
COMPUTATIONAL EFFICIENCY IN SYMBOLIC
OPTIMAL CONTROL

Elisei Macoveiciuc

Vollständiger Abdruck der von der Fakultät für Luft- und Raumfahrt-
technik der Universität der Bundeswehr München zur Erlangung des
akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

angenommenen Dissertation.

Gutachter/Gutachterin:

1. Prof. Dr. habil. Gunther Reißig
2. Prof. Dr.-Ing. Thomas Moor

Die Dissertation wurde am 30.06.2023 bei der Universität der Bun-
deswehr München eingereicht und durch die Fakultät für Luft- und
Raumfahrttechnik am 11.04.2024 angenommen. Die mündliche Prüfung
fand am 16.05.2024 statt.

Contents

1 Short Summary . 7
2 Zusammenfassung . 8
3 Abstract . 9
4 Contributions and Structure of the work . 13
5 Basic definitions and notations . 14
6 Abstraction-Based Controller Synthesis . 14

6.1 Systems and their Finite Approximations 15
6.1.1 Computation of Abstract State-Space 16
6.1.2 Computation of Abstract Input-Space 18
6.1.3 Computation of Abstract Transition Function 18

6.2 Abstract and Concrete Control Problems 19
6.3 Mathematical Rationale . 20

6.3.1 Feedback Refinement Relations 20
6.3.2 Optimal Control Problems and their Symbolic Solutions 23

7 Space-Efficient Symbolic Optimal Control . 26
7.1 Optimal Reach-Avoid and Optimal Invariance Synthesis 26
7.2 Mathematical Rationale . 33

7.2.1 Optimal Reachability . 33
7.2.2 Qualitative Invariance . 35
7.2.3 Optimal Invariance . 37

8 ABS - Formally correct software for symbolic synthesis 38
8.1 Structure and Build process of ABS . 40
8.2 Software Input and Execution Flow . 41

8.2.1 User Options in Application to Control Problems 43
8.2.2 Input Language . 44

8.3 Packages and their functionality . 47
8.3.1 Abstraction_I14sym . 47
8.3.2 Abstraction_I14sym.Computation 49
8.3.3 Abstraction_I14sym.predecessors 49
8.3.4 Apriori_Enclosure . 50
8.3.5 Bounds_Approximation_Error 50
8.3.6 Cell_Cover . 50
8.3.7 Established_Types . 50
8.3.8 Growth_Bound . 52
8.3.9 Input_Values . 53
8.3.10 Controller_i14sym . 53
8.3.11 Dijkstra_Algorithm_i13absoc 53
8.3.12 Grids . 53

2

CONTENTS 3

8.3.13 Grids.intersections . 54
9 Numerical tests . 55

9.1 Competing software . 55
9.2 Examples . 56

9.2.1 Pendulum Invariance around unstable equilibrium 56
9.2.2 Engine Invariance . 57
9.2.3 Robot navigation in a complex environment 57
9.2.4 Rocket velocity change . 58
9.2.5 Pendulum-cart system swing up 58
9.2.6 Double Pendulum invariance . 59
9.2.7 Heavily disturbed quad-copter flight 59

9.3 Discussion of numerical results . 61
10 Conclusions and Outlook . 62

List of Tables

3 Memory consumption . 61
4 Time consumption . 61
1 Problem Specific Files (from [89]) . 65
2 Mechanical parameters of the double pendulum 66

4

List of Figures

1 Standard Abstraction-based Synthesis scheme. 16
2 On-the-fly vs Standard Abstraction-based Synthesis scheme. 27
3 Structure of ABS software [89]. 39
4 Progression of problem solution. 42
5 maximal controlled invariant set for example 9.2.1 (green), simulated randomly

disturbed controlled trajectory starting from (π, 0) for 5000 sampling steps (black) 56
6 (A) - Simulated trajectory from point (0.4519− 0.003, 0.6513− 0.003), for example

9.2.2. (B) - Simulated robot maneuver for example 9.2.3 (states x1, x2) starting
from point (−8, 8,−π/2). 57

7 4 simulated quad-copter maneuvers (colored) from example 9.2.7 with 4 random
disturbance signals supplied to the system . 60

5

Acknowledgments
First and foremost, I would like to express my deepest gratitude to my doctorate supervisor
Professor Dr. habil Gunther Reißig for his immense research expertise and his desire to readily
provide patient evaluation and support. Additionally, this work would not have been possible
without Munich Aerospace scholarship, that financed the research project.

I would also like to thank members of the Institute for Control Engineering (LRT-15) of the
University of the Federal Armed Forces Munich - Mister Herman Lex and Miss Elisabeth Loessl
and head of the Institute - Professor Dr.-Ing. i.R. Ferdinand Svaricek. Their timely help and
professionalism were invaluable during my work.

I am also sincerely grateful to my colleagues, that I had the luck and pleasure to work with
- Alexander Weber, Hao Zhou, Mohamed Serry and Victor Cheidde Chaim, for their time and
curious discussions.

Lastly, I would be remiss in not mentioning the defense committee, who generously provided
knowledge and expertise.

6

1 Short Summary
Control synthesis is the problem of constructing a strategy to manipulate a given system that
induces that system to conform to a declared behavior. Two fundamental control objectives with
a wide variety of applications are reach-avoid problem, and the problem of estimation of robust
control-invariant set of a given system. Evidently, a large number of solution approaches exist in
literature. Majority of available methods, however, possess unattractive drawbacks that motivate
further research: suboptimal solutions, inapplicability to uncertain dynamic models, restriction
to narrow classes of systems. On the other hand, theoretic advances that allow synthesis of
controllers for large classes of uncertain nonlinear systems are impractical due to the need of
severe computational effort.

The present work is concerned with providing general computationally-efficient symbolic
control methods for highly coupled non-linear systems, without any structural assumptions on
system dynamics. Two fundamental specifications are considered: optimal reachability and
qualitative invariance. These types of problems often appear in practical scenarios: robotic
control, rocket manipulations, path planning of UAVs. The main contributions are : First, novel
space-efficient methods are introduced: for optimal control and qualitative invariance respectively.
Large reduction of space complexity is proven and no restrictions on continuous dynamics are
placed, which makes these algorithms applicable to a wide class of control problems. In fact one
source of exponential space complexity is completely removed with no significant increase of time
consumption. Guaranteed memory reduction and generality of developed algorithms are the main
contributions of this thesis. Up to the knowledge of the author proposed methods are unique
to simultaneously prove space relief and take time linear in abstraction size. Moreover, it is
demonstrated that controllers synthesized through the use of the newly introduced methods are at
least as permissible as controllers synthesized by any standard abstraction-based algorithms. Thus
reduction of computational complexity does not produce controllers of inferior quality compared
to standard symbolic methods. Second, this work presents a jointly composed software package,
ABS, that contains all functionality to construct abstractions of general nonlinear systems and
includes the developed synthesis methods. Contrary to many of its competitors, ABS constructs
abstractions/ synthesizes controllers fully automatically, with no manual interference needed, aside
from constructing a file describing the control problem of interest. Finally, several numerical tests
are conducted, which show that the computational savings in practice correspond to reduction of
theoretical algorithm complexity. It is shown, that the newly developed algorithms are able to
solve control problems that can not be tackled by competing symbolic methods - due to either
time or memory constrains.

7

2 Zusammenfassung
Bei der Kontrollsynthese geht es darum, eine Strategie zur Beeinflussung eines gegebenen Systems
zu konstruieren, die dieses System dazu bringt, ein bestimmtes Verhalten an den Tag zu legen.
Zwei grundlegende Kontrollziele mit einer Vielzahl von Anwendungen sind das Reichweiten-
vermeidungsproblem und das Problem der Schätzung der robusten kontrollinvarianten Menge
eines gegebenen Systems. In der Literatur gibt es eine große Anzahl von Lösungsansätzen. Die
Mehrzahl der verfügbaren Methoden weist jedoch unattraktive Nachteile auf, die zu weiterer
Forschung motivieren: suboptimale Lösungen, Unanwendbarkeit auf unsichere dynamische Mod-
elle, Beschränkung auf enge Systemklassen. Andererseits sind theoretische Fortschritte, die die
Synthese von Reglern für große Klassen unsicherer nichtlinearer Systeme ermöglichen, aufgrund
des hohen Rechenaufwands unpraktisch.

Die vorliegende Arbeit befasst sich mit der Bereitstellung allgemeiner, rechnerisch effizienter
symbolischer Kontrollmethoden für hochgradig gekoppelte nichtlineare Systeme, ohne strukturelle
Annahmen über die Systemdynamik. Es werden zwei grundlegende Spezifikationen betrachtet:
optimale Erreichbarkeit und qualitative Invarianz. Diese Arten von Problemen treten häufig in
praktischen Szenarien auf: Robotersteuerung, Raketenmanipulationen, Bahnplanung von UAVs.
Die wichtigsten Beiträge sind: Erstens werden neuartige raumeffiziente Methoden eingeführt: für
optimale Kontrolle bzw. qualitative Invarianz. Große Reduzierung der Raumkomplexität ist er-
wiesen, und es gibt keine Einschränkungen hinsichtlich der kontinuierlichen Dynamik, so dass diese
Algorithmen auf eine breite Klasse von Steuerungsproblemen anwendbar sind. Tatsächlich wird
eine Quelle exponentieller Raumkomplexität vollständig beseitigt, ohne dass sich der Zeitaufwand
signifikant erhöht. Die garantierte Speicherreduktion und die Allgemeinheit der entwickelten
Algorithmen sind die Hauptbeiträge dieser Arbeit. Nach dem Kenntnisstand des Autors sind die
vorgeschlagenen Methoden die einzigen, die gleichzeitig eine räumliche Entlastung beweisen und
eine Zeit benötigen, die linear zur Abstraktionsgröße ist. Darüber hinaus wird gezeigt, dass Regler,
die mit Hilfe der neu eingeführten Methoden synthetisiert werden Methoden synthetisiert werden,
mindestens genauso zulässig sind wie Regler, die mit Hilfe von Standard-Algorithmen auf Ab-
straktionsbasis synthetisiert werden. Die Verringerung der Berechnungskomplexität führt nicht zu
einer schlechteren Qualität der Regler im Vergleich zu symbolischen Standardmethoden. Zweitens
wird in dieser Arbeit ein gemeinsam zusammengestelltes Softwarepaket, ABS, vorgestellt, das alle
Funktionen zur Konstruktion von Abstraktionen allgemeiner nichtlinearer Systeme enthält und
die entwickelten Synthesemethoden einschließt. Im Gegensatz zu vielen seiner Konkurrenten kon-
struiert ABS die Abstraktionen bzw. synthetisiert die Regler vollautomatisch, ohne dass manuelle
Eingriffe erforderlich sind, abgesehen von der Erstellung einer Datei, die das interessierende
Regelungsproblem beschreibt. Schließlich werden mehrere numerische Tests durchgeführt, die
zeigen, dass die Einsparungen an Rechenzeit in der Praxis der Reduzierung der theoretischen
Komplexität des Algorithmus entsprechen. Es wird gezeigt, dass die neu entwickelten Algorithmen
in der Lage sind, Steuerungsprobleme zu lösen, die mit konkurrierenden symbolischen Methoden
nicht gelöst werden können - entweder aufgrund von Zeit- oder Speicherbeschränkungen.

8

3 Abstract
Control synthesis is the problem of constructing a strategy to manipulate a given system that
induces that system to conform to a declared behavior. Two fundamental control objectives with
a wide variety of applications are reach-avoid problem, and the problem of estimation of robust
control-invariant set of a given system. A large number of solution approaches, that are now
considered classical, have been developed.

Reach - avoid problems, which consist in driving the given system into a target set, possibly
within a given time interval and avoiding obstacles, posses two intrinsic issues. First performance
of pre-computed feed-forward control strategies can severely degrade in presence of modeling errors
or external disturbances in real-world scenarios - actual system trajectory may differ drastically
compared to the simulated one. Second, complex obstacle environment make mere derivation of
feed-forward trajectory highly nontrivial. First issue was understood to be problematic rather
early, with significant efforts put to set analysis of system behavior. Rather than working with a
single state trajectory, a sequence of reachable sets can provide valuable insights on the controlled
loop behavior in presence of properly modeled disturbance signals. Most results, however, were
initially derived for linear systems due to their regular structure. Linear certain systems, for
example, allow simple derivation of compactness and convexity results of reachable sets under
some regularity assumptions, such as invertibility of state matrix [10]. Formal analysis becomes
more difficult for uncertain systems. However, for linear systems under polytopic uncertainty, it is
possible to show that convex hull of the reachable sets is propagated recursively [10]. [9] provided
necessary and sufficient conditions for existence of a solution of reachability of a target set or
a tube by discrete dynamic system for the case where the state can be measured exactly, and
sufficient conditions for the case when only disturbed output measurements are available. See
[9],[18],[78] for an ellipsoidal estimate of the attainability domain for a linear controlled system
and [19] for an algorithm based on polyhedral sets, [29] for hyperplane approximation. Note that
all of the above works do not include obstacle environments in their analysis. Development of
computational hardware has made tackling of nonlinear problems also possible. One of the most
general approaches has traditionally consisted in utilizing continuous optimization to construct a
controlled trajectory for physical systems modeled with general non-linear differential equations
[32] under the name of Model Predictive Control (MPC). MPC has become a core control method
in many areas because of its natural ability to handle state and input constraints as well as
complex system dynamics. This approach, however, suffers from a number of intrinsic drawbacks.
First, non-linear optimization does not, in general, produce globally optimal solution. Second,
derivation of the desired trajectory through non-convex state-space under non-linear dynamics, is
a highly challenging problem. Finally, as mentioned above, this approach does not provide any
guarantees on the controlled system behavior and, therefore, requires a separate verification phase
after the design phase (see, for example [75]). Online divergence from the pre-computed trajectory
can be rectified by introducing additional control policies - Tube-based MPC. Tube-based MPC
augments classical MPC solution with a controller that attempts to correct deviations and
computes a tube that includes all possible closed-loop trajectories. See [66, 3, 91, 43, 63, 99] for
nonlinear tube MPC with various optimization methods. These works optimize the tube size
around the given trajectory subject to state, input and disturbance bounds. Since optimization
problems remain non-linear for general case, tube-based MPC also produces only locally optimal
solutions in terms of tube size. All of the mentioned non-linear control methods also disregard
obstacles since there exist no efficient optimization algorithms on discontinuous domains.

The second control problem of interest, the invariance problem, consists in computing for
a dynamical system a subset of the state space, from which state vector trajectories never
escape for indefinite period of time. Guaranteed containment of closed-loop trajectories makes

9

invariant sets attractive for analysis of safety-critical system behavior with respect to bounded
disturbances as well as general controller synthesis - see, for example, domains of attraction
for reachability controllers [13]. Invariant sets for linear systems have been actively studied :
with recent works focusing on robust invariance [13] and set invariance in the presence of a
control action [98, 33, 59, 6, 7]. Approaches for discrete time linear systems include geometric
construction using zonotopic bound [101], Linear Matrix Inequality (LMI)- based algorithms
[92, 105], Minkowski partial sums-based approximations [72], linear programming [106], and
control invariance using convex optimization [83]. Analogues of these methods exist for piecewise
affine systems in [108, 84]. General non-linear systems are evidently more difficult to tackle,
making works on this subject sparse: [8] - results characterizing invariant sets for discrete-time
nonlinear systems and practical examples for the linear case, [23] - invariant sets for dynamics
representable as difference of convex functions, [42, 34, 51] - polynomial systems. Notice that all
mentioned works require special properties of system dynamics. For general systems, however,
no algebraic solution is currently available. Thus, geometric computational approaches have
attracted some attention. Most deal with linear and polynomial systems, for example - [55, 82].
Also few computation-oriented results are available for general nonlinear systems [24, 5]. However,
most classical approaches discussed above, construct over approximations of invariant sets and
thus, can not provide strict mathematical guarantees that trajectories starting from any chosen
subset of the computed invariant set would remain inside.

Reliance of classical control methods on different properties of explicit algebraic representation
of system dynamics stimulated the demand for formal algorithmic techniques that could reduce
analytical complexity of previous approaches and process highly non-linear system dynamics and
control objectives in a unified automatic manner. Thus, increasing attention has been drawn
to algorithmically determining the global behavior of strongly nonlinear systems. The main
idea consists in constructing a finite structure (called abstraction, symbolic model or graph in
some works) that approximates behavior of the given continuous system, solve the problem
of interest on it and translate the obtained solution back to the continuous domain. Such
approach would naturally be able to handle complex obstacle environment, due to its finite nature.
One of the earliest works developing this class of methods is [109] providing simplified method
of approximating first-order ordinary differential equations by a finite-state system, [36] that
replaced continuous state-space by finite set of cells and used cell-to-cell mappings to determine,
for example, regions of the state-space where attractors may exist, domains of attraction and
boundaries between them. [4] studied classes of hybrid systems that could be translated to purely
discrete systems. [73] employs reachable sets to construct cell-to-cell finite maps. See also [97] for
modeling of discrete-time systems via stochastic finite approximations. So far, the mentioned
works have been mostly theoretical, aimed at general study of complex systems, rather than
(approximate) solution of high dimensional problems. Yet, a distinct line of methods needs to
be mentioned here, that conforms to the idea of approximate finite analysis of infinite domains
and aims at practical problems - Rapidly Exploring Random Trees (RRT) [54] and their derived
algorithms - RRT* converging to optimal path [45], RRT+ searching in low-dimensional subspaces
[115], A*-RRT, A*-RRT* [14] additionally utilizing geometric graph search, RRTX [74] algorithm
for changing obstacle environments and many more. RRT algorithms try to roughly and rapidly
approximate a continuous disconnected domain with a finite graph, usually using MPC to compute
trajectories connecting nodes. Construction of a new nodes is iteratively aimed at unvisited
areas. RRT methods can not assure efficiency, but are typically fast in practice even for high
dimensional systems [17]. Standard RRT, however, possesses the same disadvantage as classical
MPC, discussed above - no guarantees of successful solution of continuous problem due to online
deviations from computed trajectory.

Formal study of sufficient relations between a system and its abstraction, that could guarantee

10

solution of the original continuous control problem, continued with [52, 69, 26, 15]. Results
concerning linear systems [104, 102] showed that discrete–time controllable linear systems admit
symbolic models. Most of the mentioned works were based on appropriately adapting the notion
of bi-simulation relation [68, 76] to continuous and hybrid systems. A more general approach is
presented in [116, 35, 28, 102], where an approximate version of bi-simulation was considered.
Introduction of bi-simulation relations allowed [79] to construct symbolic models for the class
of incrementally globally asymptotically stable nonlinear control systems. However, [81] has
shown that approximate bi-simulation fails to distinguish between the different role of control
inputs and disturbance signals. Consequently, control strategies synthesized on approximately
bi-similar symbolic models cannot be transferred to the original systems robustly with respect
to disturbance inputs. [81] introduced alternating approximate bi-simulation, which addressed
the disturbance issue and allowed for construction of symbolic models for incrementally globally
asymptotically stable systems. [119] constructed abstractions for incrementally forward complete
systems using alternating approximate simulation relations without any stability assumptions.

The mentioned works, while providing valuable insights into construction of symbolic models,
still could not provide the desired general algorithmic approach. First, most works still were
applicable only to certain classes of systems. Second, as has been shown later, alternating
simulation relations possessed issues regarding the refined controller complexity [88]. Finally,
symbolic models in the mentioned works did not take into account any notion of controlled
trajectory cost. The aforementioned three issues were resolved in two fundamental works
concerning abstraction-based control: [88, 86]. [88] provided framework for construction of
abstractions for general non-linear systems which allow synthesizing robust controllers with
respect to various disturbances including plant uncertainties, input disturbances and measurement
errors. This allows for complete elimination of the controller verification phase. [88] also underlined
the problems of controller refinement of symbolic models based on alternating simulation relations,
and introduced novel feedback refinement system relation resolving the issues, and allowing for
refined abstract controllers to be static, while preserving correctness guarantees. [86] expanded
the notion of feedback refinement relation to the valued case, including costs associated with the
system trajectories and allowing for construction of symbolic models that can be used to solve
optimal control problems. Moreover, [86] provided a method to compute both upper bounds of
the achievable controlled closed-loop performance, and symbolic feedback controllers realizing
those bounds. Finally, this work has shown that the computed bounds and the performance of the
symbolic controllers converge to the optimal closed-loop performance as the precision parameters
of symbolic models approach zero.

To summarize, abstraction-based control methodology has been developed to the point of
allowing:

(i) automatic construction of symbolic models for general non-linear systems,

(ii) automatic synthesis of symbolic controllers that can be refined to solve the original control
problem;

(iii) computation of mathematically precise bounds on the cost of controlled trajectories;

(iv) guarantees of controller performance and convergence to the optimal performance with
increased abstraction precision parameters.

Such attractive theoretic properties of symbolic approach have promising applications - see,
for example [11] for a medical glucose control technique based on the use of alternating simulation
symbolic models, [67] for temperature regulation in smart buildings, [46] for guaranteed road
maneuvering of an autonomous vehicle, optimized routing of vehicle groups [110], delivery

11

optimization under continuous non-linear constraints [111]. However, industrial application
of symbolic control is still severely limited. Success of most of the aforementioned practical
examples heavily relies on the fact that their dynamical systems are highly decoupled. This
allows for significant computational savings, and therefore, computationally feasible solution of
control problems. Yet, many challenging problems posses rather large (subsystems of) highly
interconnected dynamics. Abstractions for general non-linear coupled continuous systems require
discretization of both state and input spaces and suffer from extreme computational costs since
the number of abstract transitions for a discretized state-input pair grow exponentially with the
dimension of continuous state-space. Since modern CPUs have reached significant processing
power, in practice, memory costs of abstractions have been the main reason why standard
algorithms failed on problems with state-space dimension greater than 2.

The present work is concerned with increasing efficiency of abstraction based control for highly
coupled general non-linear systems, without any structural assumptions on system dynamics for
two specifications - invariance and optimal reachability.

