration, Ω𝑠0, and the superscript refers to contravariant vectors. A 
sketch of the reference configuration is illustrated in Fig. 3 (b). The Green–Lagrange strain tensor is assumed as finite strain measure:

𝐄 = 1
2
(
𝐅𝐅𝑇 − 𝐈

)
= 𝐸𝑖𝑗 �̊�𝑖 ⊗ �̊�𝑗 , (6)
416

which yields the non-zero strain components:
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Fig. 1. Sketch of the Cartesian {𝑥, 𝑦, 𝑧} and the convective curvilinear {𝜃1 , 𝜃2 , 𝜃3} coordinate systems used for the mathematical formulation (a). Summary outline of 
each sub-domain topology (b): the blue region (Ω𝑓 ) covers the fluid domain, the gray area (Ω𝑠) is the solid domain, the yellow line (Ω𝑒) represents the electrophysio-

logical domain.

𝐸𝛼𝛽 = 1
2
(
𝐺𝛼𝛽 − �̊�𝛼𝛽

)
, (7)

𝐸33 =
1
2
(
𝑟2 − �̊�2

)
. (8)

Local deformations are expressed in terms of the right Cauchy–Green deformation tensor, defined on the contravariant base vectors:

𝐂 = 𝐅𝐅𝑇 = 𝐺𝑖𝑗 �̊�𝑖 ⊗ �̊�𝑗 . (9)

2.2. Constitutive modeling of the solid phase

The elastic properties of the jellyfish bell, here discretized over the mechanical domain Ω𝑠 (Fig. 1b), play a crucial role in the 
determination of the FSI dynamics. Regardless of the genus, the Mesoglea, a gelatinous substance comprised of randomly oriented 
collagen fibers and proteins networks [35], makes up the majority of jellyfish volume [36]. It provides structural support and stores 
the strain energy released in the elastic recoil stage. The collagen fibers form a network which varies from one species to another. This 
is the reason for jellyfish Mesoglea exhibiting quite different elastic properties. Many prior studies indicate that the elastic modulus 
of Mesoglea varies over a wide range of magnitude [37,38]. For instance, Demont and Gosline [39] found that intact jellyfish bell 
of the species Polyorchis penicillatus has a Young’s modulus between 400 and 1000 Pa. Megill et al. [37] found the stiffness of the 
Mesoglea of the same specimen to be 350 Pa in compression while the softer joint Mesoglea has stiffness of 50 Pa. We model the solid 
phase within Ω𝑠 as an homogeneous isotropic medium which takes the elastic properties of the Mesoglea. The elastic parameters are 
tailored accordingly to the Mesoglea measurements on the Aurelia Aurita. The Aurelia Aurita was found to have a water content of 
96.3% with a standard deviation of 0.57% [40]. Hence, a weakly compressible constitutive law is considered suitable for the scope 
of the work. Specifically, we adopt a Neo-Hookean strain energy density function [41]:

Ψ(𝐂) = 𝑐10 (𝐼1𝐼
−1∕3
3 − 3) +𝐾(𝐽 − 1)2 , (10)

where 𝐼1 = tr(𝐂) and 𝐼3 = det(𝐂) denote the first and third invariants of the right Cauchy-Green deformation tensor 𝐂 and 𝐽 = det(𝐅)
is the Jacobian of the deformation gradient tensor. The parameters 𝑐10 and 𝐾 represent the shear and the bulk moduli. Following 
the tension-compression tests carried out by [37], we assume 𝑐10 = 400 Pa and 𝐾 = 5.0 × 104 Pa. The bulk modulus 𝐾 is chosen as an 
arbitrary high value to get minimal volume changes; this assumption will be numerically verified in sub-section Appendix A.2. In the 
range of physiological muscle contraction frequency (0.2 ÷ 0.5 Hz) macro-rheological measurements [42] show that the Mesoglea 
exhibits an elastic shear modulus ten times larger than the viscous shear modulus. The viscoelastic response of the Mesoglea is thus 
417
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We adopt a total Lagrangian description (see section 3), which relies on the second Piola-Kirchhoff stress tensor 𝐒, and on the 
fourth-order material tensor ℂ. They are defined on the covariant base vectors as:

𝐒 = 𝑆𝑖𝑗 �̊�𝑖 ⊗ �̊�𝑗 , (11)

ℂ = 𝐶𝑖𝑗𝑘𝑙 �̊�𝑖 ⊗ �̊�𝑗 ⊗ �̊�𝑘 ⊗ �̊�𝑙 . (12)

The above contravariant coefficients can be obtained by derivation of the strain energy density with respect to the Cauchy-Greeen 
deformation tensor:

𝑆𝑖𝑗 =2 𝜕Ψ
𝜕𝐶𝑖𝑗

, (13)

ℂ𝑖𝑗𝑘𝑙 =4 𝜕2Ψ
𝜕𝐶𝑖𝑗𝜕𝐶𝑘𝑙

. (14)

The strain energy function defined in Eq. (10) yields:

𝑆𝑖𝑗 = 2 𝑐10 𝐼
−1∕3
3

(
�̊�𝑖𝑗 − 1

3
𝐼1�̄�

𝑖𝑗
)
+ 2𝐾�̄�𝑖𝑗

(
𝐽 2 − 𝐽

)
, (15)

ℂ𝑖𝑗𝑘𝑙 = −4
3

𝑐10 𝐼
−1∕3
3

[
�̊�𝑖𝑗 �̄�𝑘𝑙 + �̊�𝑘𝑙�̄�𝑖𝑗 − 1

3
𝐼1�̄�

𝑖𝑗 �̄�𝑘𝑙 − 1
2
(
�̄�𝑖𝑘�̄�𝑗𝑙 + �̄�𝑖𝑙�̄�𝑗𝑘

)]
+ (16)

2𝐾𝐽
[
(2𝐽 − 1) �̄�𝑖𝑗 �̄�𝑘𝑙 − (𝐽 − 1)

(
�̄�𝑖𝑘�̄�𝑗𝑙 + �̄�𝑖𝑙�̄�𝑗𝑘

)]
,

where �̄�𝑖𝑗 are the components of the inverse of tensor 𝐂: �̄�𝑖𝑗 = [𝐶𝑖𝑗 ]−1.

2.3. Weak formulation for elasticity

We model the jellyfish bell as a hyperelastic continuum defining the total energy of the body, that is a function of the displacement 
field 𝐮. According to classic results in continuum mechanics [43], the response of the body is such that the total energy is always 
minimal and, since we assume axisymmetric conditions, invariant with respect to the coordinate 𝜃3, leading to the following form of 
the principle of virtual power:

𝛿Π(𝐮, 𝛿𝐯) = 2𝜋 ∫
Ω𝑠0

𝜌𝑠
𝜕2𝐮
𝜕𝑡2

⋅ 𝛿𝐯 �̊� 𝑑𝑆 + 2𝜋 ∫
Ω𝑠0

𝐒 ∶ 𝛿�̇� �̊� 𝑑𝑆 − 2𝜋 ∫
𝜕Ω𝑠0

𝐭0 ⋅ 𝛿𝐯 �̊� 𝑑𝐿 = 0 ∀𝛿𝐯 , (17)

where 𝑑𝑆 and 𝑑𝐿 represent the infinitesimal area and arc-length in the reference configuration Ω𝑠0, respectively. In Eq. (17), we 
recognize three terms: the inertia of the system relying on the bell density 𝜌𝑠 and on the acceleration, the stress expressed in terms of 
the second Piola-Kirchhoff stress tensor 𝐒 deriving from the elastic energy Ψ(𝐂) (as shown in the previous section), and the tractions 
𝐭0 on the boundary of the solid body 𝜕Ω𝑠0 depending on the action of the flow field. Each of them is work-conjugate with the virtual 
velocity 𝛿𝐯, or the virtual strain rate tensor [43]:

𝛿�̇� = 1
2
(
𝛿�̇�𝑇𝐅+ 𝐅𝑇 𝛿�̇�

)
with 𝛿�̇� = 𝜕 𝛿𝐯

𝜕𝜃𝑖
⊗ �̊�𝑖 , (18)

providing an equation for each axisymmetric velocity field compatible with the Dirichlet boundary conditions. We solve such set 
of nonlinear equations by means of the Galerkin method. We remark that, as in plane-strain conditions, the axisymmetric virtual 
velocity field has only two non-zero components. However, the normal out-of-plane components of the stress and strain rate tensors 
are non-null, actively contributing to the total virtual power.

2.4. Muscle activation model

In both oblate and prolate jellyfish the muscle cells are mostly located in the marginal part of the endothelial area, and absent 
in the center, where the mouth is located. In most Scyphozoan and Hydrozoan, muscle fibers are oriented in radial and coronal 
bundles. During the contraction phase in forward swimming, the coronal muscles seem to provide predominant contraction with 
respect to the radial ones [44]. Radial muscles are thought to be mostly involved in maneuvering [45,46] operations. However, 
the physiological role of these muscle bundles and their interplay in locomotion has not been fully understood. Coronal muscles are 
innervated by the Motor Nerve Net (MNN), which is a through-conducting nerve bundle responsible for high-conduction speed action 
potentials within each swimming cycle [47,45]. Conversely, the radial muscle are mostly innervated by the Diffuse Nerve Net (DNN), 
a secondary net conducting slower electrophysiological waves. Although no coupling exists between radial and coronal muscle layers 
[45], both successive and simultaneous occurrence of MNN and DNN waves have been recorded for several Scyphozoans [11,48]. 
Apart from this, behavioral and anatomical evidences suggest that a single Rhopalium can activate both the MNN and the DNN 
in response to a strong sensory input [49,50] and that the DNN can exercise a modulatory control on the action potentials. As a 
simplifying assumption, we assume the radial and coronal muscle layers to be governed by the same nerve net, although different 
fiber stretching magnitudes are allowed. Thus, the muscle contraction waves are generated by the same electrophysiological pulse, 
but different contraction levels can be achieved. This can lead to a biologically-aware correlation between actuation pattern and 
418

locomotion performance.
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From the cytological perspective, subumbrellar muscle fibrils (called myofibrils) are only restricted to epithelial cells in medusozoan. 
These cells, consequently termed epitheliomuscular cells, are typically distributed over a single cell layer, meaning that the myofibrils 
available to generate force for bell contraction are limited in depth and cross-sectional area [51].

We propose the implementation of such a muscular architecture by means of the active strain approach [52,53]. This allows to 
retrieve a realistic balance between actively contracting and passive part of the body in terms of volume fraction, as well as to 
disentangle the contribution of radial and coronal muscles in forward swimming.

The active strain approach is built on the multiplicative decomposition of the deformation gradient tensor into an elastic part 𝐅𝑒

and an active part 𝐅𝑎:

𝐅 = 𝐅𝑒𝐅𝑎 . (19)

A schematic representation of this decomposition can be found in Fig. 1 of reference [54]. The active deformation 𝐅𝑎 mimics the 
macroscopic effects of the myofibril shortening driving the tissue contraction. In the present work, the instantaneous active gradient 
is prescribed by a phenomenological law which dictates the activation parameters embedded in 𝐅𝑎. The explicit expression of 𝐅𝑎 is 
presented in the following of the present section. It is worth pointing out that 𝐅𝑒 and 𝐅𝑎 are not given by the gradient of a vector 
map. Kinematically, the active deformation leads to an intermediate non-compatible configuration which is subsequently relaxed 
towards the final configuration by the elastic response. Accordingly, 𝐅𝑎 is defined by the tensor product over base vectors in the 
reference configuration:

𝐅𝑎 = 𝐹 𝑖𝑗
𝑎 �̊�𝑖 ⊗ �̊�𝑗 , 𝐅−1

𝑎 = 𝐹𝑎,𝑖𝑗 �̊�𝑖 ⊗ �̊�𝑗 . (20)

Considerations about the thermodynamic consistency of the active strain approach can be found in [55,54]. In this work, the elastic 
strain energy Ψ𝑒 is thought as a function of the elastic part of the right Cauchy-Green deformation tensor 𝐂𝑒 :

Ψ𝑒 =Ψ𝑒

(
𝐂𝑒

)
, (21)

which is defined following the deformation gradient split:

𝐂 = 𝐅𝑇
𝑎 𝐂𝑒𝐅𝑎 . (22)

The purely elastic quantities (denoted by the subscript “𝑒”), as well as the elastic and active deformation gradient tensors, are all 
defined with respect to the reference configuration. We address the quantification of the determinant of the two parts of the tensor 
deformation gradient separately. Namely, for 𝐽 = 𝐽𝑒𝐽𝑎, we prescribe 𝐽𝑎 = 1 by properly building the active deformation gradient, 
whereas 𝐽𝑒 follows up from the choice of the bulk modulus 𝐾 . The second Piola-Kirchhoff stress tensor is expressed as a function of 
the active deformation tensor. By exploiting the chain rule and the relation between the deformation tensor and its elastic counterpart 
(22), one can get the coefficient form:

𝑆𝑖𝑗 = 1
2

𝐹𝑎,𝑤𝑝 𝐹𝑎,𝑧𝑠 �̊�𝑠𝑗
(
𝑆𝑝𝑧

𝑒 �̊�𝑤𝑖 + 𝑆𝑝𝑖
𝑒 �̊�𝑤𝑧

)
, (23)

where 𝑆𝑝𝑧
𝑒 , 𝑆𝑝𝑖

𝑒 are the contravariant coefficients of the elastic part of the tensor 𝐒, and 𝐹𝑎,𝑤𝑝, 𝐹𝑎,𝑧𝑠 are the coefficients of the inverse 
of the active deformation gradient tensor 𝐅𝑎. Here 𝐅𝑎 is assumed to be independent from the elastic response of the body [54]. The 
expression of the tangent material tensor can be likewise obtained:

ℂ𝑖𝑗𝑘𝑙 = 1
4

𝐹𝑎,𝑤𝑝 𝐹𝑎,𝑧𝑠 𝐹𝑎,𝑔ℎ 𝐹𝑎,𝑛𝑚 �̊�𝑠𝑗 �̊�𝑚𝑙
[
�̊�𝑔𝑘

(
ℂℎ𝑛𝑝𝑧

𝑒 �̊�𝑤𝑖 +ℂℎ𝑛𝑝𝑖
𝑒 �̊�𝑤𝑧

)
+ �̊�𝑔𝑛

(
ℂℎ𝑘𝑝𝑧

𝑒 �̊�𝑤𝑖 +ℂℎ𝑘𝑝𝑖
𝑒 �̊�𝑤𝑧

)]
. (24)

The details of the derivation of the latter expressions are presented in [54]. Eqs. (23) and (24) provide the expressions of the stress and 
material tensors for an active tissue with a prescribed active deformation gradient. These expressions hold in any three-dimensional 
domain, and can be easily traced to the particular case of an axisymmetric problem.

