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An iterative approach for deriving and solving an accurate 
regression equation
Manaye Getu Tsigea, Andreas Malcherekb and Ivo Baseltb

aDepartment of Water Resources Engineering, Adama Science and Technology University, Adama, Ethiopia; 
bDepartment of Civil Engineering and Environmental Sciences, Universität der Bundeswehr München, 
Neubiberg, Germany

ABSTRACT
This paper introduces a method for deriving an accurate regression 
equation based on a set of any paired data, and a technique for 
solving the equation. For a practical example, we used five hundred 
seventy-one pairs of sediment concentration and river flow data to 
derive an accurate sediment rating equation. The graphs of the 
measured and predicted sediment concentrations matched each 
other, and data correlation showed Nash–Sutcliffe efficiency (NSE) 
of 0.9999860, coefficient of determination (R2) of 0.99998679, root 
mean square error (RMSE) of 0.0345, mean average error (MAE) of 
0.0067, volume error (VE) of 1, and sum of square error (SSE) of 
0.678631. To explain the technique of deriving and solving the 
accurate regression equation, separate files of video presentation 
and excel spreadsheet are provided as supplementary materials. In 
general, the method can be used to model any processes, and any 
calibration and validation processes can be addressed.

ARTICLE HISTORY 
Received 4 September 2023  
Accepted 25 January 2024 

KEYWORDS 
Regression equation; 
polynomial function; 
sediment rating curve

Introduction

The relationship between independent and dependent variables is governed by accepted 
scientific laws (Seber and Wild 2003) or it is expressed by mathematical, statistical, 
empirical, analytical, or numerical models. To find the best fit model to the measured 
data, parameters of the model can be estimated either through calibration or by regres-
sion analysis. The performance of the model is evaluated by using different statistical 
indicators.

Regression analysis, a technique for finding the relation among variables, is important 
to all scientific work where interpretations need to be drawn from measured data sets 
(Wu and Yen 1992). Authors (Seal 1967; Finney 1996; Barnes 1998; Galton 2001) high-
lighted the history related to the regression analysis, and authors (Fern andez-Delgado et 
al. 2019) provided an extensive experimental survey of regression methods.

If the relationship between dependent and independent variables is known or their 
relationship is defined by a chosen model, parameters of the model can be determined by 
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the parametric regression method. The results of analysing data using a parametric 
model may heavily depend on the chosen model for regression and variance functions, 
moreover also on a possibly underlying preliminary transformation of the variables 
(Bunke et al. 1999). Non-parametric regression methods, on the other hand, have in 
general a slower rate of convergence, but need no explicit specification of the form of the 
regression function (Glad 1998); the resulting curve is hence completely determined by 
the data themselves (Glad 1998). Different types of parametric or non-parametric 
regression methods, and their descriptions or applications are given in (Linnet 1998; 
Seber and Wild 2003; Qian and Reckhow 2005; Li and Yin 2009; Lolli and Gasperini  
2012; Wang and Du 2014; Yong 2014; Özsoy and Örkçü 2016; Fern andez-Delgado et al.  
2019).

The regression methods which can be used for both parametric and non-parametric 
regression analysis are artificial neural network (Specht 1991; Wu and Yen 1992; Zhang 
et al. 1998) and fuzzy regression method (Bárdossy et al. 1993; Yang and Lin 2002; Hao 
and Chiang 2008). Compared to other regression approaches, the artificial neural net-
work is more appropriate than other approaches (Wiese and Schaper 1993; Pao 2008; 
Rahman and Asadujjaman 2021). The artificial neural network was designed to study the 
behaviour of real, nonlinear, complex systems, and they are particularly effective in 
solving problems where the correlations between the dependent and independent vari-
ables are well-known (Kopal et al. 2022). However, their precise description by classical 
mathematical methods is too complicated, too simplified, or impossible (Du and Swamy  
2014; Kopal et al. 2022) and they also embody much uncertainty and difficulty (Masters 
and Land 1997; Zhang et al. 1998; Tomandl and Schober 2001; Morala et al. 2021). The 
neural network model could be a more useful nonlinear regression tool if it successfully 
incorporates human knowledge (heuristics) and other regression techniques (Wang  
1999).

In actual modelling, the underlying processes are generally complex and not well 
understood, this means that we have little or no idea about the form of the relationship 
(Seber and Wild 2003). For example, different authors indicate that the power function is 
a commonly used nonlinear regression approach to model the sediment rating curve (eg., 
(Asselman 2000; Heng and Suetsugi 2014; Hapsari et al. 2019)). However, the error of the 
regression equation is very large. Therefore, finding an accurate regression method to 
derive an accurate regression equation based on a set of any paired data becomes 
important for the best accurate representation of any process. In this paper, we provide 
a procedure to derive a complex equation expressing the relationship between dependent 
and independent variables based on a set of any paired data.

2. Methodology

2.1. An iterative approach to derive an accurate regression equation

To arrive at iteration steps, let us begin from the following definition.

