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A B S T R A C T

This paper presents a large deformation Kirchhoff–Love shell model hierarchically enhanced
with through-the-thickness warping functions, arbitrarily chosen by the user. Two unknowns are
introduced for each of them, representing its amplitudes in two directions tangent to the shell
surface. NURBS are used to approximate reference surface displacement and warping amplitudes
in the weak form. The transverse shear strains are linear functions of the warping parameters
only and naturally free from locking. A patch-wise reduced integration avoids membrane locking
and improves efficiency. Particular attention is paid to the modeling of composites made up
of multiple stiff layers coupled with soft interlayers. The alternating layup with high stiffness
ratios induces a significant sectional warping with transverse shear strains concentrated in the
soft layers. Two warping models are investigated: (WI) all stiff layers maintain the same director
orthogonal to the deformed surface with independent transverse shear deformations of the soft
layers; (WZ) a single zigzag function linking these deformations. The numerical tests confirm
the great accuracy of the hierarchic shell model in reproducing the solid solution with a small
number of discrete parameters, provided that the correct warping model is chosen. WI is reliable
for all alternating layups. WZ reduces the unknowns to five per surface point, regardless of the
number of layers, and is accurate for uniform soft layers.

. Introduction

The use of composite materials, thanks to their properties of strength and lightness, has opened new horizons in various
ngineering fields. Laminated composites are obtained by a piling of layers of different materials, or of plies of the same material
ut with different orientation, as in fiber-reinforced composites. The non-uniform distribution of the material properties over the
hickness direction accentuates a certain deformation phenomenology: transverse shear strains become important and the planarity
f the deformed section is often lost even for rather slender structures. Each layer may exhibit a different angle of rotation and
he final configuration of the deformed cross-section assumes a zigzag shape, that is a piece-wise linear configuration. Although the
pplication of these materials is now widespread, the development of accurate and affordable analysis and design methods is still an
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open topic in the scientific community, in particular because the layup configuration influences significantly the modeling rules. The
use of a fully 3D model with a finite element discretization through the laminate thickness, despite being the most versatile, requires
computational resources usually not affordable in the design stage, especially if nonlinear analyses are needed. Often, it is restricted
to the analysis of some small portions of interest [1], coupling the analysis with a two-dimensional discretization. Concerning
plate/shell models, two main approaches are usually followed: the equivalent single-layer theories (ESL) and the layer-wise theories
(LW).

Within the framework of the ESL models, the easiest approach followed in the early studies is the classical Kirchhoff–Love theory
f the plates. Based on the assumptions of neglecting the transverse shear effects, this proved to be reliable only for very slender
tructures. Moreover, it was employed mainly for analytical solutions for simple geometries, due to the 𝐶1 continuity requirement
f the weak form, until the spread of spline-based (e.g. [2–4]) and other novel discretization strategies [5]. Finite elements based on
he First Order Shear Deformation Theory (FSDT) are widely used to include the transverse shear deformations and they were the
atural progress in modeling composite laminates. However, the hypothesis of cross-sections remaining planar after deformation
estricts the capacity of this model, which does not take into account the cross-sectional warping becoming more and more important
s the stiffness ratios of the different layers grow. In High Order Shear Deformation (HSDT) Theories the in-plane displacement
escription is enriched with higher-order terms of the thickness coordinate [6] in order to include warping. However, even in this
ase, the cross-sectional zigzag warping affecting some types of laminates is not represented accurately unless many higher-order
erms are used so affecting the computational burden. Halfway between FSDT and HSDT, we can find a recent proposal [7], where
he Mindlin–Reissner model is extended with an element-wise displacement fluctuation describing warping and thickness changes,
hose associated DOFs can be condensed out to maintain the usual 5 or 6 DOFs per node at the global level.

The Zigzag Theory (ZZT) represents the attempt to take into account the cross-sectional warping keeping the framework of the
SL approaches. In ZZT [8–10] a piece-wise linear zigzag-shaped contribution is added to the in-plane displacements employing the
irst order, or higher order, shear deformation theories at each layer and imposing continuity conditions at the interfaces. Compared
o the FSDT theory, one unknown for each in-plane direction is added, which represent the amplitude of the zigzag functions,
eeping the number of unknowns independent from the number of layers. Among the ZZTs, the Refined ZZT [11–13] is one of the
ost used approaches. Clearly, the accuracy of this approach depends on how well the assigned zigzag function approximates the

ctual warping.
The LW theories [14–17] have a quasi-3D description capability, since the displacement is approximated within each layer. The

isplacement field is continuous over the thickness but the derivatives with respect to the thickness coordinate are not. This means
hat the strains are discontinuous at the layer interfaces and there is the possibility for the inter-laminar transverse stresses computed
rom the constitutive relations to be continuous. Opposite considerations can be made for the in-plane strains and stresses [6]. The
ain drawback of LW theories is that the number of unknowns depends on the number of layers and can become prohibitive in some

pplications. Recent advances in LW approaches model each lamina as a Kirchhoff–Love thin shell with a spline-based discretization
nd a focus on the modeling of damage [18–20].

In short, the efficiency of a model for composite laminates can be assumed mainly as a function of the number of independent
ariables. The accuracy, instead, is related to the ability to reproduce the warping over the thickness and, in particular the zigzag
eformation. An important point to take into account is that, although many of the discussed models were developed and validated
n the small deformation case, the slenderness of most composite structures is likely to induce large deflections and/or buckling. This
eans that a geometrically nonlinear analysis is usually necessary. There exists a number of large deformation models for composite

tructures, many of them reusing the small deformation models by means of hierarchic [21] or co-rotational strategies [22].
Besides shell models, it is worth mentioning the solid-shell approach [23–25], based on a large deformation 3D continuum model

ith a linear kinematic approximation through-the-thickness and only displacement DOFs. For laminates, homogenized solid-shell
odels (ESL) equivalent to the first order shear deformation theory are presented in [23]. One element per layer can be also adopted
hen needed to model the sectional warping (LW). In this last case, the model goes in the direction of the so-called multi-director

oncept [26,27].
Multi-layered composite shells made of a number of stiff plies shear-coupled by soft interlayers are a typical case of laminates

hose mechanics is dominated by the zigzag effects. Among many others, typical examples are represented by laminated glass and
etal-polymer laminates, i.e. glass or metal plies bonded by polymeric interlayers. Although the soft interlayers have in practice no

ending stiffness by themselves, they can restrain the shear-sliding of the stiff plies increasing the overall bending capacity of the
aminate [28], which varies [29] between the lower bound of free-sliding stiff plies (layered limit) and the upper-bound of perfectly
oupled plies (monolithic limit). The alternating layup induces a specific straining/deformation pattern, which distinguishes them
rom other composites [22,30]. In fact, the transverse shear strains tend to concentrate in the soft interlayers, with a nearly constant
istribution in the thickness, while they are negligible in the stiff plies. Moreover, although the interlayers are soft, they constrain
he relative distance between the surfaces to which they adhere. The consequence is that the stiff layers are all subjected to almost
dentical rotations with respect with their normals in the initial configuration, while the soft layers undergo independent transverse
hear strains. Different plate/shell models have been proposed for alternating layups. A reference paper in the field is [22] where,
or the first time, a shell model imposing equal rotation of the stiff layers and independent shear deformations of the soft interlayers
as proposed. This is a Mindlin–Reissner model enriched by independent in-plane displacements of the soft layers. The same work

mplements a locking-free shell finite element with the geometrically nonlinear model recovered by the co-rotational approach [31].
he kinematics with independent shear deformations of the soft layers [22] results useful also for including thermal and viscous
ffects [32] and for modeling more general boundary conditions. Most often, the stiff layers tend to exhibit negligible transverse
2

hear strains. Although limited to small-displacement analyses, the Kirchhoff–Love assumption of neglecting the transverse shear
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strains in the stiff layers was exploited in [30], with the aim of further reducing the model variables. The 𝐶1 continuity requirement
is met with special finite elements. In [21] a hierarchic implementation of the Refined ZZT [11–13] is proposed, adopting finite
elements based on the geometrically exact shell theory of Simo [33], in order to economically describe the behavior of composite
laminates undergoing large deformations but small strains by adding only two additional DOFs. A linear finite element approximation
of geometry and kinematics is considered in this work.

In [34], a nonlinear KL model is extended hierarchically with linearized transverse shear components. Two formulations are
proposed, using hierarchic rotations or hierarchic displacement to include the transverse shear effects. The basic assumption,
confirmed by numerical investigation, is that the transverse shear strains remain small in most simulations involving large
deflections.

Inspired by this work, this paper proposes a large deformation/small strain Kirchhoff–Love shell model hierarchically enhanced
with warping. The warping displacement is additional with respect to the arbitrarily large displacement of the shell reference
surface. Hence, it is purely deformational, i.e. not affected by rigid body motions, and small allowing an additive split of the
strain into the nonlinear part of the basic Kirchhoff–Love model and a linear part of the additional warping deformation. The
resulting model is geometrically exact, in the sense that the overall strain measure is not influenced by arbitrarily large rigid
motions. Warping is described as combination of a number of through-the-thickness shape functions, generically selected by the
user. Two unknowns are introduced for each warping shape, representing its amplitudes in two directions tangent to the shell
surface. The plane stress condition is exploited as usual. In the framework of the isogeometric analysis, NURBS basis functions are
used to approximate reference surface displacement and warping amplitudes, in order to meet the continuity requirement of the
weak form. The transverse shear strains depend only on the warping amplitudes. They are linear with the corresponding DOFs
and naturally free from locking. Membrane locking is avoided by a proper choice of the basis functions degree and the adoption
of an efficient patch-wise reduced integration scheme for the strain energy associated to the in-plane strain components, the only
integration to be repeated in the nonlinear analysis. Particular focus is given to the modeling of composite plates and shells with
alternating stiff/soft layups, for which two warping models are investigated. The first one assumes that all stiff layers maintain the
same director orthogonal to the deformed surface with independent transverse shear deformations of the soft layers. This can be
considered as an exact geometry, Total-Lagrangian, rotation-free, higher order version of the proposal in [22], that exploits the
negligible transverse shear deformations of the stiff layers to reduce the number of variables per surface point. A second model uses
a single zigzag function linking the transverse shear deformations of the soft layers to further reduce the variables to five per surface
point, regardless of the number of layers. A set of numerical tests is reported to assess the validity of the hierarchic formulation
and the coarse-mesh accuracy of the discretization. In addition, a critical evaluation of the reliability of the two warping models
compared to the solid solution is carried out, showing in which cases one model is preferable to the other.