The research to develop more efficient synthesis methods within abstraction-based methodology
have followed 3 main approaches: i) algorithms using special properties of classes of continuous
systems. The work [118] provided a method to construct abstractions without discretization of the
state space, which could potentially be more scalable, yet is limited to stochastic switched systems.
Similarly, discretization-free abstractions for incrementally stable switched systems are constructed
in [27]. Methods for decoupled systems have shown to be able to cope with systems in higher
dimensions, however, this approach is only applicable to plant dynamics that suitably decompose.
[85] exploits state- decomposable structure of continuous systems dynamics to drastically reduce
abstraction storage costs, while producing controllers with no loss of performance. [48] enables a
compositional synthesis approach by employing directed assume–guarantee contracts between
monotone systems. [80] constructs abstractions for networks of control systems. Analogously, [71]
synthesizes controllers for collections of systems. [65] compositionally abstracts stochastic control
systems. [64] presents efficient abstraction methods for weakly interconnected sub-components,
possibly connected in feedback, and models the coupling signals as disturbances. [40] decomposes
abstraction computation for partially feedback-linearizable systems. [53] describes compositional
abstractions for networks of stochastic systems. [12] decentralizes abstraction techniques for
multi-agent systems. [117] includes refinement of abstractions for piece-wise affine systems.
[70] provides the tool COSYMA applicable to incrementally stable switched systems and uses
multi-scaled abstractions. [93] efficiently synthesizes controllers guided by specification for linear
systems and safe linear-time temporal logic. [96] presents efficient safety controller synthesis for
monotone systems. ii) decomposition algorithms, applicable to very general classes of systems,
trying to represent abstractions as composition of lower-dimensional subsystems. A general
abstraction-based decomposition algorithm is presented by [67] which provides large reduction at
the cost of additional controller conservatism. [49] also provides a general method for modular
construction of abstractions but suffers from similar drawback of additional non-determinism. iii)
on-the-fly methods: methods that attempt to compute only those parts of symbolic model that
are needed to solve the given control task. [44] constructs lazy controller synthesis algorithm,
which uses the incremental forward exploration of the symbolic dynamics from initial states
and adaptive grids. [44] provides an on-the-fly algorithm to find an invariant set of certain
structure. [20, 56, 38] refine grids over the state space during invariance or reachability synthesis.
While demonstrating significant improvement on several examples, these methods perform worse
memory-wise as a result of stored coarse abstractions, in cases where successful synthesis heavily
depends on computations at finest layers, e.g. when system dynamics is heavily disturbed or
obstacle environment is complicated. [94, 41] construct abstract transitions during synthesis
until a (safety or reachability) control problem is solved. However, all the mentioned approaches

12

are heuristic in nature and no guarantees on computational reduction are provided. The tool
MASCOT [37] builds so-called lazy algorithms, which use several discretization layers of varying
coarseness in an on-the-fly fashion. The tool significantly reduces computational effort when only
certain limited regions of the state-space present particular difficulties for controller synthesis,
as is the case with many problems from robotics where complex obstacles are distributed non-
uniformly across the geometrical region. ROCS [56, 57] implements two synthesis modes, one
based on precomputed, uniform-grid abstractions, and an on-the-fly mode with specification-
guided adaptive state discretization. In the latter mode, symbolic dynamics is computed when
needed and not stored, which keeps the memory footprint amazingly small. However, heavy use
of interval arithmetic throughout the synthesis process in both modes may considerably increase
cpu time compared to implementations relying on standard floating-point arithmetic. The tool
applies to an important class of LTL specifications and takes advantage of decomposable plant
dynamics for efficiency.

Parallelization approaches that tackle the time consumption of abstraction based algorithms
have also been studied: PFACES [47] facilitates parallel controller design and provides methods to
parallelize both abstraction computation and discrete synthesis. It supports multiple types of com-
puting units, including CPUs, GPUs, and Hardware Accelerators, as well as their heterogeneous
combination. To control memory usage, the tool favors recomputing results over storing them.
[112] provides a parallelized algorithm for reach-avoid problems with user control over maximum
memory usage. When the memory limit is reached the algorithm requires re-computation of
needed parts of abstraction. It is also worth to mention several works that provide optimizations
to construction of abstractions: [114] optimizes state-space discretization parameters and [100]
reduces the number of abstract transitions through the use of low-level controllers for monotone
systems. These two methods apply to every abstract specification and can be combined with the
algorithms proposed in this work.

To conclude, abstraction-based synthesis has developed theoretic advantages that are un-
matched by classical methods [88, 86]. Promising applications in certain safety-critical environ-
ments are expected: medicine [11], smart buildings [67], autonomous vehicles [46]. However,
symbolic control is not currently applicable on industrial scale due to large computational costs
of abstractions. Most methods that have been developed to address this problem are either
restricted to specific classes of systems, or do not provide any guarantees of computational relief.

4 Contributions and Structure of the work
The present work is concerned with providing general computationally-efficient symbolic control
methods for highly coupled non-linear systems, without any structural assumptions on system
dynamics. Two fundamental specifications are considered: optimal reachability and qualitative
invariance. These types of problems often appear in engineering problems: see examples above as
well as robot control [50], rocket control [16], Moore-Greitzer engine control [58], path planning
of a quad-rotor [121]. The main contributions are :

First, novel space-efficient methods are introduced: for optimal reachability and qualitative
invariance respectively. Large reduction of space complexity is proven and no restrictions on
continuous dynamics are placed, which makes these algorithms applicable to a wide class of
control problems. In fact one source of exponential space complexity is completely removed
with no significant increase of time consumption. Guaranteed memory reduction and generality
of developed algorithms are the main contributions of this thesis. Up to the knowledge of the
author proposed methods are unique to simultaneously prove space relief and take time linear
in abstraction size. Moreover, it is demonstrated that controllers synthesized through the use

13

of the newly introduced methods are at least as permissible as controllers synthesized by any
standard abstraction-based algorithms. Thus reduction of computational complexity does not
produce controllers of inferior quality compared to standard symbolic methods.

Second, this work presents a jointly composed software package, ABS, that contains all
functionality to construct abstractions of general nonlinear systems and includes the developed
synthesis methods. Contrary to many of its competitors, ABS constructs abstractions/ synthesizes
controllers fully automatically, with no manual interference needed, aside from constructing a file
describing the control problem of interest.

Finally, several numerical tests are conducted, which show that the computational savings in
practice correspond to reduction of theoretical algorithm complexity. It is shown, that the newly
developed algorithms are able to solve control problems that can not be tackled by competing
symbolic methods - due to either time or memory constrains.

This work is structured as follows: Section 6 describes method to compute abstractions of non-
linear systems and provides mathematical justification for properties that such abstraction provide.
Section 7 contains theoretical contributions of this work and description of novel algorithms.
Section 8 presents the developed software package, its functionality, structure and user options.
Section 9 concludes the work and includes description of control problems to which the novel
algorithms and the competing software have been applied and discussion of the obtained results.

5 Basic definitions and notations
We use the notation from [62], and most of this section is taken from that reference. The relative
complement of the set A in the set B is denoted by B \ A. R, R+, Z and Z+ denote the sets
of real numbers, non-negative real numbers, integers and non-negative integers, respectively,
and N = Z+ \ {0}. We adopt the convention that ±∞ + x = ±∞ for any x ∈ R. [a, b],]a, b[,
[a, b[, and]a, b] denote closed, open and half-open, respectively, intervals with end points a and b,
e.g. [0,∞[= R+. [a; b],]a; b[, [a; b[, and]a; b] stand for discrete intervals, e.g. [a; b] = [a, b] ∩ Z,
[1; 4[= {1, 2, 3}, and [0; 0[= ∅. maxM , minM , supM and infM denote the maximum, the
minimum, the supremum and the infimum, respectively, of the nonempty subset M ⊆ [−∞,∞].
We identify set-valued maps f : A⇒ B with binary relations on A×B, i.e., (a, b) ∈ f iff b ∈ f(a).
If f is set-valued, then f is strict and single-valued if f(a) ̸= ∅ and f(a) is a singleton, respectively,
for every a. Moreover, single-valued f is identified with an ordinary map f : A → B. The
restriction of f to a subset M ⊆ A is denoted f |M .

The inverse mapping f−1 : B ⇒ A is defined by f−1(b) = {a ∈ A | b ∈ f(a)}, and f(C) =⋃
a∈C f(a), C ⊆ A. For maps f, g : X → [−∞,∞], f < g if f(x) < g(x) for all x ∈ X.

Analogously, the relations are interpreted component-wise for elements of [−∞,∞]
n. The set of

minimum points of f in some subset Q ⊆ X is denoted argmin {f(x) |x ∈ Q}.
An extended real-valued function f : A→ R ∪ {∞} is called upper semi− continuous (u.s.c.)

if for every x ∈ A and ϵ > 0 there is a neighborhood U of x such that for all x′ ∈ U we have
f(x′) ≤ f(x) + ϵ. The set-valued map H : X ⇒ Y between metric spaces X and Y is u.s.c. if
H−1(Ω) is closed for every closed subset Ω ⊆ Y , where H−1(Ω) = {x ∈ X |H(x) ∩ Ω ̸= ∅}. The
hypograph hypo(f) of a function f : Rn → R ∪ {∞} is defined by

hypo(f) := {(x, γ) ∈ Rn × R | γ ≤ f(x)} .

6 Abstraction-Based Controller Synthesis
This section describes construction of abstractions of dynamical systems. All the necessary
computational procedures are first presented. Their mathematical justification follows afterwards

14

in section 6.3. This section presents a simplified version of concepts introduced in [88, 86]

6.1 Systems and their Finite Approximations
As already mentioned, this thesis is concerned with developing methods for abstraction-based
synthesis that guarantee to reduce memory consumption. The novel methods will be implemented
and tested against competitors on systems described by ordinary differential inclusions of the
form:

ẋ ∈ f(x(t), u(t), w(t))
.

(1)

where x ∈ X ⊂ Rn denotes state vector, u ∈ U ⊂ Rm denotes input vector and w ∈ W ⊂ Rn

denotes unknown disturbance signal. Systems of the form (1) are of interest since they describe a
wide variety of control problems in many domains - for example see [11, 67, 46], and section 9 of
this work.

To ensure efficiency of algorithms, presented in this thesis, some assumptions, albeit very
general, have to be placed on set-valued map f in the right-hand side of (1).

(i) f depends additively on disturbance signal w(t) and moreover w(t) ∈ J−w,wK , w ∈ Rn
+.

(ii) For every initial value x0 ∈ Rn and every constant input u ∈ U there exists a solution ξ of
(1) defined on R that satisfies ξ(0) = x0. This assumption is satisfied if the map f(·, u) f is
continuously differentiable in its first argument.

As will be shown later, construction of symbolic model of (1) involves over-approximation of
reachable sets. To ensure their fast computation condition (i) is introduced, while condition (ii)
ensures that it is possible to construct symbolic model of a system in every part of the state-space.

Thus, considered systems take the following form:

ẋ ∈ f(x(t), u(t)) + J−w,wK
.

(2)

where f : Rn × U → Rn, w ∈ Rn
+ satisfies assumption (ii), and summation is interpreted as

Minkowski set addition [103, p. 74].
According to theory, correctness of novel methods does not depend on assumptions above,

provided that functionality to compute maps of certain properties is available - see section 7.
However, for systems of the form (2) computation of such maps is efficient, is described here
in detail and is thus guaranteed to exist. This section immediately proceeds to providing all
algorithmic details of computing finite abstractions that capture behavior of systems of the form
(2). Theoretical results that demonstrate that, indeed, the given functionality can be used to
synthesize correct-by-design controllers are presented at the end of the chapter. A general scheme
of abstraction-based synthesis for systems (2) is presented in Fig. 1.

To begin with, finite abstractions will be computed having the following data at hand:

• ẋ ∈ f(x(t), u(t)) + J−w,wK

• sampling time τ ∈ Q+

• f is continuously differentiable in x

• x ∈ X1 = Jx1, x2K , x1 = (x11, ..., x1n), x2 = (x21, ..., x2n) ∈ Rn; u ∈ U1 = Ju1, u2K , u1, u2 ∈
Rm; w ∈ R+

15

System
ẋ ∈ f(x, u)

Abstraction
Finite

transitions

Synthesis
Discrete

algorithms
Controller

fff

Non-linear
systems

Automated

Guarantees
on safety and
performance

Complex
Environment

Figure 1: Standard Abstraction-based Synthesis scheme.

• discretization parameters dx = (dx1 , ..., d
x
n) ∈ Nn \ {0}, du = (du1 , ..., d

u
m) ∈ Nm \ {0} for X1

and U1.

6.1.1 Computation of Abstract State-Space

Abstract state space X2 consists of hyper-intervals, which also form a cover of the original
continuous state space X1, together with an overflow symbol Ω̄, which is used to model transitions
leading to outside of the bounded domain X1.

X2 =

k−1⋃
0

Jai, biK ∪ Ω̄ (3)

where Jai, biK = Rn∩ ([ai1, bi1]× · · · × [ain, bin]), ai, bi ∈ (R)n, x1 ≤ ai ≤ bi ≤ x2, 0 ≤ i ≤ k−1 <
∞. Symbol Ω̄ will be used by abstract dynamics to capture cases when continuous system leaves
X1 after one sampling time.

Number of needed hyper-rectangles to cover X depends on discretization parameters, specified
in advance and is computed as follows:

k =

n∏
1

dxi

Thus, to every cell Jai, biK ∈ X2, 0 ≤ i ≤ k − 1 corresponds an index i and a vector of
coordinates (c1, ..., cn), 0 ≤ cj ≤ dxi − 1, cj ∈ N ∀j ∈ [1, n], computed according to the following
subroutines.

To form a uniform cover of the continuous state-space, diameter r = (r1, ..., rn) ∈ Rn of every
cell [ai, bi] ∈ X2 is computed component-wise as follows:

r = (x2 − x1)/dx (4)

16

Algorithm 1 Cell/Input Index → Coordinate Vector

Input: Cell/Input index idx
Require: n dimension of continuous state/input space
1: for i← 1 to n do
2: div := 1
3: for j ← 1 to i− 1 do
4: div := div · dj
5: modu := div · di
6: ci := (idx mod modu)/div

Output: Cell/input coordinates (c1, ..., cn)

Algorithm 2 Coordinate Vector → Cell/Input Index

Input: Cell/Input coordinates (c1, ..., cn)
Require: n dimension of continuous state/input space
1: a := 0
2: b := 0
3: d := 1
4: for i← 1 to n do
5: a := ci
6: a := a · d
7: b := b+ a
8: d := d · ci
9: idx := b

Output: Cell/Input index idx

17

Then, position of a cell Jai, biK is determined by procedure that computes geometrical position
of its center in the continuous state-space: Algorithm 3.

Algorithm 3 Cell/Input Index → Grid Point

Input: Cell/Input index idx
Require: n dimension of continuous state/input space
Require: x1 lowest point in Jx1, x2K forming state/input continuous space
1: c := Cell/Input Index → Coordinate Vector(idx)
2: for i← 1 to n do
3: pi := x1i + (ci + 0.5) ∗ ri

Output: Cell/Input float coordinates (p1, ..., pn)

To summarize, algorithms 1,2,3 provide functionality to compute abstract state-space from
the original continuous control problem data.

6.1.2 Computation of Abstract Input-Space

The input alphabet U2 of abstraction is defined as a finite subset of the continuous input set U1

: U2 ⊂ U1, |U2| < ∞. Number of abstract inputs depends on input discretization parameters,
specified in advance and is computed as follows:

ku =

m∏
1

dui

Algorithms 1,2,3 can be used, analogously to the previous section, to provide functionality to
compute abstract input-space from the original continuous control problem data. The difference
between abstract state- and input- spaces consists in the fact that abstract states are subsets of
the continuous state-space, and abstract inputs are points in the continuous input-space.

6.1.3 Computation of Abstract Transition Function

To provide functionality to compute abstract transition function F2, it is first needed to over-
approximate reachable sets of continuous systems (2). Let φ denote the general solution of the
unperturbed (i.e. letting w = 0 in (2)) system associated with f for constant inputs on [0, τ].Let
ξ denote solution of perturbed system (2) on [0, τ].

Over-approximation method used to construct abstractions has to be computationally efficient,
since it will be repeated for every state in the large (although finite) abstract state-space. Therefore,
the method used in this work is based on component-wise bounds of neighboring solutions (see
also [120, 94]), which in turn leads to simple hyper-interval geometry of the computed set. Thus,
component-wise:

|ξ(τ)− φ(τ, p, u)| ≤ β(|ξ(0)− p|, u) (5)

where β : Rn
+ × U ′ → Rn

+, ξ(0), p ∈ K ⊆ Rn, u ∈ U ′ ⊆ U . Function β, called growth bounds is
defined as follows:

β(r, u) = eL(u)τ r +

∫ τ

0

eL(u)s w ds (6)

where the following holds, Djfi denotes the partial derivative with respect to the jth component
of the first argument of fi:

18

Li,j(u) ≥

{
Djfi(x, u), if i = j,
|Djfi(x, u)|, otherwise

for K ⊆ K ′ ⊆ Rn, K ′ convex, any u ∈ U ′, any τ ′ ∈ [0, τ] and any solution ξ on [0, τ ′] of (2) with
input u and ξ(0) ∈ K, we have ξ(t) ∈ K ′ for all t ∈ [0, τ ′]. K ′ is called apriori enclosure [60]

Algorithm 4 Apriori Enclosure [60]

Input: State domainX = Jx1, x2K, Input domain U = Ju1, u2K, Sampling time τ > 0, Disturbance
bound w, Function f

Require: number of attempts N <∞ pre-defined
1: x̄ := Jx1, x2K
2: ¯̄x := Jx1, x2K
3: x0 := Jx1, x2K
4: ū := Ju1, u2K
5: t̄ := [0, τ]
6: while x̄ ⊈ ¯̄x ∧ n < N do
7: n := n+ 1
8: x̄f = f(x̄, ū) // Interval arithmetic
9: x̄f := x̄f + J−w,wK

10: if x̄f ∩ {−∞,∞} ≠ ∅ then
11: Return Unbound
12: ¯̄x := x̄
13: y := x̄f · t̄
14: y := y + x0

15: x̄ := y
16: if x̄ ∩ {−∞,∞} ≠ ∅ then
17: Return Unbound
18: if x̄ ⊈ ¯̄x then
19: Return Not Found
Output: Apriori Enclosure x̄

For a cell Ja, bK ∈ X2 and input u ∈ U2 the image of abstract transition function is computed
as follows:

F2(Ja, bK , u) = {Jc, dK ∈ X2| Jc, dK ∩ Ω(Ja,bK,u) ̸= ∅}
If Ω(Ja,bK,u) ∩ (Rn \X2) ̸= ∅ ∧ Ω(Ja,bK,u) ∩X2 ̸= ∅ then Ω̄ ∈ F2(Ja, bK , u).

(7)

where Ω(Ja,bK,u) = Jφ(τ, (a+ b)/2, u)− β((b− a)/2, u), φ(τ, (a+ b)/2, u) + β((b− a)/2, u)K.
It has to be noted that conservativeness of abstraction depends on the radius of abstract cells

(assuming a uniform grid) and conservativeness of over-approximation method of reachable sets.

6.2 Abstract and Concrete Control Problems
Algorithms described in this work, focus on two control problems: reach-avoid problem and
invariance problem.

A reachability specification is defined by:

Σ1 = {(u, x) ∈ (U ×X)∞ |x(0) ∈ I ⇒ ∃t ∈ [0, T [: (x(t), u(t)) ∈ Z} (8)

19

An invariance specification on S is defined by:

Σ2 =
{
(u, x) ∈ (U ×X)[0,∞[

∣∣∣x(0) ∈ I ⇒ ∀t ∈ [0,∞[: (x(t), u(t)) ∈ Z
}

(9)

Current implementation applies only to minimum-time reach-avoid problems: to find a
controller for systems (2) that drives the system starting in initial set I1 ⊆ X1 to target set
T1 ⊆ X1 while avoiding obstacles O1 ⊆ X1. Implementation of invariance problems is also
restricted to qualitative problems only: to find a controller for systems (2) that restricts the
system starting in initial set I1 ⊆ T1 ⊆ X1 to target set T1 ⊆ X1 while avoiding obstacles O1 ⊆ X1

for arbitrary long period of time.
Abstract control problems for both invariance and reachability are defined through sets

I2, O2, T2 as follows:

I2 = {Jc, dK ∈ X2| Jc, dK ∩ I1 ̸= ∅}

O2 = {Jc, dK ∈ X2| Jc, dK ∩O1 ̸= ∅}

T2 = {Jc, dK ∈ X2| Jc, dK ⊆ T1}

6.3 Mathematical Rationale
Section 6.1 provided methods to construct abstraction of a continuous system and define specific
control problems on it. This section provides mathematical results stating that abstractions,
constructed according to section 6.1 can be used to synthesize correct-by-design controllers for
system (2). Efficiency of use of such functionality is discussed in the next chapter.

6.3.1 Feedback Refinement Relations

A general definition of a system is now introduced, at this point without any cost associated with
its transitions, and will be used to define relation between the original continuous system and its
abstraction, and to prove that algorithms in this work synthesize correct-by-design controllers.
Formal language for systems, system relationships and controllers, is used for concise and clear
description of the needed mathematical results.

A system is a tuple

S = (X,U, F) (10)

where X, U , are nonempty sets, and F : X × U ⇒ X is strict and describes evolution of the
system.
A tuple (u, x) ∈ U [0;T [× X [0;T [is a solution of the system (10) (on [0;T [, starting at x(0)) if
T ∈ N ∪ {∞}, and

x(t+ 1) ∈ F (x(t), u(t)) (11)

holds for all t ∈ [0;T − 1[and x(0) ∈ X. For the case of system (2) F would be defined implicitly
through solution of an underlying continuous-time control system, i.e. through computation of
reachable sets at a certain sampling time.

A controller C for the system (10) (denoted by C ∈ F(X,U)) is a quintuple

(Z,Z0, X̃, Ũ ,H), (12)

20

where Z, Z0, X̃, Ũ are non-empty state, input and output controller alphabets, Z0 ⊆ Z, X ⊆ X̃,
Ũ ⊆ U , and H : Z × X̃ ⇒ Z × Ũ × {0, 1} is strict. A quadruple (u, v, z, x) ∈ ŨZ+ × {0, 1}Z+ ×
ZZ+ × X̃Z+ is a solution of the controller (12) if z(0) ∈ Z0 and (z(t+1), u(t), v(t)) ∈ H(z(t), x(t))
holds for all t ∈ Z+.