Definition 2.1. For given values of paired variables S and Q, variables x and y are 
defined by 

74 M. G. TSIGE ET AL.



y ¼ iðbSÞ
1=u

þ jQ (1) 

x ¼ kðhQÞ
1=w

þ t (2) 

where i, b, u, j, k, h, w and t are constants.
Let y � yðxÞ, where yðxÞ is the function.

Since a polynomial function can accommodate and generate negative value, positive 
value, or both negative and positive values, let us consider a polynomial function yðxÞ

yðxÞ ¼ anxn þ an�1xn�1 þ an�2xn�2 þ . . . þ c (3) 

Therefore, 

y ¼ yðxÞ þ e (4) 

where e is the error value
Substitute equation 1 into 4 

iðbSÞ
1=u

þ jQ ¼ yðxÞ þ e (5) 

Rearrange equation 5 

S ¼
1

biu yðxÞ � jQ þ eð Þ
u (6) 

In equation 6, variables yðxÞ, Q and e are connected by plus and minus sign. It shows that 
values of variables yðxÞ, Q or e have an individual effect on a value of variable S (i.e. if we 
use yðx) in place of Q and vice versa, or if we use Q in the place of e and vice versa, a value 
of S will be different). This is a reason why we defined x and y in the above way to arrive 
at equation 6.

Let 

e ¼ e1 þ e2 þ e3 þ . . . þ ep�1 þ ep (7) 

Substitute equation 7 into 6 

S ¼
1

biu yðxÞ � jQ þ e1 þ e2 þ e3 þ . . . ep�1 þ ep
� �u (8) 

Equation 8 represents an actual value of variable S. In equation 8, if a value of error ep is 
the minimum tolerable error that could be ignored, then the sum of error values e1, e2, 
e3,. . ..ep�1 represents an approximate value of the total error e. Therefore, the predicted 
value of variable S (let us say Sp) is given by 

Sp ¼
1

biu yðxÞ � jQ þ e1 þ e2 þ e3 þ . . . þ ep�1
� �u (9) 

Therefore, the difference between S and Sp is an error, which is equal to Ep (i.e. 
Ep ¼ S � Sp), where p � 1 refers to the number values of error e should be required to 
derive an accurate regression equation at p number of iteration steps. If there are p � 1 
number of values of error e (i.e. e1, e2, e3. . .ep�1), there are also p � 1 number of values of 
corresponding error E (i.e. E1, E2, E3. . .Ep�1).
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Logic is now if we are able to express error e as a function of error E, we can derive an 
accurate regression equation. This is because of both errors (i.e. e and E) is the function of 
variables Q and S. Therefore, we define an iterative procedure to approximate a value of 
error e based on a value of the corresponding error E. Let an approximate value of error 
e1, e2, e3. . .ep�1 be equal to r1, r2, r3. . .rp�1 respectively. Therefore, the following iteration 
steps are defined based on equation 9 and the explanations above.

For the first iteration step (p ¼ 1), e0 ¼ 0, E0 ¼ 0 and r0 ¼ 0. Therefore, the first 
predicted value of variable S (i.e. S1) is determined by 

S1 ¼
1

biu yðxÞ � jQð Þ
u (10) 

If S1 � S, no need to proceed to the next iteration step. If S1 �= S, we proceed to the next 
iteration step.

For the second iteration step (p ¼ 2), e1, E1 and r1 is determined by 

e1 ¼ y � yðxÞ (11) 

E1 ¼ S � S1 (12) 

r1 ¼ f1ðE1Þ (13) 

where f1 is the polynomial regression function between the values of e1 and E1. Therefore, 
at the second iteration step, the second predicted value of variable S (i.e. S2) is deter-
mined by 

S2 ¼
1

biu yðxÞ � jQ þ r1ð Þ
u (14) 

If S2 � S, no need to proceed to the next iteration step. If S2 �= S, we proceed to the next 
iteration step.

For the third iteration step (p ¼ 3), e2, E2 and r2 is determined by 

e2 ¼ y � yðxÞ þ r1ð Þ (15) 

E2 ¼ S � S2 (16) 

r2 ¼ f2ðE2Þ; (17) 

where f2 is the polynomial regression function between the values of e2 and E2. Therefore, 
at the third iteration step, the third predicted value of variable S (i.e. S3) is determined by 

S3 ¼
1

biu yðxÞ � jQ þ r1 þ r2ð Þ
u (18) 

If S3 � S, no need to proceed to the next iteration step. If S3 �= S, we proceed to the next 
iteration step.

For the fourth iteration steps (p ¼ 4), e3, E3 and r3 is determined by 

e3 ¼ y � yðxÞ þ r1 þ r2ð Þ (19) 
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E3 ¼ S � S3 (20) 

r3 ¼ f3ðE3Þ; (21) 

where f3 is the polynomial regression function between the values of e3 and E3. Therefore, 
at the fourth iteration step, the fourth predicted value of variable S (i.e. S4) is deter-
mined by 

S4 ¼
1

biu yðxÞ � jQ þ r1 þ r2 þ r3ð Þ
u (22) 

If S4 � S, no need to proceed to the next iteration step. If S4 �= S, we proceed to the next 
iteration step.