Taking advantage of the reference frame depicted in Fig. 1 (a), the active part of the tensor deformation gradient is built such that the 
local fiber orientation matches the convective curvilinear frame: the natural orientation of radial and coronal muscle fibers follows 
the base vectors 𝐠1 and 𝐠3, respectively. Thus, 𝐅𝑎 takes the form:

𝐅𝑎 = 𝐈− 𝛾
[
𝑎1

(
�̊�1 ⊗ �̊�1

)
+ 𝑎3

(
�̊�3 ⊗ �̊�3

)]
+ 𝛾2

(
�̊�2 ⊗ �̊�2

)
, (25)

where 𝛾 is a smooth activation function of space and time (it takes values between 0 and 1), depending on the excitation state and 
𝑎2 and 𝑎3 are space-dependent material parameters controlling the intensity of the active contraction for radial and coronal muscle 
fibers. The muscle fibers are sketched in Fig. 2, which highlights the consistency of the definition (25) with the local reference 
frame. Although the decomposition of the deformation gradient is carried out all over the solid domain, the activation parameters 
are null throughout most of the body, except that within a thin layer (pink region in Fig. 2), which plays the role of the subumbrellar 
muscles. 𝛾2 controls the activation in the 𝜃2 direction, i.e. along the thickness. Despite no muscle fiber takes this orientation, this 
term is necessary to fulfill the incompressibility constraint of the active part. Bringing the terms of Eq. (25) on the same basis, the 
coefficient equation for 𝐅𝑎 yields:( )
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𝐹 𝑖𝑗
𝑎 = �̊�𝑖𝑗 − 𝛾 𝑎1�̊�

1𝑖�̊�1𝑗 + 𝑎3�̊�
3𝑖�̊�3𝑗 + 𝛾2�̊�

2𝑖�̊�2𝑗 . (26)
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Fig. 2. Sketch of the fiber orientation for coronal (red) and radial (blue) muscles within the body continuum. The pink area is the subset of the computational domain 
where the activation parameters take non-zero values, representing the subumbrellar muscle layer. Conversely, the rest of the domain provides a purely passive 
response. The proportion between these areas follows an illustrative purpose only.

Fig. 3. Spatial distribution of the activation pattern 𝑓𝑎 used to build the active deformation gradient (25), visualized in the NURBS parametric space (a). NURBS 
patch used as computational domain of the structural problem with the relevant geometric dimensions (b). Black lines denote the element edges for IgA, whereas the 
orange region displays 𝑓𝑎 in the physical space.

The volume-preserving assumption about the active deformation, i.e., 𝐽𝑎 =
|||𝐹 𝑖𝑗

𝑎
|||∕|||�̊�𝑖𝑗 ||| = 1, allows to compute 𝛾2 as:

𝛾2 =
−𝛾

(
𝑎1�̊�

11 + 𝑎3�̊�
33 − 𝛾 𝑎1𝑎3 �̊�11�̊�33)(

𝛾 𝑎3�̊�
33 − 1

)(
𝛾 𝑎1

(
�̊�12

)2 + �̊�22 − 𝛾 𝑎1�̊�
11�̊�22

) . (27)

The activation field is described in the parametric space associated to the NURBS geometry by an hyperbolic tangent function scaled 
by the maximal activation values {𝑎1, 𝑎3}, namely:

𝑎1
(
𝜃1, 𝜃2

)
= 𝑎1𝑓𝑎 , (28)

𝑎3
(
𝜃1, 𝜃2

)
= 𝑎3𝑓𝑎 , (29)

𝑓𝑎

(
𝜃1, 𝜃2

)
= 1

4
[
1 − tanh

(
𝑤2

(
𝜃2 − 𝛿2

))] [
1 − tanh

(
𝑤1

(
𝛿1 − 𝜃1

))]
, (30)

with 𝑤2 = 40.0, 𝑤1 = 10.0, 𝛿1 = 0.55, and 𝛿2 = 0.2. We implicitly assume that the convective coordinates 
(
𝜃1, 𝜃2

)
in the parametric 
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space take values within the interval [0, 1] ×[0, 1]. The extent of the active region is selected as a trade-off between zoological features 
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and numerical robustness necessities. Along the 𝜃1 direction 𝑓𝑎 goes to zero due to the presence of the mouth and the stomach, where 
no muscular tissue overlaps [16], whereas along the 𝜃2 direction we employ the minimal extension necessary for the convergence of 
the numerical method. The pattern function 𝑓𝑎 on both the parametric space and the physical space are displayed in Fig. 3. The peak 
activation values are the subject of the parameter exploration performed in section 4.

The functional dependence of the activation function 𝛾 on the electrophysiological field variables is outlined in the following subsec-

tion.

2.5. Electrophysiological model and corresponding weak formulation

A well-outlined diversity can be pointed out in the architecture of the nervous system of Hydrozoan and Scyphozoan [9]; the 
present section provides a continuum model of the nervous system of Scyphozoan jellyfish. This class have neurons particularly 
clustered in the Rhopalia, where the most important sensory functions, such as sensing light, perceiving gravity, and triggering the 
electrophysiological activity, are executed [56]. Rhopalia are typically arranged in multiples of four, equally spaced over the bell 
margin [50]. The pacemaking function of specialized Rhopalial cells triggers the action potential diffused through the whole MNN 
[9], which in turn conducts synapses leading to a sequence of neuronal discharges [9,57]. It has been shown that Scyphozoan sensory 
input modulates the discharge rate of rhopalial pacemaking activity endowing these species with a wide range of contractility patterns 
[9]. Pacemaker cells are known to operate without direct communication among one another [12], thus the jellyfish can manage the 
temporal firing pattern to shape the action potential front and the consequent muscle contraction pattern. Non-symmetrical action 
potential fronts are known to provide turning maneuvers [46]. Despite these general features, a significant variation in the specifics 
of neuronal organization is found within the Medusozoan ancestor. We recall that in our computational model most of the zoological 
features are abstracted from the genus Aurelia. The correlation between MNN, DNN and sensory input is currently a matter of 
research. We neglect the presence of the DNN, and, as previously stated, we assume that both radial and coronal muscles are only 
activated by the action potential traveling through the MNN.

In most Scyphozoan, the neurons of the MNN have random orientation and they are electrically symmetric [9,50], resulting in an 
electrically homogeneous network. According to this feature, the electrophysiological activity of the body is modeled by means 
of the monodomain formulation [58]. The axial symmetry assumption entails a simultaneous firing of the pacemaker cells, which 
actually takes place in straight swimming. In view of the dimensionality reduction, a uniform instantaneous distribution of the action 
potential is assumed in the tangential direction. Simultaneous pacemaker discharges were found to produce independent excitation 
waves, that, when colliding, cancel out, owing to a state of mutual refractoriness in the area surrounding the collision [57]. Such 
a physiological feature allows to neglect the three-dimensional nature of the action potential pattern (i.e., the collision of spherical 
depolarization fronts) generated by the synchronous firing of multiple pacemakers. Thus, our axisymmetric model only describes 
the propagation of the action potential wave front in the radial direction, along a curvilinear abscissa on the subumbrellar profile 
(domain Ω𝑒, displayed in Fig. 1). Neumann boundary conditions are enforced to let the electrophysiological wave exit the domain 
with minimal reflections. The monodomain problem, built out of a reaction-diffusion partial differential equation and 𝑘 ordinary 
differential equations, reads:

⎧⎪⎨⎪⎩
𝐶𝑚

𝜕𝑣

𝜕𝑡
−∇ ⋅ (𝐃∇𝑣) + 𝜒 𝑖ion(𝑣,𝐺𝑘) = 𝜒𝑖𝑎 ,

𝑑𝐺𝑘

𝑑𝑡
=

𝐺𝑘∞ −𝐺𝑘

𝜏𝑘
.

(31)

This system presents the unknown scalar fields 𝑣 and 𝐺𝑘, representing the transmembrane potential and the gating variables, respec-

tively, whereas 𝑖ion is the transmembrane ionic current. 𝑖𝑎 denotes the applied external current field, 𝐃 is the conductivity tensor, 
and the coefficients 𝜒 and 𝐶𝑚 are the surface-to-volume ratio and the transmembrane capacitance. The ODEs in system (31) provide 
the evolution of each gating variable, i.e., the instantaneous portion of cumulative membrane area covered by open ionic gates.

To obtain a weak formulation for a Galerkin-type discretization, one can multiply the PDE in (31) by all the admissible test functions 
𝜓 and integrating over the surface Ω𝑒0, representing the endothetial surface in the reference configuration. It yields:

2𝜋
⎛⎜⎜⎜⎝𝐶𝑚 ∫

Ω𝑒0

𝜕𝑣

𝜕𝑡
𝜓 �̊� 𝑑𝑙 − ∫

Ω𝑒0

∇ ⋅ (𝐃∇𝑣)𝜓 �̊�𝑑𝑙 + 𝜒 ∫
Ω𝑒0

𝑖ion(𝑣,𝐺𝑘)𝜓 �̊�𝑑𝑙

⎞⎟⎟⎟⎠ = 2𝜋 𝜒 ∫
Ω𝑒0

𝑖𝑎𝜓 �̊� 𝑑𝑙 . (32)

Using the Green’s identity and applying homogeneous Neumann boundary conditions to the diffusion term, it results in:

2𝜋
⎛⎜⎜⎜⎝𝐶𝑚 ∫

Ω𝑒0

𝜕𝑣

𝜕𝑡
𝜓 �̊� 𝑑𝑙 + ∫

Ω𝑒0

∇𝜓 ⋅ (𝐃∇𝑣) �̊� 𝑑𝑙 + 𝜒 ∫
Ω𝑒0

𝑖ion(𝑣,𝐺𝑘)𝜓 �̊�𝑑𝑙

⎞⎟⎟⎟⎠ = 2𝜋 𝜒 ∫
Ω𝑒0

𝑖𝑎𝜓 �̊� 𝑑𝑙 . (33)

The diffusion process takes place according to the axisymmetric hypothesis, therefore a consistent definition of the conductivity 
tensor must be adopted:

𝐃 = 𝐷𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗 , (34)
421

with:
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Fig. 4. Time traces of the transmembrane potential and activation function (a). Disentangled ionic currents (b) involved in the neuron model.

𝐷𝑖𝑗 = diag
[
𝐷0,0,𝐷0𝑟

2] . (35)

𝐷0 represents the spatially uniform conduction coefficient. Following the previous equation, 𝐷22 = 0 since the diffusion process is 
assumed to take place over the surface defined by the in-plane base vectors 𝐠1, and 𝐠3. The other in-plane coefficients 𝐷13 = 𝐷31

are set to zero too, for the problem to hold the axial symmetry. It is worth noting that the conductivity tensor depends on the local 
orientation of the base vectors to account for the mechano-electrical feedback arising from the body reconfiguration.