Finally, controlled behavior B(C × S) ⊆ (U × {0, 1} × X)Z+ of the closed loop composed
of C (12) and S (10) is defined by the requirement that (u, v, x) ∈ B(C × S) iff there exists
a signal z : Z+ → Z such that (u, v, z, x) is a solution of C and (u, x) is a solution of S. In
addition, the behavior initialized at p ∈ X is denoted by Bp(C × S) and defined by Bp(C × S) =
{(u, v, x) ∈ B(C × S) |x(0) = p}.

To formulate results concerning correctness of abstraction-based solution of control problems,
it is needed to define serial and feed-back composition of systems.

6.1 Definition. Let Si = (Xi, Ui, Fi) be systems, i ∈ {1, 2}, and assume that X1 ⊆ U2. Then S1

is serial composable with S2, and the serial composition of S1 and S2, denoted S2 ◦ S1, is the tuple

(X12, U1, F12),

where X12 = X1 ×X2, F12 : X12 × U1 ⇒ X12 satisfies

F12(x, u1) = {(y1, y2)|y1 ∈ F1(x1, u1) ∧ y2 ∈ F2(x2, y1)}. (13)

6.2 Definition. Let Si = (Xi, Ui, Fi) be systems, i ∈ {1, 2}, X2 ⊆ U1 and X1 ⊆ U2, and that the
following condition holds:

(Z) If x2 ∈ U1, x1 ∈ U2 and F2(x2, x1) = ∅, then F1(x1, x2) = ∅.

Then S1 is feedback composable with S2, and the closed loop composed of S1 and S2, denoted
S1 × S2, is the tuple

(X12, {0}, F12),

where X12 = X1 ×X2, and F12 : X12 × {0}⇒ X12 satisfies

F12(x, 0) = {(y1, y2)|y1 ∈ F1(x1, x2) ∧ y2 ∈ F2(x2, x1)}. (14)

At this point all needed mathematical concepts have been introduced to describe how abstrac-
tions for systems (2) have to be constructed to ensure that finite abstract controllers, can be
utilized to provably solve control problems with countably infinite state and input spaces. In this
scope, special system relations are presented with the required property: if abstraction relates
to the original plant accordingly and a controller solves abstract control problem, then refined
controller solves the original continuous problem.

6.3 Definition. Let S1 and S2 be systems,

Si = (Xi, Ui, Fi) (15)

for i ∈ {1, 2}. A strict relation Q ⊆ X1 ×X2 is a feedback refinement relation from S1 to S2 if the
following holds for all (x1, x2) ∈ Q:

(i) U2 ⊆ U1;

(ii) Q(F1(x1, u)) ⊆ F2(x2, u).

21

Existence of a specific feedback refinement relation Q from S1 to S2 is denoted S1 ≼Q S2, and
S1 ≼ S2 denotes existence of some unspecified feedback refinement relation.

The main property of feedback refinement relations can now be presented. Assume S1, S2

and C is the plant, its abstraction and abstract controller respectively. The next theorem states
that behavior of abstraction captures behavior of the original system.

Theorem Quote 1 ([88]). Let Q be a feedback refinement relation from the system
S1 to the system S2, and assume that the system C is feedback composable with S2.
Then the following holds.

(i) C is feedback composable with Q ◦ S1, and C ◦Q is feedback composable with
S1.

(ii) B(C × (Q ◦ S1)) ⊆ B(C × S2).

(iii) For every (u, x1) ∈ B((C ◦ Q) × S1) there exists a map x2 such that (u, x2) ∈
B(C × S2) and (x1(t), x2(t)) ∈ Q for all t in the domain of x1.

It is now needed to describe the process of refinement of abstract controller, solving abstract
control problem, to concrete controller, solving the original continuous control problem. A control
problem needs to be formally defined, as well as its abstraction.

6.4 Definition. Let S denote the system (10). Given a set Z, any subset Σ ⊆ Z∞ is called a
specification on Z. A system S is said to satisfy a specification Σ on U × Y if B(S) ⊆ Σ. Given a
specification Σ on U × Y , the system C solves the control problem (S,Σ) if C is feedback composable
with S and the closed loop C × S satisfies Σ.

6.5 Definition. Let S1 and S2 be simple systems of the form (10), let Σ1 be a specification on
U1 ×X1, and let Q ⊆ X1 ×X2 be a strict relation. A specification Σ2 on U2 ×X2 is called an
abstract specification associated with S1, S2, Q and Σ1, if the following condition holds.
If (u, x2) ∈ Σ2, where x2 and u are defined on [0;T [for some T ∈ N∪{∞}, and if x1 : [0;T [→ X1

satisfies (x1(t), x2(t)) ∈ Q for all t ∈ [0;T [, then (u, x1) ∈ Σ1.

For the sake of simplicity, (S1,Σ1) ≼Q (S2,Σ2) whenever S1 ≼Q S2 and Σ2 is an abstract
specification associated with S1, S2, Q and Σ1 The following fundamental result states that,
solution of abstract problem will induces a solution of the concrete problem and describes the
controller refinement procedure.

Theorem Quote 2 ([88]). If (S1,Σ1) ≼Q (S2,Σ2) and the abstract controller C
solves the control problem (S2,Σ2), then the refined controller C ◦Q solves the control
problem (S1,Σ1).

It has been shown that abstractions, preserving feedback refinement relations to original
continuous control problem, can be used to solve it. What remains to be shown, is that
computational methods presented in section 6.1 indeed produce abstractions that preserve feed
back refinement relations to systems (2).

22

Theorem Quote 3 ([88]). Consider two simple systems S1 = (X1, U1, F1) and
S2 = (X2, U2, F2) of the form (10). Given a sampling time τ > 0, the transition
function F1 is defined by the requirement that y ∈ F1(x, u) iff there exists a solution
ξ : [0, τ]→ Rn of (2), with constant input u ∈ U1, satisfying ξ(0) = x and ξ(τ) = y.
Hence, S1 represents the time-sampled behavior of (2). Let x ∈ X1 = Jx1, x2K , x1 =
(x11, ..., x1n), x2 = (x21, ..., x2n) ∈ Rn; u ∈ U1 = Ju1, u2K , u1, u2 ∈ Rm; w ∈ R+. Set
X̄2 ⊆ X2. Let β be a growth bound on ∪x2∈X̄2

x2, U2 associated with τ and (2). If

(i) X2 is a cover of X1 by non-empty, closed hyper-intervals and every element
x2 ∈ X̄2 is compact;

(ii) U2 ⊆ U1;

(iii) for x2 ∈ X̄2, x′2 ∈ X2 and u ∈ U2 we have

(φ(τ, c, u) + J−r′, r′K) ∩ x′2 ̸= ∅ ⇒ x′2 ∈ F2(x2, u), (16)

where Ja, bK = x2, c = b+a
2 , r = b−a

2 and r′ = β(r, u);

(iv) F2(x2, u) = ∅ whenever x2 ∈ X2 \ X̄2, u ∈ U2.

, then S1 ≼∈ S2.

6.3.2 Optimal Control Problems and their Symbolic Solutions

Section 6.3.1 presented first fundamental advantage of abstraction-based synthesis: abstract
controllers can be refined to provably solve the original continuous control problem. However, most
practical application demand taking into account trajectory costs when synthesizing controllers.
This section presents the second property, unmatched by competing methods: abstract value
function of an optimal control problem can approximate concrete value function with arbitrary
precision. Analogously to the previous section, an optimal control problem will now be formally
defined. The problem data is extended to include non-negative, extended real-valued running
and terminal cost functions, g and G,

g : X ×X × U → R+ ∪ {∞}, (17a)
G : X → R+ ∪ {∞}, (17b)

where R+ denotes the set of non-negative reals.
An optimal reach-avoid problem for system (10) S = (X,U, F) is an optimal control problem

that requires finding controllers C ∈ F(X,U), which, for every state p ∈ X, (approximately)
minimize the total cost J1 : (U × {0, 1} ×X)Z+ → [0,∞] defined by

J1(u, v, x) = G(x(T)) +

T−1∑
t=0

g(x(t), x(t+ 1), u(t)), (18)

if v ̸= 0 and T = min v−1(1), and otherwise

J1(u, v, x) =∞, (19)

for (u, v, x) ∈ Bp(C × S), in a worst-case sense. Here, the stopping signal v : Z+ → {0, 1}
determines the time when the evaluation of the closed loop stops.

23

An optimal invariance problem for S is an optimal control problem that requires finding
controllers C ∈ F(X,U), which, for every state p ∈ X, (approximately) minimize the total cost
J2 : (U × {0} ×X)Z+ → [0,∞] defined by

J2(u, v, x) =

∞∑
t=0

g(x(t), x(t+ 1), u(t)), (20)

for (u, v, x) ∈ Bp(C × S), in a worst-case sense. Here, the evolution of the closed loop must never
stop, and the stopping signal v is kept only to allow for a unified formulation of both problems.

More formally, for both the reach-avoid (i = 1) and the invariance (i = 2) problem, the
closed-loop performance Li : X → [0,∞] associated with the controller C ∈ F(X,U) is given by

Li(p) = sup
(u,v,x)∈Bp(C×S)

Ji(u, v, x), (21)

and the value functions Vi : X → [0,∞] is defined by

Vi(p) = inf
C∈F(X,U)

sup
(u,v,x)∈Bp(C×S)

Ji(u, v, x), (22)

where i ∈ {1, 2}.
For the sake of convenience, we will refer to the 5-tupel

(X,U, F,G, g) (23)

as the optimal control problem for the system (10) and cost functions G and g as defined above.

6.6 Example. [86] Reach-avoid problems comprise, e.g. shortest path and minimum-time prob-
lems. Moreover, the requirement that the state of S should be driven into a target set D ⊆ X
while avoiding an obstacle set M ⊆ X is represented by the following qualitative reach-avoid
problem: G(p) = 0 if p ∈ D \M , and otherwise G(p) =∞, and

g(p, q, u) =

{
0, if p ̸∈M
∞, otherwise.

(24)

On the other hand, consider the requirement that the state of S should remain in D ⊆ X
indefinitely while avoiding M ⊆ X. The requirement is represented by the following qualitative
invariance problem, and V −1

2 (0) equals the maximal controlled invariant subset of D \M : G =∞
and

g(p, q, u) =

{
0, if p ∈ D \M
∞, otherwise.

(25)

Analogously to the previous section, it is needed to define relations which abstract control
problems have to preserve to the concrete ones.

6.7 Definition. Consider two optimal control problems Π1 and Π2 of the form (23). The relation
Q : X1 ⇒ X2 is a valuated feedback refinement relation from Π1 to Π2, denoted Π1 ≼Q Π2, if Q is
strict and the following conditions hold for all (p1, p2), (q1, q2) ∈ Q and all u ∈ U2:

(i) U2 ⊆ U1;

(ii) G1(p1) ≤ G2(p2);

24

(iii) g1(p1, q1, u) ≤ g2(p2, q2, u);

(iv) Q(F1(p1, u)) ⊆ F2(p2, u).

It is now possible to compare abstract and concrete value functions.

Theorem Quote 4 ([86]). Let Π1 and Π2 be two optimal control problems with
value functions V1 and V2, respectively. If Π1 ≼◦

Q Π2, then V1(p1) ≤ V2(p2) for every
(p1, p2) ∈ Q.

Results concerning convergence, require the notion of abstraction precision. To provide
such definition, it is needed to limit the extent to which U1, G2(Ω), g2(Ω,Ω′, u) and F2(Ω, u)
over-approximate U2, supG1(Ω), sup g1(Ω,Ω′, u) and F1(Ω, u), respectively.

Let (X, d) be metric space. Then

d(x,N) = inf {d(x, y) | y ∈ N} ,
d(M,N) = inf {d(x, y) |x ∈M,y ∈ N}

∀x ∈ X, ∀M,N ⊆ X,M ̸= ∅, N ̸= ∅. B(c, r) and B̄(c, r) denote the open, respectively, closed
ball with center c ∈ X and radius r > 0, and B̄(c, 0) = {c}. Denote the diameter of a subset
M ⊆ X by diam(M) [39].

6.8 Definition. Let Π2 be an abstraction of Π1 and suppose that Π1 and Π2 are of the form (23),
that U1 and X1 are metric spaces, and that the elements of X2 are closed subsets of X1.
Then Π2 is an abstraction of conservatism∞ of Π1. Moreover, Π2 is an abstraction of conservatism
ρ ∈ R+ of Π1 if the following conditions hold for all Ω,Ω′ ∈ X2 and all u ∈ U2:

(i) U1 = B̄(U2, ρ);

(ii) G2(Ω) ≤ ρ+ supG1(Ω);

(iii) g2(Ω,Ω
′, u) ≤ ρ+ sup g1(Ω,Ω

′, u).

If Ω satisfies the condition
G1(Ω) ∪ g1(Ω, X1, U1) ̸= {∞}, (26)

then additionally require the following:

(iv) F2(Ω, u) ⊆ {Ω′′ ∈ X2 | d(Ω′′, F1(Ω, u)) ≤ ρ}, where d denotes the metric on X1;

(v) diam(Ω) ≤ ρ.

Thus, the main result of this section can be formulated, where the following notion of
convergence is used.

6.9 Definition. Let the map V : X → R+ ∪ {∞} be u.s.c. on the metric space X, and let
Li : X → R+ ∪ {∞} satisfy Li ≥ V , for all i ∈ N. Then the sequence (Li)i∈N hypo-converges to
V , denoted V = h-limi→∞ Li, if the following condition holds. For every p ∈ X and every ε > 0
there exist a neighborhood N ⊆ X of p such that the inclusion

(N × R) ∩ hypoLi ⊆ B(hypoV, ε) (27)

holds for all sufficiently large i ∈ N.

25

Theorem Quote 5 ([86]). Let (X,U, F,G, g) be optimal control problem of the form
(23). Assume

(i) X is a proper metric space, U is a compact metric space, F is compact-valued,
and g, G and F are u.s.c..

(ii) For every i ∈ N, Πi is an abstraction of conservatism ρi ∈ R+ ∪ {∞} of the form
(23), Ci is an optimal controller for Πi, and Li is the closed-loop value function
of (23) associated with Ci ◦ ∈, where ∈ : X ⇒ Xi is the membership relation and
limi→∞ ρi = 0.

(iii) V is the value function of (23).

Then h-lim
i→∞

Li = V .

7 Space-Efficient Symbolic Optimal Control
Section 6 demonstrated that it is possible to solve continuous control problems, using only their
finite approximations, constructed to preserve certain properties, and provided computational
procedures to properly construct such abstractions. Standard abstraction-based algorithms
(see for example [86],[95]) operate on abstractions only and completely disregard the original
continuous dynamics. Although this behavior induces generality of standard methods, it requires
full abstractions to be pre-computed and stored in memory. Abstraction memory requirements
for high-dimensional systems are extremely prohibitive and severely limit applications of symbolic
control methods.

Uniform and non-uniform grids on continuous state- and input- spaces lead to exponential
"explosion" of the number of abstract transitions, since for each abstract state-input pair number
of abstract transitions grows exponentially in dimension of continuous state-space. Nevertheless,
note that according to procedures described in section 6.1, construction of abstract transition
function F2(p, u) for an abstract state-input pair (p, u) ∈ X2 × U2 does not depend on any
(p, u) ̸= (q, v) ∈ X2 × U2. As previously mentioned this is exploited by the class of algorithms
known as "on-the-fly" methods: to attempt to construct only those parts of abstraction, that are
needed to solve the given control problem.

7.1 Optimal Reach-Avoid and Optimal Invariance Synthesis
Two novel on-the-fly methods for synthesis based on abstractions are now presented. Analogous
to previous sections, proposed algorithms will be described in the language of formal systems.
In all algorithms (X,U, F,G, g) will be assumed to be abstract control problem that is defined
implicitly: i.e F is described through a set of functions that compute F (p, u) on demand for every
(p, u) - see section 6.1.

Algorithm 5 describes general structure of both optimal reach-avoid and qualitative invariance
controller synthesis on abstractions of continuous-state systems. Traversal of finite spaces according
to the current iteration minimizer of a value function W (line 6) is a standard approach in graph
theory ([21, 86]), however, due to set-valued nature of abstract transition function F , this method
can not be naively applied to abstraction-based algorithms. Variables E, Q and Y are subsets of
X, c : X ⇒ U and W : X → R+ ∪ {∞}. Commands of the form X ⊇ Q :⊇M on line 2 require
that a set Q satisfying M ⊆ Q ⊆ X is chosen, and similarly for the command on line 6. Iterations

26

System
ẋ ∈ f(x, u)

Abstraction
Compute full
abstraction On-the-fly

Synthesis

Standard
Synthesis

Controller
fff

Process
computed
transitions

Compute
parts of

abstraction
on demand

Figure 2: On-the-fly vs Standard Abstraction-based Synthesis scheme.

traverse the state-space, and construct controller c such that u ∈ c(x) if F (x, u) and E satisfy
certain relation depending on control objective.

Synthesis algorithms on abstractions typically progress backwards in time since forward
exploration on abstractions is infeasible due to transition map F being set-valued. Therefore,
standard methods (see, e.g. [86]) require the inverse of map F to be available. While F is assumed
to be given implicitly, F−1, in general, can only be accessed from F stored appropriately in
memory which leads to extreme space demands. In contrast, proposed methods in this thesis
do not require storage of any significantly large part of F in memory and provide guarantees on
large storage reduction.

Assuming absence of pre-computed F−1, Algorithm 5 will require tools to predict which
transitions have to be computed. Since these functions will operate on abstractions, they will be
described stating their properties first, with actual implementation presented later.

7.1 Definition. Let Π = (X,U, F,G, g) be a control problem. A set-valued map f− : X ×U ⇒ X
is called backward estimator if

∀(p,u)∈X×U ∃q∈F (p,u) p ∈ f−(q, u) (28)

7.2 Definition. Let Π0 = (X0, U0, F0, G0, g0), Π be of the form (23) such that Π0 ≼R Π. A map
F− : X × U ⇒ X is called backward transition map associated with Π if the following holds:

∀(x,u,y)∈X×U×X∀x ̸∈F−(y,u)R
−1(y) ∩ F0(R

−1(x), u) = ∅. (29)

Map f− will be used in synthesis of reach-avoid optimal controllers and F− will be used for
synthesis of invariance controllers. Stronger assumptions are placed on F− than on f−. This is
motivated by the fact that for reach-avoid problems set E (line 3 Alg. 5) iteratively expands and
contains only controllable states (i.e. states for which optimal control input has already been
found) and functionality of line 9 Alg. 5 consists in finding states that might become controllable

27

Algorithm 5

Input: Control problem Π = (X,U, F,G, g), W0, c0
Input: Operator P
Input: Function ProcessTransitions
Require: X, U finite
1: W := P (W0) // W : value function
2: X ⊇ Q :⊇ {x ∈ X|W (x) ̸=W0(x)} // Q: queue
3: E := ∅ // E: set of settled states
4: c := c0 // c: controller
5: while Q ̸= ∅ do
6: ∅ ≠ Y :⊆ argmin {W (x) |x ∈ Q}
7: Q := Q \ Y
8: E := E ∪ Y
9: (Q, c,W) := ProcessTransitions(Π, E, Y,Q, c,W)

Output: c, W

later - x ∈ X such that ∃u∈UF (x, u) ∩E ≠ ∅. Weak properties of f− are enough to ensure that
properly implemented line 9 eventually finds all controllable states (Th. 8). However, in case
of invariance problems set E contains only uncontrollable states (i.e. states for which an input
solving control problem is proven to not exist) and once it is updated (line 8 Alg. 5) functionality
of line 9 Alg. 5 consists in immediately capturing all new uncontrollable states - x ∈ X such
that ∀u∈UF0(x, u) ∩ E ̸= ∅. Thus, conditions in Def. 7.2 cannot be weakened. Notice that
every backward transition map is also a backward estimator and, therefore, can be used to solve
reach-avoid problems as well. Backward estimators are chosen for reach-avoid problems, because
their images for a state-input pair are typically smaller than those of backward transition maps.

Backward maps will be computed assuming abstractions for systems of the form (2):

ẋ ∈ f(x(t), u(t)) + J−w,wK
.

where J−w,wK contains origin. Let φ denote its solution on [0, τ]. An auxiliary system is
introduced:

ẋ ∈ −f(x(t), u(t)) + J−w,wK
.

(30)

Backward estimators, and backward transition maps will be constructed by approximating
reachable sets of above system. Let S1 = (X1, U1, F1) be the sampled system associated with
the continuous-time system (2) and sampling time τ > 0 and S2 = (X2, U2, F2) its abstraction
constructed according to procedure outlines in section 6.1.