For the ðp � 1Þth iteration step, ep�2, Ep�2 and rp�2 is determined by 

ep�2 ¼ y � yðxÞ þ r1 þ r2 þ r3 þ . . . þ rp�3
� �

(23) 

Ep�2 ¼ S � Sp�2 (24) 

rp�2 ¼ fp�2ðEp�2Þ; (25) 

where fp�2 is the polynomial regression function between the values of ep�2 and 
Ep�2. Therefore, at the ðp � 1Þth iteration step, the ðp � 1Þth predicted value of 
variable S (i.e. Sp�1) is determined by 

Sp�1 ¼
1

biu yðxÞ � jQ þ r1 þ r2 þ r3 þ . . . þ rp�2
� �u (26) 

For the pth iteration step, ep�1, Ep�1 and rp�1 is determined by 

ep�1 ¼ y � yðxÞ þ r1 þ r2 þ r3 þ . . . þ rp�2
� �

(27) 

Ep�1 ¼ S � Sp�1 (28) 

rp�1 ¼ fp�1ðEp�1Þ; (29) 

where fp�1 is the polynomial regression function between the values of ep�1 and Ep�1. 
Therefore, at the pth iteration step, the pth predicted value of variable S (i.e. Sp) is 
determined by 

Sp ¼
1

biu yðxÞ � jQ þ r1 þ r2 þ r3 þ . . . rp�2 þ rp�1
� �u (30) 

2.2. Determining the final form of the accurate regression equation

Suppose at the pth iteration step, S � SP. Then, the final form of an accurate regression 
equation is obtained through substitutions.

Substitute equation 10 into 12 
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E1 ¼ S �
1

biu yðxÞ � jQð Þ
u (31) 

Substitute equation 14 into 16 

E2 ¼ S �
1

biu yðxÞ � jQ þ r1ð Þ
u (32) 

Substitute equation 18 into 20 

E3 ¼ S �
1

biu yðxÞ � jQ þ r1 þ r2ð Þ
u (33) 

Substitute equation 26 into 28 

Ep�1 ¼ S �
1

biu yðxÞ � jQ þ r1 þ r2 þ r3 . . . þ rp�2
� �u (34) 

Substitute equation 31 into 13 

r1 ¼ f1 S �
1

biu ðyðxÞ � jQÞ
u

� �

(35) 

Substitute equation 32 into 17 

r2 ¼ f2 S �
1

biu ðyðxÞ � jQ þ r1Þ
u

� �

(36) 

Substitute equation 33 into 21 

r3 ¼ f2 S �
1

biu ðyðxÞ � jQ þ r1 þ r2Þ
u

� �

(37) 

Substitute equation 34 into 29 

rp�1 ¼ fp�1 S �
1

biu ðyðxÞ � jQ þ r1 þ r2 þ r3 . . . þ rp�2Þ
u

� �

(38) 

Substitute equation 35 into 36; equations 35 and 36 into 37; equations 35, 36 and 37 into 
38 and so on. After all substitutions have been done one after the other, then the final 
resulting equation is very long. But, we can see that r1, r2, r3. . .rp is the function of 
variables Q and S. For given values of paired variables, i, b, u, j, k, h, w and t are all 
constants. Therefore, 

r1 þ r2 þ r3 þ . . . þ rp�1 ¼ f1ðQ; SÞ þ f2ðQ; SÞ þ f3ðQ; SÞ . . . þ fp�1ðQ; SÞ (39) 

Substitute equation 39 into 30 

Sp ¼
1

biu yðxÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ f3ðQ; SÞ . . . þ fp�1ðQ; SÞ
� �u (40) 

Substitute equation 2 into 3 

yðxÞ ¼ an kðhQÞ
1=w

þ t
� �n

þ an�1 kðhQÞ
1=w

þ t
� �n�1

þ an�2ðkðhQÞ
1=w

þ tÞn�2
þ . . . þ c

(41) 
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From equation 41, yðxÞ is the function of variable Q. Therefore, 

yðxÞ ¼ f ðQÞ (42) 

Substitute equation 42 into 40 

Sp ¼
1

biu f ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ f3ðQ; SÞ . . . þ fp�1ðQ; SÞ
� �u (43) 

Suppose at the pth iteration step, S � SP. Therefore, equation 43 is given by 

S �
1

biu f ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ . . . þ fp�1ðQ; SÞ
� �u (44) 

Equation 44 is the shorthand form of a very long equation. The substituting equa-
tions’ power constants u, w, and n make the equation complex and difficult to 
simplify. However, the substituting equations that form the complex equation are 
easily interconnected in an Excel spreadsheet or programmed in Matlab. As we can 
see from equation 44, there are only two variables Q and S. Therefore, we can solve 
this equation for a given value of Q or S. A procedure to solve the equation is 
provided in Section 2.5.