The dynamics of the ionic currents in Scyphozoan neurons has been modeled following the framework presented in [25]. In this study, 
the gating parameters have been fitted over experimental data from [13] by a least-squares procedure. Conversely, the parameters 
concerning the membrane capacitance and the Excitatory Post-Synaptic (EPS) current have been tuned such that the model can 
replicate both the action potential shape and the time-traces of different ionic currents [57]. Pallasdies et al. [25] proposed a Hodgkin-

Huxley neuron model to be integrated into the discrete representation of the MNN, made up of a set of randomly oriented neurons 
that propagate the action potential from a neuron to the surrounding ones after a time delay. In our monodomain formulation, 
the signal propagates in the continuum accordingly to the diffusion coefficients. The synaptic current activates when the potential 
exceeds a predefined threshold. As the evolution of the potential upstroke is already included in the neuron model, we fix the 
threshold (−70.0 mV) close to the resting potential (−70.85 mV). Following the characterization of the ionic currents in [25], the 
implemented model distinguishes between a transient inward current (𝑖𝐼 ), a passive leakage current (𝑖𝐿), a steady-state outward 
current (𝑖𝑆𝑆 ) and a slow and a fast transient outward current (𝑖𝑆𝑇 and 𝑖𝐹𝑇 ):

𝑖𝑖𝑜𝑛(𝑣) = 𝑖𝐼 + 𝑖𝐹𝑇 + 𝑖𝑆𝑇 + 𝑖𝑆𝑆 + 𝑖𝐿 + 𝑖𝑆𝑌 . (36)

The experimentally observed synaptic rectification is also incorporated in the model, meaning that the voltage approaches the 
reversal potential (+4 mV) but does not reverse beyond. Provided the electrical symmetry of the MNN neurons, beyond this threshold 
the transmitter release into the synaptic cleft is assumed to produce a “synaptic reflux”, therefore a secondary excitatory postsynaptic 
potential, responsible for a delayed repolarization [57], is triggered. In accordance with multiple experimental measurements [59], 
the present neuron model provides a 30 ms absolute refractory period, which is sufficiently long to prevent repetitive firing triggered 
by the synaptic reflux. Time traces of the transmembrane potential and ionic currents are shown in Fig. 4 along with the activation 
function, described in (46). According to the Hodgkin-Huxley modeling approach, each current includes the product of two gating 
variables (one for the activation and one for the inactivation) whose exponents yield the probability of channel opening. Seven gating 
variables are thus considered:

𝑖𝐼 = 𝑔𝐼 𝐺1.77
𝑎 𝐺4.82

𝑏

(
𝑣−𝐸𝐼

)
, (37)

𝑖𝐹𝑇 = 𝑔𝐹𝑇 𝐺8.64
𝑐 𝐺2.51

𝑑

(
𝑣−𝐸𝑂

)
, (38)

𝑖𝑆𝑇 = 𝑔𝑆𝑇 𝐺3.85
𝑒 𝐺1.15

𝑓

(
𝑣−𝐸𝑂

)
, (39)

𝑖𝑆𝑆 = 𝑔𝑆𝑆 𝐺1.0
𝑔

(
𝑣−𝐸𝑂

)
, (40)

𝑖𝐿 = 𝑔𝐿

(
𝑣−𝐸𝐿

)
. (41)

Here 𝑔𝑘, 𝑘 ∈ {𝐼, 𝐹𝑇 , 𝑆𝑇 , 𝑆𝑆, 𝐿}, are the peak conductances per unit area, 𝐸𝑗 , 𝑗 ∈ {𝐼, 𝑂, 𝐿}, are the reversal potentials of the currents, 
𝐺𝑖, 𝑖 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔}, are the gating variables. The steady-state value of a gating variable 𝐺𝑖∞ and the time constant 𝜏𝑖 are given 
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by a logistic function with slope 𝜌𝑖 and by a simple Gaussian distribution, respectively:
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𝐺𝑘∞(𝑣) =
(
1 + exp

(
(𝑣ℎ)𝑘 − 𝑣

)
∕𝜌𝑖

)−1
, (42)

𝜏𝑘(𝑣) = (𝐶𝑏)𝑘 + (𝐶𝑎)𝑘 exp

(
−
(
(𝑣𝑚)𝑘 − 𝑣

)2
𝜎2

𝑘

)
. (43)

Among the various constants, 𝑣𝑚 and 𝑣ℎ are the maximal and the half-maximal voltage, respectively. By Eq. (42) one can infer that 
the dependence of the gating variables on the transmembrane potential 𝑣 inherently makes the reaction term in the monodomain 
model nonlinear. This affects the choice of the suitable numerical scheme for the time discretization.

Following the aforementioned models and the experimental findings of [57], the voltage threshold for synaptic transmitter release 
is set to +20 mV. As long as the transmembrane potential achieve this threshold in the depolarization stage, excitatory postsynaptic 
currents (EPSCs) are triggered. The sum of individual EPSCs evoked in time yields the total synaptic current:

𝑖𝐸𝑃𝑆𝐶 (𝑡) = 𝑔𝑆𝑌

[
1 − 𝑒−𝑡∕𝜏𝑟𝑖𝑠𝑒

] [
𝑎𝑒−𝑡∕𝜏𝑓𝑎𝑠𝑡 + (1 − 𝑎)𝑒−𝑡∕𝜏𝑠𝑙𝑜𝑤

]
𝐻(𝑡)max

(
𝐸𝑆𝑌 − 𝑣,0

)
(44)

𝑖𝑆𝑌 =
𝑛∑

𝑖=1
𝑖𝐸𝑃𝑆𝐶 (𝑡− 𝑡𝑖) . (45)

Here 𝐸𝑆𝑌 is the current’s reversal potential, 𝑎 the fraction of fast decay and 𝐻(𝑡) the Heaviside step function. The maximum function 
accounts for the synaptic rectification [57]. The time constants 𝜏𝑟𝑖𝑠𝑒, 𝜏𝑟𝑖𝑠𝑒 and 𝜏𝑟𝑖𝑠𝑒 govern the rise and decay rate of the EPSC. All the 
parameters of the neuron model can be found in [25].

Quantitative observations about the space-time correlation between the electrical activity of the MNN and the muscle contraction 
pattern are still fairly limited. The duration of the muscle contraction was found to be a function of the bell diameter, indeed [60]. In 
Horridge et al. [61], experimental investigations on the Aurelia Aurita determined an approximate contraction duration of 1 s. This 
value was recently employed in high-fidelity simulations of the jellyfish turning [46], providing a satisfactory agreement with the 
experimental observations. Furthermore, it matches the experimental time range 0.2 ÷ 0.7 s observed from muscle sheet recordings in 
several species [62,63]. The force generation mechanism in scyphozoan muscle fibers was early correlated to Calcium ion currents, 
likewise in striated muscle fibers of higher metazoans [64]. Muscle activation models based on Calcium dynamics have already been 
used for the simulation of Lamprey swimming [65], however, similarly detailed models are not available for jellyfish. To limit the 
complexity of the model, we propose a direct relation between one of the gating variables and the activation function although 
more refined formulations, such that Hill’s model [66], can be implemented to consider detailed physiological relations (e.g., the 
Frank-Starling law [67]) between the muscle stretch and stretch-rate, and the activation function 𝛾 [68]. We define the normalized 
muscle activation function 𝛾 by means of direct scaling of the dynamics of the gating variable 𝐺𝑎, associated to the transient inward 
current. The scaling is performed such that the contraction holds for approximately 1 s, and the contraction phase is more rapid 
than bell relaxation. As a result of the asymmetry in the timing of the two phases larger flow velocities are achieved during bell 
contraction than during bell relaxation [69]. Thus, the activation function takes the form:

𝛾(𝑡,𝐺𝑎) =
1

0.902
𝐺𝑎

(
𝜂𝑡+ 𝑡 (1 − 𝜂)

)
, (46)

where the scaling parameter 𝜂 takes the value 1/140, and 𝑡 represents the time for which 𝐺𝑎 exceeds the threshold 0.005. The 
parameters are chosen such that the duration of the muscle activity is in the range of a variety of jellyfish species (see Table 2 
in [63]). A comparison of the time scale of the activation function and that of the transmembrane potential can be inferred from 
Fig. 4(a).

2.6. Fluid-dynamics model

The incompressible Navier-Stokes equations are solved in a cylindrical reference frame (domain Ω𝑓 displayed in Fig. 1) under the 
assumption of axisymmetric flow. In view of this framework, the dimensionless continuity and momentum equations take the form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑞1
𝜕𝑟

+ 𝑟
𝜕𝑞2
𝜕𝑧

= 0 ,

𝜕𝑞1
𝜕𝑡

+ 𝜕

𝜕𝑟

(
𝑞21
𝑟

)
+ 𝜕

𝜕𝑦

(
𝑞1𝑞2

)
= −𝑟

𝜕𝑝

𝜕𝑦
+ 1

Re

[
𝑟

𝜕

𝜕𝑟

(
1
𝑟

𝜕𝑞1
𝜕𝑟

)
+

𝜕2𝑞1
𝜕𝑦2

]
+ 𝑓𝑟 ,

𝜕𝑞2
𝜕𝑡

+ 1
𝑟

𝜕

𝜕𝑟

(
𝑞1𝑞2

)
+

𝜕𝑞22
𝜕𝑦

= − 𝜕𝑝

𝜕𝑦
+ 1

Re

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑞2
𝜕𝑟

)
+

𝜕2𝑞2
𝜕𝑦2

]
+ 𝑓𝑦 ,

(47)

where Re is the Reynolds number and the quantities 𝑞1 = 𝑟𝑣1 and 𝑞2 = 𝑣2 denote the scaled radial and axial velocity components, 
respectively. With this expedient, the governing equations can be easily recast in a similar way to the Cartesian form [70]. When 
considering the bell diameter, hereafter referred as 2𝑎ex, as characteristic length scale and the pacing frequency 𝜙 as characteristic 
time scale, the Reynolds number yields:

Re =
4𝜌f 𝜙𝑎2ex

𝜇
, (48)

where the frequency driving the bell deformation is equal to the frequency of electrophysiological pulses. Here 𝜌𝑓 and 𝜇 represent 
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the fluid density and dynamic viscosity, respectively.
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In our study the fluid properties are kept fixed, therefore the Reynolds number and the driving pulse frequency are correlated 
parameters: once the frequency of the electrophysiological activation and the bell diameter are chosen, the Reynolds number is 
uniquely determined. Experimental measurements performed by [15] on both oblate jellyfish, such as the Aequorea Victoria, and 
prolate jellyfish (e.g., Aglantha Digitale), provided Reynolds number values in between 200 and 600 for centimeter-scale specimens 
(2𝑎𝑒𝑥 ≈ 1 ÷ 6 cm). Within this range, the vortex structures generated by axisymmetric bell strokes are noticed to be axisymmetric in 
many computational investigations [17,18,71], having considered axisymmetric bell deformations. In our model we consider 2𝑎𝑒𝑥 = 3
cm, 𝜙 = 0.5 Hz. In conjunction with the fluid properties summarized in Table B.3, this yields Re= 450. It is worth pointing out that 
real jellyfish do not generate axisymmetric vortex rings, not even in this fluid-dynamic regime, due to the presence of tentacles and 
non-symmetric bell contractions.

The propulsion features have been widely recognized to be correlated with bell streamlining (or bell fineness ratio) and velum-

diameter ratio [15,72]. Prolate medusae generally possess a large velum/diameter ratio and perform fast contractions, resulting in a 
rapid ejection of the fluid from inside their bell while entraining minimal fluid from outside the bell into their wake. Consequently, 
a clearly defined jet structure is produced. Conversely, oblate species derive only a small portion of thrust from jet propulsion. They 
provide slower contractions which produce prominent vortices at the bell margins mostly observed in rowing propulsion. As their 
bells expand, after each contraction, water rushes in, and it refills the bell in the form of a large vortex ring the rotates in the opposite 
direction of the ring created when the bell is contracted. According to [44], this classification based on the propulsion mechanism 
mostly complies with the distinction between Hydrozoans and Scyphozoans, despite paddling/rowing propulsion is observed in 
oblate hydromedusae as well [73]. There exist species that evade the distinction between prolate and oblate jellyfish in terms of 
propulsion mechanism. For instance, the Aurelia Aurita [74] and the Aequorea Victoria [75] have been found to exploit both rowing 
and jet propulsion mechanisms together.

2.7. Jellyfish geometry

Recent investigations have described the bell geometry as a solid made up from an extraumbrellar and a subumbrellar surface 
[76,18,77]. Following the parametrization introduced by [18], the axisymmetric profile of bell is delimited by the curves:

(𝑟− 𝑟𝑐)2

𝑎2𝑒𝑥
+

(𝑦− 𝑦𝑐)2

𝑏2𝑒𝑥
= 1 ,

(𝑟− 𝑟𝑐)2

𝑎2𝑖𝑛
+

(𝑦− 𝑦𝑐)2

𝑏2𝑖𝑛
= 1, (49)

where the minor- and major semi–axis coefficients take the values: 𝑏𝑒𝑥 = 0.8 𝑎𝑒𝑥, 𝑎𝑖𝑛 = 0.948 𝑎𝑒𝑥, 𝑎𝑖𝑛 = 0.46 𝑎𝑒𝑥. The coordinate pair 
{𝑟𝑐 , 𝑦𝑐} represents the location of the center of the ellipses. The major axis of the ellipse, 𝑎𝑒𝑥, corresponds to half the bell diameter. 
Such a geometry was originally proposed by [56], and subsequently used by [18] as a sample representative of oblate rowing jellyfish, 
such as the Aurelia Aurita. The rear part of the bell is rounded by a circular arc of radius 𝑟𝑑 = 0.036 𝑎𝑒𝑥. The elliptical profiles have 
been elongated by a distance 𝑑 = 0.14 𝑎𝑒𝑥 to account for the flexible marginal flap encountered in many cnidarian species. Geometrical 
parameters are displayed along with the computational mesh in Fig. 3 (b).