The article is organized as follows. After a brief introduction to the Kirchhoff–Love shell model, Section 2 formulates the
Kirchhoff–Love model hierarchically enhanced with generic warping functions in a large deformation/small strain context. Warping
models for laminates with alternating stiff/soft layups are presented in Section 3. Details concerning the isogeometric discretization
and the nonlinear analysis are reported in Section 4. Section 5 contains a significant set of numerical tests. Conclusions are drawn
in Section 6.

2. Hierarchic Kirchhoff–Love shell model with warping

2.1. Standard Kirchhoff–Love shell

A set of convective coordinates 𝜉𝛼 , with 𝛼 = 1, 2 is considered over a suitable reference shell surface (not necessarily being
the middle surface of the shell), while in the thickness direction the coordinate 𝜉3 ∈ [𝜉3𝑏 , 𝜉

3
𝑡 ] is assumed with 𝜉3𝑏 and 𝜉3𝑡 identifying

the offset of bottom and top surfaces of the body with respect to the reference one. The position of a point in the undeformed
configuration is defined by the position vector 𝐗

𝐗 = 𝐑(𝜉1, 𝜉2) + 𝜉3𝐀3(𝜉1, 𝜉2) (1)

where 𝐑(𝜉1, 𝜉2) represents the position of the corresponding point on the reference surface and 𝐀3 the initial shell normal taken as

𝐀3 =
𝐀1 × 𝐀2
|𝐀1 × 𝐀2|

. (2)

with vectors

𝐀𝛼 = 𝜕𝐑
𝜕𝜉𝛼

with 𝛼 = 1, 2

defining a tangent plane to the shell surface. Covariant base vectors 𝐆𝛼 in the reference configuration can be then evaluated as

𝐆𝛼 = 𝜕𝐗
𝜕𝜉𝛼

= 𝐀𝛼 + 𝜉3𝐀3,𝛼 with 𝛼 = 1, 2

𝐆3 =
𝜕𝐗
𝜕𝜉3

= 𝐀3

(3)

The current deformed configuration is described as

𝐱 = 𝐫(𝜉1, 𝜉2) + 𝜉3𝐚 (𝜉1, 𝜉2) (4)
3

3
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where 𝐫 = 𝐑+ 𝐯 is the current position of the reference surface, with 𝐯 its displacement. Introducing the reference surface covariant
asis vectors in the deformed configuration

𝐚𝛼 = 𝜕𝐫
𝜕𝜉𝛼

= 𝐀𝛼 + 𝐯,𝛼 with 𝛼 = 1, 2

he current normal is defined as

𝐚3 =
𝐚1 × 𝐚2
|𝐚1 × 𝐚2|

, (5)

according to the Kirchhoff–Love shell assumption that the director remains straight and normal to the shell surface during
deformation. The covariant basis vectors in the deformed configuration can be computed over the body as

𝐠𝛼 = 𝜕𝐱
𝜕𝜉𝛼

= 𝐚𝛼 + 𝜉3𝐚3,𝛼 with 𝛼 = 1, 2

𝐠3 =
𝜕𝐱
𝜕𝜉3

= 𝐚3(𝜉1, 𝜉2)
(6)

Denoting the displacement of the body with

𝐮 = 𝐱 − 𝐗 = 𝐯(𝜉1, 𝜉2) + 𝜉3(𝐚3(𝜉1, 𝜉2) − 𝐀3(𝜉1, 𝜉2)) (7)

the Green–Lagrange strain tensor can be written as

𝐄 =
3
∑

𝑖,𝑗=1
�̄�𝑖𝑗𝐆𝑖 ⊗𝐆𝑗 with �̄�𝑖𝑗 =

1
2
(

𝐠𝑖 ⋅ 𝐠𝑗 −𝐆𝑖 ⋅𝐆𝑗
)

= 1
2
(

𝐮,𝑖 ⋅𝐆𝑗 + 𝐮,𝑗 ⋅𝐆𝑖 + 𝐮,𝑖 ⋅𝐮,𝑗
)

(8)

here �̄�𝑖𝑗 are the covariant strain components. The partial derivatives of the displacement vector are

𝐮,𝛼 = 𝐯,𝛼 +𝜉3(𝐚3,𝛼 −𝐀3,𝛼 ) with 𝛼 = 1, 2

𝐮,3 = 𝐚3(𝜉1, 𝜉2) − 𝐀3(𝜉1, 𝜉2)
(9)

he reference surface and body contravariant basis vectors are obtained from the dual basis condition 𝐚𝛼 ⋅ 𝐚𝛽 = 𝐀𝛼 ⋅ 𝐀𝛽 = 𝛿𝛽𝛼 and
𝛼 ⋅ 𝐠𝛽 = 𝐆𝛼 ⋅ 𝐆𝛽 = 𝛿𝛽𝛼 , with 𝛼, 𝛽 = 1, 2. Due to Eq. (2) and (5), the transverse shear strains vanish, that is �̄�𝛼3 = 0, 𝛼 = 1, 2. The

same holds for the thickness strain, i.e. �̄�33 = 0. Assuming its components to vary linearly through the thickness, it is possible to
separate the strain into a constant part due to membrane action and a linear part due to bending. The covariant strain coefficients
are:

�̄�𝛼𝛽 = 𝑒𝛼𝛽 + 𝜉3�̄�𝛼𝛽 = 1
2
(𝑎𝛼𝛽 − 𝐴𝛼𝛽 ) + 𝜉3(𝐵𝛼𝛽 − 𝑏𝛼𝛽 ) with 𝛼, 𝛽 = 1, 2 (10)

ith the metric coefficients 𝑎𝛼𝛽 = 𝐚𝛼 ⋅ 𝐚𝛽 and 𝐴𝛼𝛽 = 𝐀𝛼 ⋅ 𝐀𝛽 with 𝛼, 𝛽 = 1, 2. The curvature tensor coefficients [35] are defined as

𝐵𝛼𝛽 = −1
2
(𝐀𝛼 ⋅ 𝐀3,𝑗 + 𝐀𝛽 ⋅ 𝐀3,𝛼) = 𝐀𝛼,𝛽 ⋅ 𝐀3

𝑏𝛼𝛽 = −1
2
(𝐚𝛼 ⋅ 𝐚3,𝑗 + 𝐚𝛽 ⋅ 𝐚3,𝛼) = 𝐚𝛼,𝛽 ⋅ 𝐚3

(11)

The curvature components for the Kirchhoff–Love shell can be then computed as

�̄�𝛼𝛽 = 𝐵𝛼𝛽 − 𝑏𝛼𝛽 = 𝐀𝛼,𝛽 ⋅ 𝐀3 − 𝐚𝛼,𝛽 ⋅ 𝐚3 with 𝛼, 𝛽 = 1, 2

The presence of the norm |𝐚1 × 𝐚2| in the denominator of 𝐚3 leads to a rather complicated expression of the curvature in terms of the
isplacement field and, then, a computationally expensive evaluation of the discrete operators coming from the strain variations.
simplified formula for the curvature proposed in [3] is here adopted, exploiting the hypothesis of large deformations but small
embrane strains. It is based on the following simplification in Eq. (5):

|𝐚1 × 𝐚2| ≈ |𝐀1 × 𝐀2|.

onsequently, 𝑏𝛼𝛽 is simplified as

𝑏𝛼𝛽 ≈ 𝐚𝛼,𝛽 ⋅
𝐚1 × 𝐚2

|𝐀1 × 𝐀2|
.

and the curvature components reduce to

�̄�𝛼𝛽 = 𝐵𝛼𝛽 − 𝑏𝛼𝛽 ≈ 1
|𝐀1 × 𝐀2|

(𝐀𝛼,𝛽 ⋅ (𝐀1 × 𝐀2) − 𝐚𝛼,𝛽 ⋅ (𝐚1 × 𝐚2)) 𝛼, 𝛽 = 1, 2 (12)

hat is a third order dependence on the displacement. The in-plane strain components of the KL model can be written in Voigt’s
otation as

�̄�𝑝 = �̄� + 𝜉3�̄� with �̄�𝑝 =
⎡

⎢

⎢

�̄�11
�̄�22

⎤

⎥

⎥

, �̄� =
⎡

⎢

⎢

𝑒11
𝑒22

⎤

⎥

⎥

, �̄� =
⎡

⎢

⎢

�̄�11
�̄�22

⎤

⎥

⎥

. (13)
4
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2.2. Hierarchic shell model with warping

Multiple warping deformations, assumed to be small, can be hierarchically added to the KL shell kinematics. Let us consider the
ase of an overall warping profile expressed as a combination of 𝑛 shapes 𝑤𝑘(𝜉3). The current configuration is defined as:

𝐱 = 𝐫(𝜉1, 𝜉2) + 𝜉3𝐚3(𝜉1, 𝜉2) +
𝑛
∑

𝑘=1

2
∑

𝛽=1
𝜇𝛽𝑘(𝜉1, 𝜉2)𝑤𝑘(𝜉3)𝐚𝛽 (𝜉1, 𝜉2) (14)

where 𝜇𝛽𝑘(𝜉1, 𝜉2) represents the amplitude of the 𝑘th warping shape directed along the surface tangent vectors 𝐚𝛽 with 𝛽 = 1, 2
respectively. The profile is assumed to be approximated by the same shapes (with different amplitudes) along the 2 directions, as
typical for example for composites made of isotropic layers, also if the generalization to different shapes could be considered for
generic composites [21]. The covariant base vectors are defined as:

𝐠𝛼 = 𝜕𝐱
𝜕𝜉𝛼

= 𝐚𝛼 + 𝜉3𝐚3,𝛼 +
𝑛
∑

𝑘=1

2
∑

𝛽=1

(

𝜇𝛽𝑘(𝜉1, 𝜉2)𝑤𝑘(𝜉3)𝐚𝛽 ,𝛼 +𝜇𝛽𝑘,𝛼 𝑤𝑘(𝜉3)𝐚𝛽
)