2.3. Determining initial values for deriving an accurate regression equation

In Sections 2.1 and 2.2, we showed the steps to derive and determine the final 
form of the accurate regression equation based on values of paired variables S and 
Q. To start deriving the equation based on the values of the paired variables S and 
Q, we should have to first determine the constants (see equations 1 and 2). The 
polynomial function (see equation 3) directly describes the relationship between 
variables x and y, but it indirectly describes the relationship between variables S 
and Q. Therefore, for given values of paired variables S and Q, we find values of 
constants i, b, u, j, k, h, w, and t for equations 1 and 2 such that plots of x versus 
y yield a smooth curve of a polynomial function. Accordingly, once all values of 
constants are known, the initial and final values of variables will be determined by 
following the iteration steps above.

2.4. Deriving an accurate sediment rating equation

In above sections, we indicated the general directions showing how to derive and 
determine the final form of the accurate regression equation, and we also indicated the 
direction showing how to determine the initial values to start deriving the equation. For 
a practical example, we use sediment concentration and corresponding river or stream-
flow data (see Table 1 and 2) to derive an accurate sediment rating equation. In the table, 
suspended sediment concentration data is represented by variable S, whereas flow data is 
represented by variable Q.

To make it clear, we use the following steps to derive an accurate sediment rating 
equation based on the above pairs of sediment concentration and river or streamflow 
data.
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(1) For given values of paired variables S and Q, estimate constants i, b, u, j, k, h, w, 
and t such that plots of x versus y yields a smooth curve of polynomial function 
(refer to equations 1 and 2)

(2) Choose a polynomial regression function that fits the plots of x versus y
(3) From the regression equation in step 2, find the constants of equation 3
(4) Calculate y by using equation 1

Table 1. Sediment concentration versus river or streamflow data.
Type

S Q S Q S Q S Q S Q S Q

0.14 4.45 0.38 20.12 2.36 94.00 1.39 0.17 1.49 31.02 0.69 199.26
1.28 6.25 1.32 15.30 0.32 17.68 1.03 1.53 0.55 25.32 0.90 189.28
0.16 2.21 12.49 149.06 3.93 42.80 0.44 21.83 0.77 17.64 0.57 198.42
0.24 37.89 0.28 15.04 4.07 119.92 1.12 93.23 0.44 3.15 0.53 319.65
0.21 33.19 14.66 37.81 2.42 6.09 1.30 74.07 1.33 12.06 0.77 110.63
0.14 30.44 1.98 167.03 0.74 0.49 0.92 1.60 1.26 14.15 0.67 104.23
0.19 37.09 4.62 114.72 2.67 57.20 1.18 24.21 0.74 5.39 0.51 153.16
0.26 40.82 2.58 59.48 1.00 56.88 0.62 17.47 1.01 53.83 0.35 159.87