Then backward estimator f− can be computed as follows:

f−(Ja, bK , u) = {Jc, dK ∈ X2| Jc, dK ∩ Ω′
(Ja,bK,u) ̸= ∅} (31)

where Ω′
(Ja,bK,u) = Jφ(−τ, (a+ b)/2, u)− β′((b− a)/2, u), φ(−τ, (a+ b)/2, u) + β′((b− a)/2, u)K

and

β′(r, u) = eL
′(u)τ r (32)

28

L′
i,j(u) ≥

{
Dj(−fi(x, u)), if i = j,
|Dj(−fi(x, u))|, otherwise

is satisfied on apriori enclosure K− of X1 and system (30). Dj(−fi) denotes the partial derivative
with respect to the jth component of the first argument of −fi

Backward transition map F−, on the other hand, requires over-approximation of full reachable
set of (30):

F−(Ja, bK , u) = {Jc, dK ∈ X2| Jc, dK ∩ Ω′′
(Ja,bK,u) ̸= ∅} (33)

where Ω′′
(Ja,bK,u) = Jφ(−τ, (a+ b)/2, u)− β′′((b− a)/2, u), φ(−τ, (a+ b)/2, u) + β′′((b− a)/2, u)K

and

β′′(r, u) = eL
′(u)τ r +

∫ τ

0

eL
′(u)s w ds (34)

with L′ being defined as above.
Let Jaφ, bφK , Ja, bK ∈ X2 be such that φ(τ, (a+b)/2, u) ∈ Jaφ, bφK. It is evident that Jaφ, bφK ∈

F2(Ja, bK , u) and Ja, bK ∈ f−(Jaφ, bφK , u). Thus the map f− satisfies requirement in Definition
7.1, and is therefore a backward estimator. Moreover, since construction of the backward
transition map F− corresponds to over-approximating reachable sets at negative time, F−

satisfies requirements of Definition 7.2.
Let Π = (X,U, F,G, g), W : X → R+ ∪ {∞}. Define the following operator P :

P (W)(p) = min

{
G(p), inf

u∈U
sup

q∈F (p,u)

g(p, q, u) +W (q)

}
(35)

Function 6 ProcessTransitions: Optimal Reach-avoid

Input: Π = (X,U, F,G, g), E, Y , Q, c, W
Require: ∀(x,u)∈X×UFmem(x, u) ⊆ F (x, u) \ E initially
Require: f− satisfying (28)
1: for all (x, u) : (Fmem(x, u) ∩ Y ̸= ∅ ∨ x ∈ f−(Y, u)) ∧ x ̸∈ E do
2: Fmem(x, u) := ⊥(F (x, u) \ E)
3: if Fmem(x, u) = ∅ then
4: M := max {g(x, z, u) +W (z) | z ∈ F (x, u)}
5: if W (x) > M then
6: W (x) :=M
7: Q := Q ∪ {x}
8: c(x) := {u}

Output: Q,c,W

Let R be an order on a set S. Then R is called a total order if it is reflexive, transitive,
anti-symmetric, and either (a, b) ∈ R or (b, a) ∈ R for any two elements a ̸= b in S. Let A be
a finite set endowed with a total order denoted by ≤. We slightly abuse notation by letting
⊥(A) denote the (uniquely defined) singleton set containing the minimum element in A, i.e.,
⊥(A) = {a′ ∈ A | ∀a∈Aa

′ ≤ a} if A ̸= ∅, and let ⊥(∅) = ∅.
Functions implementing line 9 Algorithm 5 are now presented. Algorithm 5 together with

Function 6 solves any optimal reach-avoid problem Π on abstractions. Set E contains controllable

29

states and to declare a state p controllable all of its successors F (p, u) have to either be controllable
themselves or belong to the target set. This condition F (p, u) ⊆ E is verified on line 3 Function
6. Memory reduction is achieved in two ways. First, backward estimator f− is used on line 1
Function 6 instead of the inverse of abstract transition map F− to guide synthesis backward in
time. Note that f−(p, u) can be computed on demand for any (p, u) ∈ X × U and so f− requires
no storage. This is not the case for F−1. Second, for every (p, u) test of set F (p, u) against
E on line 2 Function 6 is performed according to an order and the last successor q ∈ F (p, u)
outside E is stored in Fmem(p, u). F (p, u) is a finite set, therefore an order can always be defined.
Since set E always expands, states z satisfying F (p, u) ∋ z ≤ q ∈ Fmem(p, u) = {q} before
execution of line 2 Function 6 need not be tested upon execution of line 2 Function 6. Thus,
Algorithm 5 + Function 6 can be implemented such that any set F (p, u) is traversed at most
once. Current implementation of Algorithm 5 uses the following order on F (p, u) for any (p, u).
Let z, q ∈ F (p, u), then

cz = (cz1, ..., c
z
n) = Algorithm 1 (z)

cq = (cq1, ..., c
q
n) = Algorithm 1 (q)

z ≤ q ⇐⇒ ∃i∈[1,n]∀j<ic
z
j = cqj ∧ c

z
i ≤ c

q
i .

Function 7 ProcessTransitions: Qualitative Invariance

Input: Π = (X,U, F,∞, g), E, Y , Q, c, W
Require: F− satisfying (29)
1: for all y ∈ Y do
2: for all (x, u) : x ∈ F−(y, u) ∧ x ̸∈ E ∪Q ∧ (c(x) = U ∨ c(x) = {u}) do
3: if c(x) = {u} ∧ y ∈ F (x, u) then
4: c(x) := ⊥{v ∈ U |u < v ∧ F (x, v) ∩ E = ∅}
5: else if c(x) = U ∧ cardU > 1 then
6: c(x) := ⊥{v ∈ U |F (x, v) ∩ E = ∅}
7: if c(x) = ∅ then
8: Q := Q ∪ {x}
9: W (x) =∞

Output: Q,c,W

We now turn to solution of invariance problems. Let Π0 = (X0, U0, F0,∞, g0) be a continuous-
sate invariance problem and Π = (X,U, F,∞, g) its abstraction, where g takes form (25), be input
to Algorithm 5 together with Function 7. Set E contains uncontrollable states and in order to
declare a state p uncontrollable, at least one of its successors has to be uncontrollable for every
abstract control input. This condition ∀u∈UF (p, u) ∩ E ̸= ∅ is verified on lines 4,6 Function 7.
Algorithm 5 together with Function 7 does not solve Π directly. Instead the novel method solves
a qualitative invariance problem Π̃ = (X,U, F̃ ,∞, g) with F̃ ⊆ F . This behavior is due to the
fact that Function 7 utilizes backward transition map F− instead of inverse map of abstract
transition function F−1 to guide synthesis backwards in time. Then the following situation is
possible after execution of Function 7 at some point in time:

∃u∈Up /∈ F−(E, u) ∧ F (p, u) ∩ E ̸= ∅ (36)

which implies that lines 4,6 Function 7 have not been invoked for p. Then control symbol u, is
not considered unsafe for state p by Function 7 and thus Algorithm 5 together with Function

30

7 fails to solve Π. However, due to definition of backward transition map F−, the original
continuous system is still guaranteed to not reach unsafe set E starting from p ⊆ X0 under control
u ∈ U ⊆ U0, i.e. F0(p, u) ∩ E = ∅. Therefore, Algorithm 5 together with Function 7 is still able
to provide approximate solution for continuous qualitative invariance problem Π0, utilizing not
abstraction Π but Π̃, which is, nevertheless, an abstraction of Π0 defined by the run of Algorithm
5 together with Function 7 applied to Π. Moreover, F̃ (p, u) disregards exactly set F (p, u) ∩ E
in situations of type (36). The crucial property here, is that maximal controlled invariant set
computed using Algorithm 5 together with Function 7 is not smaller than maximal invariant set
for problem Π with no loss of quality of control - see theorem 15.

Analogously to the reach-avoid case, memory reduction is achieved in two ways. First,
backward transition map F− is used instead of the inverse of abstract transition map F−1 to
guide synthesis backward in time. Note that any part of F− can be computed on demand and
thus requires no storage. Second, for any state p control symbols are verified on lines 4,6 Function
7 according to an order and the last safe input u : F (p, u) ∩ E = ∅ is stored in c(p). Abstract
input space U is finite and, therefore, an order can always be defined. Since E always expands,
inputs satisfying U ∋ v ≤ u ∈ c(p) before lines 4,6 need not be tested on lines 4,6 Function 7.
Thus Algorithm 5 together with Function 7 can be implemented such that for every state p every
control input u is verified at most once. Current implementation of Algorithm 5 uses the following
order on U . Let u, v ∈ U , then

cu = (cu1 , ..., c
u
m) = Algorithm 1 (u)

cv = (cv1, ..., c
v
m) = Algorithm 1 (v)

v ≤ u ⇐⇒ ∃i∈[1,m]∀j<ic
v
j = cuj ∧ cvi ≤ cui .

Methods describing solution of optimal reach-avoid problem and qualitative invariance problems
have been introduced. This section is finalized by presenting algorithmic solution to optimal
invariance problems. Let Π = (X,U, F,∞, g) be of the form (23) with no restrictions placed on g
aside from being non-negative valued. We finally provide a method to solve optimal invariance
problems in the sense of the value function (22)

V2(p) = inf
C∈F(X,U)

sup
(u,v,x)∈Bp(C×S)

J2(u, v, x), (37)

where the total cost (20) J2 : (U × {0} ×X)Z+ → [0,∞] defined by

J2(u, v, x) =

∞∑
t=0

g(x(t), x(t+ 1), u(t)), (38)

for (u, v, x) ∈ Bp(C × S).
We first make an observation that 0 ≤ V2(p) ≤ ∞∀p ∈ X, which follows from non-negativity

of cost functions (17). Moreover, notice that J2(u, v, x) <∞ iff the following condition holds:

∃0≤t0<∞∀t>t0g(x(t), x(t+ 1), u(t)) = 0 (39)

Thus controller with closed-loop performance equal to value function V2 drives the system
optimally to the set of states X0 ⊆ X, where inputs exist such that the system evolution
costs 0, and provably restricts system evolution to X0, choosing only control inputs with zero
transition cost, for indefinite period of time. Therefore the problem of synthesizing controllers
with closed-loop performance equal to V2 reduces to an optimal reach-and-stay problem :

31

(i) Solving qualitative invariance problem over the set of states that allow zero-cost transitions,
with additional constraint of controller choosing only zero-cost control inputs, obtaining
control invariant subset I0 ⊆ X0.

(ii) Solving optimal reachability problem towards I0, Πr = (X,U, F,Gr, g), where

Gr(p) =

{
0, if p ∈ I0
∞, otherwise.

(40)

It has to be noted that computation of zero-cost invariance controllers for Π = (X,U, F,∞, g)
is straightforward when full-abstraction is pre-computed - all non-zero cost control inputs are
removed and discrete synthesis methods are applied to the modified finite system. This approach
has prohibitive memory costs. On the other hand, memory-efficient invariance synthesis method,
proposed in this work, can not take into account control cost, due to the fact that transition cost
g(p, q, u) depends on successor q of a state p and memory efficiency of the proposed method heavily
relies on backward transition maps, sometimes avoiding computation of forward transitions -see (36)
for such behavior. However, computation of zero-cost invariance controllers for Π = (X,U, F,∞, g)
can be reduced to solution of a sequence of invariance problems without control cost restriction,
which can then be solved space-efficiently. Define Πi, 1 ≤ i ≤ n <∞, where Πi = (X,U, F,∞, gi),

g1(p, q, u) =

{
0, if ∃u∈Ug(p, F (p, u), u) = {0}
∞, otherwise.

(41)

and Πj+1 = (X,U, F,∞, gj+1), j ≥ 1 defined by

Dj+1 =W−1
j (0) \

{
x ∈W−1

j (0)
∣∣∄u∈UF (x, u) ⊆W−1

j (0) ∧ g(x, F (x, u), u) = {0}
}

(42)

and

gj+1(p, q, u) =

{
0, if p ∈ Dj+1

∞, otherwise.
(43)

where Wj is the value function obtained by applying Algorithm 5 and Function7 to Πj .
Thus, Algorithm 8 solves optimal invariance problem Π = (X,U, F,∞, g).

32

Algorithm 8 Optimal Invariance

Input: Control problem Π = (X,U, F,∞, g), c0,c′0
Input: Operator P
Require: X, U finite
1: Π1 := (X,U, F,∞, g1) // g1 satisfies (41)
2: (c1,W1) := Algorithm 5(Π1, 0, c0,P) + Function 7 // c: controller
3: i := 1
4: while True do
5: i := i+ 1
6: Πi := (X,U, F,∞, gi) // gi satisfies (43)
7: (ci,Wi) := Algorithm 5(Πi, 0, c0,P) + Function 7 // c: controller
8: if Wi−1 =Wi then
9: Break While

10: ci := ∅
11: for all x ∈W−1

i (0) do
12: ci(x) :=

{
u ∈ U

∣∣F (x, u) ⊆W−1
i (0) ∧ g(x, F (x, u), u) = {0}

}
13: Πr := (X,U, F,Gr, g) // Gr satisfies (40) for I0 =W−1

i (0)
14: (cr,Wr) := Algorithm 5(Πr,∞, c′0,P) + Function 6
Output: ci,cr Wi,Wr

All necessary computational tools have been presented. Mathematical justification of novel
methods proposed in this work will be presented according to the following scheme:

Step 1. Sufficient conditions, under which Algorithm 5 solves reach avoid and, respectively,
qualitative invariance problem are formulated. Loop invariants (A1) and (A2),
Theorems 6 and 10.

Step 2. Two proposed implementations of Algorithm 5 satisfy conditions formulated during
step 1 - Theorems 7 and Theorems 11 .

Step 3. Correctness of proposed methods follows from Steps 1 and 2 - Theorems 8, 12.
Step 4. Efficiency of novel methods is proven - Theorems 9,13.
Step 5. Optimal invariance theory is based on the previous results - Proposition 7.4,Theorem

7.5.

7.2 Mathematical Rationale
7.2.1 Optimal Reachability

Next proposition proves that Algorithm 5 solves a finite reach-avoid problem provided that the
loop invariant (A1) holds after every execution of line 9.

(A1) Loop invariant: Reachability. Let Π = (X,U, F,G, g) be of the form (23).

E ∩Q = ∅ and W−1(R) ⊆ E ∪Q ⊆ X (44a)
LC ≤W ≤ PE(W) (44b)

33

where

PE(W)(p) = min {G(p),WE(p)} ,
WE(p) = inf

u∈U :F (p,u)⊆E
sup

q∈F (p,u)

g(p, q, u) +W (q),

inf ∅ =∞, and LC is the closed-loop behavior associated with

C = (Z,Z,X,U,H), (45)

where Z is any singleton set and H : Z ×X ⇒ Z ×U × {0, 1} is any map satisfying the following
condition for all p ∈ X:

∅ ≠ H(Z, p) ⊆

{
Z × U × {1}, if c(p) = ∅,
Z × c(p)× {0}, otherwise.

(46)

Theorem Quote 6 ([62]). Let Π = (X,U, F,G, g) be a reach-avoid problem with
finite X and U , and let V1 be the achievable performance associated with Π. Assume
P satisfy (35) and let ∀x∈Xc0(x) = ∅. Let (Π,∞, c0, P) be the input to Alg. 5. Then
the following holds for Algorithm 5

(i) Conditions (44a)-(44b) hold upon execution of lines 3-4.
(ii) Assume that each call to 9 terminates, and that (44a)-(44b) hold upon every

execution of line 9. Then Y ̸= ∅ and E ∩ Y = ∅ after every execution of line
6, Algorithm 5 terminates returning c and W , and V1 = W upon termination.
Moreover, C defined by (45) and (46) is a static controller for (X,U, F) solving
Π.

The next two theorems prove correctness of our proposed on-the-fly method to solve reach-avoid
problems.

Theorem Quote 7 ([62]). Assume hypothesis of Proposition 6. Let line 9 Alg.5 be
implemented as Function 6. Then (A1) holds after every iteration of the while-loop.

Theorem Quote 8 ([62]). Algorithm 5 with Function 6 solves any reach-avoid
problem Π = (X,U, F,G, g) with finite X, U .

Efficiency of the proposed algorithm to solve optimal control problems is now discussed.
Let n = card(X),

m =
∑
p∈X

∑
u∈U

card(F (p, u))

m− =
∑
p∈X

∑
u∈U

card(f−(p, u))

Theorem Quote 9 ([62]). Assume hypothesis of Proposition 6. Let Π = (X,U, F,G, g)
be the input to Algorithm 5. Then there exists implementation of Function 6 such
that Algorithm 5 with Function 6 takes O(n · cardU) space, i.e., Fmem(x, u) ≤ 1 for
all (x, u) ∈ X × U , and takes O(n log n+m+m−) time.

34

7.2.2 Qualitative Invariance

Next proposition proves that Algorithm 5 solves a finite invariance problem provided that the
loop invariant (A2) holds after every execution of line 9.

(A2) Let Π = (X,U, F,G, g) be of the form (23) and V2 be the achievable performance for Π.

E ∩Q = ∅ ∧W−1(]0,∞]) ⊆ E ∪Q ⊆ X (47a)
V2 ≥W ≥ PQ(W) (47b)

where sup ∅ =∞,

PQ(W)(p) = min {G(p),WQ(p)} ,
WQ(p) = inf

u∈U
sup

q∈F (p,u)\Q
g(p, q, u) +W (q).

Let LC be the closed-loop performance associated with

C = (Z,Z,X,U,H), (48)

where Z is any singleton set and H : Z ×X ⇒ Z × U is any map satisfying

∅ ≠ H(Z, p) ⊆

{
Z × U × {0}, if c(p) = ∅
Z × c(p)× {0}, otherwise

(49)

for all p ∈ X and c - output of Algorithm 5.

Theorem Quote 10 ([62]). Let Π = (X,U, F,∞, g) be an invariance problem
with finite X and U , and g satisfying (25). Assume P defined as in (35) and let
∀x∈Xc0(x) = U . Let (Π, 0, c0,P) be the input to Alg. 5. Then the following holds for
Algorithm 5

(i) (A2) holds for Π upon execution of lines 3-4.

(ii) Assume that each call to line 9 terminates. Assume (47a) holds upon every
execution of line 9 then Y ̸= ∅, E ∩ Y = ∅ after every execution of line 6.
Moreover, set E is strictly enlarged after every iteration of the while-loop (line
5) and Algorithm 5 terminates returning c and W . Assume exists sequence
(Πi)i∈[1;N], Πi = (X,U, Fi,∞, g), Fi - strict, ∀i,j∈[1;N],i<jFi ⊆ Fj ⊆ F , such that
(47b) holds for Πi upon execution of line 9 on iteration i of the while-loop. Then
Ṽ2 =W upon termination, where Ṽ2 is the achievable performance (22)associated
with Π̃ = ΠN .

(iii) The following relation holds upon execution of lines 3-4:

∀x∈W−1(0)F (x, c(x)) ⊆ (W−1(0) ∪Q) ∧ c(x) ̸= ∅ (50)

Assume, in addition that (50) holds for Fi upon execution of line 9 on iteration
i of the while-loop. Then C defined by (48) and (49) is a static controller for
(X,U, F̃) solving Π̃.

35

To formulate the main results and additional definition is needed. Let Π = (X,U, F,G, g),
Π0 ≼R Π. We now define an auxiliary control problem associated with Π,

Π̃ = (X,U, F̃ ,G, g), (51)

with ∀(x,u)∈X×U F̃ (x, u) ⊆ F (x, u) ∧ ∀y∈F (x,u)\F̃ (x,u)x ̸∈ F−(y, u) and F− satisfying (29). The
following is evident.

7.3 Lemma. Let Π0, Π be such that Π0 ≼R Π and Π̃ be as in (51). Then Π0 ≼R Π̃

The next two theorems prove correctness of our proposed on-the-fly method to solve qualitative
invariance problems.

Theorem Quote 11 ([62]). Assume hypotheses of Proposition 10. Let Π =
(X,U, F,∞, g) be the input to the Algorithm 5 and line 9 in Alg. 5 implemented as
Function 7. Assume, in addition, Π0 given such that Π0 ≼R Π.
Then each call to Func. 7 terminates and there exists sequence (Πi)i∈[1;N] Πi =
(X,U, Fi,∞, g), of the form (51) Fi - strict, ∀i,j∈[1;N],i<jFi ⊆ Fj ⊆ F , such that (A2)
and (50) hold for Πi upon execution of line 9 in Alg. 5 on iteration i of the while-loop.

Theorem Quote 12 ([62]). Assume hypotheses of Proposition 10 and Theorem 11.
Let Π = (X,U, F,∞, g) be the input to Algorithm 5 and Π0 be such that Π0 ≼R Π.
Then there exists Π̃ satisfying Π0 ≼R Π̃ such that Algorithm 5 together with Function
7 solves Π̃.

Theorem 12 has proven that the novel method to solve invariance problems on abstractions is
correct. The next theorem shows that it is efficient in the sense of guaranteed memory reduction
with only geometrical assumptions on the problem data.

Let n = card(X),
m =

∑
p∈X

∑
u∈U

card(F (p, u))

m− =
∑
p∈X

∑
u∈U

card(F−(p, u))

Theorem Quote 13 ([62]). Assume hypotheses of Proposition 10 and Theorem 11.
Let Π = (X,U, F,∞, g) be the input to Algorithm 5. Additionally assume that

∀(x,u)∈X×U∃Ja,bK⊆RnF (x, u) = {x ∈ X |x ∩ Ja, bK ̸= ∅}

Then there exists implementation of Function 7 such that Algorithm 5 together with
Function 7 requires O(n) memory and O(m+m−) time.

It has been shown that Algorithm 5 solves optimal abstract control problems correctly and
efficiently - Theorem 6 and Theorem 9. On the other hand, Algorithm 5 does not solve the input
abstract qualitative invariance problem Π (Theorem 10). However, our main objective is to solve
the original continuous invariance problem Π0 for which abstraction Π was defined. It will now
be shown, that solving Π̃ instead of Π (Theorem 10) does not negatively affect quality of solution
of continuous problem Π0

36

Theorem Quote 14 ([86]). Let Π0 and Π1 be two optimal control problems with
achievable performances V 0

1 and V 1
1 . If Π0 ≼R Π1 then V 0

1 (p0) ≤ V 1
1 (p1) for every

(p0, p1) ∈ R

Theorem Quote 15 ([62]). Assume hypothesis of Theorem 12. Let Π = (X,U, F,∞, g)
be the input to the Algorithm 5, Π0, Π̃ be such that Π0 ≼R Π̃, Π̃ of the form (51)
defined by Theorem 11 and W = Ṽ2 be the value function in the output of Algorithm
5, where Ṽ2 is the achievable performance for Π̃,V 0

2 is the achievable performance for
Π0. Let V2 be the achievable performance for Π. Then

V 0
2 (x0) ≤ Ṽ2(x) ≤ V2(x) for every (x0, x) ∈ R

The above result implies that the maximal controlled invariant set obtained by solving Π̃
(defined by Function 7) is at least as large as the invariant set obtained by solving Π Π which
includes an abstraction of a (continuous-state) system constructed using reachable sets at positive
sampling time only. For reach-avoid case the novel presented method solves exactly Π.

7.2.3 Optimal Invariance

Let LC is the closed-loop behavior associated with

C = (Z,Z,X,U,H), (52)

where Z is any singleton set and H : Z ×X ⇒ Z ×U × {0, 1} is any map satisfying the following
condition for all p ∈ X:

∅ ≠ H(Z, p) ⊆

Z × U × {1}, if ci(p) = cr(p) = ∅,
Z × cr(p)× {0}, if cr(p) ̸= ∅
Z × ci(p)× {0}, if ci(p) ̸= ∅ = cr(p)

(53)

7.4 Proposition. Let Π = (X,U, F,∞, g) be an invariance with finite X and U , and let V2 be the
achievable performance associated with Π. Let (Π, U, ∅) be input to Algorithm 8. Then Algorithm
8 terminates and W = min{Wi,Wr} = LC = V2, i.e. C solves Π, where C is defined by (52).

Proof. First notice that sequence card Dj defined by (42) is strictly decreasing when j increases.
Since ∀jDj ⊆ X and X is finite, loop on line 4 Algorithm 8 makes at most N ≤ card X + 1 <∞
number of iterations, with DN−1 = DN = ∅ and WN−1 =WN =∞, where DN−1, DN defined by
(42) and WN−1,WN output of Algorithm 5 and Function7 applied to ΠN−1 and ΠN respectively.
Lines 2 7,14 of Algorithm 8 terminate by assumption and theorems 10 and 6. Then Algorithm 8
terminates.