Such a planar geometry 𝐗𝑠 is represented using a bivariate NURBS patch taking the tensor product of univariate NURBS functions 
and a linear combination with the control point coordinates �̂�𝑖 [78]:

𝐗𝑠 =
𝑛𝑔∑
𝑖=1

𝑅𝑖(𝜃1, 𝜃2) �̂�𝑖 , (50)

where 𝑅𝑖(𝜃1, 𝜃2) = 𝑁𝑗 (𝜃1)𝑀𝑘(𝜃2) represents the tensor product structure and, consequently, the number of bivariate function is 
equal to the product of the number of univarite functions in the parametric directions 𝜃1 and 𝜃2: 𝑛𝑔 = 𝑛𝑔1 × 𝑛𝑔2. In our model, 
the two opposite edges of the parametric space, 𝜃2 = 0 and 𝜃2 = 1, represent the subumbrellar surface and the external surface, 
while the remaining two sides represent the straight segment coincident with the axis of symmetry and bell margin. Adopting this 
parametrization, the electrophysiological domain Ω𝑒 – that is a subset of the mechanical domain Ω𝑠 – is simply identified by:

𝐗𝑒 =
𝑛𝑔∑
𝑖=1

𝑅𝑖(𝜃1,0) �̂�𝑖 =
𝑛𝑔1∑
𝑗=1

𝑁𝑗 (𝜃1) �̂�𝑗 . (51)

In the IgA context the knot-insertion and the degree-elevation algorithms can be directly used to obtain analysis-suitable functions 
preserving both the geometry and the parametrization.

3. Numerical approach

The spatial discretization of the multiphysics problem follows a partitioned approach, by which different numerical techniques 
are employed for different sub-problems. We rely on a NURBS-based Isogeometric method for the solution of the electrophysiological 
and elastic sub-problems and a centered finite difference approach for the fluid sub-problem. The relevant details of the discretization 
424

techniques are reported in the present section, whilst their implementation is verified and discussed in Appendix A.
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3.1. Isogeometric discretization for finite elasticity

We discretize the finite elasticity problem by means of an isogeometric Galerkin method in space, and by the generalized-𝛼

method in time. The body displacement and the virtual velocity fields are approximated by:

𝐮 =
𝑛𝑚∑
𝑖=1

𝑅𝑖(𝜃1, 𝜃2) �̂�𝑖(𝑡) , (52)

𝛿𝐯 =
𝑛𝑚∑
𝑖=1

𝑅𝑖(𝜃1, 𝜃2)𝛿�̂�𝑖 , (53)

which, recast in the equivalent matrix notation, read:

𝐮 =
[

𝑅1(𝜃1, 𝜃2) 0 … 0 𝑅𝑛𝑚
(𝜃1, 𝜃2) 0

0 𝑅1(𝜃1, 𝜃2) 0 … 0 𝑅𝑛𝑚
(𝜃1, 𝜃2)

]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂�1,1
�̂�1,2

…
…

�̂�𝑛𝑚,1
�̂�𝑛𝑚,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝐑�̂� (54)

𝛿𝐯 =
[

𝑅1(𝜃1, 𝜃2) 0 … 0 𝑅𝑛𝑚
(𝜃1, 𝜃2) 0

0 𝑅1(𝜃1, 𝜃2) 0 … 0 𝑅𝑛𝑚
(𝜃1, 𝜃2)

]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛿�̂�1,1
𝛿�̂�1,2

…
…

𝛿�̂�𝑛𝑚,1
𝛿�̂�𝑛𝑚,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝐑𝛿�̂� (55)

To simplify the notation double indices are avoided in the control variable vectors. Substituting (55) in Eq. (17) and considering 
(54), one can derive 2 × 𝑛𝑚 equations, with 𝑛𝑚 control points of the mechanical problem. Each of the resulting nonlinear equations 
corresponds to one variation of the finite-dimensional virtual velocity field:

Res𝑖 = 2𝜋 ∫
Ω𝑠0

𝑅𝑘𝑖

𝜕2𝑢𝑘

𝜕𝑡2
𝜌𝑠 �̊� 𝑑𝑆 +

𝐹 𝑖𝑛𝑡
𝑖

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2𝜋 ∫
Ω𝑠0

1
2

(
𝜕𝑅𝑚𝑖

𝜕𝜃𝑎
�̊�𝑎

𝑘𝐹𝑚𝑙 +
𝜕𝑅𝑚𝑖

𝜕𝜃𝑏
�̊�𝑏

𝑙 𝐹𝑚𝑘

)
𝑆𝑘𝑙 �̊� 𝑑𝑆 +

−

𝐹 𝑒𝑥𝑡
𝑖

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2𝜋 ∫
𝜕Ω𝑠0

𝑅𝑘𝑖 𝑡0,𝑘 �̊� 𝑑𝐿 = 0 𝑖 = 1,… ,2 × 𝑛𝑚 , (56)

where the index 𝑖 denotes the degree of freedom of the problem, while the indices 𝑘, 𝑙, and 𝑚 indicate the direction in space. In 
the latter equation we drop the functional dependence on the control variables and we adopt Einstein’s notation on summations. 
Moreover, we recall that the deformation gradient depends on the active strain, coupling the displacement field to the monodomain 
problem.

The generalized-𝛼 method is a nonlinear predictor-corrector time integration scheme, that updates the displacement control variables 
solving the residual equations (56) by means of the Newton’s method. Thus, the linearization of the first integral in (56) with respect 
to the acceleration control variables �̂�𝑗 = 𝜕2�̂�𝑗∕𝜕𝑡2, wit 𝑗 = 1, … , 2 × 𝑛𝑚, is needed, yielding:

𝑀𝑖𝑗 = 2𝜋 ∫
Ω𝑠0

𝑅𝑘𝑖 𝑅𝑘𝑗 𝜌𝑠 �̊� 𝑑𝑆 (57)

as well as the linearization of the second integral with respect to the displacement control variable �̂�𝑗 :

𝐾𝑖𝑗 (�̂�) = 2𝜋 ∫
Ω𝑠0

D[
Δ�̂�

]𝛿�̇�∶𝐒
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
2

(
𝜕𝑅𝑚𝑖

𝜕𝜃𝑎
�̊�𝑎

𝑘

𝜕𝑅𝑚𝑗

𝜕𝜃𝑙
+

𝜕𝑅𝑚𝑖

𝜕𝜃𝑏
�̊�𝑏

𝑙

𝜕𝑅𝑚𝑗

𝜕𝜃𝑘

)
𝑆𝑘𝑙 �̊� 𝑑𝑆+

+ 2𝜋

𝛿�̇�∶D[
Δ�̂�

]𝐒
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
(

𝜕𝑅𝑚𝑖
𝑎

�̊�𝑎
𝑘𝐹𝑚𝑙 +

𝜕𝑅𝑚𝑖 �̊�𝑏
𝑙 𝐹𝑚𝑘

)
ℂ𝑘𝑙𝑤𝑞 1

(
𝜕𝑅𝑤𝑖

𝑞
+

𝜕𝑅𝑞𝑖

𝑤
+

𝜕𝑢𝑤 𝜕𝑅𝑟𝑖 +
𝜕𝑅𝑤𝑖 𝜕𝑢𝑞

)
�̊� 𝑑𝑆 . (58)
425

∫
Ω𝑠0

2 𝜕𝜃 𝜕𝜃𝑏 2 𝜕𝜃 𝜕𝜃 𝜕𝜃𝑏 𝜕𝜃𝑏 𝜕𝜃𝑓 𝜕𝜃𝑓
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Conversely, the hydrodynamic load depends only on time because of the adopted FSI scheme (see section 3.5).

To integrate in time, we interpolate the displacements and accelerations between two successive time steps 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 as 
follows:

�̂�𝛼 = 𝛼𝑓 �̂�𝑛+1 + (1 − 𝛼𝑓 ) �̂�𝑛 , (59)

�̂�𝛼 = 𝛼𝑚 �̂�𝑛+1 + (1 − 𝛼𝑚) �̂�𝑛 , (60)

where the velocity and the displacements at time step 𝑡𝑛+1 are computed by the Newmark update:

�̂�𝑛+1 = �̂�𝑛 +Δ𝑡 ((1 − 𝛾) �̂�𝑛 + 𝛾 �̂�𝑛+1) . , (61)

�̂�𝑛+1 = �̂�𝑛 +Δ𝑡 �̂�𝑛 + Δ𝑡2

2
((1 − 2𝛽) �̂�𝑛 + 2𝛽 �̂�𝑛+1) . (62)

The convergence of the generalized-𝛼 method is regulated by the set of adopted coefficients, that, furthermore, defines the amount 
of numerical damping for high-frequency modes. In the present work, we adopt the following set of coefficients [79], defined as a 
function of the spectral radius of the iteration matrix 𝜌∞ :

𝛼𝑚 =
2 − 𝜌∞
1 + 𝜌∞

, 𝛼𝑓 = 1
1 + 𝜌∞

, 𝛽 =
(1 − 𝛼𝑓 + 𝛼𝑚)2

4
, 𝛾 = 1

2
− 𝛼𝑓 + 𝛼𝑚 . (63)

In this work we follow the classical choice 𝜌∞ = 0.5 [79], which allows to damp out spurious high frequency modes while preserving 
most of the natural ones.

When updating the displacements, we solve Eq. (56), computed with the variables interpolated at the time fraction 𝛼, in terms of 
acceleration by means of the Newton’s method. The update formula can be obtained exploiting the chain rule to differentiate with 
respect to acceleration:

𝑑𝐑𝐞𝐬𝛼

𝑑�̂�𝑛+1 Δ�̂�
𝑛+1 = −𝐑𝐞𝐬𝛼 , (64)

which reads, in index notation:(
𝛼𝑚𝑀𝑖𝑗 + 𝛼𝑓 𝛽Δ𝑡2 𝐾𝑖𝑗 (�̂�𝛼)

)
Δ�̂�𝑛+1

𝑗 = −𝑀𝑖𝑗 �̂�𝛼
𝑗 − 𝐹 𝑖𝑛𝑡,𝛼

𝑖 + 𝐹 𝑒𝑥𝑡,𝛼
𝑖 , (65)

where 𝐹 𝑖𝑛𝑡,𝛼
𝑖 is the internal elastic power computed in term of displacements �̂�𝛼 and 𝐹 𝑒𝑥𝑡,𝛼

𝑖 represents the hydrodynamic load ex-

trapolated from the previous time step. As a starting guess for the Newton’s method, we employ a constant velocity predictor. For 
more details on the method, the reader is referred to [79,80]. In the present work, the classic Gauss–Legendre quadrature rule is 
employed to integrate the field variables over the elements. The linear system corresponding to Eq. (64) is solved via a standard LU 
decomposition with partial pivoting.

3.2. Isogeometric discretization for electrophysiology

The weak form of the monodomain model (33) is linear in the argument 𝑣 except for the reactive term, which depends on the 
transmembrane potential itself:

𝑣 =
𝑛𝑠∑

𝑗=1
𝑁𝑗 (𝜃1) �̂�𝑗 (𝑡) (66)

where the 𝑁𝑗 basis function is obtained from the geometrical representation of the domain Ω0𝑒 after a suitable mesh refinement and 
�̂�𝑗 is the corresponding control variable with 𝑗 varying from 1 to the number of degrees of freedom 𝑛𝑠. Substituting Eq. (66) in the 
weak form (33) and using the same basis function 𝑁𝑖 to approximate the test functions:

𝜓 =
𝑛𝑠∑
𝑖=1

𝑁𝑖(𝜃1) �̂�𝑖 , (67)

we get the discrete isogeometric counterpart of the monodomain PDE. The following system of equations is obtained:

𝐶𝑚 𝑀𝑒
𝑖𝑗

𝑑�̂�𝑗

𝑑𝑡
+𝐾𝑒

𝑖𝑗 �̂�𝑗 + 𝜒
(
𝐼ion

)
𝑖
= 𝜒

(
𝐼a

)
𝑖

𝑖 = 1,… , 𝑛𝑠 . (68)

The matrices in the previous equation read:

𝑀𝑒
𝑖𝑗 = 2𝜋 ∫

Ω𝑒0

𝑁𝑖𝑁𝑗 �̊� 𝑑𝐿 , (69)

𝐾𝑒
𝑖𝑗 = 2𝜋

𝜕𝑁𝑖 𝐷11 (𝜃1) 𝜕𝑁𝑗
�̊� 𝑑𝐿 , (70)
426

∫
Ω𝑒0

𝜕𝜃1 𝜕𝜃1
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𝐼ion

)
𝑖
= 2𝜋 ∫

Ω𝑒0

𝑁𝑖 𝑖ion

(
𝑣,𝐺𝑘

)
�̊� 𝑑𝐿 , (71)

(
𝐼a

)
𝑖
= 2𝜋 ∫

Ω𝑒0

𝑁𝑖 𝑖a
(
𝜃1
)

�̊� 𝑑𝐿 . (72)

System (68) is discretized in time by a semi-implicit scheme, where the diffusion term is treated implicitly and the reaction term 
explicitly, as this is believed to provide a satisfactory compromise between efficiency and stability [81,54]. Indeed, the explicit 
treatment of the reaction term avoids the linearization of the ionic current at the cost of a restriction on the time step size due to the 
stability constraint.