0.15 1.51 3.67 152.82 1.29 52.23 4.95 144.55 4.32 39.80 0.25 135.77
0.24 2.51 1.15 238.53 10.35 57.74 5.58 108.34 1.63 13.08 0.17 3.12
2.14 54.81 1.91 58.37 25.17 49.32 0.81 9.69 24.41 2.40 0.18 29.89
0.67 23.65 0.89 4.79 1.81 108.29 0.76 9.72 28.09 0.63 0.23 3.64
1.18 30.74 0.61 5.10 36.73 159.62 11.86 15.58 2.37 39.32 0.76 12.60
0.43 32.12 1.41 32.37 51.81 179.98 1.40 93.23 1.88 17.10 0.53 113.22
0.75 38.05 0.58 24.74 90.85 69.49 5.28 105.25 2.81 25.48 0.43 97.20
0.32 20.44 2.24 11.55 4.96 128.92 1.16 104.70 19.72 1.30 0.80 50.24
3.53 55.26 1.42 13.48 4.11 104.01 0.48 36.19 23.65 1.51 0.17 1.28
0.41 21.89 13.49 40.42 2.22 82.63 1.37 38.07 19.66 0.99 0.37 0.31
2.49 35.16 6.76 43.20 0.42 5.31 1.81 42.83 0.16 0.29 10.07 37.64
1.21 63.67 2.70 75.92 0.33 6.18 0.56 37.75 0.52 2.53 0.54 0.45
0.65 37.58 1.33 130.30 0.33 5.18 1.49 37.75 17.00 5.25 0.29 35.88
0.41 22.34 11.75 176.14 0.20 2.21 0.42 48.70 0.30 0.23 3.11 117.10
2.83 44.08 5.42 111.82 0.16 2.48 0.43 48.70 0.80 0.31 5.37 207.80
1.48 24.09 2.94 98.13 0.28 3.08 0.42 35.76 23.20 32.44 5.04 95.13
0.63 22.51 3.83 99.30 0.95 5.64 0.78 48.92 0.43 0.43 3.36 146.50
6.73 133.89 1.35 168.55 0.68 6.99 7.12 95.55 31.05 50.11 3.87 152.71
0.45 31.28 1.24 20.22 0.34 3.72 0.60 54.25 20.31 10.16 2.63 50.12
0.48 31.03 1.78 62.43 0.19 5.43 0.78 56.13 0.32 0.22 5.95 62.99
0.44 57.53 3.43 71.05 1.38 53.34 2.79 13.58 0.36 0.44 3.26 73.70
0.20 34.61 2.63 38.20 1.31 67.62 3.78 10.14 14.60 228.98 3.23 129.79
0.28 32.44 3.13 39.30 2.18 8.69 3.30 5.27 30.02 127.80 2.07 122.71
0.37 26.92 0.93 48.68 3.16 44.75 0.65 41.22 7.70 10.93 0.65 73.37
0.20 2.70 0.38 28.72 0.38 12.68 2.85 47.26 33.64 28.16 3.04 129.32
2.58 93.17 0.36 34.10 4.97 31.55 0.39 41.71 27.86 30.54 2.19 152.27
0.15 1.21 2.87 151.57 3.24 44.48 0.30 39.25 2.58 2.54 4.74 180.53
0.38 33.75 7.17 33.49 4.64 45.20 1.27 65.49 9.56 12.85 1.55 118.12
0.34 30.32 0.57 16.89 39.48 56.21 3.44 271.87 3.57 21.47 0.17 3.19
0.19 3.98 4.71 37.33 0.34 6.30 1.74 208.40 4.75 16.66 7.24 225.41
0.36 4.61 3.49 40.91 59.70 61.38 0.39 29.66 1.63 2.89 5.13 176.56
1.39 102.17 1.34 33.79 13.36 148.11 1.80 85.73 37.06 22.19 5.27 221.30
1.11 59.16 3.86 74.78 0.63 4.54 3.33 108.97 0.33 0.23 2.47 171.11
0.52 33.87 0.48 24.69 0.40 0.57 0.85 69.59 0.27 1.72 3.94 276.35
0.27 152.47 7.52 75.00 0.30 0.13 5.34 127.63 0.47 1.56 1.08 110.00
18.53 78.29 1.28 16.81 0.19 0.48 2.48 77.18 0.36 0.75 2.52 137.09
0.38 2.89 0.97 27.20 0.63 0.60 12.29 98.50 37.66 36.81 0.28 17.58
0.27 11.05 1.08 59.65 1.08 1.01 3.42 110.31 11.92 214.26 0.21 17.16
0.54 14.02 2.94 66.77 1.25 23.21 4.41 70.46 23.07 67.11 0.24 19.31
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(5) Calculate x by using equation 2
(6) Calculate yðxÞ based on steps 3 and 5
(7) Calculate S1 by using equation 10, where S1 represents the first predicted value. 