, 𝛼 = 1, 2

𝐠3 =
𝜕𝐱
𝜕𝜉3

= 𝐚3(𝜉1, 𝜉2) +
𝑛
∑

𝑘=1

2
∑

𝛽=1
𝜇𝛽𝑘𝑤𝑘,3 𝐚𝛽 (𝜉1, 𝜉2)

(15)

Using (14) and (1), the displacement field assumes the expression:

𝐮 = 𝐱 − 𝐗 = 𝐯(𝜉1, 𝜉2) + 𝜉3(𝐚3(𝜉1, 𝜉2) − 𝐀3(𝜉1, 𝜉2))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐮𝐾𝐿

+
𝑛
∑

𝑘=1

2
∑

𝛽=1
𝜇𝛽𝑘𝑤𝑘(𝜉3)𝐚𝛽 (𝜉1, 𝜉2)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐮𝑍

(16)

here 𝐮𝐾𝐿 represents the displacement coming from the KL model and 𝐮𝑍 is the contribution given by warping. Analogously, the
erivatives of the displacements can be expressed as the sum of the KL and warping contributions:

𝐮,𝛼 = 𝐮,𝐾𝐿
𝛼 +𝐮,𝑍𝛼 with 𝐮,𝑍𝛼 =

𝑛
∑

𝑘=1

2
∑

𝛽=1
(𝜇𝛽𝑘𝐚𝛽 ,𝛼 +𝜇𝛽𝑘,𝛼 𝐚𝛽 )𝑤𝑘, 𝛼 = 1, 2

𝐮,3 = 𝐮,𝐾𝐿
3 +𝐮,𝑍3 with 𝐮,𝑍3 =

𝑛
∑

𝑘=1

2
∑

𝛽=1
𝜇𝛽𝑘𝐚𝛽𝑤𝑘,3

(17)

he covariant strain components can be linearized with respect to the warping amplitudes, collected in vector 𝝁, as

�̄�𝑖𝑗 =
[

�̄�𝑖𝑗
]

𝝁=𝟎
⏟⏞⏟⏞⏟
�̄�𝐾𝐿
𝑖𝑗

+

[

𝜕�̄�𝑖𝑗

𝜕𝝁

]

𝝁=𝟎

⋅ 𝝁

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
�̄�𝑍
𝑖𝑗

, with 𝑖, 𝑗 = 1, 2, 3 (18)

and, neglecting terms more than linear in 𝜉3 and 𝑤𝛼 , the additional warping contribution to the strain is

�̄�𝑍
11 ≈ 𝐚1 ⋅ 𝐮,𝑍1 =

𝑛
∑

𝑘=1

2
∑

𝛽=1
(𝜇𝛽𝑘𝐚1 ⋅ 𝐚𝛽 ,1 +𝜇𝛽𝑘,1 𝐚1 ⋅ 𝐚𝛽 )𝑤𝑘

�̄�𝑍
22 ≈ 𝐚2 ⋅ 𝐮,𝑍2 =

𝑛
∑

𝑘=1

2
∑

𝛽=1
(𝜇𝛽𝑘𝐚2 ⋅ 𝐚𝛽 ,2 +𝜇𝛽𝑘,2 𝐚2 ⋅ 𝐚𝛽 )𝑤𝑘

2�̄�𝑍
12 ≈ 𝐚1 ⋅ 𝐮,𝑍2 +𝐚2 ⋅ 𝐮,𝑍1 =

𝑛
∑

𝑘=1

2
∑

𝛽=1
(𝜇𝛽𝑘(𝐚1 ⋅ 𝐚𝛽 ,2 +𝐚2 ⋅ 𝐚𝛽 ,1 ) + 𝜇𝛽𝑘,2 𝐚1 ⋅ 𝐚𝛽 + 𝜇𝛽𝑘,1 𝐚2 ⋅ 𝐚𝛽 )𝑤𝑘

2�̄�𝑍
13 ≈ 𝐚1 ⋅ 𝐮,𝑍3 ����+𝐚3 ⋅ 𝐮,𝑍1 =

𝑛
∑

𝑘=1

2
∑

𝛽=1
(𝜇𝛽𝑘𝐚1 ⋅ 𝐚𝛽 )𝑤𝑘,3

���������
+

𝑛
∑

𝑘=1

2
∑

𝛽=1
(𝜇𝛽𝑘𝐚3 ⋅ 𝐚𝛽 ,1 )𝑤𝑘

2�̄�𝑍
23 ≈ 𝐚2 ⋅ 𝐮,𝑍3 ����+𝐚3 ⋅ 𝐮,𝑍2 =

𝑛
∑

𝑘=1

2
∑

𝛽=1
(𝜇𝛽𝑘𝐚2 ⋅ 𝐚𝛽 )𝑤𝑘,3

���������
+

𝑛
∑

𝑘=1

2
∑

𝛽=1
(𝜇𝛽𝑘𝐚3 ⋅ 𝐚𝛽 ,2 )𝑤𝑘

�̄�𝑍
33 ≈ 0

(19)

It is worth noting that the warping displacement produces also transverse shear strains unlike the standard KL kinematics. In such
strain components the part coming from 𝐮,𝑍1 and 𝐮,𝑍2 are canceled in order to avoid terms in 𝑤𝑘 considered of higher order compared
to 𝑤𝑘,3. For example, a 𝑤𝑘 that is piece-wise linear through the thickness is associated with piece-wise constant transverse shear
strains, while their linear variation is neglected. This is analogous to the Reissner–Mindlin shell, where only constant transverse
5

shear strains are associated to the rigid (linear) section kinematics.
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A more compact notation, useful for the subsequent developments, is obtained by collecting the in-plane warping strains as

�̄�𝑧𝑝 =
⎡

⎢

⎢

⎣

�̄�𝑧
11

�̄�𝑧
22

�̄�𝑧
12

⎤

⎥

⎥

⎦

=
𝑛
∑

𝑘=1
�̄�𝑘𝑤𝑘 with �̄�𝑘 =

2
∑

𝛽=1

⎡

⎢

⎢

⎣

𝜇𝛽𝑘𝐚1 ⋅ 𝐚𝛽 ,1 +𝜇𝛽𝑘,1 𝐚1 ⋅ 𝐚𝛽
𝜇𝛽𝑘𝐚2 ⋅ 𝐚𝛽 ,2 +𝜇𝛽𝑘,2 𝐚2 ⋅ 𝐚𝛽

𝜇𝛽𝑘(𝐚1 ⋅ 𝐚𝛽 ,2 +𝐚2 ⋅ 𝐚𝛽 ,1 ) + 𝜇𝛽𝑘,2 𝐚1 ⋅ 𝐚𝛽 + 𝜇𝛽𝑘,1 𝐚2 ⋅ 𝐚𝛽

⎤

⎥

⎥

⎦

(20)

nd the transverse shear ones as

�̄�𝑧𝑡 =
[

2�̄�𝑧
13

2�̄�𝑧
23

]

=
𝑛
∑

𝑘=1
�̄�𝑘𝑤𝑘,3 with �̄�𝑘 =

2
∑

𝛽=1

[

𝜇𝛽𝑘𝐚1 ⋅ 𝐚𝛽
𝜇𝛽𝑘𝐚2 ⋅ 𝐚𝛽

]

. (21)

nder the condition of large deformations but small strains, it is possible to simplify the generalized strains �̄�𝑘 and �̄�𝑘 by assuming
n Eqs. (20) and (21) 𝐚𝛼 ⋅ 𝐚𝛽 ≈ 𝐀𝛼 ⋅𝐀𝛽 , 𝐚𝛼 ⋅ 𝐚𝛽 ,1 ≈ 𝐀𝛼 ⋅𝐀𝛽 ,1 and 𝐚𝛼 ⋅ 𝐚𝛽 ,2 ≈ 𝐀𝛼 ⋅𝐀𝛽 ,2 with 𝛼, 𝛽 = 1, 2, so that they become independent
rom the displacement of the reference surface:

�̄�𝑘 ≈
2
∑

𝛽=1

⎡

⎢

⎢

⎣

𝜇𝛽𝑘𝐀1 ⋅ 𝐀𝛽 ,1 +𝜇𝛽𝑘,1 𝐀1 ⋅ 𝐀𝛽
𝜇𝛽𝑘𝐀2 ⋅ 𝐀𝛽 ,2 +𝜇𝛽𝑘,2 𝐀2 ⋅ 𝐀𝛽

𝜇𝛽𝑘(𝐀1 ⋅ 𝐀𝛽 ,2 +𝐀2 ⋅ 𝐀𝛽 ,1 ) + 𝜇𝛽𝑘,2 𝐀1 ⋅ 𝐀𝛽 + 𝜇𝛽𝑘,1 𝐀2 ⋅ 𝐀𝛽

⎤

⎥

⎥

⎦

�̄�𝑘 ≈
2
∑

𝛽=1

[

𝜇𝛽𝑘𝐀1 ⋅ 𝐀𝛽
𝜇𝛽𝑘𝐀2 ⋅ 𝐀𝛽

]

. (22)

e can note that, in the simplified form, the generalized strains defined in the previous equation are linear in the warping amplitudes
nd their derivatives. Moreover, the generalized transverse shear strains depends only on the warping amplitudes, so that, the
iscrete version of model will be automatically free from transverse shear locking. From this point of view, the proposed model can
e seen as a generalization of the one proposed in [34] for shear-deformable shells, that can be recovered by selecting the warping
rofile as a linear function of the thickness coordinate (plane section hypothesis).

.3. Remarks on the geometrical exactness of the hierarchic shell

It is worth noting that the large deformation/small strain hierarchic shell model formulated above is geometrically exact, a
erm commonly used to mean that the strain measure is not affected by rigid body motions of arbitrary magnitude and, then, by
hanges of observer. This fact is easy to prove and is inherent in the hierarchical theory. Indeed, rigid motions are described in
erms of displacement of the shell reference surface only. This means that they do not contribute to the warping part of the strain,
hich becomes clear also by looking at Eq. (22), and the warping displacement is purely deformational. The additive split of the

otal Green–Lagrange strain in Eq. (18) into warping part and basic Kirchhoff–Love geometrically exact part makes the proof of
nvariance of the total strain under superposition of rigid motions trivial.