Notice that for any i on line 7 Algorithm 8, V −1
2 (0) ⊆ W−1

i (0) and by definition of gi in
Πi 0 =Wi(p) ̸=Wi+1(p) iff ∄u∈UF (p, u) ⊆W−1

i (0) ∧ g(p, F (p, u), u) = {0}. Let N be iteration
of the while-loop be such that line 9 Algorithm 8 has been invoked. Then upon execution of
line 12 Algorithm 8 W−1

N (0) is the first set of all sets W−1
i (0), i < N that satisfies ∀p∈W−1

N (0)

F (p, cN (p)) ⊆W−1
N (0)∧ g(p, F (p, cN (p)), cN (p)) = {0}. Then V −1

2 (0) =W−1
N (0) = L−1

cN (0). Note
as well that upon execution of line 14 Algorithm 8 cr minimizes the worst-case control cost of

37

reaching W−1
N (0) and so V −1

2 (R+ ∪ {∞} \ {0}) =W−1
r (R+ ∪ {∞} \ {0}) = L−1

cr (R+ ∪ {∞} \ {0}).
Then V2 = min{Wi,Wr} = LC , with C defined by (52), i.e. C solves optimal invariance problem
Π in the worst-case sense.

Complexity bounds of Algorithm 8 remain to be established. Let n = card(X),

m =
∑
p∈X

∑
u∈U

card(F (p, u))

m− =
∑
p∈X

∑
u∈U

card(F−(p, u))

m′− =
∑
p∈X

∑
u∈U

card(f−(p, u))

where f−, F− satisfy (28), and (29) respectively.

7.5 Theorem. Assume hypotheses of Theorem 13 and Theorem 9 and Proposition 7.4. Let
Π = (X,U, F,∞, g) be the input to Algorithm 8. Then there exists implementation of Algorithm
8 that requires O(n · card U) memory and O(n · (m+m− + log n)) time.

Proof. Lines 2, 7 of Algorithm 8 take O(n) memory and O(m+m−) time by Theorem 13. Line
14 of Algorithm 8 takes O(n · card U) memory and O(m +m′− + n · log n) time by Theorem
9. Construction of problems Π1 on line 1 and Πi on line 6 takes O(m) time and O(n) space.
Construction of problem Πr on line 13 take O(n) time and space. For- loop on line 11 take
O(m) time and O(n · card U) space. Loop on line 4 Algorithm 8 make at most n iterations
by (42) and m′− ≤ m− by definition. Then Algorithm 8 takes O(n · card U) memory and
O(n · (m+m− + log n)) time.

8 ABS - Formally correct software for symbolic synthesis
Algorithms, discussed in sections 7 and 6 have been implemented in a software package under the
name ABS1 - Abstraction-Based Synthesis - Figure 8. It consists of two main parts: problem
compiler part, written in C, and abstraction and synthesis functionality written in Ada. This
section will focus on presenting abstraction and synthesis functionally, while for problem compiler
part the reader is refereed to [113].

Ada is a high-level programming language that was developed for improved code reliability. A
number of safety features can be distinguished:

(i) Run-time operation validity checks and raising of exceptions

(ii) Strong types : CHAR ̸= BOOL ̸= INT

(iii) User-defined types, operation incompatibility between distinct types (can be forced) for
improved security.

(iv) Structuring code in packages: separation of specification and implementation.
1The following people have contributed to the software project ABS: Alexander Weber, Gunther Reissig, Hao

Zhou, Elisei Macoveiciuc. See also [87, 89]. The source code reproduced in this section is the result of collaborative
work and is not necessarily the present author’s own work.

38

Figure 3: Structure of ABS software [89].

(v) Access types: include classical pointers and additional information for improved security.

Run-time operation validity is especially crucial for implementing software to synthesize
correct-by-design controllers: programming errors leading to unexpected value appears during
computations are captured during synthesis and do not lead to crashes in controlled loop run.
Run-time Ada checks include:

• Access_Check - Check for de-reference of a null pointer.

• Discriminant_Check - Check for access of an unavailable component in a discriminant
record (given the discriminant).

• Division_Check - divide by zero.

• Index_Check - Check for out-of-range array index.

• Length_Check - Check for array length violation.

• Overflow_Check - Check for numeric overflow.

Although, run-time checks improve implementation safety, they provide significant time
overhead. Run-time checks can be turned off through Ada compiler directives called Pragmas,
that are introduced inside the source code, or through compiler switches. For example, gcc switch
-gnatp suppresses all run-time checks as though pragma Suppress (all_checks) had been present
in the source code.

ABS should be run on x86_64-linux-gnu systems. The following third party software is
required:

39

• gmp [31] - version 6.1.2 included in ABS

• mpfr [25] - version 3.1.5 included in ABS

• mpfi [90] - version 1.5.1 included in ABS

• gcc, https://gcc.gnu.org/

• m4, https://www.gnu.org/software/m4/

• flex [77], https://www.gnu.org/software/flex/

• bison [22], https://www.gnu.org/software/bison/

• boost, http://www.boost.org/

• doxygen [107], https://www.doxygen.org/

• Wolfram Mathematica, https://www.wolfram.com/mathematica/ (Optional)

8.1 Structure and Build process of ABS
ABS is structured as follows:

ABS/trunk/ the main branch.
ABS/branches/ development.
ABS/tags/ development.

Build of ABS is controlled through the tool make (/trunk/Makefile). The main targets are
listed below. This table is taken from [89].

40

https://gcc.gnu.org/
https://www.gnu.org/software/m4/
https://www.gnu.org/software/flex/
https://www.gnu.org/software/bison/
http://www.boost.org/
https://www.doxygen.org/
https://www.wolfram.com/mathematica/

make or make all Builds the whole of ABS: Produces executable and object files for the
third-party libraries and software. Produces these files, each in a debug
and a release variant, for Problem Compiler, ABS Library and tests. Builds
complete documentation for ABS.

make pcompiler Builds both the debug and the release variants of the Problem Compiler.
make abslib Builds both the debug and the release variants of the ABS Library.
make tests Builds both the debug and the release variants of the tests.
make testing Runs both the debug and the release variants of all tests, or of a subset of

tests specified by an optional argument.
make doc Builds complete documentation for ABS.
make readdoc Opens the manual, and the software reference documentation using the

browser firefox.
make manuals Generates manuals.
make newproblem Generates and initializes a new example directory.
make debug Builds the debug variants of Problem Compiler, ABS Library and tests.
make release Builds the release variants of Problem Compiler, ABS Library and tests.
make clean Produces executable and object files for the third-party libraries and

software. Removes all executable and object files of Problem Compiler,
ABS Library and tests, as well as software reference documentation files.

make cleanall Performs make clean, then removes executable and object files for the
third-party libraries and software.

Commands presented above operate on the following directories:

trunk/doc/ Documentation source files, as well as files produced using
make doc.

trunk/bin/ and trunk/obj/ All executables, except for problem executables.
trunk/body/ and trunk/spec/ Source code .
trunk/libs/ Third party software, including executable and object files

produced through a build process.
trunk/examples/ Examples of problems that can be solved..

The build process of ABS is controlled in the following way:

ABS Library using the tool GPRbuild [1] with options specified in
trunk/spec/ABSLibrary.gpr. Compiler flags are specified
here.

Problem Compiler using the tool make with options specified in
spec/Makefile.ProblemCompiler

Controller Synthesis using the tool GPRbuild and the file problem_project.gpr in ex-
ample directory.

8.2 Software Input and Execution Flow
Entry point of a an executable compiled for a specific problem is function Main in \body\readwrite\main.adb,
which contains the following main data structures (table adapted from [89]):

41

Read Problem Data

Generate Problem-Specific Code

Compute Abstract State Set

Compute Abstract Input Set

Compute Apriori Enclosure

Compute Growth Bounds

Compute Abstract Specification

Initialize Abstrac-
tion Data Structure

Solve Abstract Problem

Done

ABS Library,
section 6.1

Problem
Compiler,

[113]

Figure 4: Progression of problem solution.

Identifier in main.adb Description
P Data structure containing problem description information obtained

after processing the input file by the Problem Compiler.
GB Data structure for holding the data related to growth bounds.
GB_b Data structure for holding the data related to backward estimators.
GB_b_w Data structure for holding the data related to backward transition

maps.
Cover Data structure for representing the cover of the continuous state

space.
Input_Values Data structure for representing the input set of the abstraction.
Abstraction Data structure for representing the abstraction.
Abstract_Specification Data structure for representing the abstract specification.
Solution Data structure for representing the solution of the problem.

Problem execution flow is presented in Fig. 4.

42

8.2.1 User Options in Application to Control Problems

Every problem to be solved by ABS, requires construction of the problem description file in a
separate directory, which is processed by the problem compiler. ABS will generate auxiliary and
temporary files as well as a file containing the solution in that directory. A number of examples
can be found in trunk/examples/. To create new example the following steps are needed. The
following has been adapted from [89].

1.) Run

make newproblem

in trunk/.

2.) Enter problem name

3.) Enter the path to an existing directory in linux system. (no tilde ~ allowed for pointing
to home directory.) In this directory, a subdirectory named as the name of new control
problem will be automatically created. All the files related to this control problem (e.g.
problem file, binary file) will be contained in that subdirectory. This subdirectory must not
exist already

For example:
1 $ make newproblem
2 Please enter a name for your new control problem: test
3 Please enter the path to an existing directory: ./ examples
4 Specify your control problem in ’./ examples/test/test.abcs’.

New directory contains (The following table is adapted from [89]):

<pname>.abcs Problem description, where pname coincides with the name of the
example directory. Initially empty; problem should be specified using
the language described in [87].

Makefile Controls the application of ABS to solve the problem.
problem_project.gpr Controls building problem-specific executable and object files - com-

piler flags, etc.

The main targets of Makefile in the example directory are (The following table is adapted
from [89]):

make or make all Produces problem-specific source code. Builds executable, object files.
Runs executable.

make sourcecode Produces problem-specific source code.
make executable Builds problem-specific executable.
make solution Synonymous with make all.
make clean Removes all problem-specific source code, executable, object and results

files, including the respective subdirectories.

List of all generated files containing problem-specific code is presented in Tab. 1.

43

8.2.2 Input Language

The following data has to be specified in a newly created <pname>.abcs.

Entity Description Type
n, m State and input space dimension Integer
z Bound for measurement uncertainty Vector
X1 Continuous state-space - section 6.1 Hyper-interval
Ū Continuous input space -section 6.1 Hyper-interval
f Unperturbed right hand side of (2) Function
w Bound for dynamic uncertainties (2) Vector
τ Sampling time Real number
A, E, H Initial, target, obstacle set, section . 6.2 Union of hyper-intervals
d1, d2 State and input space discretization parameter Vector
p, q Integration orders for dynamics and growth bounds Integer

with the help of elementary functions:

+ − × ÷ ˆ atan cos cosh exp ln sin sinh sqrt tan

Control problem is described as follows, in the same order of data introduced.
First constants are defined:

Real a = 2*Pi ; A constant a = 2 · π.
Real gamma in [0.0125,0.0126]; An uncertain constant gamma ∈ [0.0125, 0.0126].
Real v[2]; A vector v ∈ R2.
v[0] = sqrt(2);v[1] = 2^3; v = (

√
2, 23).

Real M[2][2]; A matrix M ∈ R2×2.

Second, actual continuous dynamics is introduced. The following is adapted from [87].

f: (x,u) in (Real[2],([-2,2],[0,1])) to y[2]
{
y[0] = x[1] ;
y[1] = - sin(x[0]) - cos(x[0])*u[0] - u[1]*x[1] ;
}

describes f : R2 × U → R2 defined through

f(x, u) = (x2,− sin(x1)− cos(x1) · u1 − u2x2),

where U = [−2, 2]× [0, 1].
Note. The dimension n of the state vector appears to the right of y) and the dimension m of the
input vector is implicitly specified through the hyper-interval ([−2, 2], [0, 1]). Input space itself is
also specified implicitly through the above hyper-interval.

Sampling time:

SamplingTime : 0.3;

State space, on the other hand, is specified explicitly :

44

OperatingRange: ([0,2*Pi],[-2,2]);

which represents X1 = [0, 2π]× [−2, 2] ⊂ R2.
List of periodic state variables:

ListOfPeriodicComponents : (0);

Continuous control problem specification:

InitialSet : ([0,0],[0,0]);
TargetSet : ([Pi-.1,Pi+.1],[-.1,.1]);
ObstacleSet : ([Pi-.5,Pi-.4],[-.5,-.5]);

which represents initial set A = {0, 0}, target set T = [π − 0.1, π + 0.1]× [−0.1, 0.1] and obstacle
set O = [π − 0.5, π − 0.4]× {−0.5, 0.5}. Entries representing A, T have to appear at least once,
while absence of O is interpreted as O = ∅.
Note. Union of target sets T1 ∪ T2 is introduced as follows

TargetSet : ([Pi-.3,Pi-.2],[-.3,-.2]);
TargetSet : ([Pi-.1,Pi+.1],[-.1,.1]);

which corresponds to T1 = [π − 0.3, π − 0.2]× [−0.3,−0.2] ∪ T2 = [π − 0.1, π + 0.1]× [−0.1, 0.1].
Analogously for initial and obstacle sets.

Bound on state measurement errors:

BoundOnMeasurementErrors :(0.0125,0.0025/180*Pi);

Bound on disturbance vector:

BoundOnDynamicUncertainties :(0.01,0.01);

to represent w = J−0.01, 0.01K
Discretization of state space and of input space:

InitialStateSpaceDiscretization : (200,200);
InitialInputSpaceDiscretization : (5,5);

Note. Input space discretization is incremented by 1 in every dimension by ABS.
Construction of abstraction requires unperturbed solution of solution of (2), see (5), section

6.1. An approximation in terms of Taylor polynomial is used due to nonavailability of exact
solution.

IntegrationOrder : 8 ;

and, similarly, to compute growth bound formula (6)

IntegrationOrderGrowthBound : 15;

which concludes the ABS input file.
Running make in the problem directory will start solution process of the given problem

according to Fig. 4. After generation of problem-specific code has been finalized, the user has to
choose solution method and the problem itself.

45

1 $ --
2 ------- Abstraction -based Controller Synthesis ------
3 --------For Reach -Avoid && Invariance Problems ------
4 ---------------------- 10 -2021 ---------------------
5 --
6

7 Choose problem and solution type
8 (0) - On -the -fly solution to the reach avoid problem
9 (1) - On -the -fly solution to the invariance problem

10 (2) - Standard solution to the reach avoid problem
11 (3) - Standard solution to the invariance problem
12

The available methods are:

On-the-fly ... reach avoid problem Synthesize minimum-time controller to reach the
Target set avoiding Obstacle Set, specified in
the input file, use memory efficient algorithm, see
section 7. Verify if Initial set is controlled

Standard ... reach avoid problem Synthesize minimum-time controller to reach the
Target set avoiding Obstacle Set, specified in
the input file, use standard algorithm, see [86],[95].
Verify if Initial set is controlled.

On-the-fly ... invariance problem Synthesize invariance controller for simultane-
ously computed maximal controlled subset of the
Target set avoiding Obstacle Set, specified in
the input file, use memory efficient algorithm, see
section 7. Verify if Initial set is controlled.

Standard ... invariance problem Synthesize invariance controller for simultane-
ously computed maximal controlled subset of the
Target set avoiding Obstacle Set, specified in
the input file, use standard algorithm, see [95]. Ver-
ify if Initial set is controlled.

Note. Type of problem is specified at this point of execution flow, and not in the software input
file, since data describing invariance problems is syntactically similar to reach-avoid problems.
Note. Solution method On-the-fly ... invariance problem requires the following, with A.E.
standing for Apriori enclosure of the Target Set introduced in the input file:Target Set ⊂
A.E ⊆ OperatingRange. The first strict inclusion is assumed and is necessary since successful
application of this method requires initial non-empty set of unsafe states, which captures all
possible unsafe system behavior - i.e Q ̸= ∅ before first execution of line 5 Algorithm 5. The
second inclusion is verified automatically and if it does not hold, software outputs new set that
has to be introduced in the input file instead of existing OperatingRange.

1 $ --
2 ------- Abstraction -based Controller Synthesis ------
3 --------For Reach -Avoid && Invariance Problems ------
4 ---------------------- 10 -2021 ---------------------
5 --
6

7 Choose problem and solution type
8 (0) - On -the -fly solution to the reach avoid problem
9 (1) - On -the -fly solution to the invariance problem

10 (2) - Standard solution to the reach avoid problem

46

11 (3) - Standard solution to the invariance problem
12 1
13

14 - Apriori Enclosure:
15 Done. Time: 6.58000E-04
16 - Checking if State Domain contains apriori enclosure of the Target Set
17 False.
18 Done. Time: 5.02000E-04
19 Error: Operating Range in the input file does NOT contain apriori enclosure of

the Target Set.
20 Not Possible to apply the chosen synthesis algorithm.
21 Update the input file with the following Operating Range to apply the chosen

synthesis algorithm:
22 OperatingRange :([-8.76627302406191355E -01 ,7.1598126095857797E

+0] ,[-2.92209100802063748E+0 ,2.92209100802063748E+0]);
23

at this point the software stops. The user has to update the input file and run make clean and
make again.

8.3 Packages and their functionality
As mentioned previously, abstraction and synthesis source code is divided into packages con-
sisting of two files each: specification (located in /ABS/trunk/spec/) and body (located in
/ABS/trunk/body/). ABS packages are now presented and their key functionality is discussed.

8.3.1 Abstraction_I14sym

Package to describe abstractions and functions to initialize and compute them. Different control
algorithms require variability of abstraction representation in memory to achieve efficiency.
Next type is used to specify abstraction representation in memory. Control method is chosen
automatically based on the value of variable of this type in a particular abstraction.

1 type Specification_SynthesisMethod_AbstractionRepresentation is (
2 ReachAvoid_StandardDijkstra_SparseMatrix ,
3 ReachAvoid_OnTheFlyDijkstra_SparseMatrix ,
4 Invariance_StandardMethod_SparseMatrix ,
5 Invariance_OnTheFlyMethod_SparseMatrix);

Listing 1: Type indicating structure of Abstraction

Then abstraction type has structure:
1 type Abstraction_T(Synthesis:

Specification_SynthesisMethod_AbstractionRepresentation) is record
2 Number_of_Controls : Input_Index_T;
3 First_Input_Index : Input_Index_T;
4 Last_Input_Index : Input_Index_T;
5 Cover : Cell_Cover_T;
6 Input_data : Input_Grid_T;
7 Overflow_Cell : Cell_Index_T;
8 Number_of_all_Transitions : Counter_Transitions_T :=0;
9

10 case Synthesis is
11 when Specification_SynthesisMethod_AbstractionRepresentation ’(

ReachAvoid_StandardDijkstra_SparseMatrix) =>
12 Cells : CellDataGrid.Grid_Record_With_Data;
13 Overflow_Cell_Data : Cell_T;
14 when Specification_SynthesisMethod_AbstractionRepresentation ’(

ReachAvoid_OnTheFlyDijkstra_SparseMatrix) =>

47

15 Cells_OTF : CellDataGrid_OTF.Grid_Record_With_Data;
16 when Specification_SynthesisMethod_AbstractionRepresentation ’(

Invariance_StandardMethod_SparseMatrix) =>
17 Cells_Invariance : CellDataGrid_Invariance.Grid_Record_With_Data;
18 Overflow_Cell_Data_Invariance : Cell_Invariance_T;
19 when Specification_SynthesisMethod_AbstractionRepresentation ’(

Invariance_OnTheFlyMethod_SparseMatrix) =>
20 Cells_Invariance_OTF : CellDataGrid_Invariance_OTF.Grid_Record_With_Data;
21 when others =>
22

23 null;
24

25 end case;
26

27 end record;

Listing 2: Abstraction type

where structure to represent data associated with cells varies in dependence of a variable with
abstraction type.

ABS abstraction computation also depends on the given control problem. Functionality to
compute full abstractions independent of control objective is not implemented since abstraction
require extreme memory costs and are expected to only be partially constructed at any point in
time during synthesis. When abstraction is computed in full, it is expected to be used for small
problems and classical algorithms and deleted afterwards, without outputting it outside RAM.
Abstract target and initial cells (section 6.2) are stored separately in arrays and obstacle cells
are only marked in a boolean variable associated with a cell. This is done to improve efficiency,
because initialization of implemented synthesis algorithms, depends on specific control problem
and requires iterations over target cells. Then abstract control problem is coded through following
types:

1 type Abstract_Specification_T is record
2 InitialCells: Array_of_Cell_Index_T_Access;
3 -- A list with cells forming the abstract initial set
4 TargetCells : Array_of_Cell_Index_T_Access;
5 -- A list with cells forming the abstract target set
6 end record;

Listing 3: Initial; Target abstract states

and cells types:
1 type Cell_T is record
2 Predecessors : Predecessors_T;
3 counters_rem_successors : access Array_of_Counter_T;
4 target : Boolean := False;
5 obstacle : Boolean := False;
6 initial : Boolean := False;
7 end record;
8

9 type Cell_OTF_T is record
10 Predecessors : Predecessors_OTF_T_Access :=null;
11 Boolean_Marks : Array_of_Boolean_Marks_Access :=null;
12 target : Boolean := False;
13 obstacle : Boolean := False;
14 initial : Boolean := False;
15 end record;
16

17 type Cell_Invariance_T is record
18 Predecessors : Predecessors_T;

48

19 target : Boolean := False;
20 obstacle : Boolean := False;
21 initial : Boolean := False;
22 end record;
23

24 type Cell_Invariance_OTF_T is record
25 Stored_Overapproximation: Abstract_Reachable_Set_Geometry_T;
26 target : Boolean := False;
27 obstacle : Boolean := False;
28 initial : Boolean := False;
29 end record;

Listing 4: Cell types

Since abstract data stored with a cell depends on the chosen synthesis method, there are
different cells types, each containing a field to mark an obstacle.

Further functionality in this package includes reading and writing data to abstract cell and is
omitted here.