Plot graphs of measured (S) and predicted (S1) values. If the graphs do not match 
each other, then we proceed to the next iteration step.

(8) Calculate e1 by using equation 11

Table 2. Sediment concentration versus river or streamflow data.
Type

S Q S Q S Q S Q S Q S Q

0.79 19.02 1.57 66.74 0.35 14.29 8.77 108.26 2.89 6.26 0.63 101.23
1.29 58.66 0.23 32.58 5.50 31.05 0.29 46.20 9.81 9.92 2.68 274.87
0.60 4.56 2.93 66.22 0.36 1.30 0.69 35.27 0.39 0.17 2.01 140.60
0.23 24.35 3.61 23.95 0.24 1.83 6.14 60.28 0.29 1.85 0.94 148.94
0.30 29.23 0.58 15.38 0.27 1.83 7.78 82.47 3.20 7.15 3.40 179.02
0.36 23.58 4.46 119.18 2.61 46.23 5.45 72.37 0.33 1.27 4.83 181.19
0.73 226.44 1.53 16.09 2.30 107.37 1.80 72.65 0.50 0.88 2.76 175.82
1.04 231.54 4.27 30.15 5.80 355.23 6.28 144.50 8.06 6.52 4.44 214.76
0.71 173.97 0.54 30.39 18.50 133.38 0.76 13.54 0.48 1.13 1.76 115.29
1.59 50.64 0.51 26.49 4.67 148.95 0.72 12.26 19.58 85.06 4.95 177.35
4.82 99.40 0.28 12.27 1.87 132.59 0.82 11.28 0.30 0.72 1.48 101.10
2.82 18.86 0.33 61.50 3.57 113.26 0.80 12.24 1.16 1.21 6.10 145.92
0.61 72.30 0.32 38.59 6.87 118.23 0.73 9.70 0.39 1.14 6.09 152.61
1.17 84.22 1.28 23.90 5.27 121.66 0.81 10.55 0.36 0.64 4.34 142.45
0.41 12.03 0.24 49.53 0.25 1.50 0.75 10.38 0.46 0.36 3.20 153.48
0.46 16.91 8.39 232.91 0.27 1.80 0.86 11.69 0.23 0.64 6.96 263.48
1.50 16.62 0.20 0.42 0.31 0.78 0.76 11.85 0.33 1.38 1.77 127.29
0.62 17.65 0.18 6.47 2.19 0.76 55.67 103.16 0.26 0.97 2.00 88.42
0.42 10.38 0.76 11.92 11.84 0.77 40.87 56.90 0.35 1.63 3.36 108.43
0.38 62.83 0.30 10.18 4.26 0.74 20.17 25.76 11.58 18.41 4.12 109.92
0.48 44.38 0.54 4.93 5.77 0.32 11.20 16.43 0.21 1.97 0.91 93.72
0.29 25.15 31.76 55.98 4.50 0.44 9.71 19.69 14.76 12.43 2.84 94.94
0.27 2.72 7.66 197.55 6.59 0.43 3.03 37.75 45.57 9.86 4.59 129.44
1.62 11.78 1.38 134.05 0.92 11.76 11.27 26.97 8.05 3.37 2.51 139.24
5.35 53.47 1.17 22.75 31.40 1.60 69.93 34.78 13.44 5.32 2.58 144.18
0.29 4.23 1.19 195.35 8.40 0.93 6.13 21.76 15.25 23.31 5.72 171.62
7.07 200.33 0.97 193.68 5.20 0.44 39.35 117.00 34.20 16.55 3.96 207.69
0.57 7.86 1.37 201.84 12.68 0.44 27.25 37.75 15.01 16.64 2.13 146.80
1.05 9.04 1.69 205.97 0.71 9.93 21.58 30.66 18.28 24.10 3.31 148.29
0.68 53.32 1.11 139.99 4.39 0.72 18.56 23.01 8.58 10.44 4.87 187.62
0.45 66.91 1.30 168.31 36.95 0.72 11.80 19.02 0.21 0.43 2.62 118.57
0.60 51.73 2.25 264.60 0.71 13.37 6.45 22.07 14.17 10.15 1.38 94.30
0.35 5.62 1.14 233.50 10.20 361.08 3.67 97.29 0.88 0.65 7.70 208.42
0.53 6.71 1.71 18.52 2.47 254.38 1.12 86.98 25.65 29.16 5.50 112.99
0.25 8.90 2.14 236.63 2.19 245.57 2.98 83.68 12.38 10.89 5.11 184.17
7.06 18.77 3.22 17.85 2.87 51.24 5.70 119.69 35.03 6.75 5.17 154.67
1.19 50.21 0.76 17.13 8.82 154.82 3.23 124.85 2.94 1.35 3.95 127.96
1.58 111.47 2.74 13.87 2.64 235.94 4.67 126.00 5.16 4.97 4.78 176.35
3.37 76.86 25.59 97.91 3.74 289.75 4.78 140.53 2.11 1.16 6.53 212.73
0.99 62.46 2.24 66.73 2.03 246.12 5.83 84.36 0.18 9.62 1.82 139.40
0.30 24.61 0.98 98.90 0.86 43.60 2.74 41.96 0.15 114.51 3.48 200.64
0.34 26.30 1.00 73.00 14.64 43.91 0.45 38.08 0.12 3.72 5.06 153.94
3.59 87.21 3.23 296.16 11.77 75.13 0.42 42.77 0.28 3.37 6.85 190.77
0.49 24.87 2.43 285.66 4.13 413.23 1.03 41.25 0.28 3.37 2.29 116.25
3.57 29.98 0.56 5.42 2.65 170.43 0.43 24.19 0.73 4.92 7.65 259.50
0.88 30.47 0.59 5.76 3.10 410.41 1.94 90.56 0.20 6.88 2.97 153.25
4.95 64.42 1.60 0.37 0.30 1.91 1.32 108.50 0.31 2.99 2.53 122.99
1.30 28.83 0.73 27.55 0.29 0.95 3.50 38.88 0.17 2.30 2.32 161.80

5.10 258.24
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(9) Calculate E1 by using equation 12
(10) Consider a polynomial regression function to correlate e1 and E1
(11) Calculate r1 by using the regression equation from step 10 (i.e. refer to equation 35)
(12) Replace the calculated value of r1 from step 11 in equation 14
(13) Calculate S2 by using equation 14, where S2 represents the second predicted 

value. Plot graphs of measured (S) and predicted (S2) values. If the graphs do not 
match each other, then proceed to the next iteration step.

(14) Replace the calculated value of r1 from step 11 in equation 15
(15) Then, calculate e2 by using equation 15
(16) Calculate E2 by using equation 16
(17) Consider a polynomial regression function to correlate e2 and E2
(18) Calculate r2 by using the regression equation from step 17 (i.e. refer to equation 

36)
(19) Replace the calculated value of r1 from step 11, and the calculated value of r2 from 

step 18 in equation 18
(20) Then, calculate S3 by using equation 18, where S3 represents the third predicted 

value. Plot graphs of measured (S) and predicted (S3) values. If the graphs do not 
match each other, then we proceed to the next iteration step, and so on.

We repeat the same procedure to calculate a value of Sp by using equation 30, where 
subscript p stands for number of iteration steps. During each iteration step, we plot 
graphs of the measured (S) and predicted (Sp) values. Our iteration procedure ends when 
the graphs almost match each other.