.4. From covariant to local cartesian strain components

The total covariant strain components collected in Voigt notation can be written as

�̄�𝑝 = �̄� + 𝜉3�̄� +
𝑛
∑

𝑘=1
�̄�𝑘𝑤𝑘 �̄�𝑡 =

𝑛
∑

𝑘=1
�̄�𝑘𝑤𝑘,3 (23)

here the transverse shear ones coincide with the warping contribution. In order to impose the constitutive law, it is convenient to
xpress the strain components in a local Cartesian coordinate system whose 𝑥−𝑦 plane is tangent to the shell reference surface. For a
eneral 3D continuum, this transformation is reported, for instance, in [23,25]. The simplification of this transformation accounting
or the Kirchhoff–Love shell hypothesis and neglecting its variation through the thickness furnishes the sought relationship:

𝜺𝑝 =𝐓𝑝�̄�𝑝 with 𝐓𝑝 =

⎡

⎢

⎢

⎢

⎣

𝑥2𝜉 𝑥2𝜂 2𝑥𝜉𝑥𝜂
𝑦2𝜉 𝑦2𝜂 2𝑦𝜉𝑦𝜂
𝑥𝜉𝑦𝜉 𝑥𝜂𝑦𝜂 𝑥𝜉𝑦𝜂 + 𝑥𝜂𝑦𝜉

⎤

⎥

⎥

⎥

⎦

−𝑇

𝜺𝑡 =𝐓𝑡�̄�𝑡 with 𝐓𝑡 =
[

𝑥𝜉 𝑥𝜂
𝑦𝜉 𝑦𝜂

]−𝑇

.

(24)

he coefficients of the transformation matrices are 𝑥𝜉 = 𝐢1 ⋅ 𝐀1, 𝑦𝜉 = 𝐢2 ⋅ 𝐀1, 𝑥𝜂 = 𝐢1 ⋅ 𝐀2, 𝑦𝜂 = 𝐢1 ⋅ 𝐀2 with 𝐢1 and 𝐢2 the unit vectors
long the axis of the local Cartesian coordinates where the material properties are defined.

.5. Pre-integration of the elasticity matrices

For a linear elastic material, e.g. isotropic, the constitutive matrices linking stress and strain are

𝐂𝑝 =
𝐸

1 − 𝜈2

⎡

⎢

⎢

1 𝜈 0
𝜈 1 0

⎤

⎥

⎥

𝐂𝑡 =
[

𝐺 0
0 𝐺

]

(25)
6

⎣ 0 0 (1 − 𝜈)∕2⎦
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Fig. 1. Kinematics of laminates with alternating stiff/soft layers.

here 𝐂𝑝 is the plane stress matrix and 𝐂𝑡 is a diagonal matrix made with the shear modulus of the material. Collecting the local
artesian generalized in-plane and transverse strains in vectors

𝜺𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐞
𝝌
𝝍1
⋮
𝝍𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝜺𝑇 =
⎡

⎢

⎢

⎣

𝜸1
⋮
𝜸𝑛

⎤

⎥

⎥

⎦

(26)

obtained from the covariant ones through Eq. (24), the equivalence of strain energy per unit of reference surface

𝑊 = 1
2 ∫

𝜉3𝑡

𝜉3𝑏

(𝜺𝑇𝑝 𝐂𝑝𝜺𝑝 + 𝜺𝑇𝑡 𝐂𝑡𝜺𝑡)𝑑𝜉3 =
1
2
(𝜺𝑇𝑃𝐃𝑃 𝜺𝑃 + 𝜺𝑇𝑇𝐃𝑇 𝜺𝑇 ) (27)

provides the generalized constitutive matrices

𝐃𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐃𝑚𝑚 𝐃𝑚𝑏 𝐃𝑚𝑤1
… 𝐃𝑚𝑤𝑛

𝐃𝑏𝑏 𝐃𝑏𝑤1
… 𝐃𝑏𝑤𝑛

𝐃𝑤1𝑤1
… 𝐃𝑤1𝑤𝑛

sym ⋱ ⋮
𝐃𝑤𝑛𝑤𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐃𝑇 =
⎡

⎢

⎢

⎣

𝐃𝑇 11 … 𝐃𝑇 1𝑛
⋱ ⋮

sym 𝐃𝑇 𝑛𝑛

⎤

⎥

⎥

⎦

where

𝐃𝑚𝑚 = ∫

𝜉3𝑡

𝜉3𝑏

𝐂𝑝 𝐃𝑚𝑏 = ∫

𝜉3𝑡

𝜉3𝑏

𝜉3𝐂𝑝 𝐃𝑚𝑤𝑘
= ∫

𝜉3𝑡

𝜉3𝑏

𝑤𝑘𝐂𝑝

𝐃𝑏𝑏 = ∫

𝜉3𝑡

𝜉3𝑏

𝜉3𝜉3𝐂𝑝 𝐃𝑏𝑤𝑘
= ∫

𝜉3𝑡

𝜉3𝑏

𝜉3𝑤𝑘𝐂𝑝 𝐃𝑤𝑖𝑤𝑗
= ∫

𝜉3𝑡

𝜉3𝑏

𝑤𝑖𝑤𝑗𝐂𝑝

𝐃𝑇 𝑖𝑗 = ∫

𝜉3𝑡

𝜉3𝑏

𝑤𝑖,3 𝑤𝑗 ,3 𝐂𝑡.

Each sub-matrix is obtained in the pre-processing stage by integrating over the shell thickness. The integrals are calculated as a
discrete sums of contributions of each layer to take into account the change of material properties through the thickness.

3. Modeling laminates with alternating layup

In this section, focus is given to possible choices of the warping model for composite shells with alternating stiff/soft layers.
Typical examples are polymer-metal composites and glass laminates. In this last case, the stiff parts are glass layers coupled by
soft parts usually made of PVB or silicone. When the stiffness of the two material types differ of many orders of magnitude, the
hypotheses of plane section remaining plane after deformation becomes unreliable and the solution obtained by the first order plate
theory inaccurate, even using shear correction factors. The typical kinematics is depicted in Fig. 1 for the example case of 3 and 5
layers respectively. Solid models can be used to obtain a reliable solution by discretizing the structure also through the thickness.
However, general purpose solid finite elements are not suitable for layered plates because of the high number of DOFs. The KL
model hierarchically enhanced by warping can be adopted for a simple and efficient modeling of this class of composites, after a
7

proper selection of the warping profile.
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Fig. 2. Warping functions with independent transverse shear deformations of the soft interlayers (WI) for 5 alternating stiff/soft layers.

3.1. Warping profile with independent transverse shear deformations of the soft layers

The alternating layup induces a specific deformation pattern, which distinguishes them from other composites [22,30]. The
transverse shear strains tend to concentrate in the soft interlayers, with a nearly constant distribution in the thickness, while they
are negligible in the stiff plies. Moreover, although the interlayers are soft, the bonding capacity is such that the stiff layers are
all subjected to almost identical rotations with respect with their normals in the undistorted configuration. The warping profile is
chosen as proposed for the first time in [22]. In practice, a number of warping profiles equal to the soft interlayers is considered.
The generic warping function 𝑤𝑘 is defined layer-wise as

𝑤𝑘(𝜉3) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1 if 𝜉3 < 𝜉3𝑏𝑘
2(𝜉3 − 𝜉3𝑏𝑘)

𝑡𝑘
− 1 if 𝜉3𝑏𝑘 ≤ 𝜉3 ≤ 𝜉3𝑡𝑘

1 if 𝜉3 > 𝜉3𝑡𝑘

(28)

where 𝑡𝑘 is the thickness of the 𝑘th soft layer whose bottom and top interface are located at 𝜉3𝑏𝑘 and 𝜉3𝑡𝑘 respectively. For instance,
in the case of 3 layers the warping profile at the 4 interfaces of the laminate is

{

−1,−1, 1, 1
}

. In the 5 layers case, the two warping
profiles at the 6 interfaces are

{

−1,−1, 1, 1, 1, 1
}

and
{

−1,−1,−1,−1, 1, 1
}

. A rigid translation is conveniently subtracted from the
warping shapes such that 𝑤𝑘(𝜉3𝑟 ) = 0 for a correct imposition of the boundary conditions on the reference surface corresponding
to 𝜉3 = 𝜉3𝑟 . The same profiles, but with independent amplitudes, can be assumed along both the directions defined by the tangent
vectors 𝐀1 and 𝐀2. The total number of variables of the model at each point over the shell surface is 𝑛𝑡 = 3 + 2𝑛𝑠: 3 components of
the reference surface displacement and 2 amplitudes for the warping profile associated to each of the 𝑛𝑠 soft layers. For the case of
5 layers, the 2 warping functions are illustrated in Fig. 2. Compared to the co-rotational shell model proposed in [22], our proposal
is purely Total Lagrangian, i.e. the strain measure accuracy is not affected by the mesh size, and the number of variables is reduced
by imposing that all stiff layers maintain the same director orthogonal to the deformed surface.

3.2. Warping profile with a single zigzag shape

The refined ZZT provides a single piecewise linear shape of the warping profile over the whole thickness of the laminate, denoted
in following as 𝑤(𝜉3), avoiding the subscript 𝑘 previously used in the case of multiple shapes. According to this theory, the zigzag
function is defined by the 𝑁 +1 interface values 𝑤(𝑗), with 𝑗 = 0, 1,… , 𝑁 and 𝑁 the overall number of layers. The theory sets 𝑤(𝜉3)
to vanish at the top and bottom surfaces of the laminate, i.e. 𝑤(0) = 𝑤(𝑁) = 0. The internal interface values are computed as

𝑤(𝑗) = 𝑤(𝑗−1) + ℎ(𝑗)𝛽(𝑗) with 𝑗 = 1,… , 𝑁 − 1 (29)

where ℎ(𝑗) is the thickness of the 𝑗th layer. 𝛽(𝑗) is the slope of the zigzag function in each layer 𝑗, and is obtained as

𝛽(𝑗) = �̄�
𝐺(𝑗)

− 1 with 𝑗 = 1,… , 𝑁 (30)

where 𝐺(𝑗) is the shear modulus of the 𝑗th layer and �̄� denotes a weighted average of 𝐺 over the laminate thickness, i.e.