In our implementation, the reaction term is discretized by means of an explicit second order Adams-Bashforth method, and the 
diffusion term is discretized by an implicit Crank-Nicholson method. The present scheme is outlined for the resolving time step 𝑚 +1, 
which refers to the discrete time 𝑡𝑚+1 = (𝑚 + 1)Δ𝑡𝑒, with 𝑚 being the discrete time counter and Δ𝑡𝑒 = 𝑡𝑚+1 − 𝑡𝑚 the constant time step 
size chosen for the electrophysiological problem:

𝐶𝑚 𝑀𝑒
𝑖𝑗

�̂�𝑚+1
𝑗 − �̂�𝑚

𝑗

Δ𝑡𝑒
+ 1

2
𝐾𝑒

𝑖𝑗

(
�̂�𝑚+1

𝑗 + �̂�𝑚
𝑗

)
+ 3

2
𝜒
(
𝐼ion

)𝑚

𝑖
− 1

2
𝜒
(
𝐼ion

)𝑚−1
𝑖

= 𝜒
(
𝐼a

)𝑚+1
𝑖

, (73)

which, rearranged for the time advancement, reads:(
𝐶𝑚𝑀𝑒

𝑖𝑗 +
Δ𝑡𝑒
2

𝐾𝑒
𝑖𝑗

)
�̂�𝑚+1

𝑗 =
(

𝐶𝑚𝑀𝑒
𝑖𝑗 −

Δ𝑡𝑒
2

𝐾𝑒
𝑖𝑗

)
�̂�𝑚

𝑗 −
3Δ𝑡𝑒
2

𝜒
(
𝐼ion

)𝑚

𝑖
+

Δ𝑡𝑒
2

𝜒
(
𝐼ion

)𝑚−1
𝑖

+Δ𝑡𝑒 𝜒
(
𝐼a

)𝑚+1
𝑖

. (74)

In coupled electro-mechanical simulations the stiffness matrix 𝐾𝑒
𝑖𝑗 must be recomputed at each time step to account for the changes 

in the conductivity (35) due to the deformation of the spatial reference frame. This feature represents a form of geometric mechano-

electrical feedback [26,54].

The integration of the ionic current by a Galerkin procedure (72) plays a fundamental role in the stability of the presented scheme, 
since the reaction term is treated explicitly and it represents the coupling term between the PDE and a set of stiff ODEs. The 
interpolation at the interior of the element is needed for the ionic current integration. Following the State Variable Interpolation 
(SVI) approach, we define the discrete values of gating variables at the control point location and, successively, they are interpolated 
at the generic quadrature points 𝜃𝑔𝑝 to get the integral (72):

{
𝑖ion

(
𝑣,𝐺𝑘

)|||𝜃1=𝜃𝑔𝑝

= 𝑖ion

(
𝑛𝑠∑

𝑗=1
𝑁𝑗

(
𝜃𝑔𝑝

)
�̂�𝑗 ,

𝑛𝑠∑
𝑖=1

𝑁𝑗

(
𝜃𝑔𝑝

)
�̂�𝑘,𝑗

)
. (75)

Comparison of different ionic current interpolation strategies within an Isogeometric framework can be found in [54,82].

The system (74) is solved by a simple LU decomposition with partial pivoting. Afterwards, the computed value of transmembrane 
potential �̂�𝑛+1 is used to solve the gating variable equations (42) at each control point of the spatial discretization by means of an 
explicit fourth order Runge-Kutta method. Both reaction-diffusion equation and gating variable equations are advanced with the 
same time-step size.

3.3. Electro-mechanical coupling

As often observed in cardiac simulations, the monodomain model requires a much finer grid than the mechanical sub-problem 
to handle the sharp front of the electrophysiological pulse. The optimal solution would be a gradient dependent refinement strategy 
for the electrophysiological discretization. However, this certainly requires a sophisticated computational framework. The NURBS 
discretization allows for an efficient implementation of two nested meshes. Indeed, the knot insertion algorithm preserves the geom-

etry and the parametrization, enabling an information exchange by means of simple field evaluations at the Gauss point coordinates. 
For instance, the displacements are computed at the Gauss points of the electrophysiological mesh evaluating the basis functions 𝑅𝑖

at the prescribed set of coordinates. In fact, since the parametrization is preserved, a point is represented by the same parametric 
coordinates in both discretizations, avoiding complex projections between grids. Thanks to the linearity of Eqs. (66) and (52), such 
an operation comes at the cost of a matrix-vector multiplication, whose matrix can be computed just once in the pre-analysis stage.

The activation function is carried from the electrophysiological mesh to the mechanical discretization and vice-versa for the dis-

placement field. However, in interpolating the field from a univariate to a bivariate domain an additional assumption on the spatial 
distribution is needed. Specifically, we assume a constant value of the activation function in the 𝜃2 direction, mimicking the ac-

tual muscle activation. In this regard, each problem is tackled with a suitably refined mesh, previously determined by uncoupled 
convergence analysis.

3.3.1. Space-time convergence of the monodomain model

The minimal time and space scales of the coupled problem are those involved in the propagation of the electrophysiological 
pulses. Therefore, the sensitivity of the solution to the discretization features needs to be carefully addressed to find out the necessary 
refinement level. We tested several element and time step sizes against the electrophysiological stimulation of a static axisymmetric 
emi-ellipsoid corresponding to the subumbrellar surface of the bell. The action potential is triggered by an external current applied 
427

in the region within parametric coordinates 0.96 ≤ 𝜃1 ≤ 0.98 for 1 ms, in order to mimic the activity of the Rhopalia.
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Fig. 5. Convergence of the time-delay error depending on time step size Δ𝑡 and mesh elements 𝑛𝑒 . The colorbar refers to the magnitude of the time-delay error.

Table 1

Summary of the space-time convergence study of the electrophysiological stimulation of the static subumbrel-

lar surface. The APD error is shown as a function of the time step size Δ𝑡𝑒 and the element number 𝑛𝑒 .

Δ𝑡𝑒 = 0.02 [ms] Δ𝑡𝑒 = 0.01 [ms] Δ𝑡𝑒 = 0.005 [ms] Δ𝑡𝑒 = 0.0025 [ms]

𝑛𝑒 = 200 0.6222 0.6232 0.6240 0.6246

𝑛𝑒 = 400 0.2820 0.2808 0.2821 0.2820

𝑛𝑒 = 800 0.1025 0.0735 0.0610 0.0554

𝑛𝑒 = 1600 0.0553 0.0286 0.0155 0.0092

𝑛𝑒 = 3200 0.0491 0.0196 0.0065 -

The domain Ω𝑒 is discretized using quadratic elements, with element numbers 𝑛𝑒 = {200, 400, 800, 1600, 3200} and time-step sizes Δ𝑡𝑒 =
{0.02, 0.01, 0.005, 0.0025} [ms]. We define the error directly using the Action Potential Duration time (APD). The APD is measured as 
the time interval 𝑇𝑑 by which the depolarization front at 𝑣 = 0.0 mV moves from the parametric locations 𝜃1 = 0.2 to 𝜃1 = 0.8. Two 
points aside from the boundaries are considered in order to minimize the influence of boundary conditions on the results. We thus 
compute the APD time error 𝑒𝑑 as:

𝑒𝑑 =
𝑇𝑑 − (𝑇𝑑 )ref

(𝑇𝑑 )ref

, (76)

assuming the solution from the most refined case (𝑇𝑑 )ref as reference solution. The error convergence is shown by a combined space-

time plot, whereas corresponding data are reported in Table 1. Distinctly, the APD error converges with decreasing time step size and 
decreasing mesh size and justifies the choice of our reference solution. Different convergence trend are observed in time and space 
as a consequence of the different theoretical accuracy provided by the discretizations. We observe that with 𝑛𝑒 > 800 and Δ𝑡𝑒 < 0.01
ms a converged solution can be obtained for the electrophysiological sub-problem.

3.3.2. Calibration of the conductivity coefficient

Most of the Scyphozoans present action potential waves traveling with a conduction velocity in between 45 cm/s and 1 m/s, 
depending on the species and the specimen maturity [11]. To the best of the author’s knowledge, no conductivity value is available 
in the literature for the MNN of a Scyphozoan jellyfish. However, several researches report values of conduction velocity of approxi-

mately 50.0 cm/s [61,63,48,46]. These data refer to the speed of propagation of the mechanical wave, that is assumed as a proxy for 
the speed of propagation of the electrical signal. The activation is triggered by the nervous system while the evolution is governed 
by the muscle properties, resulting in pulses of different duration [60].

In the present work, we seek for a conductivity value that matches a conduction velocity equal to 𝐶𝑉 = 47.4 cm/s, as prescribed in 
the most recent investigation [46]. To this extent we apply a simple bisection algorithm to the 𝐶𝑉 -𝐷0 function.

In a generic axisymmetric surface, the wave front is curved, and the 𝐶𝑉 undergoes spatial variations. To overcome this issue, we 
conduct the simulations on a cylindrical domain (radius 𝑅 = 15.0 mm and length 𝐿 = 20.0 mm) activated by enforcing the action 
potential value 𝑣 = −69.0 mV at one end. The resulting wave front propagates in a planar fashion as the radius is constant through 
the entire domain, indeed. The conduction velocity is measured by the time delay of the wave arrival at two points 4.0 mm and 16.0
mm far from the stimulation site. Although the wave arrival is usually defined using half of the upstroke amplitude, we select time 
corresponding to v=+20 mV to avoid the uncertainties due to the inflection in the depolarization time history (see Fig. 4).

The bisection method employs a fast analysis (600 elements, 𝑝 = 2, Δ𝑡 = 0.01 ms) to obtain a preliminary estimation of the conduc-

tivity, whereas a more refined discretization (2400 elements, 𝑝 = 2, Δ𝑡 = 0.0025 ms) computes an accurate result. The iteration-wise 
results are summarized in Fig. 6. According to our findings, the conductivity coefficient value corresponding to the target conduction 
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velocity is 𝐷0 = 1.375𝑒 − 05 nA/(mm mV).
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Fig. 6. Tuning of the conductivity coefficient 𝐷0 by a bisection method.

3.4. Finite difference scheme for the fluid problem

The flow field is solved via a centered difference discretization [29]. The moderate computational expense of finite differences 
allows to use a large number of nodes and to simulate multiple propulsive cycles.

The system of equation (47) is solved by means of a fractional step scheme, in the version proposed in [83]. First, a non-solenoidal 
intermediate velocity field is computed by advancing in time the momentum equation; then, a pressure-correction equation is solved 
to project the provisional field onto a solenoidal one. The momentum equation is integrated by means of a semi-implicit approach, 
where the implicit Crank–Nicholson scheme is employed for the viscous terms, and the three-step explicit Runge-Kutta scheme is used 
for the convective terms. The latter was found to guarantee a good accuracy at moderate CFL (Courant–Friedrichs–Lewy number) 
values for transitional flow simulations. This yields the discrete momentum equation of the i-th velocity component for the k-th 
Runge–Kutta substep to be:

𝑞𝑖 − 𝑞𝑘
𝑖

Δ𝑡
= −𝛼𝑘 𝜕𝑝𝑘

𝜕𝑥𝑖
+ 𝛽𝑘𝑘

𝑖 + 𝛾𝑘−1
𝑖 + 𝛼𝑘

2Re
𝑖

(
𝑞𝑖 + 𝑞𝑘

𝑖

)
+ 𝑓𝑘

𝑖 , (77)

where the operators 𝐻𝑖 and 𝐿𝑖 contain the convective terms and the viscous terms, respectively. The time advancement coefficients 
for three substep levels are 𝛼 = [8∕15, 2∕15, 1∕3], 𝛽 = [8∕15, 5∕12, 3∕4], 𝛾 = [0, −17∕60, −5∕12]. The computation of the IB forcing field 
𝑓𝑘

𝑖 is addressed taking a preliminary fully explicit step for the purpose of interpolating the necessary field variables without further 
complications in the time scheme, as proposed in [84]. Subsequently, Eq (77) is solved for the increment Δ𝑞𝑖 = 𝑞𝑖 − 𝑞𝑘

𝑖 :(
1 − Δ𝑡 𝛼𝑘

2Re
𝑖

)
Δ𝑞𝑖 =

(
−𝛼𝑘 𝜕𝑝𝑘

𝜕𝑥𝑖
+ 𝛽𝑘𝑘

𝑖 + 𝛾𝑘−1
𝑖 + 𝛼𝑘

2Re
𝑖𝑞

𝑘
𝑖 + 𝑓𝑘

𝑖

)
Δ𝑡 (78)

The implicit treatment of term in Eq. (78) would the inversion of large sparse matrices. These are reduced to tridiagonal matrices by 
means of the approximate factorization [85] while introducing a factorization error ((Δ𝑡)3), thus preserving the scheme accuracy 
in time.