Based on the paired data given in the table 0, the values of the required constants (i.e. i, 
b, u, j, k, h, w, and t) and variables (i.e. yðxÞ, r1, r2, r3, r4. . ..r14) had been determined by 
following the above steps. The values of these constants and variables are given below. 
Figure 1 shows the graph of the original river or streamflow (Q) versus sediment 
concentration (S) data, and the graph of the transformed data (x versus y) (see 
Section 2.3). 

k ¼ 0:000001 (45) 

Figure 1. The original and transformed data according to step one.
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h ¼ 1 (46) 

w ¼ 2 (47) 

t ¼ 0 (48) 

i ¼ 0:0000111 (49) 

b ¼ 0:0022 (50) 

u ¼ 2 (51) 

j ¼ 2 (52) 

yðxÞ ¼ 1999999995091:56x2 þ 0:10499849x þ 0:0000001 (53) 

r1 ¼ ð�0:00008E2
1 þ 1:011E1 þ 0:004 � E1Þ � 10�5 (54) 

r2 ¼ ð1:052E2 þ 0:006 � E2Þ � 10�6 (55) 

r3 ¼ ð0:002E2
3 þ 1:089E3 � 0:018 � E3Þ � 10�6 (56) 

r4 ¼ ð1:042E4 � E4Þ � 10�6 (57) 

r5 ¼ ð0:007E2
5 þ 1:096E5 � 0:006 � E5Þ � 10�6 (58) 

r6 ¼ ð0:001E2
6 þ 1:047E6 � E6Þ � 10�6 (59) 

r7 ¼ ð0:02E2
7 þ 1:143E7 � 0:004 � E7Þ � 10�6 (60) 

r8 ¼ ð0:005E2
8 þ 1:066E8 � E8Þ � 10�6 (61) 

r9 ¼ ð0:013E2
9 þ 1:075E9 � E9Þ � 10�6 (62) 

r10 ¼ ð0:026E2
10 þ 1:09E10 � 0:001 � E10Þ � 10�6 (63) 

r11 ¼ ð0:026E2
11 þ 1:102E11 � E11Þ � 10�6 (64) 

r12 ¼ ð�0:001E2
12 þ 1:04E12 � E12Þ � 10�6 (65) 

r13 ¼ ð0:115E2
13 þ 1:139E13 � E13Þ � 10�6 (66) 

r14 ¼ ð0:007E2
14 þ 1:048E14 � E14Þ � 10�6 (67) 

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 83



As the values of the above constants and variables were already determined, the final 
form of the accurate regression equation is obtained by direct substitutions (refer to 
Section 2.2). Therefore, the final form of the accurate sediment rating equation is 
given by 

S �
1

biu f ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ . . . þ f14ðQ; SÞð Þ
u (68) 

For the final form of the equation, the graphs of measured (S)and predicted sediment 
concentration (Sp) matched each other (see Figure 2).

Since the final form of the equation is a very large and complex equation, the above values 
of the variables are easily interconnected in an excel spreadsheet or programmed in Matlab. 
Separate files of video presentation and Excel spreadsheet are provided as supplementary files.

2.5. Solving the accurate sediment rating equation

In the above section, we showed the procedures to derive the accurate sediment rating 
equation. For the paired suspended sediment concentration (S) and flow data (Q), we 
calculated each value of E1, E2, E3. . .E14, and the corresponding value of e1, e2, e3. . .e14, 
respectively. At the fifteenth iteration step, at the values of E14 and e14, we found that 
S15 � S. Therefore, the last remaining errors are E15 and e15. According to the steps above 
or Section 2.1, a value of E15 is determined by 

E15 ¼ S � S15 (69) 

Based on equation 43 

S15 ¼
1

biu f ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ f3ðQ; SÞ . . . þ f14ðQ; SÞð Þ
u (70) 

Therefore, 

E15 ¼ S �
1

biu f ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ f3ðQ; SÞ . . . þ f14ðQ; SÞð Þ
u (71) 

Figure 2. Graphs of measured (S) and predicted (Sp) sediment concentration.
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Based on equations 1, 27 and 39 

e15 ¼ f0ðQ; SÞ � f ðQÞ þ f1ðQ; SÞ þ f2ðQ; SÞ þ f3ðQ; SÞ þ . . . þ f14ðQ; SÞð Þ (72) 

For each paired values of S and Q, there are corresponding values of E15 and e15. Now, we 
take the values of E15 and e15 as paired input data to derive another equation that relates 
E15 and e15 by following the above steps, and so on. To derive the equation based on 
paired values of E15 and e15, we calculate another values of Ep and ep (see the steps above). 
To avoid confusion, let us express these other values of Ep and ep in terms of E�

p and e�
p, 

respectively. Therefore, we define the following relationship. 