8.3.2 Abstraction_I14sym.Computation

Methods to actually compute abstractions.
1 procedure Install(P : in Problem_T;
2 Abstraction: in out Abstraction_T);

Listing 5: Initialize data structure without storing transitions

1 procedure Compute(
2 Abstraction : in out Abstraction_T;
3 AbstractSpecification : in out Abstract_Specification_T;
4 P : in Problem_T);

Listing 6: Compute full abstraction

8.3.3 Abstraction_I14sym.predecessors

This package organizes the storing of the predecessors of each cell.
1 function Initialize_Predecessors(Number_of_Controls : in Input_Index_T) return

Predecessors_T;

Listing 7: Init data structure

1 procedure Get_Predecessors(
2 cell : in Cell_Index_T;
3 v : in Input_Index_T;
4 Abstraction : in Abstraction_T;
5 Predecessors: in out Dynamic_Cell_Container;
6 List_of_Overapproximations : in out Dynamic_Overapproximation_Container) ;

Listing 8: Read predecessor of a cell under abstract transition function

Notice that abstract transition function is always organized in form of storing predecessors
and not successors in accordance to section 7.

49

8.3.4 Apriori_Enclosure

To compute apriori enclosure for a system.
1 procedure Compute(P : in out Problem_T);

Listing 9: Apriori Enclosure

Computes enclosure for f at both sampling time τ and −τ . See section 6.1 and 7.1.

8.3.5 Bounds_Approximation_Error

1 procedure Compute(P : in out Problem_T);
2

3

Listing 10: Error Bounds

Pre-computes bounds on numerical errors that can occur during synthesis. See [113]. User
input language contains no option to turn off usage of pre-computed error bounds in ABS. This
has been done intentionally since non-formally correct synthesis was not planned. However,
current way of estimating these errors can be too conservative on some interesting example.
Therefore the following function was introduced to set computed errors to 0.

1 procedure Set_Errors_to_Zero(P : in out Problem_T);

Listing 11: Zero Bounds

8.3.6 Cell_Cover

Types to define cell cover of continuous domain. Based on two generic packages.
1 package BasicGrid is new grids(Dimension_Index_Type => Component_Index_T ,
2 Float_Type => Float_T ,
3 Vector_Type => State_T ,
4 Vector_Type_Access => State_T_Access);
5 -- Instance of a package for a uniform grid whose points will become the centers

of the compact cells of the abstraction
6 package CellGrid is new BasicGrid.intersections(NonNeg_Float_Type =>

NonNegative_Float_T ,
7 Radius_Type => State_Radius_T ,
8 Periods_Type => List_of_Component_Index_T);
9 -- Instance of a package for a uniform cell cover to be used for computing the

transitions

Listing 12: Cell Cover

8.3.7 Established_Types

Global types to describe control problem.
1 type Problem_T is record
2 State_Space_Dimension : Component_Index_T;
3 -- The state space dimension
4 Input_Space_Dimension : Component_Index_T;
5 -- The input space dimension
6 xmin : State_T_Access;
7 -- The hyperinterval [[xmin ,xmax]] is the union of the compact cells
8 xmax : State_T_Access;
9 -- The hyperinterval [[xmin ,xmax]] is the union of the compact cells

50

10 umin : Input_T_Access;
11 -- The hyperinterval [[umin ,umax]] is the continuous input set
12 umax : Input_T_Access;
13 -- The hyperinterval [[umin ,umax]] is the continuous input set
14 List_of_periodic_components : List_of_Component_Index_T_Access;
15 -- The components in which the right hand side possesses a period
16 List_of_nonperiodic_components : List_of_Component_Index_T_Access;
17 -- The components in which the right hand side does not possess a period
18 Initial_State_Space_Subdivision : State_Space_Subdivision_T_Access;
19 -- User -defined discretization of the state space
20 Initial_Input_Space_Subdivision : Input_Space_Subdivision_T_Access;
21 -- User -defined discretization of the input space
22 Bounds_of_Dynamic_Uncertainties : Bounds_of_Dynamic_Uncertainties_T_Access;
23 -- The vector with the bound on the dynamic uncertainties
24 Bounds_of_Measurement_Errors : Bounds_of_Measurement_Errors_T_Access;
25 -- The vector with the bound on the measurement errors
26 Sampling_Time : Time_T ;
27 -- The sampling time
28 Initial_State_Set : Compact_Hyperinterval_T_Array_Access;
29 -- The initial set of the reach -avoid specification
30 Target_State_Set : Compact_Hyperinterval_T_Array_Access;
31 -- The target set of the reach -avoid specification
32 Obstacle_State_Set : Compact_Hyperinterval_T_Array_Access;
33 -- The obstacle set of the reach -avoid specificaition
34 General_Solution_Formula : Integration_T;
35 -- The integration formula for integrating the continuous -time dynamics
36 Growth_Bound_Formula : Growth_Bound_Integration_T;
37 -- The approximation formula for the growth bounds
38

39 Apriori_Enclosure :
Compact_Hyperinterval_T_Access;

40 Apriori_Enclosure_Backward_with_DynamicUncertanties :
Compact_Hyperinterval_T_Access;

41 Apriori_Enclosure_Backward_wout_DynamicUncertanties :
Compact_Hyperinterval_T_Access;

42

43 -- The apriori enclosure for continuous -time dynamics (it is a uniform one in the
state and control input)

44 Apriori_Enclosure_Growth_Bound : Compact_Hyperinterval_T_Access;
45 Apriori_Enclosure_Growth_Bound_Backward_with_DynamicUncertanties :

Compact_Hyperinterval_T_Access;
46 Apriori_Enclosure_Growth_Bound_Backward_wout_DynamicUncertanties :

Compact_Hyperinterval_T_Access;
47 -- The apriori enclosure for the growth bounds (it is a uniform one in the state

and control input)
48 Rounded_Initial_State_Radius : State_Radius_T_Access;
49 -- See Programmer ’s Manual;
50 Bounds_of_Lipschitz_Matrices : Vector_Float_T_Access ;
51 -- See Programmer ’s Manual;
52 Bounds_of_Input_Value_Rounding_Error :

Bounds_of_Numerical_Errors_Input_T_Access;
53 -- See Programmer ’s Manual;
54 Bounds_of_Approximation_Error_of_General_Solution :

Bounds_of_Numerical_Errors_State_T_Access;
55 -- Bound on the distance between the (mathematical) solution to x’=f(x,u) and its

approximation formula
56 Bounds_of_Rounding_Error_of_General_Solution :

Bounds_of_Numerical_Errors_State_T_Access;
57 -- Bound on the distance between previous approximation formula and its floating -

point implementation
58 Bounds_of_Approximation_Error_of_Growth_Bound :

Bounds_of_Numerical_Errors_State_T_Access;

51

59 -- Bound on the distance between the (mathematical) solution to r’=Lr + w and its
approximation formula

60 Bounds_of_Rounding_Error_of_Growth_Bound :
Bounds_of_Numerical_Errors_State_T_Access;

61 -- Bound on the distance between previous approximation formula and its floating -
point implementation

62 Bounds_of_Summation_Error_Growth_Bound :
Bounds_of_Numerical_Errors_State_T_Access;

63 -- Bound on the rounding error when adding radii
64 Bounds_of_Summation_Error_General_Solution :

Bounds_of_Numerical_Errors_State_T_Access;
65 -- Bound on the rounding error when adding center of cell to a radius
66 Bounds_of_Overapproximation_Rounding_Error :

Bounds_of_Numerical_Errors_State_T_Access;
67 -- See Programmer ’s Manual;
68 Bounds_of_Overapproximation_Radius :

Bounds_of_Numerical_Errors_State_T_Access;
69 -- See Programmer ’s Manual;
70 end record;
71

Listing 13: Type to describe control problem

Note that the software contains and stores apriori enclosures both for forward sampling time
and backward sampling time - see sections 6.1,7 .

8.3.8 Growth_Bound

This package provides a data type to store growth bounds and two interfaces. The first one is to
compute growth bounds and return the result values and the second one is to provide a particular
value according to the cell index and input index.

1 procedure Compute_Growth_Bound
2 (P : in Problem_T; GB_forward : out Growth_Bound_Values_T_Access);
3 -- Compute growth bounds after loading problem.
4 -- @param P The problem to compute growth bounds from
5 -- @exception
6 -- @return The access of the object storing growth bounds
7

8 procedure Compute_Backward_Growth_Bound_with_DynamicUncertanties
9 (P : in Problem_T; GB_backward : out Growth_Bound_Values_T_Access);

10

11 procedure Compute_Backward_Growth_Bound_wout_DynamicUncertanties
12 (P : in Problem_T; GB_backward : out Growth_Bound_Values_T_Access);
13

14

15 procedure Get_Growth_Bound
16 (GBV : in out State_Radius_T; -- "GBV" stands for "growth bound value"
17 GBVs_Acc : in Growth_Bound_Values_T_Access;
18 Cell_Ind : in Cell_Index_T;
19 Input_Ind : in Input_Index_T);
20 -- Get a growth bound according to the cell and input.
21 -- @param GBV The growth bound value to obtain
22 -- @param GBVs_Acc The access to the object storing growth bounds
23 -- @param Cell_Ind The index of the cell
24 -- @param Input_Ind The index of the input
25

Listing 14: Growth Bounds

Maps f−, F− are computed here.

52

8.3.9 Input_Values

Input values package is based on generic grids package, analogously to Cell Cover package.
1 package Input_Values is
2 package InputGrid is new grids(Float_Type => Float_T ,
3 Dimension_Index_Type => Component_Index_T ,
4 Vector_Type => Input_T ,
5 Vector_Type_Access => Input_T_Access);
6 subtype Input_Index_T is InputGrid.Grid_Index_Type;
7 -- The type of the input index
8 type Input_Grid_T is new InputGrid.Grid_Record with null record;
9 -- The type of set of input values

Listing 15: Input Values

8.3.10 Controller_i14sym

Package to initialize and manipulate symbolic controllers.
1 type Controller_Data_Structure is (
2 Defined_by_Abstraction ,
3 Explicit_Array_for_Reachabillity_Problem ,
4 Explicit_Array_for_Safety_Problem_OnTheFly_Synthesis ,
5 Explicit_Array_for_Safety_Problem_Standard_Synthesis
6);

Listing 16: Controller Data Structure

Currently controllers can be stored only in arrays. If more efficient structures are founds (for
example Decision Diagrams), code can be easily extended.

8.3.11 Dijkstra_Algorithm_i13absoc

Package to synthesize symbolic controllers. Contains several synthesis methods. Methods applied
depends on the type of abstraction provided as input.

1 procedure Compute(Solution : in out Abstract_OCP_Solution_Type;
2 Abstraction : in out abstraction_i14sym.Abstraction_T;
3 AbstractSpec: in abstraction_i14sym.Abstract_Specification_T);
4 -- @description This procedure solves the underlying optimal control problem
5 -- @param Solution The solution (control law and value function) of the OCP
6 -- @param Abstraction
7 -- @param AbstractSpec
8);
9

Listing 17: Synthesis

8.3.12 Grids

Generic package to define both state and input grids.
1 generic
2 type Float_Type is digits <>;
3 -- The type to represent real numbers;
4 type Dimension_Index_Type is range <>;
5 -- The type to enumerate the components of a vector
6 type Vector_Type is array (Dimension_Index_Type range <>) of Float_Type;
7 -- The type to represent a vector in the real vector space

53

8 type Vector_Type_Access is access Vector_Type;
9 Bits: constant := 32;

10

11 -- The maximum number of grid points is 2** Bits - 1.
12 -- The last index (2** Bits - 1) is reserved for exceptional situations
13 type Grid_Index_Type is range 0 .. 2** Bits - 1 ;
14 for Grid_Index_Type ’Size use Bits;
15

16 -- A finite grid on a compact hyperinterval of a more dimensional real space.
17 type Grid_Record is tagged record
18 Xmin : Vector_Type_Access;
19 -- The lower end point of the hyperinterval
20 Xmax : Vector_Type_Access;
21 -- The upper end point of the hyperinterval
22 Discretization: Vector_of_Coordinate_Index_Access;
23 -- The subdivision coefficients for the grid
24 Number_of_grid_points : Number_of_grid_points_Type;
25 -- The number of grid points in the grid
26 Parameter : Vector_Type_Access;
27 -- Parameter = (xmax - xmin) / Discretization (component -wise)
28 end record;
29

30);

Listing 18: Synthesis

Note that currently only grid indices of 32 bit size are allowed. This means abstractions can
have not more than 232 − 1 states and inputs.

8.3.13 Grids.intersections

This package finds cells that intersect reachable sets according to (7).
1 function Default_Boolean_Test_1 (cell: in Grid_Index_Type; successor : in

Grid_Index_Type) return Boolean;
2 function Default_Boolean_Test_2 (cell: in Grid_Index_Type; successor : in

Grid_Index_Type) return Boolean;
3

4 function traverse_overapproximation (
5 cell : in Grid_Index_Type;
6 center : in Vector_Type ;
7 rad : in Radius_Type;
8 grid : in Grid_on_Manifold_Record;
9 successors : in out Cell_Container;

10 Boolean_Test_1: access function (cell: in Grid_Index_Type; successor : in
Grid_Index_Type) return Boolean := Default_Boolean_Test_1 ’Access;

11 Boolean_Test_2: access function (cell: in Grid_Index_Type; successor : in
Grid_Index_Type) return Boolean := Default_Boolean_Test_2 ’Access

12) return Boolean ;
13

14 -- @description This function traverses the cells that intersect the
overapproximation hyper -interval H := [[center -rad ,center+rad]]

15 -- @param cell The cell from which the overapproximation has been computed
16 -- @param center The center of the hyper -interval
17 -- @param rad The radius of the hyper -interval
18 -- @param grid
19 -- @param successor list of found cells
20 -- @param Boolean_Test_1 boolean function to be applied to each traversed cell
21 -- @param Boolean_Test_2 boolean function to be applied to each traversed cell
22

23

24 function continue_traverse_overapproximation(

54

25 cell : in Grid_Index_Type;
26 grid : in Grid_on_Manifold_Record;
27 successors : in out Cell_Container;
28 lower_index: in Grid_Index_Type;
29 upper_index: in Grid_Index_Type;
30 start_index: in Grid_Index_Type;
31 Boolean_Test_1: access function (cell: in Grid_Index_Type; successor : in

Grid_Index_Type) return Boolean := Default_Boolean_Test_1 ’Access;
32 Boolean_Test_2: access function (cell: in Grid_Index_Type; successor : in

Grid_Index_Type) return Boolean := Default_Boolean_Test_2 ’Access
33) return Boolean;
34

35 -- @description This function traverses the cells that intersect the
overapproximation hyper -interval determined by lower_index and upper_index
starting from start_index

36 -- @param cell The cell from which the overapproximation has been computed
37 -- @param grid
38 -- @param successor list of found cells
39 -- @param lower_index index of a cell that contains lower point of

overapproximation interval
40 -- @param upper_index index of a cell that contains upper point of

overapproximation interval
41 -- @param start_index index of a cell from which the taversal starts
42 -- @param Boolean_Test_1 boolean function to be applied to each traversed cell
43 -- @param Boolean_Test_2 boolean function to be applied to each traversed cell
44);

Listing 19: On-the-fly synthesis functionality

This functionality is also used to perform operations on lines 2 Function 6 and 4, 6 Function
7 during synthesis. Notice that synthesis algorithms are implemented in a different package
- Dijkstra_Algorithm_i13absoc. Ada strong types do not allow this package to manipulate
any functionality associated with computation of abstract transitions. For standard synthesis
algorithms this is not a problem since they operate on abstractions already computed. In contrast,
novel methods, introduced in this work, compute transitions when needed. This would require
merging Grids and Dijkstra packages which would break clear software structure. This problem
is resolved by supplying to Grids package pointers to clearly defined boolean tests, which are
constructed by Dijkstra package during synthesis.

9 Numerical tests
This is the final section of the present work. It includes numerical tests of the developed algorithms
as well as comparisons with competing software on a number of examples.

9.1 Competing software
Methods presented in this thesis, implemented in the software package ABS [113] are compared
with the software SCOTS, MASCOT and ROCS, all written in C++. SCOTS [95] pre-computes
full abstractions before synthesis on a fixed state grid and utilizes either Sparse Matrices or Binary
Decision Diagrams (BDDs), which may reduce memory usage. MASCOT [37] utilizes multiple
abstraction layers stored in BDDs. ROCS [56] utilizes interval arithmetic and refines state-space
discretization if synthesis fails at coarser levels.

55

2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5: maximal controlled invariant set for example 9.2.1 (green), simulated randomly disturbed
controlled trajectory starting from (π, 0) for 5000 sampling steps (black)

9.2 Examples
We proceed to description of control tasks, to which the above software packages have been
applied. The problem data of examples below includes target sets D and obstacle sets M . The
maps G, g of an optimal control problem Π = (X,U, F,G, g) are defined as follows:

Reach-avoid: G(p) = 0 if p ∈ D\M , and otherwise G(p) =∞, and g(p, q, u) = 1 if p ̸∈M , and
otherwise g(p, q, u) =∞. Invariance: G(p) =∞, and g(p, q, u) = 0 if p ∈ D \M , and otherwise
g(p, q, u) =∞.

For every problem the tool MASCOT utilizes 3 discretization layers, unless specified otherwise.
MASCOT constructs abstraction layers as follows: State discretization of each next layer is 2
times finer in every dimension. Sampling time for each next layer is 2 times smaller. Last layer
parameters correspond to the ones given in the problem data. ROCS non-uniform grids cannot
have discretization finer than those specified in the example problem data. SCOTS and ABS
employ uniform stae and input space grids.

9.2.1 Pendulum Invariance around unstable equilibrium

Dynamics: We consider disturbed pendulum model ([85]), control problem taken from [61].

ẋ ∈
(

x2
− sin(x1)− cos(x1)u

)
+W (54)

where x1 is the pole angle and x2 is the angular velocity. We are interested in study the disturbed
dynamics behavior and finding a controller that provably keeps the pole in a set around unstable
equilibrium point (π, 0). Disturbance set W models unknown friction dynamics. We apply the
developed algorithms and competing software to find maximal controlled invariant subset of
[π − 1, π + 1] × [−1, 1]. We let input domain to be [−1.9, 1.9], and dynamical disturbances be
bounded by W = ([0, 0], [−0.5, 0.5]). State-space discretization parameters: (256, 256); Input-
space discretization parameters: (19). We sample the system with 0.2 seconds.

Technical details: computations were run on a computer equipped with 8 Intel(R) Xeon(R)
Platinum 8168 processors and 1 TB of RAM.

56

(A). 0.448 0.450 0.452 0.454 0.456

0.648

0.650

0.652

0.654

(B). -10 -5 0 5 10 15 20

-10

-5

0

5

10

Figure 6: (A) - Simulated trajectory from point (0.4519− 0.003, 0.6513− 0.003), for example
9.2.2. (B) - Simulated robot maneuver for example 9.2.3 (states x1, x2) starting from point
(−8, 8,−π/2).

9.2.2 Engine Invariance

Dynamics: We consider a system describing Moore-Greitzer engine [58], control problem taken
from [113]. (

Φ̇

Ψ̇

)
=

(1
lc
(ψc −Ψ) + u1
1

4lcB2 (Φ− u2
√
Ψ)

)
where ψc = a+H[1+1.5(Φ/W−1)−0.5(Φ/W−1)3], a = 1/3.5, H = 0.18, lc = 8, B = 2,W = 0.25,
are engine parameters related to the configuration. The states Φ and Ψ are the average flow
rate and pressure of an axial-flow jet engine compressor, respectively. The control inputs are
the throttle coefficient u2 and an additional control u1. Input Domain : [−0.05, 0.05]× [0.5, 0.8].
Sampling Time : 0.1. State-space discretization parameters: (500, 500); Input-space discretization
parameters: (3, 3); The invariance problem consists in finding maximal controlled invariant subset
of [0.4479, 0.4559]× [0.6473, 0.6553]. A closed-loop trajectory is illustrated in Fig. 6.

Technical details: computations were run on a computer equipped with 8 Intel(R) Xeon(R)
Platinum 8168 processors and 1 TB of RAM.

9.2.3 Robot navigation in a complex environment

Dynamics: we consider dynamics of a two-wheeled mobile robot taken from [50] with disturbance,
control problem taken from [113].ẋ1ẋ2

ẋ3

 ∈
u1 · cos(x3)/2 + u2 · cos(x3)/2
u1 · sin(x3)/2 + u2 · sin(x3)/2

5u1 − 5u2

+W. (55)

We now consider a problem of robot navigation in an obstacle environment, illustrated in
Fig. 6. Let the problem data be:

57

Domain =[−10, 20]× [−1.0, 1.0]× [−π/2, π/2]
Target Set =[10.5, 12.0]× [−4.5,−3.0]× [−π/2, π/2]
Initial Set =[−9.0,−6.0]× [7.0, 9.0]× [−π/2, π/2]

Obstacle Set =[−5.0,−2.5]× [−5.0, 10]× [−π/2, π/2]
∪[2.5, 5.0]× [−10, 5.0]× [−π/2, π/2]
∪[5.0, 17.5]× [2.5, 5.0]× [−π/2, π/2]
∪[15, 17.5]× [−7.5, 5.0]× [−π/2, π/2]
∪[7.5, 15]× [−7.5,−5.0]× [−π/2, π/2]
∪[7.5, 10]× [−5.0, 0.0]× [−π/2, π/2]
∪[10, 12.5]× [−2.5, 0.0]× [−π/2, π/2]

Input domain U = [−2, 2] × [−2, 2]. Sampling time: 0.1. Dynamical disturbances: W =
([−0.5, 0.5] , [−0.5, 0.5] , [−0.5, 0.5]) State-space discretization: (300, 300, 100) Input-space dis-
cretization: (5, 5). The control problem consists in driving the system from the Initial set to the
Target Set, while avoiding obstacles. A closed-loop trajectory is illustrated in Fig. 6.

Technical details: computations were run on a computer equipped with 8 Intel(R) Xeon(R)
Platinum 8168 processors and 1 TB of RAM.