�̄� =

(

1
ℎ

𝑁
∑ ℎ(𝑗)

(𝑗)

)−1

(31)
8

𝑗=1 𝐺
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Fig. 3. Zigzag warping function (WZ) for 5 alternating stiff/soft layers: the function coming from the refined ZZT on the left and the function rotated in order
to minimize the shear deformation of the stiff layers on the right.

The complete derivation of these equations can be found in [36]. Let us consider a layup made of 5 alternating stiff/soft layers.
As we can observe on the left side of Fig. 3, the constraint of vanishing zigzag function at the top and bottom surfaces produces a
profile characterized by non-null slop, and then transverse shear strain, in all layers including the stiff ones.

Instead, it was demonstrated in a number of papers, e.g. in [22], that the transverse shear strains tend to vanish in the stiff
layers. This is not an issue when the zigzag function is used to enhance shear deformable beam and shell models, because the
transverse shear strains of the basic models can compensate for the additional part coming from the zigzag function, so recovering the
Kirchhoff–Love behavior of the stiff layers. The price to pay, in this case, is the need for independent rotational DOFs for describing
the section rotation, complicating also the expressions for finite 3D rotations. Instead, if we want to avoid these additional variables
and to keep using the proposed Kirchhoff–Love model hierarchically enhanced with warping, it is necessary to modify the zigzag
function in such a way as to minimize the slop of the zigzag function in the stiff layer. We propose a formula to rotate the zigzag
shape. Starting from the one obtained with the formulas above, the rotated zigzag function �̃� is obtained as

�̃�(𝜉3) = 𝑤(𝜉3) − 𝜑𝜉3 with 𝜑 =

∑𝑁
𝑗=1 𝐺

(𝑗)ℎ(𝑗)𝛽(𝑗)
∑𝑁

𝑗=1 𝐺(𝑗)ℎ(𝑗)
(32)

where 𝜑 represents a weighted average of the zigzag function slop over the laminate thickness, in order to concentrate the transverse
shear deformation in the soft layers only. Finally, a rigid displacement, e.g. the value of �̃�(𝜉3) at the reference shell surface, can
be also subtracted to �̃� for an easy imposition of the support boundary condition. The rotated zigzag function is illustrated on the
right side of Fig. 3 for a layup with 5 alternating stiff/soft layers. The resulting shell model is accurate also when the zigzag effects
become important, although based on just 5 DOFs per reference surface point, i.e. 3 displacements and the 2 amplitudes of �̃� along
the two directions identified by the tangent vectors 𝐀1 and 𝐀2, regardless of the number of layers. In the limit case of stiffness ratio
tending to infinity, the approach is equivalent to the one proposed in [37] for enhancing a linear Euler–Bernoulli beam, where �̃�(𝜉3)
is defined as 𝑤(𝜉3) + 𝜉3.

3.3. Remarks on the warping models

The warping models presented above for alternating layups exploit the Kirchhoff–Love hypothesis of negligible transverse shear
deformations in the stiff layers confirmed in the literature (e.g. [22]). Along with the assumption of equal director in all stiff layers,
this allows to reduce drastically the number of DOFs compared to a 3D model without losing accuracy in the predictions of interest:
displacements, stability, in-plane stresses in the stiff layers and transverse shear deformations in the soft interlayers.

The stiff layers behave as thin shells loosely coupled by the interlayers. Therefore, the in-plane stresses prevail over the transverse
shear stresses in those layers in the strength check. An accurate prediction of transverse shear strains is required in the soft interlayers
to check the bonding capacity. These can be computed directly from the proposed kinematics and the corresponding stresses via
the constitutive law.

The only information not directly available with the suggested warping models is the transverse shear stresses inside the stiff
layers. As standard when using the Kirchhoff–Love assumption, they can be accurately obtained from the in-plane stresses by an
equilibrium-based post-processing (e.g. see [4]). Alternatively, since the proposed hierarchic shell model can deal with an arbitrary
number of warping functions, additional warping shapes and the corresponding amplitudes can be added to the kinematics to
model directly the transverse shear deformations in the stiff layers and computing the corresponding stresses via the constitutive
law. However, neither approach is worthy of a further discussion for stiff/soft layups, where the transverse shear effects inside the
stiff layers are actually of little significance [22].
9
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4. Effective isogeometric formulation

4.1. The isogeometric shell element

Following the isoparametric concept, geometry and displacement field of the reference surface and warping amplitudes are
pproximated, over each element, as follows

𝐗(𝜉, 𝜂) = 𝐍𝑢(𝜉, 𝜂)𝐗𝑒, 𝐮(𝜉, 𝜂) = 𝐍𝑢(𝜉, 𝜂)𝐝𝑒, 𝝁(𝜉, 𝜂) = 𝐍𝜇(𝜉, 𝜂)𝝁𝑒 (33)

where 𝐗𝑒, 𝐝𝑒 and 𝝁𝑒 collect the discrete parameters at the control points of the element associated to geometry, reference surface
displacement and warping amplitudes respectively. The matrices 𝐍𝑢(𝜉, 𝜂) and 𝐍𝜇(𝜉, 𝜂) collect bivariate NURBS functions [38].
Exploiting the isogeometric approximation, the strain components become

𝜺𝑃 = 𝜺𝑃 (𝐪𝑒) 𝜺𝑇 = 𝜺𝑇 (𝐪𝑒) with 𝐪𝑒 =
[

𝐝𝑒
𝝁𝑒

]

. (34)

4.2. Strain energy, discrete operators and equilibrium path

Collecting in vector 𝐪 all the DOFs for the approximation of the reference surface displacement and the warping amplitudes over
the structure, the overall strain energy can be expressed as a sum of element contributions 𝛷(𝐪) ≡

∑

𝑒 𝛷𝑒(𝐪𝑒), where the element
strain energy can be decomposed into in-plane and transverse part as

𝛷𝑒(𝐪𝑒) ≡ 𝛷𝑃𝑒(𝐪𝑒) +𝛷𝑇 𝑒(𝐪𝑒) with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛷𝑃𝑒(𝐪𝑒) = ∫𝛺𝑒

( 1
2
𝜺𝑇𝑃𝐃𝑃 𝜺𝑃

)

𝑑𝛺𝑒

𝛷𝑇 𝑒(𝐪𝑒) = ∫𝛺𝑒

( 1
2
𝜺𝑇𝑇𝐃𝑇 𝜺𝑇

)

𝑑𝛺𝑒

(35)

where 𝛺𝑒 is the element domain. It is worth highlighting that the model is path-independent for conservative external loads, since it
is based on the total elastic potential parametrized in terms of displacement variables. The differentiation of the generalized strains
in Eq. (34) provides the tangent compatibility operators

𝐁𝑃 (𝐪𝑒) =
𝜕𝜺𝑃
𝜕𝐪𝑒

𝐁𝑇 =
𝜕𝜺𝑇
𝜕𝐪𝑒

(36)

here 𝐁𝑃 is a function of the discrete DOFs, while 𝐁𝑇 is constant considering the simplified strain expression in Eq. (22). The
nternal force vector of the element can be then evaluated as

𝐬𝑒(𝐪𝑒) ≡
𝜕𝛷𝑒
𝜕𝐪𝑒

= 𝐬𝑃𝑒(𝐪𝑒) +𝑲𝑇 𝑒𝐪𝑒 with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐬𝑃𝑒(𝐪𝑒) = ∫𝛺𝑒

(

𝐁𝑃 (𝐪𝑒)𝑇𝐃𝑃 𝜺𝑃 (𝐪𝑒)
)

𝑑𝛺𝑒

𝑲𝑇 𝑒 = ∫𝛺𝑒

(

𝐁𝑇
𝑇𝐃𝑇𝐁𝑇

)

𝑑𝛺𝑒

(37)

where 𝐬𝑒𝑇 (𝐪𝑒) is the contribution to the element internal forces due to the in-plane strains and 𝑲𝑇 𝑒 is the constant element stiffness
matrix associated to the transverse shear strains. A further differentiation provides the element tangent stiffness matrix as

𝑲𝑒(𝐪𝑒) ≡
𝜕𝐬𝑒
𝜕𝐪𝑒

= 𝑲𝑃𝑒(𝐪𝑒) +𝑲𝑇 𝑒 (38)

where

𝑲𝑃𝑒(𝐪𝑒) = ∫𝛺𝑒

(

𝐁𝑃 (𝐪𝑒)𝑇𝐃𝑃𝐁𝑃 (𝐪𝑒) +𝐆(𝐪𝑒,𝝈𝑃 (𝐪𝑒))
)

𝑑𝛺𝑒 with 𝝈𝑃 (𝐪𝑒) = 𝐃𝑃 𝜺𝑃 (𝐪𝑒) (39)

and the geometric contribution 𝐆 is defined as

𝐆(𝐪𝑒,𝝈(𝐪𝑒)) =
6
∑

𝑘=1
𝜎𝑃𝑘Ψ𝑘(𝐪𝑒) with Ψ𝑘(𝐪𝑒) =

𝜕2𝜀𝑃𝑘
𝜕𝐪2𝑒

(40)

since only the first six components of 𝝈𝑃 , i.e. membrane strains and curvatures, are nonlinear in the discrete DOFs.
The equilibrium of slender elastic structures subject to conservative loads amplified by a proportionality factor 𝜆 is expressed by

the discrete version of the virtual work equation:

𝐫(𝐪, 𝜆) ≡ 𝐬(𝐪) − 𝜆 𝐟 = 𝟎, (41)

where 𝐫 ∶ R𝑁+1 → R𝑁 is a nonlinear vectorial function of the vector {𝐪, 𝜆} ∈ R𝑁+1, collecting the configuration 𝐪 ∈ R𝑁 and the
oad multiplier 𝜆 ∈ R, 𝐬(𝐪) is the global internal force vector and 𝐟 the reference load vector. Eq. (41) represents a system of 𝑁
quations and 𝑁 + 1 unknowns and its solutions define the equilibrium paths as curves in R𝑁+1. The Riks arc-length method [39]
s the general solution strategy to trace these curves in a step-by-step manner from a known initial configuration 𝐪0 corresponding
o 𝜆 = 0. At each step some Newton iterations are needed to solve (41), with the Jacobian involving the global tangent stiffness
atrix, obtained by assembling the element ones in Eq. (38). Load-controlled and displacement-controlled schemes are recovered
10

s a particular choice of Riks constraint surface [40].
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4.3. Remarks on the iterative solution

Robustness and efficiency of the iterative solution are achieved by using the mixed integration point (MIP) strategy [40,41],
articularly suitable for the considered problem. It was already demonstrated in many works (see e.g. [40–43] how the MIP approach
mproves the convergence behavior of the Newton iterations of displacement-based formulations in large deformations, providing
comparable robustness (large steps with few iterations) as that observed in mixed/hybrid finite element formulations [23,44] for

olids, shells and beams. For the basic Kirchhoff–Love model, the excellent iterative performances are demonstrated in [3]. Since the
ew shell model proposed in this work is an enrichment of the Kirchhoff–Love one where the additional displacement and strain are
inear in the warping DOFs, i.e. not affecting the model nonlinearity, the proposal is characterized by an identical iterative behavior
s that reported in [3]. The incremental-iterative procedure used for the numerical tests follows exactly that detailed in [40] based
n MIP method and adaptive step size. In particular, all the details concerning stepping scheme, convergence criterion and metric
actors of the Riks method are reported in the Implementation details Section 4.1 of [40]. The only parameters to be defined by the
ser are the maximum load and the initial step length at the first load increment. This is set as 0.05 of the maximum load for all
he numerical tests in this paper, unless otherwise stated.