If lim
E�

p! 0
ðE�

1 þ E�
pÞ ¼ E�

1; then E14 þ E�
p � E14 (73) 

For the given paired data (S and Q), at the value of E14, we found that S15 � S. According 
to steps above or section 2.1, the value of E14 is determined by 

E14 ¼ S � S14 (74) 

Consider equation 43 

S14 ¼
1

biu f ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ f3ðQ; SÞ . . . þ f13ðQ; SÞð Þ
u (75) 

Therefore, 

E14 ¼ S �
1

biu f ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ f3ðQ; SÞ . . . þ f13ðQ; SÞð Þ
u (76) 

For each paired value of S and Q, there is a corresponding value of E14, which is a unique value. 
It is to mean that, for a given value of Q, there is only one value of S which results in 
a corresponding value of E14, minimum value or zero value of E14 (i.e. there is no possibility to 
have two different values of E14 for the same values of paired data). From the relationship 
(refer to equation 73) to approximate a value of E14 for an unknown value of suspended 
sediment concentration or flow data, we keep on deriving a series of equations until a value of 
E�

p is approximately zero or it is far apart from a value of E�
1. In this case, the value of E�

p 

determines the accuracy of the approximation. Therefore, to estimate an unknown value of 
suspended sediment concentration for a given value of flow data, a value of suspended 
sediment concentration that results in the minimum value of E�

P is the solution.
Since the systems of equations forming the complex equation are very long, the 

separate files of the video presentation and Excel spreadsheet on deriving and solving 
the accurate sediment rating equation are provided as the supplementary files.

3. Results

The iterative approach for deriving an accurate regression equation based on values of 
paired variables is given in Section 2.1. The procedures to determine the final form of the 
accurate regression equation are given in Section 2.2. Accordingly, the shorthand form of 
the final accurate regression equation is given by 
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S �
1

biu ðf ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ . . . þ fp�1ðQ; SÞÞ
u
; (77) 

where, S and Q are variables, b, i, u and j are constants for given values of paired data.
The accurate sediment rating equation which was derived based on five hundred seventy- 

one number of records of suspended sediment concentration and flow data is given by 

S �
1

biu f ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ . . . þ f14ðQ; SÞð Þ
u (78) 

The graphs of measured and predicted suspended sediment concentration matched each 
other (see Figure 2), and statistical measures for the data correlation are given in Figure 2. 
The procedures to solve the accurate regression equation are given in Section 2.5.

4. Discussions

The relationship between the sediment concentration and flow was given by the complex 
equation (it was not polynomial or other kinds of known function). This equation may 
reflect the complex relationship between the dynamic behaviour of flow and sediment 
transport.

Figure 3. Comparison of sediment prediction accuracy of the proposed regression equation and the 
power function (S ¼ 0:069Q0:9576) for the hombole watershed in Ethiopia.

Figure 4. Comparison of sediment prediction accuracy of the proposed regression equation and the 
power function (S ¼ 0:2036Q0:5475) for the Gumera watershed in Ethiopia, provided that all data 
records were taken into account without any preconditions.
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A power function is a commonly used non-linear regression approach for predicting 
sediment from a given flow data. However, a regression error is very large. The compar-
ison of sediment prediction accuracy of the proposed regression equation and power 
function are given in Figures 3–6. The proposed regression equation is very accurate. We 
can minimize a regression error as small as possible by increasing iteration steps.

Model calibration and validation are challenging tasks to apply a model for a parti-
cular purpose, even for further improvement of the model. For example, if we consider 
the Modified Universal Soil Loss Equation (MUSLE) or the improved MUSLE, finding 
the coefficient, soil erodibility, cover, and conservation practice factors of the MUSLE or 
the improved MUSLE through calibration is not a feasible approach (Tsige et al. 2022a,  
2022b). This is because only a product effect of the coefficient and these factors is 
reflected in the MUSLE or the improved MUSLE rather than their individual effect 
during the calibration of sediment yield (Tsige et al. 2022a, 2022b). Therefore, the 
individual effect of model variables rather than their product effect on the engaged 
physical processes is important. Therefore, expressing the relationship between model 
variables in such a way that their individual effects can be seen on the engaged physical 
process is essential. The proposed regression method may play a significant role in this 
regard.

Figure 6. Comparison of sediment prediction accuracy of the proposed regression equation and the 
power function (S ¼ 0:1901Q0:1916) for the Gilgel Gibe 1 watershed in Ethiopia, provided that all data 
records were taken into account without any preconditions.

Figure 5. Comparison of sediment prediction accuracy of proposed regression equation and the 
power function (S ¼ 0:659Q0:839) for the mojo watershed in Ethiopia, provided that all data records 
were taken into account without any preconditions.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 87



5. Conclusions

The accurate sediment rating equation was derived by following the proposed iteration 
steps. For the paired values of suspended sediment concentration (S) and flow (Q) data, 
the shorthand form of the final accurate sediment rating equation is given by 

S �
1

biu ðf ðQÞ � jQ þ f1ðQ; SÞ þ f2ðQ; SÞ þ . . . þ f14ðQ; SÞÞ
u
; (79) 

where, b, i, u and j are constants for given values of paired data
In this paper, the polynomial regression functions were considered to derive very long 

and complex accurate regression equation. However, we can use any other known 
functions. And also, variables x and y were defined in such a way that individual effects 
of other variables can reflect on variable S (refer to section 2.1). However, we can define 
variables x and y in another way, and we follow the proposed iterative approach to derive 
an accurate regression equation.

The proposed iterative approach can be used to derive an accurate regression 
equation based on given values of paired variables. Therefore, the iterative approach 
can be used to model any processes, and any calibration and validation processes can 
be addressed.

In this paper, the iterative procedure is provided to solve the accurate regression 
equation. For further research, the analytical solution of the equation is recommended.
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