9.2.4 Rocket velocity change

Dynamics: We consider a system describing rocket flight [16], control problem taken from [62].V̇γ̇
ḣ

 =

 T cos(u)−D
m − g sin(γ)

T sin(u)+L
mV − g cos(γ)

V + V cos(γ)
h+R0

V sin(γ)

where V is the velocity, γ is the flight path angle, h is the height, and the angle of attack u is
the input to the system, D = 0.5ρV 2Sref (CX cos(u) +CN sin(u)), L = 0.5ρV 2Sref (−CX sin(u) +
CN cos(u)), ρ = 1.28395 is the atmospheric density, CX = 0.2907, CN = 1.0643, Sref = 3,
g = g0(R0/(h+R0))

2, g0 = 9.81, R0 = 6371 is the the radius of earth, m = 16500 , T = 645000.
The control problem consists in driving the sampled system, with sampling time τ = 0.1, from the
initial point (2750,−0.69, 44990) to the target set [3000, 4000]× [−0.1, 0.1]× [40000, 45000]. The
admissible state domain is X ′

1 = [1000, 4000]× [−1.5, 1.5]× [40000, 45000], which is discretized
using 252× 252× 252 cells, and the abstraction uses 10 equidistant inputs from U1 = [−0.8, 0.8].

Technical details: computations were run on a computer equipped with AMD EPYC 7452
CPU and 1 TB of RAM. Due to the fact that method of bounding numerical errors employed by
ABS being very conservative, this example has been solved by ABS disregarding numerical error
bounds and turning off Ada language run-time checks.

9.2.5 Pendulum-cart system swing up

Dynamics: We consider pendulum on a cart model:
ẋ1
ẋ2
ẋ3
ẋ4

 =

x2

− sin(x1)− cos(x1)u− 2γx2
x4
u

 (56)

58

where γ = 0.0125, x1 is the pendulum angle, x2 - angular velocity, x3 - cart position, x4 - cart
velocity. We aim to synthesize controllers that drive the pendulum starting from point (0, 0, 0, 0)
upwards, to the target set [π − 0.3, π + 0.3] × [−0.3, 0.3] × [−0.5, 0.5] × [−0.5, 0.5]. We let the
admissible state and input domains be [0, 2π]× [−2.80, 2.80]× [−1.7, 1.7]× [−1.7, 1.7] and [−2, 2]
with discretization parameters (200, 200, 80, 80) and (15) correspondingly. The sampling time is
0.3 seconds.

Technical details: computations were run on a computer equipped with 8 Intel(R) Xeon(R)
Platinum 8168 processors and 1 TB of RAM. Due to the fact that method of bounding numerical
errors employed by ABS being very conservative, this example has been solved disregarding
bounds on errors of numerical operations.

9.2.6 Double Pendulum invariance

Dynamics: We consider a challenging example, involving perturbed dynamics of the double
pendulum on a cart [114], control problem taken from [62].(

ẋ1
ẋ2

)
=

(
x3
x4

)
(57a)(

ẋ3
ẋ4

)
= A−1b (57b)

where (x1, x2) are the pendulum angles and (x3, x4) angle velocities and

A =

(
J1 + a21m1 + l21m2 a2l1m2 cos(x1 − x2)
a2l1m2 cos(x1 − x2) J2 + a22m2

)
(58)

b =

(
(a1m1 + l1m2)g sin(x1)− a2l1m2 sin(x1 − x2)x24 − d1x3 − d2(x3 − x4) + (a1m1 + l1m2) cos(x1)u

a2gm2 sin(x2) + a2l1m2 sin(x1 − x2) + d2(x3 − x4) + a2m2cos(x2)u

)
(59)

The constants are given in the table Tab. 2 [30].
We seek to find a forward invariant set around (π, π, 0, 0) with sampling time τ = 0.005.

The state domain is X ′
1 = [π − 0.1, π + 0.1]

2 × [−0.27, 0.27]2, which is discretized using 200 ×
200× 200× 200 cells, and the abstraction uses 10 equidistant inputs from U1 = [−34.335, 34.335].
For this example, MASCOT uses 2 discretization layers with sampling times 0.01 and 0.005,
respectively. We have chosen only 2 layers, since coarser abstractions are unable to produce
non-empty controllers for this problem.

Technical details: computations were run on a computer equipped with AMD EPYC 7452
CPU and 1 TB of RAM. Due to the fact that method of bounding numerical errors employed by
ABS being very conservative, this example has been solved by ABS disregarding numerical error
bounds and turning off Ada language run-time checks.

9.2.7 Heavily disturbed quad-copter flight

Dynamics: We consider quad-rotor model [121]:
ẋ1
ẋ2
ẋ3
ẋ4

 ∈

0.2 · cos(x3)
0.2 · sin(x3)

x4
u− 0.25 · x3

+W (60)

59

0 1 2 3 4

0

1

2

3

4

Figure 7: 4 simulated quad-copter maneuvers (colored) from example 9.2.7 with 4 random
disturbance signals supplied to the system

where (x1, x1) are planar quad-rotor coordinates, (x3, x4) is the orientation angle and angle
velocity respectively. Dynamical disturbance W models influences of un-modeled quad-rotor
dynamics as well as unexpected weather effects. Problem Data:

Domain =[0.0, 4.0]× [0.0, 4.0]× [−π, π]× [−2.0, 2.0]
Target Set =[1.8, 2.2]× [3.6, 3.8]× [−π, π]× [−2.5, 2.5]

Initial Set =[2.0, 2.0]× [0.3, 0.3]× [
π

2
,
π

2
]× [0.0, 0.0]

Obstacle Set =[1.6, 2.4]× [0.7, 1.1]× [−π, π]× [−2.5, 2.5]
∪[1.6, 2.4]× [2.9, 3.3]× [−π, π]× [−2.5, 2.5]
∪[1.0, 1.7]× [1.6, 2.4]× [−π, π]× [−2.5, 2.5]
∪[2.3, 3.0]× [1.6, 2.4]× [−π, π]× [−2.5, 2.5]

Input Domain : [−4, 4]. Sampling Time : 0.3. Dynamic disturbance bound: W =
[−0.081, 0.081] × [−0.081, 0.081] × [−0.051, 0.051] × [−0.051, 0.051]; State-space discretization
parameters: (180, 180, 150, 150); Input-space discretization parameters: (20); The control problem
consists in driving the system from the Initial set to the Target Set, while avoiding obstacles.

Technical details: computations were run on a computer equipped with 8 Intel(R) Xeon(R)
Platinum 8168 processors and 1 TB of RAM. Due to the fact that method of bounding numerical
errors employed by ABS being very conservative, this example has been solved disregarding
bounds on errors of numerical operations.

60

9.3 Discussion of numerical results
Time and memory consumption are reported in tables Tab. 4 and Tab. 3. Analysis of these
measurements is now presented.

Table 3: Memory consumption

Example N SCOTS-BDD SCOTS-SM MASCOT ROCS ABS (this work)
9.2.1 141 MB 460 MB 346 MB 8 MB 10 MB
9.2.2 270 MB 147 MB 245 MB 10 MB 29 MB
9.2.3 1.1 GB 47 GB 1.8 GB 0.7 GB 0.6 GB
9.2.4 7.5 GB 15.8 GB 4.3 GB 0.55 GB 0.7 GB
9.2.5 >36.8 GB >1000 GB >64.8 GB >54.1 GB 22 GB
9.2.6 >3.4 GB >2000 GB >180 GB >34GB 57 GB
9.2.7 >10 GB >1000 GB >15 GB >82 GB 53 GB

Table 4: Time consumption

Example N SCOTS-BDD SCOTS-SM MASCOT ROCS ABS (this work)
9.2.1 40 sec. 2 sec. 22 sec. 6 sec. 8 sec.
9.2.2 43.6 sec. 2.76 sec. 14.9 sec. 0.009 sec. 1.17 sec.
9.2.3 473 min. 9.68 min. 1510 min. 136 min. 35 min.
9.2.4 415 min. 10 min. 93 min. 464 min. 2.1 min.
9.2.5 45 hours(a) - 45 hours(a) 45 hours(a) 24 hours
9.2.6 728 hours(a) - 123 hours(a) 728 hours(a) 19 hours
9.2.7 100 hours(a) - 100 hours(a) 100 hours(a) 61 hours

(a) Computations not finished; aborted after indicated time.

For the first example 9.2.1 the newly developed methods outperformed competing algorithms
memory-wise, with factors ranging from 14 to 40, except for ROCS, which required 2 MB less
space. Regarding time consumption, ABS was slower than SCOTS-SM by 6 seconds, slower than
ROCS by 2 seconds and outperformed other works by at least 2 times. Second example 9.2.2
shows similar results: ABS outperforms competitors, except for ROCS, memory-wise with factors
5 to 9 and time-wise with factors 2 to 40. ROCS has solved this problem very efficiently requiring
3 times less memory than ABS and practically no time.

These results are reasonable. ROCS was expected to take approximately the same amount of
memory as ABS, due to not storing any abstraction parts and preforming hyper-interval analysis
only. On small examples implementation details heavily influence overall time and memory
consumption. ROCS and SCOTS are written in C++, which is known to be faster than Ada
in general. Moreover, access data type in Ada language, used to declare dynamic structures,
is known to contain more data than the corresponding pointer type in C, such as first and last
indices of the allocated array. This in turn leads to slightly greater memory consumption of ABS.

Problems 9.2.3,9.2.4 confirm advantages of ABS with memory consumption reduction by
factor of 2 (SCOTS BDD 9.2.3) to 10 (SCOTS BDD 9.2.3), 20 (SCOTS SM 9.2.4) and reaching
70 (SCOTS SM 9.2.3). Only ROCS took approximately the same amount of memory on both

61

examples. Time-wise, ABS lost only to SCOTS SM on example 9.2.3, which was 3 times faster.
However, ABS outperformed all other competitors with factors ranging from 4 (ROCS 9.2.3) to
200 (SCOTS BDD, ROCS 9.2.4). Notice, with increased problem complexity, implementation
details affect resource consumption weakly.

Examples 9.2.5, 9.2.6, 9.2.7 were solved only by ABS in the indicated time under hardware
memory limits. For instance the double pendulum invariance problem 9.2.6 has been solved only by
ABS, where the safe set occupies less that 1% of the admissible state domain volume. SCOTS-SM
could not be run as it would have required more than the main memory available. Indeed, at least
2 TB would have been needed, as seen from the simple lower bound 2n+3 · card(X ′) · card(U ′),
where X ′ and U ′ are abstract state and input sets, 8 bytes to store a single transition, the number
of transitions is not less than 2n per abstract state-input, and n is the dimension of the state-space.
SCOTS-BDD and ROCS have been aborted after 30 days, and MASCOT crashed after 123 hours,
which exceeds the time ABS spent to successfully solve the problem by a factor of 37 and 6,
respectively. For example 9.2.6 SCOTS-BDD used less memory in the indicated time than ABS,
yet has not finished even in 30 days. Thus it is not clear whether the final memory consumption
of SCOTS and other competitors would be lower or not. Example 9.2.7 shows similar behavior.

This section is summarized by pointing out that ABS in, general, is able to significantly
outperform its competitors. Although, some examples do show that ABS can take more com-
putational resources than others, only novel algorithms were able to solve a number of control
problems. Thus numerical tests confirm theoretical advances in application of abstraction-based
theory.

10 Conclusions and Outlook
This thesis presents novel controller synthesis methods within abstraction-based methodology.
Contrary to existing works, the developed algorithms are applicable to a large class of non-
linear systems and place no assumptions on the structure of the abstract state space (such
as non-uniform grids) and transition function (such as single-valued) for their efficiency. To
provide space relief, the proposed routines do not exploit any specific system properties but
only require availability of special predictor maps that direct synthesis procedure in analyzing
abstract transitions, and order relations on abstractions to avoid redundant operations. It has
been shown that the mentioned predictors can be computed for the same class of systems, for
which methods to compute abstraction were presented. Moreover, since abstractions are finite by
definition, suitable order relations can always be found. Novel methods, provide guarantees of
large space consumption reduction, while maintaining linear time complexity for two fundamental
specifications - optimal reachability and qualitative invariance. One of exponential memory
requirements of abstraction-based synthesis is thus completely removed. Up to he knowledge
of the author these are the first algorithms with such complexity. Nevertheless, it has to be
noted that combinatorial "explosion" of number of abstract state and inputs still remains an
issue. A software package ABS was developed that implements the discussed methods, and
computes abstractions and controllers in purely automated fashion. No manual analysis, such
as bounding of the first derivative of the right-hand side,is required. Comparison with existing
software has shown that, overall, ABS is able to drastically outperform competitors, and moreover,
can synthesize controllers for problems previously unsolvable in abstraction-based setting within
reasonable time and space limits.

Although measurable progress in application of symbolic control has been observed, a number
of questions has appeared or remains to be open. This work is concluded by discussing further
obstacles to theoretical and practical development and possible ways of their mitigation.

62

First, linear time algorithms (e.g. O(m) in abstraction size) preserving large space relief
have been presented only for the worst-case optimal reachability with non-negative transition
cost and the worst-case invariance with zero transition cost. Methods concerned with more
general cost functions also exist - see [112] for reach-avoid problems allowing negative cost of
transitions taking O(n ·m) time and section 7.2.3 of this work for optimal worst-case invariance
allowing positive-cost transitions taking O(n · (m+m− + n log n)) time, where n is the size of
abstract state space m is the total number of abstract transitions and m− ≊ m. Can a O(m)-time
space-efficient algorithm be constructed for the above classes of problems? It seems that for
negative transition cost optimal reachability problems this is unlikely since O(n ·m) operations
could be needed in the worst case to detect negative cycles. However, for invariance problems
some results could be expected placing assumptions on structure of transition cost function, such
as invertibility. Moreover, is it possible to construct O(m) time O(n) space algorithms for optimal
invariance problems that differ from optimizing worst-case trajectory cost? An example could be
optimization of average trajectory cost.

Second, large cardinality of the abstract state-space, and consequently the size of abstract
controllers, is understood to be one of the main remaining obstacles to practical adoption of
symbolic control. This issue has seen acceptable solutions only on special classes of systems - see
[67], [11] and literature review in section 3.

A number of techniques are expected to provide significant reduction of controllers size.
Algorithms, proposed in this thesis, do not place any specific assumptions on the structure of
abstract state-space, transition function, and utilize exhaustive iteration of backward estimators
and backward transition maps over all abstract inputs to prove controllability or non-controllability
of a cell. ABS also implements only uniform state and input grids. Non-uniform state and input
grids promise further computational relief, although care must be taken with additional burden
of maintenance of complex state and input spaces - see comparisons in section 9.3 between ROCS
and MASCOT (non-uniform state grids) on one hand and SCOTS (uniform state grids) on the
other hand, where on various examples most efficient software differs.

It can also be noted that all currently available abstraction-based algorithms compute the
reach-avoid value function, and its associated controller, globally, i.e. for every cell in the abstract
state-space. This can be useful to study global properties of system dynamics, and resolvability of
the given problem for various initial conditions. It can also be necessary for certain problems due
to presence of heavy disturbances, measurements errors etc. See for example problem 9.2.7 and
Fig. 7 where different disturbance signals force abstract controller to produce drastically different
simulated trajectories starting from single initial point. However for many problems, volume
of controlled tube starting from the initial set to the target set is very small compared to the
volume of complete abstract state-space. Then computation of global value function to produce a
single controlled maneuver seems rather unnecessary. Therefore, next general scheme appears
to be promising in reducing further computational complexity of abstraction-based synthesis
techniques.

(i) Compute a single controlled trajectory from continuous initial set to continuous target set.

(ii) Decompose the initial reach-avoid problem into a sequence of problems between sets
constructed along the controlled trajectory.

(iii) Build (parts of) local abstractions in proximity to the computed trajectory. Attempt to
synthesize symbolic controllers.

Such approach promises to address combinatorial explosion of number of abstract states and
inputs. Since abstractions are expected to be to be built around pre-computed trajectory, number

63

of needed abstract states to solve local reachability problems is expected to be far smaller, than
the number of states needed for computation of sufficiently precise approximation of the global
value function. Moreover, heuristic choice of control inputs instead of exhaustive iteration over
the inputs space can be envisioned.

64

Table 1: Problem Specific Files (from [89])

File name Description

dynamics_specification_parameters.adb Floating-point implementation of the user input in
the Ada programming language

dynamics_specification_parameters.ads Specification file to previous
dynamics_specification_parameters.c Floating-point implementation of the user input in

the C programming language
dynamics_specification_parameters.h Header file to previous
Function.adb Floating-point implementation of the right hand side

of the unperturbed dynamics in the Ada program-
ming language

Function.ads Specification file to previous
Function.c Floating-point implementation of the right hand side

of the unperturbed dynamics in the C programming
language

Function.h Header file to previous
Function_ia.c Interval arithmetic implementation of the right hand

side of the unperturbed dynamics in the C program-
ming language

Function_ia.h Header file to previous
Function.mma Floating-point implementation of the right hand side

of the unperturbed dynamics in the Mathematica
programming language

Jacobian.abcs Floating-point implementation of the first derivative
of the right hand side of the unperturbed dynamics
in the problem compiler programming language

Jacobian.c Interval arithmetic implementation of the first deriva-
tive of the right hand side of the unperturbed dy-
namics in the C programming language

Jacobian.h Header file to previous
taylorcoefficients.abcs Taylor coefficients for the right hand side of the

unperturbed dynamics in the problem compiler pro-
gramming language

taylorcoefficients.adb Taylor coefficients for the right hand side of the
unperturbed dynamics in the Ada programming lan-
guage

taylorcoefficients.ads Specification file to previous
taylorcoefficients.c Taylor coefficients for the right hand side of the un-

perturbed dynamics in the C programming language
taylorcoefficients.h Header file to previous

65

Table 2: Mechanical parameters of the double pendulum

Pendulum link Inner
i = 1

Outer
i = 2

Length li (m) 0.323 0.480
Distance to center of gravity ai (m) 0.2145 0.223
Mass mi (kg) 0.853 0.510
Moment of inertia Ji (Nms2) 0.0126 0.0185
Friction constant di (Nms) 0.005 0.005

66

Bibliography

[1] AdaCore. GPRbuild and GPR Companion Tools User’s Guide. https://docs.adacore.
com/gprbuild-docs/html/gprbuild_ug.html.

[2] Matthias Althoff. Reachability analysis of nonlinear systems using conservative polynomial-
ization and non-convex sets. In Proc. 16th Intl. Conf. Hybrid Systems: Computation and
Control (HSCC), Philadelphia, PA, U.S.A., April 8-11, 2013, pages 173–182, 2013.

[3] Matthias Althoff, Olaf Stursberg, and Martin Buss. Reachability analysis of nonlinear
systems with uncertain parameters using conservative linearization. In 2008 47th IEEE
Conference on Decision and Control, pages 4042–4048, 2008.

[4] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere, and George J. Pappas. Discrete
abstractions of hybrid systems. Proc. IEEE, 88(7):971–984, July 2000.

[5] Taha Ameen, Shayok Mukhopadhyay, and Nasser Qaddoumi. Computing robust forward
invariant sets of multidimensional non-linear systems via geometric deformation of polytopes
(https://arxiv.org/abs/2101.10407), 01 2021.

[6] Tzanis Anevlavis and Paulo Tabuada. Computing controlled invariant sets in two moves.
pages 6248–6254, 12 2019.

[7] Tzanis Anevlavis and Paulo Tabuada. A simple hierarchy for computing controlled invariant
sets. In Proceedings of the 23rd International Conference on Hybrid Systems: Computation
and Control, HSCC ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[8] Zvi Artstein and Sasa V. Rakovic. Feedback and invariance under uncertainty via set-iterates.
Automatica, 44:520–525, 02 2008.

[9] D. P. Bertsekas and I. B. Rhodes. On the minimax reachability of target sets and target
tubes. Automatica, 7(2):233–247, mar 1971.

[10] Franco Blanchini and Stefano Miani. Set-theoretic methods in control. Systems & Control:
Foundations & Applications. Birkhäuser Boston Inc., Boston, MA, 2008.

[11] Alessandro Borri, Giordano Pola, Pierdomenico Pepe, Maria Domenica Di Benedetto, and
Pasquale Palumbo. Symbolic control design of an artificial pancreas for type-2 diabetes.
IEEE Transactions on Control Systems Technology, pages 1–16, 2021.

[12] Dimitris Boskos and Dimos V Dimarogonas. Decentralized abstractions for feedback
interconnected multi-agent systems. In Proc. IEEE Conf. Decision and Control (CDC),
Osaka, Japan, 15-18 December 2015, pages 282–287, 2015.

67

https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html
https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

[13] J.M. Bravo, D. Limon, T. Alamo, and E.F. Camacho. On the computation of invariant
sets for constrained nonlinear systems: An interval arithmetic approach. Automatica,
41(9):1583–1589, 2005.

[14] Michael Brunner, Bernd Brüggemann, and Dirk Schulz. Hierarchical rough terrain motion
planning using an optimal sampling-based method. 2013 IEEE International Conference
on Robotics and Automation, pages 5539–5544, 2013.

[15] Peter E. Caines and Yuan-Jun Wei. Hierarchical hybrid control systems: a lattice-theoretic
formulation. IEEE Trans. Automat. Control, 43(4):501–508, 1998.

[16] Si-Yuan Chen and Qun-Li Xia. A multiconstrained ascent guidance method for solid
rocket-powered launch vehicles. Intl. J. of Aerospace Engineering, 2016, 2016.

[17] Congcong Cheng, Xiafu Lv, Junsong Zhang, and Meng Zhang. Robot arm path planning
based on improved rrt algorithm. In 2021 3rd International Symposium on Robotics and
Intelligent Manufacturing Technology (ISRIMT), 2021.

[18] F.L. Chernous’ko. Ellipsoidal estimates of a controlled system’s attainability domain.
Journal of Applied Mathematics and Mechanics, 45(1):7–12, 1981.

[19] M. Cwikel and P.-O. Gutman. Convergence of an algorithm to find maximal state constraint
sets for discrete-time linear dynamical systems with bounded controls and states. IEEE
Transactions on Automatic Control, 31(5):457–459, 1986.

[20] Luca De Alfaro and Pritam Roy. Solving games via three-valued abstraction refinement. In
Intl. Conf. on Concurrency Theory, pages 74–89. Springer, 2007.

[21] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269–271,
1959.

[22] Charles Donnelly and Richard Stallman. GNU Bison Manual. Free Software Foundation,
2020. https://www.gnu.org/software/bison/.

[23] Mirko Fiacchini, Teodoro Alamo, and Eduardo Camacho. On the computation of convex
robust control invariant sets for nonlinear systems. Automatica, 46:1334–1338, 08 2010.

[24] Mirko Fiacchini, Sophie Tarbouriech, and Christophe Prieur. Polytopic control invariant
sets for differential inclusion systems: A viability theory approach. Proc. of the American
Control Conference (ACC’11), 06 2011.