.4. Locking, NURBS selection and patch-wise selective reduced integration

It is worth noting that the transverse shear strains are linear functions of the warping amplitudes (no derivatives) only. This
eans that they are naturally free from locking and, then, the associated stiffness matrix 𝑲𝑇 𝑒 can be evaluated, only once since

independent from 𝐪, by a full numerical integration. Instead, the in-plane strains are affected by membrane locking as in the standard
KL model, also for initially flat plates undergoing finite deformations. To avoid such an undesired inaccuracy one could use NURBS
with a very high order, but this would compromise the efficiency due to the reduced sparsity and the greater number of integration
points. Instead we propose a selective reduced integration for the internal forces 𝐬𝑃𝑒 and tangent stiffness 𝑲𝑃𝑒 associated to the
in-plane strains. Among all possible schemes, we adopt the patch-wise reduced integration named 𝑆3

0 (notation according to [45])
that was identified in [3] as the best solution to avoid locking with cubic NURBS basis functions with 𝐶2 continuity for the standard
KL model without spurious modes. The notation means that points and weights are defined over the patch in order to integrate
exactly functions of order 3 and 𝐶0 continuity. The corresponding points and weights depend on the knot vector (mesh) and can
be found using the algorithm provided in [46], that is simple and inexpensive. Beside the locking issue, the scheme 𝑆3

0 is very
efficient because of the very small number of integration points, asymptotically about 1.5 × 1.5 points per cubic element. Number
and position of the points is not equal in each element, but they are distributed over the patch to take into account the inter-element
high continuity. Concerning the number of discrete DOFs, it is worth noting that 𝐶2 cubic NURBS are based on (𝑛𝑒1 + 3) × (𝑛𝑒2 + 3)
ontrol points, where 𝑛𝑒1 and 𝑛𝑒2 are the number of elements in the two parametric directions, i.e. asymptotically one control point
er element. This is a great advantage over high order Lagrangian finite elements.

. Numerical tests

The proposed isogeometric Kirchhoff–Love model hierarchically enhanced with warping profiles is tested in a sample of numerical
xperiments concerning both plane and curved structures undergoing buckling and large deflections. The two warping models
escribed in Section 3 are employed. Comparisons are made between the models below.

• KL: Basic Kirchhoff–Love shell model without warping;
• KLWI: Hierarchic Kirchhoff–Love shell model with the warping model of Section 3.1 based on independent shear deformations

of the soft layers;
• KLWZ: Hierarchic Kirchhoff–Love shell model with the warping model of Section 3.2 based on a single zigzag function;
• FSDT: Mindlin–Reissner shell model (FSDT) of Abaqus with shear correction factors;
• 3D: fully solid model of Abaqus with through-the-thickness discretization assumed as reference solution.

he basic KL can be recovered by constraining the warping amplitudes of KLWI and KLWZ to vanish all over the domain.
The layups illustrated in Fig. 4 are considered in the simulations. The elastic parameters of the stiff layers are typical of soda-lime

lass, whereas the stiffness of the interlayers may be representative of silicone, polyvinyl butyral and ionoplast SentryGlas. It is worth
oting that only a warping function is used in KLWI for 3-layer layups to capture the sliding of the soft layer and this is the same as
hat of KLWZ for large stiffness ratios of the materials. Therefore, the two models coincides in this case. Instead, they are different
or layups with more than 3 layers: KLWI utilizes 3 + 2𝑛𝑠 = 2 +𝑁 DOFs per surface point with 𝑛𝑠 the number of soft layers and 𝑁
he total number of layers, while KLWZ only 5 DOFs regardless of the number of layers.

In order to summarize the cost of the different models in terms of unknowns, the corresponding number of DOFs per surface
oint is reported in Table 1.

It is worth noting that the 3D solution obtained with quadratic FEs is also quite well reproduced by the Abaqus linear solid-shell
Es (one per layer), that however, still requires many more DOFs than the shell models, including the proposed ones. Besides the
umber of unknowns, a significant advantage of 2D models is that no numerical integration is required through the thickness, with a
urther reduction of the number of operations. In addition, a nice feature of the proposals KLWZ and KLWI is that the strain measure
s nonlinear only in the 3 reference surface displacement DOFs and linear in the others (see Eqs. (22) and (37)), with a consequent
educed complexity in the computation of internal forces and tangent stiffness matrix compared to 3D models nonlinear in all the
11
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Fig. 4. Illustration of the layups used in the analyses in terms of number, thickness (mm), Young modulus 𝐸 (MPa) and Poisson coefficient of the layers.

Table 1
Number of unknowns per surface point of the different models.
Layers KL FSDT KLWZ KLWI Solid-shell 3D

N 3 5 5 2 +𝑁 3(𝑁 + 1) 3(2𝑁 + 1)

3 3 5 5 5 12 21
5 3 5 5 7 18 33
7 3 5 5 9 24 45

Fig. 5. Cantilever beam under transverse load: geometry, load, and boundary conditions.

OFs. The basic KL is the most efficient choice, but it tends to be largely overstiff for the considered laminates. It is included in the
esults to quantify how much the section warping affects the prediction. The Abaqus FSDT shell model has the same number of DOFs
s KLWZ, but it considers warping only indirectly and approximatively by means of shear correction factors tuned for laminates.
owever, this model becomes unreliable for high stiffness ratios of the layers, as occurs for typical alternating laminates.

The numerical results will focus on the main outputs governing the mechanical behavior of alternating laminates with high
tiffness ratios:

• load–displacement curves;
• in-plane stresses in the stiff layers;
• transverse shear strains in the soft interlayers.

.1. Multi-layer cantilever beam

.1.1. Large deflection due to a transverse distributed load
The first test displays the nonlinear analysis of a cantilever beam of length 𝐿 = 500 mm and and 𝑏 = 10 mm subjected to a

distributed transversal load on the top stiff layer as illustrated in Fig. 5. To begin with, the stacking sequences 𝐿3𝐴 and 𝐿3𝐵 are
onsidered. The reference surface load is 𝑞 = 10−3 MPa for 𝐿3𝐴 and 𝑞 = 10−4 MPa for 𝐿3𝐵 .

The beam is analyzed with the KLWI model (coincident with KLWZ) and different meshes varying the number of elements along
the length. The finest mesh is considered for the basic KL solution. The load factor vs. tip displacement equilibrium curve is reported
in Fig. 6 for the two layups and using the different models. The transverse component 𝑤 and the axial component 𝑢 are monitored.
As can be seen from the comparison between the different meshes adopted, the rate of convergence of the model is remarkable.
The comparison shows a very good performance of the proposed solution, given the good agreement with the 3D solution. On the
12
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Fig. 6. Cantilever beam under transverse load: comparison of the equilibrium path in terms of vertical (𝑤) and axial (𝑢) displacement components at the free
end obtained by KLWI and KL shell model with solid model and FSDT shell model of Abaqus.

contrary, the lack of transverse shear deformations in the basic KL model brings to over-stiff solutions. Also the shear deformable
shell model of Abaqus is inaccurate for this class of composites because the adopted shear correction factors become unreliable for
large stiffness ratios of the materials and will be discarded in the other tests. Subsequently, the same beam is analyzed with all the
other layups to compare KLWI with KLWZ for more than 3 layers. Table 2 shows the linear elastic solution for the tip displacement
considering 𝑞 = 10−3 MPa and a converged mesh. It is possible to observe that KLWI demonstrates to be robust for every type of
alternating layups. KLWZ provides the same results for 𝐿5𝐴 (uniform stiff layers and uniform soft layers) and 𝐿5𝐵 (non-uniform
stiff layers and uniform soft layers) with a reduced number of DOFs with respect to KLWZ, but its prediction is inaccurate for 𝐿5𝐶
(non-symmetric) and 𝐿7 (symmetric), both characterized by non-uniform soft layers. This holds also varying the beam length as
reported in Tables 2 and 2, apart from very slender cases for which warping gets less important. The reason of this inaccuracy for
non-uniform soft layers can be understood by looking at Fig. 7, showing the ratio of the transverse shear deformations of the soft
layers for 𝐿5𝐶 (two soft layers, i.e. 2 and 4) and 𝐿7 (three soft layers, i.e. 2, 4 and 6) obtained for the linear elastic solution. It
can be seen that the ratio of the transverse shear deformations among non-uniform soft layers varies with the beam length. This
means that KLWZ, based on a single zigzag function constraining this deformation ratio, cannot capture the correct behavior. This
means that a single zigzag function, whatever it is, is not sufficient in case of non-uniform soft layers, even for symmetric stacking
sequences as 𝐿7.

