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ABSTRACT: Assessing the load bearing capacity of civilian bridges is a challenging task for 
routine reassessment jobs, especially in the military context. In order to ensure mobility of 
troops, the load bearing capacity of bridges needs to be assessed to make the safe crossing of 
military vehicles possible at home and abroad. For this reason, rapid assessment methods 
have been developed that allow for classification of civilian bridges after a quick visual recon
naissance. In the absence of verifiable calculations or drawings, the applied methods need to 
be based on geometrical data that is suspected to be correlated to the military load class of 
a structure. Current approaches are based on simplified assumptions such as correlations 
between dead loads and live loads or consist of simplified calculations assuming conservative 
material properties. In order to improve the current classification method, a Machine Learn
ing (ML)-based methodology is given that classifies slab to a particular military load class 
without human intervention using a correlation between measured geometrical data and clas
sification result. It is concluded that the usage of ML models is very promising for rough clas
sifications of bridges with unknown military load class (MLC). However, the available 
training data is insufficient to train reliable models and an expanded amount of training data 
will be needed for deployment as a software package in the armed forces.

1 INTRODUCTION

1.1  Importance of bridge assessment

The assessment of the load bearing capacity of existing bridges is a challenging task when no 
verifiable calculations or as-built drawings are available. The development of methodologies to 
assess the maximum bearable traffic load is thus of special interest when the rapid assessment of 
the bridge geometry is the only source of information. For military bridge assessment, this is the 
case when convoys have to be guided through unknown terrains or when supply routes have to 
be planned. Use cases such as these have already been encountered in stabilization missions or 
similar military operations. (Haslbeck, Hertle & Braml, 2021; Haslbeck, Vallée & Braml, 2021).

Based on those experiences, bridge assessment codes have been developed independently by 
several nations to ensure a safe crossing of military vehicles over civilian bridges. The 
approach of most of these methods is to derive the maximum allowable Military Load Class 
(MLC) of a bridge from geometric parameters of the main structural parts. In order to enable 
soldiers to classify a bridge in the field, the tablet-based application BRASSCO-NG has been 
developed by the University of the Bundeswehr that allows for a rapid assessment on site.

For the application of BRASSCO-NG and the user interface please refer to (Haslbeck, 
Hertle & Braml, 2021; Haslbeck, Vallée & Braml, 2021).

1.2  Introduction to military load classes and STANAG2021

As the main output of the presented methodology using machine learning (ML) is the attribu
tion of a military load class (MLC) to a specific bridge in the field, the system of matching 
vehicle MLC and bridge MLC needs to be discussed briefly.
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The framework of STANG2021 (NATO) describes a system of hypothetical vessels that 
shall reflect the true loading of military vehicles. Due to the different nature of the load distri
bution, each class comprises a load model for wheeled and for tracked vehicles. Due to 
reasons of brevity, the reader is referred to (Geissler, 2014) for further information on the 
MLC system and the attributed load models.

The system of load models describes the shape and the weight of the assumed vehicles both 
for structural analysis and the classification of the carrier to a certain MLC. Using the load 
scheme, each bridge can be sorted into a MLC class using the maximum bearable bending 
moment and shear force. Interpolation between different load classes is permitted, so inter
mediate MLCs are allowed. As the load bearing capacity for one-way and two-way traffic, the 
allowable load class is commonly split into a one-lane and a two-lane MLC.

As verifiable calculations are in many cases not available, the attribution of a MLC to 
a specific bridge often requires the assumption of a correlation between certain observable 
properties of a structure to its MLC class.

1.3  Current approach

Reconnaissance of civilian bridges is based on the recording of geometrical data using folding 
rules or laser distance meters. From this data, a correlation function is applied that exploits 
the assumed correlation of dead load and the ultimate load from military vehicles expressed 
by the capacity to resist a certain unit bending moment. This method for regression relies very 
much on engineering experience. The correlation function for the ratio of moment from dead 
load and moment from live load has been calibrated by a large number of verifiable calcula
tions for bridges of different span length and construction types. However, the assumed rela
tion might be improved by a more sophisticated regression using machine learning techniques.

1.4  Potential of machine learning for bridge assessment and scope of this contribution

In order to implement a regression for the maximum MLC depending on a set of geometrical 
input parameters, Artificial Intelligence (AI) can help to go beyond engineering experience 
and to find correlations that are not visible at first sight.

Using a limited data set available from a NATO database, the potential of machine learning 
techniques is revealed in this contribution using the example of slab bridges.

After a brief review on the theoretical background of the applied machine learning technique, 
the required input for the graphical user interface of BRASSCO-NG is depicted. Subsequent to 
the description of the implementation, several worked examples are given in order to present the 
results and to discuss the pros and cons of this new approach to military bridge assessment.