[25] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmer-
mann. MPFR: A multiple-precision binary floating-point library with correct rounding.
ACM Trans. Math. Software, 33(2):13:1–13:15, June 2007.

[26] Dirk Förstner, Merten Jung, and Jan Lunze. A discrete-event model of asynchronous
quantised systems. Automatica, 38(8):1277–1286, 2002.

[27] Antoine Girard and Gregor Gössler. Safety synthesis for incrementally stable switched
systems using discretization-free multi-resolution abstractions. Acta Inform., September
2019.

[28] Antoine Girard and George J. Pappas. Approximation metrics for discrete and continuous
systems. IEEE Transactions on Automatic Control, 52(5):782–798, 2007.

68

https://www.gnu.org/software/bison/

[29] Timothy J. Graettinger and Bruce H. Krogh. Hyperplane method for reachable state esti-
mation for linear time-invariant systems. Journal of Optimization Theory and Applications,
69:555–588, 1991.

[30] Knut Graichen, Michael Treuer, and Michael Zeitz. Swing-up of the double pendulum on
a cart by feedforward and feedback control with experimental validation. Automatica J.
IFAC, 43(1):63–71, 2007.

[31] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

[32] Lars Grune and Jurgen Pannek. Nonlinear Model Predictive Control: Theory and Algorithms.
01 2011.

[33] Ankit Gupta, Hakan Koroglu, and Paolo Falcone. Computation of low-complexity control-
invariant sets for systems with uncertain parameter dependence. Automatica, 101:330–337,
2019.

[34] Didier Henrion and Milan Korda. Convex computation of the region of attraction of
polynomial control systems. IEEE Transactions on Automatic Control, 59(2):297–312, 2014.

[35] Thomas Henzinger, Rupak Majumdar, and Vinayak Prabhu. Quantifying similarities
between timed systems. volume 3, pages 226–241, 09 2005.

[36] C. S. Hsu. Cell-to-cell mapping, volume 64 of Applied Mathematical Sciences. Springer-
Verlag, New York, 1987.

[37] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. Lazy abstraction-
based control for safety specifications. In Proc. 57th IEEE Conf. Decision and Control
(CDC), Miami, FL, USA, 17-19 December 2018, pages 4902–4907, 2018.

[38] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. Multi-layered
abstraction-based controller synthesis for continuous-time systems. In Proc. 21st Intl. Conf.
Hybrid Systems: Computation and Control (HSCC), Porto, Portugal, April 11-13, 2018,
pages 120–129, 2018.

[39] Shouchuan Hu and Nikolas S. Papageorgiou. Handbook of multivalued analysis. Vol. I,
volume 419 of Mathematics and its Applications. Kluwer, 1997.

[40] Omar Hussien, Aaron Ames, and Paulo Tabuada. Abstracting partially feedback linearizable
systems compositionally. IEEE Control Systems Letters, 1(2):227–232, October 2017.

[41] Omar Hussien and Paulo Tabuada. Lazy controller synthesis using three-valued abstractions
for safety and reachability specifications. In Proc. 57th IEEE Conf. Decision and Control
(CDC), Miami, FL, USA, 17-19 December 2018, pages 3567–3572, 2018.

[42] A. Iannelli, A. Marcos, and M. Lowenberg. Estimating the region of attraction of uncertain
systems with invariant sets∗∗this work has received funding from the european union’s
horizon 2020 research and innovation programme under grant agreement no 636307, project
flexop. IFAC-PapersOnLine, 51(25):246–251, 2018. 9th IFAC Symposium on Robust Control
Design ROCOND 2018.

69

http://gmplib.org/

[43] Gian Paolo Incremona, Antonella Ferrara, and Lalo Magni. Hierarchical model predic-
tive/sliding mode control of nonlinear constrained uncertain systems. IFAC-PapersOnLine,
48(23):102–109, 2015. 5th IFAC Conference on Nonlinear Model Predictive Control NMPC
2015.

[44] Elena Ivanova and Antoine Girard. Lazy symbolic controller for continuous-time systems
based on safe set boundary exploration. In 7th IFAC Conf. Analysis and Design of Hybrid
Systems (ADHS), Brussels, Belgium, 7-9 July 2021, volume 54 of IFAC-PapersOnLine,
pages 109–114, 2021.

[45] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[46] Mahmoud Khaled, Eric S. Kim, Murat Arcak, and Majid Zamani. Synthesis of symbolic
controllers: A parallelized and sparsity-aware approach. In Tomáš Vojnar and Lijun Zhang,
editors, Proc. Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Czech Rep., April 6-11, 2019, volume 11428 of Lect. Notes Comput. Sci., pages
265–281. Springer, 2019.

[47] Mahmoud Khaled and Majid Zamani. pFaces: An acceleration ecosystem for symbolic
control. In Proc. 22th ACM Intl. Conf. on Hybrid Systems: Computation and Control
(HSCC), Montreal, QC, Canada, April 16-18, 2019, pages 252–257, 2019.

[48] Eric S. Kim, Murat Arcak, and Sanjit A. Seshia. Symbolic control design for monotone
systems with directed specifications. Automatica J. IFAC, 83:10–19, 2017.

[49] Eric S Kim, Murat Arcak, and Majid Zamani. Constructing control system abstractions
from modular components. In Proc. 21st Intl. Conf. Hybrid Systems: Computation and
Control (HSCC), Porto, Portugal, April 11-13, 2018 [38], pages 137–146.

[50] Shunsuke Kimura, Hisakazu Nakamura, and Yuh Yamashita. Control of two-wheeled mobile
robot via homogeneous semiconcave control lyapunov function. In 9th IFAC Symp. Nonlin.
Control Systems, Toulouse, France, September 4-6, 2013, volume 46 of IFAC Proceedings
Volumes, pages 92–97, 2013.

[51] Milan Korda, Didier Henrion, and Colin N. Jones. Inner approximations of the region of
attraction for polynomial dynamical systems. IFAC Proceedings Volumes, 46(23):534–539,
2013. 9th IFAC Symposium on Nonlinear Control Systems.

[52] Xenofon D. Koutsoukos, Panos J. Antsaklis, James A. Stiver, and Michael D. Lemmon.
Supervisory control of hybrid systems. Proc. IEEE, 88(7):1026–1049, July 2000.

[53] Abolfazl Lavaei, Sadegh Esmaeil Zadeh Soudjani, Rupak Majumdar, and Majid Zamani.
Compositional abstractions of interconnected discrete-time stochastic control systems. In
Proc. 56th IEEE Conf. Decision and Control (CDC), Melbourne, Australia, 12-15 December
2017, pages 3551–3556, 2017.

[54] Steven M. LaValle. Rapidly-exploring random trees : a new tool for path planning. The
annual research report, 1998.

[55] M. Lazar, A. Alessio, A. Bemporad, and W.P.M.H. Heemels. Squaring the circle: an
algorithm for generating polyhedral invariant sets from ellipsoidal ones. In 2006 American
Control Conference, pages 6 pp.–, 2006.

70

[56] Yinan Li and Jun Liu. ROCS: A robustly complete control synthesis tool for nonlinear
dynamical systems. In Proc. 21st Intl. Conf. Hybrid Systems: Computation and Control
(HSCC), Porto, Portugal, April 11-13, 2018 [38], pages 130–135.

[57] Yinan Li, Zhibing Sun, and Jun Liu. ROCS 2.0: An integrated temporal logic control
synthesis tool for nonlinear dynamical systems. In 7th IFAC Conf. Analysis and Design of
Hybrid Systems (ADHS), Brussels, Belgium, 7-9 July 2021 [44], pages 31–36.

[58] Yinan Li, Zhibing Sun, and Jun Liu. A specification-guided framework for temporal logic
control of nonlinear systems. Technical Report 2104.01385v1, arXiv.org, April 3 2021.

[59] Chengyuan Liu, Furqan Tahir, and Imad M. Jaimoukha. Full-complexity polytopic robust
control invariant sets for uncertain linear discrete-time systems. International Journal of
Robust and Nonlinear Control, 29(11):3587–3605, 2019.

[60] Rudolf Lohner. Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben
und Anwendungen. Dissertation, Univ. Karlsruhe, Fak. f. Mathematik, 1988.

[61] Elisei Macoveiciuc and Gunther Reissig. Guaranteed memory reduction in synthesis of
correct-by-design invariance controllers. In Proc. 21st IFAC World Congress, Berlin,
Germany, July 12-17, 2020, volume 53 of IFAC-PapersOnLine, pages 5561–5566, 2020.

[62] Elisei Macoveiciuc and Gunther Reissig. On-the-fly symbolic synthesis with memory
reduction guarantees. IEEE Transactions on Automatic Control, 68(4):2576–2583, 2023.

[63] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback
motion planning. The International Journal of Robotics Research, 36(8):947–982, 2017.

[64] Kaushik Mallik, Anne-Kathrin Schmuck, and Rupak Majumdar. Compositional synthesis
of finite state abstractions. IEEE Trans. Automat. Control, 64(6):2629–2636, June 2019.

[65] Kaushik Mallik, Sadegh Esmaeil Zadeh Soudjani, Anne-Kathrin Schmuck, and Rupak
Majumdar. Compositional construction of finite state abstractions for stochastic control
systems. In Proc. 56th IEEE Conf. Decision and Control (CDC), Melbourne, Australia,
12-15 December 2017, pages 550–557, 2017.

[66] David Q. Mayne and Eric C. Kerrigan. Tube-based robust nonlinear model predictive
control1. IFAC Proceedings Volumes, 40(12):36–41, 2007. 7th IFAC Symposium on Nonlinear
Control Systems.

[67] Pierre-Jean Meyer, Antoine Girard, and Emmanuel Witrant. Compositional abstraction
and safety synthesis using overlapping symbolic models. IEEE Trans. Automat. Control,
63(6):1835–1841, 2018.

[68] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., USA, 1989.

[69] Thomas Moor, Jörg Raisch, and Siu O’Young. Discrete supervisory control of hybrid
systems based on l-complete approximations. Discrete Event Dynamic Systems, 12:83–107,
01 2002.

[70] Sebti Mouelhi, Antoine Girard, and Gregor Gössler. CoSyMA: A tool for controller synthesis
using multi-scale abstractions. In Proc. 16th Intl. Conf. Hybrid Systems: Computation and
Control (HSCC), Philadelphia, PA, U.S.A., April 8-11, 2013 [2], pages 83–88.

71

[71] Petter Nilsson and Necmiye Ozay. Control synthesis for large collections of systems with
mode-counting constraints. In Proc. 19th Intl. Conf. Hybrid Systems: Computation and
Control (HSCC), Vienna, Austria, April 12-14, 2016, pages 205–214, 2016.

[72] Chong-Jin Ong and Elmer G. Gilbert. The minimal disturbance invariant set: Outer
approximations via its partial sums. Automatica, 42(9):1563–1568, 2006.

[73] George Osipenko. Dynamical systems, graphs, and algorithms, volume 1889 of Lect. Notes
Math. Springer-Verlag, Berlin, 2007.

[74] Michael W. Otte and Emilio Frazzoli. Rrtx: Real-time motion planning/replanning for
environments with unpredictable obstacles. In Workshop on the Algorithmic Foundations
of Robotics, 2014.

[75] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis. Prentice Hall
PTR, 2nd edition, 2003.

[76] David Michael Ritchie Park. Concurrency and automata on infinite sequences. In Theoretical
Computer Science, 1981.

[77] Vern Paxson, Will Estes, and John Millaway. Lexical Analysis With Flex. https://github.
com/westes/flex/.

[78] Thomas Pecsvaradi and Kumpati S. Narendra. Reachable sets for linear dynamical systems.
Information and Control, 19(4):319–344, 1971.

[79] Giordano Pola, Antoine Girard, and Paulo Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica J. IFAC, 44(10):2508–2516, 2008.

[80] Giordano Pola, Pierdomenico Pepe, and Maria Domenica Di Benedetto. Symbolic models for
networks of discrete-time nonlinear control systems. In Proc. American Control Conference
(ACC), Portland, OR, U.S.A., 4-6 June 2014, pages 1787–1792, 2014.

[81] Giordano Pola and Paulo Tabuada. Symbolic models for nonlinear control systems: alter-
nating approximate bisimulations. SIAM J. Control Optim., 48(2):719–733, 2009.

[82] Saca V. Rakovic and Mirko Fiacchini. Invariant approximations of the maximal invariant
set or “encircling the square”. 07 2008.

[83] Sasa V. Rakovic and Miroslav Baric. Parameterized robust control invariant sets for
linear systems: Theoretical advances and computational remarks. IEEE Transactions on
Automatic Control, 55(7):1599–1614, 2010.

[84] S.V. Rakovic, P. Grieder, M. Kvasnica, D.Q. Mayne, and M. Morari. Computation of
invariant sets for piecewise affine discrete time systems subject to bounded disturbances. In
2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601),
volume 2, pages 1418–1423 Vol.2, 2004.

[85] Gunther Reißig. Abstraction based solution of complex attainability problems for decom-
posable continuous plants. In Proc. 49th IEEE Conf. Decision and Control (CDC), Atlanta,
GA, U.S.A., 15-17 December 2010, pages 5911–5917, 2010.

[86] Gunther Reissig and Matthias Rungger. Symbolic optimal control. IEEE Trans. Automat.
Control, 64(6):2224–2239, June 2019.

72

https://github.com/westes/flex/
https://github.com/westes/flex/

[87] Gunther Reissig, Alexander Weber, and Elisei Macoveiciuc. ABS – A Software for
Abstraction-based Controller Synthesis. Bundeswehr University Munich, May 2022. User’s
Manual. v.2.

[88] Gunther Reissig, Alexander Weber, and Matthias Rungger. Feedback refinement relations
for the synthesis of symbolic controllers. IEEE Trans. Automat. Control, 62(4):1781–1796,
April 2017.

[89] Gunther Reissig, Alexander Weber, and Hao Zhou. ABS – A Software for Abstraction-based
Controller Synthesis. Bundeswehr University Munich, May 2022. Programmer’s Manual.
v.2.

[90] Nathalie Revol and Fabrice Rouillier. Motivations for an arbitrary precision interval
arithmetic and the MPFI library. Reliab. Comput., 11(4):275–290, 2005.

[91] Matteo Rubagotti, Davide Martino Raimondo, Antonella Ferrara, and Lalo Magni. Ro-
bust model predictive control with integral sliding mode in continuous-time sampled-data
nonlinear systems. IEEE Transactions on Automatic Control, 56(3):556–570, 2011.

[92] Daniel Rubin, Hoai-Nam Nguyen, and Per-Olof Gutman. Computation of polyhedral
positive invariant sets via linear matrix inequalities. In 2018 European Control Conference
(ECC), pages 2941–2946, 2018.

[93] Matthias Rungger, Manuel Mazo, and Paulo Tabuada. Specification-guided controller
synthesis for linear systems and safe linear-time temporal logic. In Proc. 16th Intl. Conf.
Hybrid Systems: Computation and Control (HSCC), Philadelphia, PA, U.S.A., April 8-11,
2013 [2], pages 333–342.

[94] Matthias Rungger and Olaf Stursberg. On-the-fly model abstraction for controller synthesis.
In Proc. American Control Conference (ACC), Montréal, Canada, 27-29 June 2012, pages
2645–2650, 2012.

[95] Matthias Rungger and Majid Zamani. SCOTS: A tool for the synthesis of symbolic
controllers. In Proc. 19th Intl. Conf. Hybrid Systems: Computation and Control (HSCC),
Vienna, Austria, April 12-14, 2016 [71], pages 99–104.

[96] Adnane Saoud, Elena Ivanova, and Antoine Girard. Efficient synthesis for monotone
transition systems and directed safety specifications. In Proc. 58th IEEE Conf. Decision
and Control (CDC), Nice, France, 11-13 December 2019, pages 6255–6260, 2019.

[97] Jochen Schröder. Modelling, state observation and diagnosis of quantised systems, volume
282 of Lect. Notes Control Inform. Sciences. Springer-Verlag, Berlin, 2003.

[98] Maria Seron, Sorin Olaru, Florin Stoican, Jose Dona, and Ernesto Kofman. On finitely
determined minimal robust positively invariant sets. pages 157–162, 11 2019.

[99] Sumeet Singh, Anirudha Majumdar, Jean-Jacques Slotine, and Marco Pavone. Robust
online motion planning via contraction theory and convex optimization. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 5883–5890, 2017.

[100] Vladimir Sinyakov and Antoine Girard. Abstraction of monotone systems based on feedback
controllers. In Proc. 21st IFAC World Congress, Berlin, Germany, July 12-17, 2020,
volume 53 of IFAC-PapersOnLine, pages 1819–1824, 2020.

73

[101] Florin Stoican, Sorin Olaru, José A. De Dona, and María M. Seron. Zonotopic ultimate
bounds for linear systems with bounded disturbances. IFAC Proceedings Volumes, 44(1):9224–
9229, 2011. 18th IFAC World Congress.

[102] Paulo Tabuada. Symbolic models for control systems. Acta Informatica, 43:477–500, 01
2007.

[103] Paulo Tabuada. Verification and control of hybrid systems. Springer, 2009.

[104] Paulo Tabuada and George J. Pappas. Linear time logic control of discrete-time linear
systems. IEEE Trans. Automat. Control, 51(12):1862–1877, 2006.

[105] Furqan Tahir and Imad M. Jaimoukha. Low-complexity polytopic invariant sets for linear
systems subject to norm-bounded uncertainty. IEEE Transactions on Automatic Control,
60(5):1416–1421, 2015.

[106] Paul Trodden. A one-step approach to computing a polytopic robust positively invariant
set. IEEE Transactions on Automatic Control, 61, 04 2015.

[107] Dimitri van Heesch. Doxygen Manual. http://www.stack.nl/~dimitri/doxygen/index.
html.

[108] Mario Vasak, Mato Baoti, and Nedjeljko Peric. Efficient computation of the one-step robust
sets for piecewise affine systems with polytopic additive uncertainties. 2007 European
Control Conference, ECC 2007, 03 2015.

[109] P. K. C. Wang. A method for approximating dynamical processes by finite-state systems.
Internat. J. Control, I. Ser., 8:285–296, 1968.

[110] Alexander Weber, Florian Fiege, and Alexander Knoll. Vehicle mission guidance by symbolic
optimal control. In 2022 European Control Conference (ECC), pages 1243–1249, 2022.

[111] Alexander Weber and Alexander Knoll. On the solution of the travelling salesman problem
for nonlinear salesman dynamics using symbolic optimal control. In 2021 European Control
Conference (ECC), pages 1995–2001, 2021.

[112] Alexander Weber, Marcus Kreuzer, and Alexander Knoll. A generalized Bellman-Ford
algorithm for application in symbolic optimal control. In 18th European Control Conference
(ECC), Virtual Event, Russia, May 12-15, 2020, pages 2007–2014, 2020.

[113] Alexander Weber, Elisei Macoveiciuc, and Gunther Reissig. ABS: A formally correct
software tool for space-efficient symbolic synthesis. In Proc. 25th ACM Intl. Conf. on
Hybrid Systems: Computation and Control (HSCC), Milan, Italy, May 4-6, 2022, 2022.

[114] Alexander Weber, Matthias Rungger, and Gunther Reissig. Optimized state space grids for
abstractions. IEEE Trans. Automat. Control, 62(11):5816–5821, November 2017.

[115] Marios Xanthidis, Joel M. Esposito, Ioannis Rekleitis, and Jason M. O’Kane. Motion
planning by sampling in subspaces of progressively increasing dimension. 100(3–4):777–789,
dec 2020.

[116] Mingsheng Ying and Martin Wirsing. Approximate bisimilarity. pages 309–322, 05 2000.

[117] Boyan Yordanov, Jana T umová, Ivana Černá, Jiří Barnat, and Calin Belta. Formal
analysis of piecewise affine systems through formula-guided refinement. Automatica J.
IFAC, 49(1):261–266, 2013.

74

http://www.stack.nl/~dimitri/doxygen/index.html
http://www.stack.nl/~dimitri/doxygen/index.html

[118] Majid Zamani, Alessandro Abate, and Antoine Girard. Symbolic models for stochastic
switched systems: a discretization and a discretization-free approach. Automatica J. IFAC,
55:183–196, 2015.

[119] Majid Zamani, Giordano Pola, Manuel Mazo, and Paulo Tabuada. Symbolic models for
nonlinear control systems without stability assumptions. IEEE Transactions on Automatic
Control, 57(7):1804–1809, 2012.

[120] Majid Zamani, Giordano Pola, Manuel Mazo, Jr., and Paulo Tabuada. Symbolic models for
nonlinear control systems without stability assumptions. IEEE Trans. Automat. Control,
57(7):1804–1809, 2012.

[121] Tianze Zhang and Xin Huo. Path planning and control of a quadrotor uav: A symbolic
approach. In 2017 11th Asian Control Conference (ASCC), pages 2750–2755, 2017.

75

	Short Summary
	Zusammenfassung
	Abstract
	Contributions and Structure of the work
	Basic definitions and notations
	Abstraction-Based Controller Synthesis
	Systems and their Finite Approximations
	Computation of Abstract State-Space
	Computation of Abstract Input-Space
	Computation of Abstract Transition Function
	Abstract and Concrete Control Problems
	Mathematical Rationale
	Feedback Refinement Relations
	Optimal Control Problems and their Symbolic Solutions

	Space-Efficient Symbolic Optimal Control
	Optimal Reach-Avoid and Optimal Invariance Synthesis
	Mathematical Rationale
	Optimal Reachability
	Qualitative Invariance
	Optimal Invariance

	ABS - Formally correct software for symbolic synthesis
	Structure and Build process of ABS
	Software Input and Execution Flow
	User Options in Application to Control Problems
	Input Language

	Packages and their functionality
	Abstraction_I14sym
	Abstraction_I14sym.Computation
	Abstraction_I14sym.predecessors
	Apriori_Enclosure
	Bounds_Approximation_Error
	Cell_Cover
	Established_Types
	Growth_Bound
	Input_Values
	Controller_i14sym
	Dijkstra_Algorithm_i13absoc
	Grids
	Grids.intersections
	Numerical tests
	Competing software
	Examples
	Pendulum Invariance around unstable equilibrium
	Engine Invariance
	Robot navigation in a complex environment
	Rocket velocity change
	Pendulum-cart system swing up
	Double Pendulum invariance
	Heavily disturbed quad-copter flight

	Discussion of numerical results
	Conclusions and Outlook