Continuity is enforced by means of the auxiliary scalar field 𝜙, used to project the provisional velocity field 𝑞𝑖 onto a divergence 
free-field. Thus, the final velocity and pressure fields at time 𝑛 + 1 can be evaluated as:

𝑞𝑘+1
𝑖 = 𝑞𝑖 − 𝛼𝑘Δ𝑡∇𝜙 , (79)

𝑝𝑘+1 = 𝑝𝑘 + 𝜙− Δ𝑡 𝛼𝑘

2Re
𝜙 . (80)

The scalar 𝜙 is computed by taking the divergence of the previous equation and enforcing mass conservation. A Poisson equation is 
then obtained, reading:

𝜙 = 1
𝛼𝑘Δ𝑡

𝜕𝑞𝑖

𝜕𝑥𝑖
. (81)

A direct solution of the Poisson problem in (81) is preferred to fulfill the continuity equation without any numerical compromise. 
However, the computational efficiency of the resolution is enhanced by means of the eigen-decomposition of the discrete operator 
matrices. This technique, well suited in problems where only the forcing term vary from step to step, allows to solve the system in 
(81) as a sequence of matrix multiplications and inversion of tridiagonal matrices [86].
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The space discretization features follow the traces of the work by Verzicco and Orlandi [70], except that only the radial and the axial 
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directions are resolved. The discrete analogues of the differential operators are obtained by straightforward second-order accurate 
centered finite differences. The field variables are located on staggered grids, whose beneficial effects in terms of accuracy are 
discussed in [70,29].

3.4.1. Solid-fluid coupling

Following the approach proposed in [31], the forcing field is computed over a set of Lagrangian Markers (LM) located at the 
fluid-solid interface and then transferred back to the Eulerian nodes. The LM are distributed in the parametric space of the NURBS 
patch while requiring the distance between adjacent markers in the physical space to be comparable with that of the underlying 
Eulerian nodes. Numerical experiments in [87] suggested that a Lagrangian-to-Eulerian spacing ratio below 0.6 only provides a 
negligible reduction in flux error through the interface. Such an error is further reduced when considering the forcing iterations 
inherently obtained with the three steps Runge-Kutta scheme used to advance the fluid solution. As pointed out in [88], the repeated 
enforcement of the volume force 𝑓𝑘

𝑖 at each Lagrangian markers on a static contour leads to an improvement of the accuracy of the 
no-slip condition.

At the LM location the 𝑖-th forcing component 𝐹𝑖 is evaluated as a body force, by the difference between the current LM velocity 𝑣𝑖

and the interpolated velocity value 𝑄𝑖:

𝐹𝑖(𝐫𝐿𝑀 ) =
𝑣𝑖 −𝑄𝑖(𝐫𝐿𝑀 )

Δ𝑡
. (82)

The interpolation procedure is performed with a Moving Least Squares approach which provides a smooth forcing field even with 
moving boundaries with minimal smoothing of the interface, especially when exponential weight functions are used [32,33]. The 
interpolated 𝑖-th velocity at the marker location is thus computed by means of the transfer function 𝜑:

𝑄𝑖(𝐫𝐿𝑀 ) =
𝑁𝑒∑
𝑗=1

𝜑𝑗 (𝐫𝐿𝑀 )
(
𝑞𝑖

)
𝑗

, (83)

where 𝑁𝑒 is the number of Eulerian nodes within a local support domain identified for the interpolation procedure. Time indices 
have been dropped for simplicity of notation. In two-dimensional axisymmetric simulations a 9 points support domain is employed. 
The same transfer function is used in the spreading of the volume forces (82), but including the scaling factor 𝑐𝑙 that accounts for the 
discrete momentum conservation fulfillment. The volume force at the 𝑘-th Eulerian point location is thus evaluated as:

𝑓𝑘
𝑖 =

𝑁𝑙∑
𝑙=1

𝑐𝑙 𝜑𝑘
𝑙

(
𝐹𝑖

)
𝑙

, (84)

where 𝑁𝑙 indicates the number of Lagrangian points associated with the Eulerian point 𝑘. A detailed discussion about the properties 
of the transfer function 𝜑𝑗 and its application within IB methods for viscous flow simulations can be found in [89,32]. It is worth 
pointing out that when considering 𝑞1 = 𝑟𝑣1 no differences occur in the MLS interpolation operators between plane 2D fields and 2D 
axisymmetric fields.

With the present IB treatment, the flow field across the surface presents a smooth transition layer whose thickness takes at most 
two Eulerian cells, as shown in [33] with 2D numerical experiments. Therefore, viscous and pressure loads contributing to the 
external body load 𝐹 ext

𝑖 in equation (56) are evaluated following the procedure throughly described in [32,87]. The field variables 
are interpolated at a probe created along the outward-pointing normal from the surface and transported at the quadrature point 
laying on the surface by a simplified boundary layer equation. The probe length is selected as the averaged Eulerian cell size.

3.5. Multiphysics solution algorithm

The computation of the action potential at the 𝑛-th time step requires the knowledge of the body configuration, whereas the solu-

tion of the elastic problem needs the action potential at the same time step. The prediction of the flow field and of the hydrodynamic 
loads at the 𝑛-th time step likewise requires the knowledge of the motion of the body and vice versa. The adopted time-advancement 
algorithm consists of a sequential approach, where each sup-problem is solved in a segregated fashion and data are progressively 
transferred as depicted in Fig. 7. Once the monodomain model is solved, the resulting transmembrane potential field 𝑣(𝐫, 𝑡) is used 
to compute the active strain tensor 𝐅𝑎 at the quadrature points. The former, together with the hydrodynamic loads computed in the 
previous fluid step, are set as input field for the elastic analysis. Once obtained the deformed configuration, the immersed boundary 
procedure allows to enforce the no-slip condition at the fluid-solid interface, and thus to advance the flow field in time.

The comparison of the characteristic time scale of each sub-problem allows to build a computationally affordable time-advancement 
method. The action potential is expected to exhibit a conduction velocity of about 50 cm/s (see paragraph 3.3.2), whereas the 
characteristic velocity scale of the fluid-elastic problem can be identified by the product of the neuronal pacing frequency 𝜙 and 
the bell diameter 2𝑎𝑒𝑥. When considering the reference values 𝜙 = 0.5 s−1 and 2𝑎𝑒𝑥 = 3 cm, it yields 1.5 cm/s. In this connection, 
the time-step size of the simulation is dictated by the electrophysiological sub-problem. Furthermore, the latter suffers from strict 
stability requirements since the action potential represented in Fig. 4 needs the solution of a 40 ms duration wave front. We therefore 
employ a sub-stepping technique where the mechanical and fluid-dynamic configurations are updated every 𝑀 electrophysiological 
time steps. In the baseline jellyfish simulation presented in section 4 we set 𝑀 = 100, with Δ𝑡𝑒𝜙 = 2.5 × 10−6 and Δ𝑡𝜙 = 2.5 × 10−4, 
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since the activation function is observed to exhibit less than 1% overall variation over this time window.
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Fig. 7. Sketch of the partitioned, nested numerical scheme with transfer of the fundamental variables among the sub-models. The contour color of each solver 
corresponds to the color of the sub-domain in the sketches in Fig. 1.

We further simplify the fluid-structure problem by choosing the density of the solid body equal to 𝜌𝑠 = 1100 kg/m3. This is a precau-

tion needed for the sequential fluid-structure algorithm to handle a low solid-to-fluid density ratio without incurring in inaccurate 
results [90], although the high percentage of body water of real jellyfish entails that 𝜌𝑠 = 1000 kg/m3 would be a more realistic 
choice. However, the numerical experiments proposed in [91] suggest that such a variation does not significantly affect the swim-

ming kinematics.

4. Fully coupled jellyfish simulations

4.1. Comparison with in-vivo measurements

The complexity of the computational framework and the uncertainty of the bio-mechanical parameters involved in the model gives 
rise to the need for a comparison with the available in-vivo measurements from a rowing jellyfish. We herein present a qualitative 
comparison with the kinematics of a 3 cm Aurelia Aurita [7]. The full geometrical and fluid-dynamic similarity is realized in view 
of replicating the stroke cycle and the resulting swimming features. The model parameters are collected in Table B.3. Following the 
reference measurements [7], the muscle stretch parameters are tuned such that a relative reduction in the reference diameter 2𝑎𝑒𝑥

equal to 0.32 is achieved at the peak muscle contraction (the same value is used in [18]). Specifically, we use 𝑎1 = 0, 𝑎3 = 0.096. 
The swimming simulations is initialized by applying a 0.1 nA/mm3 current for 0.1 ms on the still jellyfish body immersed in a quiet 
fluid. The stimulation is applied within a narrow 0.4 mm subset of the electrophysiological domain at the marginal flap hanging. 
We employ a rectangular fluid domain of extension [0, 10𝑎𝑒𝑥]𝐞1 ⊗ [0, 26𝑎𝑒𝑥]𝐞2 with homogeneous no-slip boundary conditions expect 
the symmetry axis. The domain size is chosen such that boundary conditions could have negligible influence on the region where 
flow gradients develops. The Cartesian grid is uniformly refined only in the subset [0, 2.4𝑎𝑒𝑥]𝐞1 ⊗ [5, 22𝑎𝑒𝑥]𝐞2 with local grid size 
Δ = 𝑎𝑒𝑥∕250, whereas a significant grid stretching is implemented in the far-field region. The Eulerian grid resolution was chosen 
to get 10 grid point within the marginal flaps of the bell, although less grid points are necessary to accurately capture the vortex 
dynamics.

The jellyfish is placed in the initial position with the uppermost point of the bell at 𝑦 = 10 𝑎𝑒𝑥 and it is allowed to run 10 propulsive 
cycle, where a periodic advancement velocity is achieved within 6 to 8 strokes. The selected pacing frequency is 𝜙 = 0.5 Hz. The 
elastic domain is discretized by 35 × 6 cubic elements in the 𝜃1 and 𝜃2 directions, respectively (see Fig. 3 (b)). Conversely, 34 
cubic elements are nested within each elastic element to fulfill the convergence requirement discussed in section 3.3.1 for the 
electrophysiological solution. The monodomain model is advanced in time with the time step-size Δ𝑡𝑒 𝜙 = 2.5 × 10−6, in order to 
achieve the time-convergence threshold (see Fig. 5). The structural and fluid solutions are updated every 100 electrophysiological 
time steps, namely by Δ𝑡 𝜙 = 2.5 × 10−4, as discussed in section 3.5.

The comparison with in-vivo measurements in terms of forward swimming speed and cumulative traveled distance in Fig. 8 exhibits 
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a satisfactory agreement. Both the peak and the post-recovery values (the stage where no body displacement occurs) of forward 
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Fig. 8. Comparison with in-vivo measurements on a 3 cm Aurelia Aurita specimen [7]: forward velocity (a), and cumulative traveled distance (b) of the jellyfish 
center of mass.

velocity are well-reproduced by the model, suggesting that the neuronal activity drives the locomotion with biophysical fidelity at 
the macroscopic level. High frequency oscillations in the axial velocity are observed in active stress simulation too [77] as the result 
of the complex interplay between passive elastic properties of the bell and fluid damping. Instantaneous flow fields are displayed 
in Fig. 9 by vorticity contours. The contraction of the bell margin generates a counter-rotating vortex pair, already observed in 
oblate species [49], which takes a physiologically relevant role in the swimming process. In the contours of Fig. 9 the starting 
vortex ring takes negative vorticity values, whereas the stopping vortex ring has a positive vorticity. The former is generated by the 
roll up of the shear layer occurring with the reduction of the bell marginal section, whereas the latter takes shape from the flow 
squeezed in between the starting vortex and the bell margin in the recoil stage. The starting vortex travels away from the bell, while 
the stopping vortex is entrained inside the subumbrellar cavity. The interaction of such vortices with the background fluid motion 
induced by the bell translation generate a difference in the relative tangential velocity between the inner part and the outer part of 
the vortex ring. In a laminar flow environment this leads to a pressure gradient acting towards the symmetry axis which squeezes 
the starting vortex reducing the outer ring diameter. Conversely, the stopping vortex is drawn into the subumbrellar cavity whit 
its core being pushed against the bell wall. In order to quantify the circulation of each vortex, a closed contour line is generated 
around this vortex with an arbitrary vorticity level, and then the circulation is computed along this line. The shear layers laying 
in the body proximity are excluded from this computation. The circulation analysis proposed in Fig. 10 confirms that the stopping 
vortex produces larger circulation values with a delayed peak [7,18] in favor of the propulsion. According to experimental and 
computational observations [7,77] the clockwise flow rotation inside the bell cavity generates a localized pressure increment that 
provides the body with additional thrust in the passive motion stage. In the baseline simulation the thrust-enhancement effect of the 
stopping vortex ring can be detected from the space-time pattern of pressure on the endothelial surface (see the positive pressure 
stripe in the passive stage in Fig. 11 d). In the second half of the propulsive stage, when the passive advancement occurs, a positive 
pressure field localized at the central region of the subumbrellar cavity provides additional thrust as a result of the interaction of the 
stopping vortex ring with the body surface. A similar pattern was observed from pressure contours in Fig. 4 of [7]. This feature leads 
to enhanced efficiency estimates, since the thrust surplus comes without further muscle contraction.