2 RELATED WORK

2.1  Machine learning

Neural Networks (NNs) are able to solve very complex problems more accurately than other 
algorithms in the field of machine learning, e.g. linear regression, decision tree (Wu et al., 
2008) or random forest (Ho, 1995). The regression of tabular data can be a complex task, for 
the solution of which the NNs can be particularly suitable. The architecture of Neural Net
works is inspired by biological neurons, in the ML context also called nodes. The special fea
ture of NNs compared to other algorithms in the ML domain, is the contained weighted 
information in nodes forwarded to neighboring neurons. These weights (synapses) are train
able, whereby a transmitted signal can be amplified or attenuated (Goodfellow et al., 2018).

Figure 1 shows the sequence of the forward process that is carried out during inference of 
tabular data from a bridge. The model that will be used in this work is a multilayer perceptron 
(MLP), a neural network consisting of linear layers. Each input parameter is fed into the NN. 
Subsequently, the inputs are multiplied by weights. After having summarized all weighted 
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inputs of one node, and biases were added, the activation function is applied. The aforemen
tioned operations and the application of the activation function will be executed for all nodes 
in the hidden layer. For the nodes in the output layer, no activation is applied in order to 
obtain the result of the regression describing the military loading class.

2.2  Machine learning models for load-carrying capacity

Truong et al. (Truong et al., 2022) have analyzed the applicability of ML models for the esti
mation of the load-carrying capacity of semi-rigid connected steel structures. They evolved 
a dataset using the advanced analysis based on beam-column and zero-length elements. The 
model’s input layer consists of member cross-sections and parameters of the high-order non
linear functions characterizing the semi-rigid connection behaviors. They evaluated multiple 
ML methods: linear regression models, support vector machines, tree-based ensemble algo
rithms and models from the field of deep learning. The most performant model for solving the 
problem of depicting the load-carrying capacities of semi-rigid connected steel frames is 
XGBoost (Chen & Guestrin, 2016).

3 METHODOLOGY

3.1  General

The collection and preparation of data for later evaluation by AI represents a crucial step in 
the process chain of developing a military AI. The reliability of the trained model depends 
crucially on the data provided. For the model to be trained within the project, the collection 
of design drawings with associated MLC classification provided by the Military Engineering 
Centre of Excellence (MILENG-COE) will be used. In particular, the use of intermediate 
MLCs representing not only the load models depicted in STANAG 2021 (NATO) but also 
values representing interpolation between them, could find use in the training process. The 
geometric dimensions were taken manually from the design drawings.

The modeling of the neural network requires knowledge of the problem and the algorithms 
to be used as well as insight into the existing dataset. Especially the complexity of the regres
sion model depends on the available data and the correlations. In the context of the investiga
tions, a linear neural network is used, whose theoretical background is discussed in 
Section 3.2. For the training of the NN and the test of the regression, a MATLAB script has 
been used where the input is read directly from the NATO database provisioned for the testing 
of MLC classification methods.

3.2  Multilayer perceptron

The operating principle of the neural network is explained in the following. The geometry 
information stored in the input variables is summed up in the neurons after the multiplication 

Figure 1.  Feed-forward process of the MLP calculating MLC from tabular data.
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by their weighting factors to represent the importance of the information. To this, the bias b is 
added, which is trained as a parameter.

The nodes in the hidden layer are activated by the sigmoid function according to Equation 1.

The multilayer perceptron includes one hidden layer with three nodes. The activation func
tion in the hidden layer is the sigmoid function. During one training step all samples are fed 
into the network. Thus, the batch size corresponds to the number of data points in the training 
split. The default value of the learning rate of 0.001 is chosen. In total the training process is 
repeated for 100 epochs.

4 IMPLEMENTATION OF A NEURONAL NETWORK FOR SLAB BRIDGES

4.1  Engineering background

For the purpose of this paper, the automatic evaluation of slab bridges shall be used as they 
are common on side roads with few heavy traffic to span over small and medium gaps.

The cross section of a slab bridge is formed by the slab itself and two cantilever arms at 
both outer faces. Figure 2 shows (a) a slab bridge as it has been found in the KFOR mission 
in Kosovo and (b) the schematic representation of the cross section with its major parts.

4.2  Input values and dataset

In order to exploit the assumed correlation of maximum load bearing capacity of a bridge and 
its physical dimensions, data from the cross section and the civil engineering system in 

Table 1. Hyperparameters and archi
tectural parameters of the network.