5.1.2. Buckling under compression
The same cantilever beam seen in the previous test is now subjected to a compression load on the glass layers at the free end

section, as described in Fig. 8. The layups 𝐿3𝐴 and 𝐿3𝐵 are considered. The reference edge compression load is 𝑞 = ℎ𝑠𝑡 ⋅ 1 MPa,
with ℎ𝑠𝑡 (mm) the sum of the thicknesses of the stiff layers. The reference shell surface corresponds to the middle surface of the
laminate.

The same meshes considered in the previous example are adopted here, comparing the KLWI model (equivalent to KLWZ) to
the basic KL model and the 3D results. In order to avoid the bifurcation jump of the perfect structure after almost null pre-buckling
deformations, a small transverse tip edge load of magnitude 𝑞 ⋅ 10−4 is applied as an out-of-plane imperfection. Fig. 9 shows the
13
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Table 2
Cantilever beam under transverse load: Converged linear elastic tip transverse displacement (mm) varying layup and beam length for
KLWI and KLWZ shell models and 3D model.

(a) Beam length 𝐿 = 500 mm

Layup KLWI KLWZ 3D

𝐿5𝐴 1.13e−1 1.13e−1 1.13e−1
𝐿5𝐵 3.87e−1 3.87e−1 3.88e−1
𝐿5𝐶 1.51e−1 8.73e−2 1.52e−1
𝐿7 1.17e−1 7.65e−2 1.17e−1

(b) Layup 𝐿5𝐶 varying the beam length

𝐿(mm) KLWI KLWZ 3D

250 1.33e−2 5.80e−3 1.36e−2
500 1.51e−1 8.73e−2 1.52e−1
1000 1.43 1.15 1.44
2000 13.1 12.3 13.1
3000 49.6 48.1 49.6

(c) Layup 𝐿7 varying the beam length

𝐿(mm) KLWI KLWZ 3D

250 1.02e−2 5.42e−3 1.04e−2
500 1.17e−1 7.65e−2 1.17e−1
1000 1.02 0.85 1.03
2000 7.90 7.39 7.90
3000 26.9 25.9 26.9

Fig. 7. Cantilever beam under transverse load: mean transverse shear deformation (𝑠) ratio of the soft interlayers in the linear elastic solution varying the beam
length. Layup 𝐿5𝐶 has two soft interlayers, denoted as 2 and 4 counting from the bottom. Layup 𝐿7 has three soft interlayers, denoted as 2, 4, 6 counting from
the bottom, with 2 and 6 of uniform thickness and material.

Fig. 8. Cantilever beam under compression: geometry, load, and boundary conditions.

curve of the imperfect structure for the two layups and the different models, in terms of load multiplier vs. transverse displacement
at the free end. In this case, the coarsest mesh is sufficient for the KLWI model to capture the right behavior of the structure, in
agreement with 3D solution. Instead, the basic KL model dramatically over-estimates the buckling load of the structure.

5.2. 3-Layer simply supported square plate

5.2.1. Large deflection under transverse load
The large deformation of a simply supported square plate under a transverse load is studied in this test. Geometry, load and

boundary conditions are reported in Fig. 10. Both the layups 𝐿3𝐴 and 𝐿3𝐵 are considered in the test. The support is applied on the
perimeter of the middle surface of the shell. The reference surface load is 𝑞 = 10−4 MPa for both the stacking sequences.

Different meshes are considered for the KLWI model, while only the finest mesh is adopted for the basic KL model. The reference
shell surface corresponds to the middle surface of the packet. In Fig. 11, the equilibrium path in terms of load factor vs. the out-of-
plane displacement at the center of the plate is shown. The membrane contribution to the overall stiffness grows with the deformation
rate, causing the increase of the curve slope. Once again, the superposition of the curves obtained with the KLWI model for the
different meshes and the curve obtained from 3D model testifies to the high level of accuracy achievable by the proposed solution.
Equally accurate is the representation of the stress field, as depicted in Fig. 12, where the stress component 𝜎 is plotted over the
14

11



Computer Methods in Applied Mechanics and Engineering 418 (2024) 116556D. Magisano et al.
Fig. 9. Cantilever beam under compression: comparison of the equilibrium path in terms of vertical displacement component at the free end (𝑤) obtained by
KLWI, KL shell model and 3D model.

Fig. 10. 3-layer square plate under transverse load: geometry (mm), load and boundary conditions.

Table 3
3-layer square plate under transverse load: Number of total Newton–Raphson iterations and final displacement vs number
of increments to reach the maximum load factor 𝜆 = 3 for layup 𝐿3𝐵 and shell model KLWI (coincident with KLWZ)
with a mesh 16 × 16 and comparison with Abaqus 3D.

Load Total NR iterations Total NR iterations −𝑤𝐴 (mm) Total NR iterations
subdivisions KLWI KLWI (MIP) KLWI (MIP) Abaqus 3D

1 fails 7 14.2768 fails
2 23 11 14.2768 fails
4 27 16 14.2768 fails
20 70 47 14.2768 56

top and bottom surfaces of the glass layers for the different meshes. Also here, the correct representation of the results is achieved
with coarse meshes and validated by the 3D solution. Similar conclusions are addressed for the evaluation of the shear strain 𝛾13
in the interlayer, reported in Fig. 13. It is worth noting the accuracy of the proposed hierarchic model also when the strain of the
interlayer is actually significant. The distribution of 𝜎11 and 𝛾13 along the thickness is also illustrated in Fig. 14 corresponding to
their respective surface points of maximum.

Finally, the path-independence and the iterative performances of the numerical model are assessed in Table 3 for layup 𝐿3𝐵 . To
this aim, a load-controlled scheme with fixed step length is adopted here. The maximum load level is reached with an assigned
number of load subdivisions (steps). When using a single load step, the standard full Newton is not able to converge to the
equilibrium configuration. It can obtain the solution only by 2 or more load subdivisions and a relevant number of total iterations
(linear systems). The significant nonlinearity of the problem is also confirmed by Abaqus 3D (Static general, full Newton, default
settings), which requires as many as 20 load increments and 56 total iterations. Instead, the proposal with the MIP Newton
scheme [40,41] is able to provide the solution with a single load step and only 7 total iterations. In any case, the predicted
final displacement for the maximum load is exactly the same independently of the incrementation procedure highlighting the
path-independence of the proposal.
15
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Fig. 11. 3-layer square plate under transverse load: equilibrium path in terms of the transverse displacement component at the plate center and comparison
between KLWI shell model, KL shell model and the solid model from Abaqus.

Fig. 12. 3-layer square plate under transverse load: convergence of the stress component 𝜎11 (MPa) at the last equilibrium point over the top and bottom
surfaces of the stiff layers and comparison with 3D model for layup 𝐿3𝐴.

5.2.2. Buckling under in-plane shear load
The following test addresses the buckling behavior of a simply supported square plate under a self-equilibrated in-plane shear

load. The 𝐿3𝐴 and 𝐿3𝐵 stacking sequences are analyzed. Geometry, loads and boundary conditions are illustrated in Fig. 15. The
reference edge compression load is 𝑞 = ℎ𝑠𝑡 ⋅ 1 MPa, with ℎ𝑠𝑡 (mm) the sum of the thicknesses of the stiff layers, in the direction
parallel to each edge. The support is applied on the perimeter of the middle surface assumed as reference shell surface.

The plate is discretized with progressively refining meshes for the KLWI model, while, as in the previous tests, only the finest mesh
is used for the basic KL model. A geometric imperfection with the shape of the first linearized buckling mode and an amplitude equal
to 0.1 mm is added to the perfect model. The equilibrium path of the imperfect structure is shown in Fig. 16 in terms of out-of-plane
displacement of the plate center and the buckling modes are depicted right below the curves for both the layups. The imperfection
causes a smooth change in the behavior and the stiffness reduction after the buckling point. Also in this case the KLWI model proves
16
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Fig. 13. 3-layer square plate under transverse load: convergence of the transverse shear strain 𝛾13 over the interlayer and comparison to 3D model results from
Abaqus for layup 𝐿3𝐴 at the last equilibrium point.

Fig. 14. 3-layer square plate under transverse load: through-the-thickness distribution of 𝜎11 (MPa) and 𝛾13 at the last equilibrium point at the their peak point
for layup 𝐿3𝐴 and comparison to 3D Abaqus model.

Fig. 15. 3-layer square plate under transverse load: geometry (mm), load and boundary conditions.

to be accurate, if compared to the reference 3D solution. Similarly, the stress field is well represented with coarse meshes, as can
be seen in Figs. 17 where the component 𝜎11 is shown for 𝐿3𝐴 and for the different meshes adopted. The corresponding values
obtained by the 3D model are reported for comparison. Finally, the coarse-mesh accuracy of the results is confirmed also for the
transverse shear strain 𝛾13 in the interlayer, as reported in Figs. 18 and 19 for the two layups. It is worth noting that 𝐿3𝐵 generally
requires a little finer mesh compared to 𝐿3𝐴. From the strain plots, it is clear that this is not due to some sort of locking, but just
to the narrower bands characterizing the 𝐿3 solution.
17
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Fig. 16. 3-layer square plate under in-plane shear: equilibrium path in terms of the transverse displacement component at the plate center obtained by KLWI
and KL shell model and 3D model with illustration of the first linearized buckling mode for the two layups.

Fig. 17. 3-layer square plate under in-plane shear: convergence of the stress component 𝜎11 (MPa) at the last equilibrium point over the top and bottom surfaces
of the stiff layers and comparison with 3D model for layup 𝐿3𝐴.
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Fig. 18. 3-layer square plate under in-plane shear: convergence of transverse shear strain 𝛾13 at the last equilibrium point over the interlayer and comparison
to solid model results from Abaqus for layup 𝐿3𝐴.

Fig. 19. 3-layer square plate under in-plane shear: convergence of the transverse shear strain 𝛾13 over the interlayer and comparison to solid model results from
Abaqus for layup 𝐿3𝐵 at the last equilibrium point.

Fig. 20. Rectangular plate: geometry (mm), loads, and boundary conditions.

5.3. 5-Layer rectangular plate simply supported on 4 edges

The following test aims at analyzing the performance of the proposed model in case of more than 3 layers. A rectangular simply
supported plate made of 5 alternating layers (layup 𝐿5) is considered for this purpose. The support is assigned on the perimeter of
the bottom layer. Two different loading cases are assumed:

• Transverse load 𝑞 = 10−3 MPa distributed over the top layer;
• Axial compression edge load 𝑞 = ℎ𝑠𝑡 ⋅ 1 MPa, with ℎ𝑠𝑡 (mm) the sum of the thicknesses of the stiff layers, distributed along the

short edges.