We further support the discussion about the cruise swimming features of the baseline model by showing in Fig. 11 the space-time 
pattern of several quantities of interest at the subumbrellar cavity, among which the transmembrane potential 𝑣, the activation 
function 𝛾 , the dimensionless radial displacement 𝑢1∕2𝑎𝑒𝑥, and the pressure 𝑝. The active stretching of the muscle fibers takes place 
after the resting potential value has been retrieved over the full domain, leading to nearly uncoupled dynamics. In the contraction 
stage the radial displacement closely follows the activation function, whereas in the recovery stage a time gap can be observed 
between the vanishing of the activation function and the restoration of the undeformed configuration. This means that part of 
the elastic energy is released after the active strain of the muscle fibers has ended. Such a delicate equilibrium between active 
contraction and elastic bell features plays a fundamental role in the characterization of the propulsion kinematics. The pressure 
fluctuations depicted in Fig. 11 (d) result from the oscillations of the bell margin and are related to the swimming speed trend 
observed in Fig. 8 (a).

4.2. Exploration of the contractility pattern

The thrust generated by oblate jellyfish, as well as the circulation and kinematics of the stopping vortices, was found to be strongly 
dependent on the radial displacement and velocity of the marginal flaps [18]. These are regulated by the activation pattern of the 
subumbrellar muscles. We propose a parametric exploration of the neuro-mechanical activation pattern by spanning the parameter 
space defined by the pair {�̂�1, �̂�3}. The maximum value of stretching parameters are tuned to match the experimental observations 
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[44] about the cross-area reduction. In this connection, different contractility patterns can be achieved under electrophysiological 
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Fig. 9. Instantaneous vorticity contour and body configuration at five subsequent instants of the rowing cycle in the periodic swimming regime. An electrophysiological 
pacing frequency of 𝜙 = 0.5 [Hz] was considered.

Fig. 10. Time-traces of the circulation modulus, |Γ|, of the starting and stopping vortex rings within the last propulsive cycle for the baseline case.

stimulation, and the influence of the fibers activation level on the body propulsion can thus be inferred. We point out that a single 
specimen can exhibit a broad variety of contractility patterns, allowing for equally diverse behaviors.

The resulting dynamics is summarized in the phase diagrams in Fig. 12, which depicts the variation of dimensionless mean forward 
velocity 𝑣2, kinematic Strouhal number St and strain energy 𝐸𝑠. The notation ⟨⋅⟩ indicates cycle-averaged quantities in the periodic 
swimming regime. Fig. 12 (a) suggests that the stretching has a different influence on the mean forward velocity concerning coronal 
and radial fibers. Coronal muscles are responsible for a nearly exponential increase in the swimming speed, whereas radial muscles 
show a linear dependence. This reflects the relation between local fiber orientation and bell diameter variation; the stretch of coronal 
fibers directly affects the cross-sectional area of the body, and thus the momentum of expelled fluid, whereas radial fibers enforce 
the bending of the transverse bell section. Interestingly, the contribution of the radial muscles appear to be more effective for 
the swimming velocity in the large contraction regime. This suggests that simultaneous activation of both muscle fibers can be a 
biological resource for escape maneuvers. As postulated in [50,49], the rhopalia might activate the DNN together with the MNN 
in response to a strong sensory stimulus, driving a simulataneus contraction of radial and coronal fibers. It is acknowledged that 
some biological functions such as predation and escape can rely on swimming speed rather than minimal metabolic effort [49]. The 
Strouhal number can further clarify the kinematic picture. Here it is defined as St= 𝜙 

(
𝑢1
)

max
∕⟨𝑣2⟩𝑐 , following the definition used 

in [18]. Increasing the amount or coronal stretch, a smaller St is achieved due to the proportionality between subumbrellar volume 
reduction and advancement velocity. The larger the stretch, the closer the gait to the St stripe of peak efficiency (St= 0.2 ÷ 0.4 [92]), 
represented by a pink stripe in Fig. 12 (b). Conversely, radial muscles provide a minimal velocity gain compared with the amount of 
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radial displacement they generate. Fig. 12 (c) shows that an increase in �̂�1 does not necessarily bring an increase in the total strain 
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Fig. 11. Space-time pattern of transmembrane potential (a), activation function (b), dimensionless radial displacement (c), and hydrodynamic pressure (d) along the 
subumbrellar bell profile. Space is represented in convective coordinates at the location {1 − 𝜃1 , 0}. Data are taken from the eleventh propulsive cycle of the baseline 
case where the black dashed lines point out the beginning of the observed cyle. The red lines shows the parametric location where the synaptic stimulation takes 
place.

energy (comprising the contribution of active and passive deformations), especially at large �̂�3 values. Indeed, activating the radial 
muscles for enhancing straight swimming might be an energetically and kinematically convenient option.

5. Summary and conclusions

The replication of the neuro-mechanical processes contributing to locomotion can enhance the comprehension of multiple aspects 
of jellyfish biology and their environmental interactions. At the same time, modern bio-hybrid robotics can benefit from these in-

sights to draw novel engineering solutions which mimic the efficiency and versatility of living species. In this connection we develop 
a computational framework by which multiphysics aspects of jellyfish straight locomotion can be addressed with the necessary ac-

curacy.

We propose a partitioned method consisting of the sequential solution of three nonlinear coupled sub-problems within an axisym-

metric reference frame. In first instance we address the electrophysiological stimulation of the endothelial tissue by means of the 
monodomain model, which provides the action potential pattern responsible for the muscle contraction. The reaction term relies on 
the features of a Hodgkin-Huxley type neuron model, specifically tailored for Scyphozoan jellyfish. The electrical activity drives the 
active contraction of the subumbrellar muscles, which in turn is implemented over a thin layer of the solid domain using the active 
strain approach. This allows for a straightforward distribution of the fiber contraction in muscle direction according to the biological 
architecture. Conversely, the passive part of the deformation gradient accounts for the restoration of the undeformed configuration 
in compliance with the hydrodynamic forces. The active strain method allows to disentangle the effects of radial and coronal muscle 
orientation on the swimming features of the jellyfish. Both muscle activation parameters and material properties have been tuned to 
match experimental observations from in-vivo experiments. The overall modeling scenario is extensively described with particular 
emphasis on the biological background of the modeling choices, and the description is complemented by an extensive validation and 
verification campaign. Coupling approaches within the multiphysics environment are thoroughly discussed as well. The full model is 
finally used to successfully replicate the swimming kinematics of a 3-cm Aurelia Aurita obtained from in-vivo measurements, and to 
infer contribution of radial and coronal muscle fibers on the swimming performance. Radial muscle fibers are found to enhance the 
mean straight swimming speed in the large contractility regime.

The key limitation of the present study lays in the axial symmetry assumption. Although this assumption dramatically reduces the 
required computational effort, it cuts out some physiological phenomena which might be relevant in the locomotion scenario. Among 
them we acknowledge the presence of biological appendages, the buckling of the bell margin, already observed in numerical simula-

tions [18], the propagation of three-dimensional excitation waves [46] and the non-simultaneous firing of Rhopalia. The latter was 
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found to be responsible for highly asymmetric muscle contractions which drive turning maneuvers.
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Fig. 12. Diagrams of dimensionless mean forward velocity (a), kinematic Strouhal number (b) and strain energy (c) for different combinations of activation parameters 
{�̂�1 , ̂𝑎3}. Each curve is associated with a value of �̂�3 , consistently labeled in the adjacent colorbar. The pink stripe in panel (b) encloses the region of peak power 
efficiency detected by Taylor et al. [92].

The present work will be continued by widening the parameter space exploration to get further physical insights on the jellyfish 
locomotion. A novel efficiency definition needs to be formulated to account for the active muscle contraction in the propulsion 
energy scenario. In second instance, the computational tool will be recast for a fully three-dimensional formulation, allowing for the 
simulation of turning and maneuvering effects.
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Appendix A. Validation and verification of sub-solvers

In the present section, we provide preliminary verification and validation tests to assess the effectiveness of the implementation 
in the dedicated reference frame (see Fig. 1) by comparing the simulation output against analytical solutions or experimental and 
computational data.

A.1. Verification of the electrophysiological solver

The consistency of the discrete solution of the monodomain problem (Eq. (74)) is verified by separately assessing the diffusion 
and reaction contributions. The diffusion effect is verified by solving the axisymmetric heat equation for the generic scalar field 𝜙
over a plane circular domain. We consider a disk of radius 𝑅 = 40 m, with Dirichlet boundary conditions 𝜙 = 1 prescribed at the 
domain edge. We assume a thermal diffusivity 𝑘 = 60.0 m2∕s. The initial solution consists of 𝜙 = 0 all over the inner nodes. Initial 
solution and boundary conditions entail an axisymmetric diffusion process, where 𝜙 gradually settles to 𝜙 = 1.0 in the whole domain. 
One should bear in mind that the solution substantially differs from that arising from the diffusion over a cable due to tangential 
diffusion effects.

The problem is solved up to 𝑡 = 2.0 s over a 1D domain discretized by 600 quadratic elements. A time step size equal to Δ𝑡 = 0.01
s is employed. The analytical solution used as reference is obtained by means of the Bessel functions of the first type 𝐽0(𝑟) and its 
derivative 𝐽1(𝑟), as shown in [93]:

𝜙(𝑟, 𝑡) = 1 − 2
∞∑

𝑛=1

𝐽0(𝛼𝑛𝑟∕𝑅)
𝛼𝑛 𝐽1(𝛼𝑛)

exp
(
−𝛼2

𝑛 𝑘 𝑡∕𝑅2) , (A.1)

where 𝛼𝑛 is the n-th positive zero of 𝐽0(𝑟). Numerical and analytical solutions are found to coincide at subsequent time steps, as 
shown in Fig. A.13. Furthermore, the solution is observed to have null gradient at the symmetry axis, testifying the correctness of 
the implementation.

The reaction effects are validated by integrating the ordinary differential equation associated with the pure neuronal activity, and 
comparing the time-traces of the action potential with data reported in [25]. Fig. A.13(b) shows that the depolarization phase, as well 
as the repolarization behavior with the inflection point experimentally observed in [13], match the data available in the literature. 
Further comparisons have been made for a neuron receiving multiple identical EPSCs with short time-delay, where the depolarization 
front is observed to interact with the previous repolarization wave.

A.2. Verification of the structural solver

The elastic solver is initially verified against two benchmark problems for which the analytical solution is available. In second 
instance, the solver is tested against two nonlinear cases undergoing finite displacements and finite strains, and the solutions are 
compared with those obtained with the commercial software Abaqus [94].

Linear analysis At first, a thick cylindrical tube with constant thickness and an inner pressure load has been simulated. The cylinder 
has inner and outer radii equal to 𝑅𝑖 = 0.5 m and 𝑅𝑜 = 1.0 m, respectively. Axial displacements are constrained on both cylinder ends. 
For a slender tube, the radial displacement approaches the analytical solution of a thick cylinder with infinite length under internal 
pressure [95]:

𝑢𝑟(𝑟) = 𝑝
𝑅2

𝑖 (1 + 𝜈)
(
𝑅2

𝑜 + 𝑟2 (1 − 2𝜈)
)

𝐸
(
𝑅2

𝑜 −𝑅2
𝑖

)
𝑟

. (A.2)

In the present case the IGA solution was obtained by using: 𝐸 = 100 MPa, 𝜈 = 0.3, 𝑝 = 0.1 MPa. Fig. A.14 provides the comparison 
with the analytical solution. The successful output of this test certifies the effectiveness of the formulation for a configuration with 
non-unitary, orthogonal local bases.

In second instance, a test-case entailing also non-orthogonal bases is considered. In the field of linear analysis, we simulate a thick 
hollow sphere subjected to a uniform external pressure. The analytical solution is available from [96] in terms of radial displacement 
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as a function of the radial position:
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Fig. A.13. Axisymmetric solution of the heat equation over a disk with symmetry-Dirichelet boundary conditions, at subsequent time instants (a). Comparison with 
the analytical solution (A.1). Time-traces of the transmembrane potential 𝑣 for a single neuron stimulated by a synaptic EPSC at time zero; comparison with the 
solution provided in [25] (b).

Fig. A.14. Radial displacement as a function of the radial coordinate for a thick cylindrical tube subjected to uniform internal pressure.