Parameters Value

Hidden layers 1
Nodes in hidden layer 3
Activation function Sigmoid
Batch size 37
Learning rate 1e-3

Train epochs 100

Figure 2.  (a) slab bridge in the regional road network in Kosovo from (KFOR) and (b) illustration of 
the cross section and its parts.
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longitudinal direction are part of the input into the BRASSCO-NG code. Figure 3 shows the 
GUI of the software package and the required dimensions. Especially challenging for the deter
mination of the input was the need to choose a representation that corresponds to the various 
construction types for slab bridges in different regions. It should be noticed that the evaluation 
is based on a symmetrical cross section as the load bearing capacity is evaluated for the most 
unfavorable position of load, so only the weaker half of the superstructure’s cross section is 
shown in the GUI. For the evaluations of this paper, only the height if the slab and the span 
length has been used as input because these values appear to be the most influential.

In order to achieve the best possible result from the training of the neuronal network, a set of 
data has been chosen that represents a large spectrum of bridges. Figure 4 shows a histogram of 
the set of MLC for single lane crossing of wheeled vehicles in the training data of size 37.

The bridges’ heights range from 3.7 to 25 meters while the widths and spans range from 
0.20 to 0.80 and 4 to 17 meters (Table 2). Generally, the variety in geometries indicates 
a strong heterogeneity of the underlying data.

Table 3 shows the sample distribution over the data splits. In total the dataset includes infor
mation of 40 bridges. The size of the dataset can be considered as small compared to others, 

Figure 3.  GUI of BRASSCO-NG for slab bridges with the required input L1, L2, . . ., he, hv, hs, we, 
wv, hc, tp, w/2, wr/2.

Figure 4.  Histogram of the target MLC for the classification of slab bridges for single lane traffic of 
wheeled vehicles.
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such as the ones named in chapter 2.1. Therefore, the data was split in into two packages, the 
training and validation split. The validation split also represents the test data. Usually, datasets 
consist of a training, validation and test split. The three samples included in the test package 
approximately describe the whole range of bridges in the dataset regarding the MLC.

4.3  Results and discussion

In order to show the applicability and the advantages of machine learning techniques to the 
subject of military bridge classification, the results of the process of training are presented and 
discussed.

Figure 6 shows the progress of the loss during training. It can be stated that the loss con
tinually decreases without significant variability and the patterns in the training data are well 
recognized by the network.

Regarding the differences between predictions and targets in Figure 7 an acceptable per
formance is observed. Only six predictions differ more than 10 MLC from the target. Most 
prognosticated samples have a difference, compared to the target, of less than five MLC.

The neuronal network was tested using three examples of bridges that were not part of the 
training data. To show the applicability, the test set of bridges was chosen such that the lower, 
medium and higher range of the MLC spectrum is covered. The target values for the three 
examples can be given by MLC 55, 95 and 20. Table 4 gives the design values, the result from 
the approach currently implemented in BRASSCO-NG and the result gained from the regres
sion done by machine learning. The results of this small control sample indicate that the appli
cation of neuronal networks might be a significant advance for the classification of civil 
bridges. Even though the classification result does not show perfect agreement to the target 
values of the structural analysis, the results fit better than the currently implemented approach 
using the bending moment from dead load or the linear fit of the parameters to the target 

Table 2. Minimum, median and maximum for the 
input parameters of slab bridges, demensions in in [m].

Parameter Min Median Max

Height 3.7 7.4 25
Width 0.20 0.44 0.80
Span 4 8.8 17

Table 3. Train and validation 
splits for the MILENG plate 
dataset.

Split Count

Train 37
Validation/Test 3
Total 40

Figure 5.  Histograms for the input parameters.
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values. However, a larger sample set and a wider range of MLCs is required to improve the 
regression. This is especially true for the lower part of the MLC spectrum (test sample #3).

5 CONCLUSIONS

In this contribution, a new approach for the classification of civil bridges for military purposes 
is presented utilizing Machine Leaning techniques instead of state-of-the-art engineering 
approaches. The results show that the methodology is superior both to the current method 
and a simple least squares regression that was performed for reasons of comparison. It can be 
reasoned that the application of the presented approach is very promising. However, the data 
set used for training is not yet sufficient for application in the field and needs further 

Figure 6.  Loss during the training process for slab bridges.

Figure 7.  Differences between predictions and targets for slab bridges.

Table 4. Comparison of the results for slab bridges (single lane, wheeled vehicles).

Test Bridge no. Structural analysis (target) Current approach ML-approach Linear regression

#1 55 100 76 86
#2 95 150 81 140
#3 20 80 50 47
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enlargement. What is more, an analysis of sensitivities for the applied input as well as the amp
lification of the studied input parameters may give further insights into the correlation of cer
tain features and the load bearing capacity. Supplementary to the measurable geometrical 
dimensions, the inclusion of the material strength, the percentage of reinforcement or the 
design load model are very promising for further investigations. Further improvement may 
also be made when other Machine Learning methods are applied and compared to the imple
mented linear neuronal network, e.g. decision tree, support vector machines or random forest.
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