Geometry, loads and boundary conditions are depicted in Fig. 20. The analysis is carried out for different meshes, with double
number of elements over the longer edges, for the layup 𝐿5 (symmetric and with uniform soft layers). The equilibrium paths are
19
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Fig. 21. 5-layer rectangular plate: equilibrium path in terms of the transverse displacement component at the plate center for KLWI shell model, KL shell model
and 3D model for the two load cases and layup 𝐿5𝐴. Deformed configuration plots for the maximum load factor (scale factor 10).

Table 4
5-layer rectangular plate under compression load: Linearized buckling
load multiplier for the different models and layups.

Layup KL KLWI KLWZ 3D

𝐿5𝐴 43.40 17.42 17.42 17.43
𝐿5𝐵 14.59 8.045 8.055 8.050
𝐿5𝐶 44.94 11.24 14.15 11.53

plotted in Fig. 21. The two load conditions are characterized by large deflection and buckling respectively. In particular, for the
second load case, the structure is nudged on the bifurcated path introducing a geometric imperfection with the shape of the first
linearized buckling mode and a maximum deviation equal to 0.1 mm. The deformed configurations at the last equilibrium point are
also reported below the curves in Fig. 21. The comparisons of the different models confirms the accuracy of the proposed KLWI
model also in case of multiple soft layers, unlike the basic KL model. Also in this case, coarse meshes are sufficient to obtained
the solid reference solution. The analysis is repeated for a fine converged mesh also for the other 5-layer layups: 𝐿5𝐵 (non-uniform
stiff layers and uniform soft layers) and 𝐿5𝐶 (uniform stiff layers and non-uniform soft layers). The corresponding load–deflection
curves are depicted in Fig. 22 for the transverse load case, including the comparison with the model with a single zigzag warping
function KLWZ. It is possible to observe that, also in this case, KLWZ proves to be a convenient alternative (fewer DOFs) to KLWI
for alternating layups with uniform soft layers, while it results less accurate for non-uniform soft layers. Similar considerations hold
when considering the compression load case, for which the linearized buckling load multiplier is reported in Table 4 for the different
models and layups. KLWZ has the same accuracy as KLWI for 𝐿5𝐴 and 𝐿5𝐵 , while the non-uniform soft layers of 𝐿5𝐶 negatively
affects its prediction. On the other hand, considering the geometry of 𝐿5𝐴, Fig. 23 demonstrates the reliability of KLWZ for uniform
soft layers in predicting the linearized buckling load also for all possible stiffness ratio of the two materials. Interestingly, when
the stiffness of the soft layers tends to vanish, the hierarchic model is able to recover the correct limit 𝑃𝑐𝑟𝑖𝑡0 of the uncoupled stiff
layers. Furthermore, the basic KL gets inaccurate for stiffness ratios 𝐸𝑠𝑜𝑓𝑡∕𝐸𝑠𝑡𝑖𝑓𝑓 < 10−2.

5.4. Curved panel under vertical load

The final test concerns the nonlinear analysis of the curved laminated glass panel whose geometry and boundary condition are
reported in Fig. 24. The aim of the test is just to assess the correctness of the hierarchic formulation for initially curved geometries.
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Fig. 22. 5-layer rectangular plate under transverse load: converged equilibrium path in terms of the transverse displacement component at the plate center for
KLWI shell model, KL shell model and 3D model for layup 𝐿5𝐵 and 𝐿5𝐶 .

Fig. 23. 5-layer rectangular plate under compression load: linearized buckling load multiplier for layup 𝐿5𝐴 normalized with respect to that of the uncoupled
stiff layers 𝑃𝑐𝑟𝑖𝑡0 varying the stiffness ratio of the layers.

Fig. 24. Curved panel: geometry (mm), loads, and boundary conditions.
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Fig. 25. Curved panel: equilibrium path in terms of the transverse displacement component at the mid point of the longitudinal edge and comparison of KLWI
shell model, KL shell model and 3D results.

Fig. 26. Hemispherical shell: geometry (enlarged in the thickness direction) and applied loads.

A vertical distributed load 𝑞 = 1 MPa and 𝑞 = 10−3 MPa are applied for the layup 𝐿3𝐴 and 𝐿3𝐵 respectively. The roof is modeled
using four different meshes, varying the number of elements in both dimensions from 4 to 32, each time doubling the refinement.
In Fig. 25 the vertical displacement at the midpoint of the straight side of the structure is reported against the load multiplier 𝜆.
The KLWI model is compared to the KL model and the reference prediction obtained using the solid model in Abaqus. The reference
shell surface corresponds to the lower surface of the laminate where the support is applied. The results testify the accuracy of
the proposed model also in the case of curved geometries. The remarkable coarse-mesh accuracy of the discretization method is
confirmed also in this case.

5.5. Multi-layer hemispherical shell with 18◦ cut-off

This benchmark concerns a 5-layer hemispherical shell with a circular cut-off at its top, as reported in Fig. 26 (one quarter of the
shell with symmetric boundary conditions), with the same geometry, loads and material layups proposed in [22]. The input data
are given in dimensionless form as in [22]. The hole aperture is 18◦, the sphere radius is 10, and the shell thickness is ℎ = 0.075.
The shell is subjected to equal and opposite concentrated forces applied at the 4 cardinal points of its equator amplified by the
factor 𝜆. The top and bottom curved edges are free. The rigid body motion is eliminated by fixing the vertical displacement at an
arbitrary point. This final tests is aimed at assessing the accuracy of the proposed shell models for a doubly curved shell and for very
large deformations. Three alternative layups are considered, including symmetric and asymmetric laminations. The layer material
type and thickness for each layup are reported in Table 5, where layer 1 denotes the interior layer of the hemispherical shell. The
material parameters for the stiff layers (F) and soft layers (C) are: 𝐸𝐹 = 1.0 × 107, 𝐸𝐶 = 5.0 × 103 and 𝜈𝐹 = 𝜈𝐶 = 0.2.

Exploiting the symmetry, only one quarter of the shell is modeled. The nonlinear load–displacement curves (see Fig. 27) obtained
with the proposals are in good agreement with those reported in [22] and obtained with a Reissner corotational shell model enhanced
with warping which reproduces the 3D solution. As observed for the other tests, KLWZ gives the correct solution (coincident with
KLZI) for layups 𝐻𝐿1 and 𝐻𝐿3 characterized by uniform soft layers (same thickness and material), while a small error affects the
solution for 𝐻𝐿2. This error is smaller in this test compared to the others due to the milder difference in the stiffness of the materials
22
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Table 5
Hemispherical shell: Description of the three layups, labeled as 𝐻𝐿1,
𝐻𝐿2 and 𝐻𝐿3.

Layer index Layer material Layer thickness

𝐻𝐿1 𝐻𝐿2 𝐻𝐿3

1 (F) 1/5h 1/15h 3/25h
2 (C) 1/5h 2/15h 5/25h
3 (F) 1/5h 3/15h 9/25h
4 (C) 1/5h 4/15h 5/25h
5 (F) 1/5h 5/15h 3/25h

Fig. 27. Equilibrium paths for the hemispherical shell: comparison of KLWZ and KLWI shell models with the results from [22] for layup 𝐻𝐿1, 𝐻𝐿2 and 𝐻𝐿3.

and is canceled when using KLWI. This confirms the reliability of our more efficient models with warping (fewer DOFs compared
to [22]) also for doubly curved shells undergoing very large displacements (more than half the radius) and rotations. As shown
in [22], the FSDT shell is inaccurate in this case due to the significant warping, with results close to the KL solution reported in
Fig. 27.

Efficiency and robustness of the nonlinear solver are also investigated in Table 6. The maximum load is reached in an assigned
number of load increments for 𝐻𝐿3, that is the most flexible layup. Abaqus 3D (Static general, full Newton, default settings)
requires as many as 20 load increments and 83 total iterations to complete the analysis. The proposal KLWZ with the adopted MIP
implementation of the Newton method is able to compute in a single load step and only 5 iterations the final deformed configuration
for the maximum load with displacements of about 0.6 of the initial radius.

6. Conclusions

This work presented a Total Lagrangian large deformation Kirchhoff–Love model hierarchically enhanced with warping profiles
generically selected by the user. The small strain hypothesis was exploited to derive a simple and efficient yet accurate strain
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Table 6
Hemispherical shell: Number of total Newton–Raphson iterations vs
number of increments to reach the maximum load factor 𝜆 = 50 for
layup 𝐻𝐿3 using the shell model KLWZ (coincident with KLWI) with a
mesh 16 × 16 and Abaqus 3D.

Load Total NR iterations Total NR iterations
subdivisions KLWZ (MIP) Abaqus 3D

1 5 Fails
5 16 Fails
10 29 Fails
20 47 83

measure. An effective NURBS-based discretization was proposed for the problem in weak form, characterized by excellent coarse-
mesh accuracy and small number of integration points. A numerical investigation demonstrated the correctness of the hierarchic
formulation in large displacement and buckling problems. Particular attention was given to the modeling of alternating stiff/soft
stacking sequences, representing a technically significant example characterized by a peculiar warping profile: transverse shear
strains concentrate in the soft interlayers while the stiff layers behave as Kirchhoff–Love shells with equal rotation of the normal.
Two warping models were studied: (1) independent transverse shear deformations of the soft layers and (2) single zigzag function
linking these deformations. The comparison with the reference solid solution showed the great accuracy and reliability of the first
warping model, whose number of DOFs depends on the number of soft layers, when usual shell models provide largely wrong
predictions. On the other hand, the second warping model allows to reduce the unknowns to five per surface point regardless of
the number of layers. This reduction produces no loss of accuracy when the soft interlayers are uniform in terms of thickness and
stiffness, as in most practical cases. However, the first warping model is recommended for non-uniform soft layers. In this case, the
actual warping profile varies widely even with structural properties other than the layup, so that a single zigzag function, whatever
it is, results unreliable. The first warping model seems also the ideal choice for more complex simulations taking into account also
thermal and viscous effects.
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