𝑢𝑟(𝑟) = 𝑟
−𝑝𝑅3

𝑜

𝐸
(
𝑅3

𝑜 −𝑅3
𝑖

) (1 − 2𝜈) + 1
𝑟2

−𝑝𝑅3
𝑖 𝑅

3
𝑜

2𝐸
(
𝑅3

𝑜 −𝑅3
𝑖

) (1 + 𝜈) . (A.3)

Our simulation was run with the following parameters: 𝑅𝑖 = 0.5 m, 𝑅𝑜 = 1.0 m, 𝐸 = 100 MPa, 𝜈 = 0.3, 𝑝 = 0.1 MPa. Unlike the 
previous test-case, this entails the symmetry axis crossing a solid part of the body. The replication of the analytical solution (see 
Fig. A.15a) ensures the robustness of the present implementation in presence of quadrature points close to the symmetry axis [34]. 
One quarter of a circle is simulated, where the tangential displacement is prevented on the equatorial line. The distribution of the 
radial displacement is checked at different tangential locations. Furthermore, a convergence analyses under h- and p-refinement is 
performed to check if the integration over the near axis elements degrades the accuracy of the method. The theoretical accuracy is 
confirmed with quadratic, cubic, and quartic basis functions (see Fig. A.15b).

Nonlinear analysis A cantilever thick tube subjected to internal pressure load is simulated. Boundary and loading conditions are 
illustrated in the sketch in Fig. A.16a, along with the deformed configuration. For the present test, the compressible Neo-Hookean 
strain energy function (10) is employed. The chosen physical parameters are: ℎ = 1.5 m, 𝑅𝑖 = 0.5 m, 𝑅𝑜 = 0.8 m, 𝑝 = 0.2 MPa, 𝑐10 = 0.5
MPa, 𝐾 = 1000 MPa. An accurate IGA solution is achieved with 200 cubic elements, which are able to replicate the Abaqus solution 
obtained with 4500 CAX8H elements. The numerical solutions have been compared in Fig. A.16b by superposing the radial and axial 
displacement on the outer profile of the cylinder.
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Eventually, the previously described jellyfish geometry was tested with a uniformly distributed radial loading (no displacement-
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Fig. A.15. Radial displacement of a thick hollow sphere subjected to external pressure as a function of the radial coordinate, for different tangential location (a). 
Convergence of the error in the local displacement under h-refinement for different basis function orders (b).

Fig. A.16. Boundary and loading conditions for a cantilever nonlinear cylinder subjected to inner pressure, superposition of reference and deformed configurations 
(a). Radial and axial displacement as a function of the axial coordinate at the outer cylinder profile (b).

dependent loading) applied on the inner elliptical profile. The force magnitude was calibrated such that the target radial displacement 
corresponds to a 40% reduction of the cross section area at the bell margin. This represents the largest deformation achieved in our 
simulation, according to the experimental observations of [73]. In the present test the bell is pinned at the symmetry axis and 
subjected to a uniformly distributed radial load, obtained by projecting the stress value 𝑝 = 2.5 Pa onto the radial directors over the 
inner edge. The material law follows Eq. (10), and the material parameters are 𝑐10 = 21.67 Pa, 𝐾 = 4.33 × 104 Pa. The simulation 
was carried out with 230 cubic elements, and results are compared with those obtained with Abaqus (see Fig. A.17). The Abaqus 
simulation was run with 13800 CAX4H elements by using the mixed pressure-displacement formulation to alleviate locking effects. 
With the Abaqus displacement formulation a nearly incompressible material subjected to very large displacement exhibits severe 
locking effects [97]. The agreement of the IGA solution with the Abaqus output proves that the present implementation with cubic 
basis functions does not suffer from relevant locking effects, therefore no special treatment is needed. In the present simulation the 
bulk modulus 𝐾 yields a volume variations equal to -0.0088%, which nearly fulfills the incompressibility condition. We verified that 
similar volume variations are obtained when achieving the maximal bell contraction with the active strain approach.

A.3. Verification of the flow solver

Laminar vortex ring formation Vortex rings are fundamental features for the propulsion of oblate species [44]. The simulation of 
vortex-dominated flows requires the conservation of circulation and kinetic energy to a relatively tight tolerance to ensure that 
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spurious vorticity is not generated. The present scheme, inspired to the work of [70], does preserve these properties in absence of 
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Fig. A.17. Superposition of reference and deformed configurations for a jellyfish model subjected to uniformly distributed horizontal force (a). Radial and axial 
displacement as a function of the axial coordinate at the outer jellyfish profile (b).

viscosity and time differencing errors. In this regard, simulations of an impulsively started jet are performed to check the formation 
and evolution of a laminar vortex ring. The test case consists of a cylindrical domain where a coaxial inflow jet impulsively produces 
a shear layer which evolves into an axisymmetric vortex ring. This actually mimics the jet produced by a piston moving a fluid 
column through an orifice of diameter 𝐷. At time 𝑡 = 0 the flow inside the computational domain is assumed to be at rest. At the 
inlet the hyperbolic tangent profile is specified:

𝑞2(𝑟, 𝑡) =
1
2

𝑈𝑝(𝑡)
[
1 − tanh

(
2
𝛿𝑤

(
𝑟

𝐷
− 1

2

))]
, (A.4)

where 𝛿𝑤 is the width of the shear layer at the inlet, and 𝑈𝑝(𝑡) provides the time program, defined as:

𝑈𝑝(𝑡)
𝑈

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

[
1 − cos

(
𝜋

𝑡

𝑡1

)]
, 𝑡 ≤ 𝑡1

1.0 , 𝑡1 < 𝑡 ≤ 𝑡2
1
2

[
1 + cos

(
𝜋

𝑡− 𝑡2
𝑡1

)]
, 𝑡<𝑡 ≤ 𝑡1 + 𝑡2

0.0 , 𝑡 > 𝑡1 + 𝑡2

(A.5)

Here, 𝑡1 is the acceleration/deceleration time of the piston, and 𝑡2 represents the stroke ratio. For all cases the piston acceleration was 
set to 𝑡1𝑈𝑚∕𝐷 = 0.3 to match the piston motion described in the experiments of [98]. We used a computational domain of extension 
[0, 15𝐷] × [0, 6𝐷] with minimal grid size Δ𝑦 = 𝐷∕60 and constant time step size Δ𝑡 = 0.002𝑈∕𝐷. A free-slip condition is enforced at 
the outer radial wall, whereas a radiative outflow conditions is employed for the outlet profile. We present two cases for which both 
computational [99] and experimental [98] data are available. The first is defined by 𝛿𝑤 = 0.04, 𝑡2 = 6 𝑈∕𝐷, Re = 3100, whereas the 
second by: 𝛿𝑤 = 0.05, 𝑡2 = 8 𝑈∕𝐷, Re = 3100. The time traces of the dimensionless circulation Γ∕(𝑈𝐷), plotted in Fig. A.18, reveal 
full consistency with both experimental and computational data. A qualitative comparison can be carried out by superposing the 
instantaneous contours of vorticity 𝜔 = 𝜕𝑞2∕𝜕𝑟 − 𝜕𝑞1∕𝜕𝑦 in Fig. A.18(a) with those illustrated in the reference [99].

Steady flow past a torus Subsequently, we simulate the flow past a torus under steady-state conditions. The verification of the 
simulation output certifies the effectiveness of the IB treatment in the axisymmetric framework. The wake structure behind a torus 
exhibits different behaviors, depending on several parameters. However, also non-axisymmetric flow fields are observed until the 
steady-state condition holds [100]. The detached recirculating zone on the axis, the attached recirculating zone, and the detached 
recirculating zone behind the torus might appear individually or concurrently, depending on the aspect ratio and the Reynolds 
number [101]. We simulate three different configurations comprising various aspect ratios 𝐴𝑅 = 𝐷∕𝐷𝑠 and Reynolds numbers, and 
compare our results with the numerical outcomes in [101]. Here, 𝐷 represents the center-line diameter of the torus, whereas 𝐷𝑠 is the 
cross-sectional diameter of the torus. We simulate a torus immersed in a fluid domain of extension [−15𝐷𝑠, 25𝐷𝑠] × [−𝐴𝑅∕2, 20𝐷 −
𝐴𝑅∕2], with free-slip conditions on the outer radial wall, and inflow/outflow conditions at the axial edges. A local discretization 
Δ = 𝐷∕50 is used in the body-wake region, whereas a cubic grid stretching is employed in the marginal wake regions. Earliest studies 
showed that the {AR,Re} values for the unsteady transition asymptotically approach the values of the straight cylinder, as 𝐴𝑅 gets 
larger than 10. For smaller 𝐴𝑅 values, significantly different wake pattern are observed. We compare the axial velocity profiles 
for 𝐴𝑅 = {1.3, 2.0, 4.0}, at 𝑅𝑒 = 70, with those observed in [101]. The superposition of our data with the profile observed in the 
reference study (see Fig. A.19) shows acceptable accuracy. The vorticity contours shown in Fig. A.20 illustrate that the location of 
the stagnation point substantially differs from that of a straight cylinder, corroborating the effectiveness in the representation of 
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axisymmetric flow fields.
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Fig. A.18. Instantaneous vorticity contours showing the detachment of the head vortex ring at three successive time instants for the case 𝑡2 = 8 𝑈∕𝐷 (a). Comparison 
between present numerical predictions and available measurements for total circulation. Blue refers to the stroke time 𝑡2 = 6 𝑈∕𝐷, whereas orange refers to 𝑡2 = 8 𝑈∕𝐷

(b).

Fig. A.19. Axial velocity profile in correspondence of the torus hole for different aspect ratios. Markers denote the computational results from [101], whereas lines 
indicate our numerical solution.

Fig. A.20. Vorticity contours for the flow past a torus at 𝑅𝑒 = 70 with different aspect ratios.

Sphere settling under gravity Eventually, a well-established FSI benchmark test involving axisymmetric flow fields is replicated. The 
reference work [102] provides an experimental investigation of a sphere settling under gravity in a tank. Measurements carried out 
by particle image velocimetry, provided the sphere trajectory and velocity, from the moment of its release until rest at the bottom 
of the tank. The small dimension of the container used in the experiments allows to simulate the flow field under very similar 
conditions. In the experiments a liquid free surface exists at the top of the domain, whereas we use the no-slip condition at the 
top of the domain. Several researchers also reproduced the same test with a similar computational setting obtaining a satisfactory 
agreement with experimental data [103,104]. Half of the sphere is simulated with a local Eulerian resolution of Δ = 𝐷∕50. The 
440

simulation is initialized with the sphere hanging at 8.5𝐷 from the domain edge and the fluid in a quiescent state. The domain has 
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Table A.2

Density ratio, settling velocity in infinite medium, Reynolds 
number and Froude number used in the simulations of a 
sphere settling under gravity in a closed container.

case 𝜌 𝑈∞ Re Fr

C1 1.167 0.128 31.9 0.334

C2 1.164 0.091 11.6 0.237

C3 1.161 0.060 4.1 0.156

Fig. A.21. Time-traces of position (a) and velocity (b) for a sphere settling under gravity for different phase density ratios. Markers denote the data from [102], 
whereas lines indicate the numerical solution.

extension [0, 10.67𝐷] × [0, −3.33𝐷] with no-slip boundary conditions on every boundary, except the symmetry axis. The sphere is 
allowed to precipitate until it touches the domain boundary. No special treatment is implemented to solve the lubrication layer, but 
the simulation is stopped when the body approaches the last inner node before the edge. However, the fluid resolution was fine 
enough to capture the particle deceleration and the formation of an axisymmetric vortex dipole in the wall-approaching phase. The 
governing parameters of the system are the phase density ratio 𝜌, and the particle diameter 𝐷. We keep the latter constant and run 
three cases with different 𝜌 values. This inherently leads to different sedimentation velocities and consequently different Reynolds 
and Froude numbers (parameters listed in Table A.2). The sedimentation trajectory and the sphere velocity are reported in Fig. A.21, 
where the present results are compared with the experimental data of Ten Cate et al. [102]. A very good agreement is obtained for 
all the considered configurations.

Appendix B. Summary of physical parameters for the baseline jellyfish model

Table B.3

Summary of physical parameters used for the baseline simulation whose results are presented in section 4.

Description Symbol value

Bell outer diameter 2𝑎𝑒𝑥 30 [mm]

Bell shear modulus c10 400 [Pa]

Bell bulk modulus K 5.0 × 104 [Pa]

Pacing frequency of electrophysiological stimulation 𝜙 0.5 [Hz]

Peak radial muscle stretching 𝑎1 0 [-]

Peak coronal muscle stretching 𝑎3 0.096 [-]

Bell density 𝜌𝑠 1100 [kg/m3]

Active tissue capacitance 𝐶𝑚 1.0 × 10−3 [mF/mm2]

Active tissue conductivity 𝐷 1.3745 × 10−5 [nA/(mm mV)]

Current magnitude for stimulation 𝑖𝑎 0.1 [nA/mm3]

Duration of applied current for stimulation - 0.1 [ms]

Fluid density 𝜌𝑓 1000 [kg/m3]

Fluid viscosity 𝜇 1.0 × 10−3 [Pa s]

Reynolds number Re 450 [-]
441
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Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .apm .2023 .08 .003.
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