
Forensic Science International: Digital Investigation 48 (2024) 301690

Available online 15 March 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2024 - Selected Papers from the 11th Annual Digital Forensics Research Conference Europe 

Hypervisor-based data synthesis: On its potential to tackle the curse of 
client-side agent remnants in forensic image generation 

Dennis Wolf a,b,*, Thomas Göbel b, Harald Baier b 

a Central Office for Information Technology in the Security Sector (ZITiS), Zamdorfer Straße 88, Munich, Bavaria, Germany 
b University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, Neubiberg, Bavaria, Germany   

A R T I C L E  I N F O   

Keywords: 
Forensic image generation 
Data synthesis 
Data generation 
Data synthesis framework 
Data sets 
Digital corpora 
Agent-less approach 
Linux forensics 

A B S T R A C T   

In the field of digital forensics, the number and heterogeneity of devices typically involved in an investigation is 
increasing. In order to train digital forensics practitioners and make faster progress in the development and 
validation of forensic tools, the demand for up-to-date data sets is high. However, manually creating data sets is a 
complex, tedious, and time-consuming task increasing the need for automated solutions. Existing data generation 
frameworks typically use components that run directly on the simulated client (e.g., a client-side agent controlled 
via SSH). On the one hand, this facilitates simulation by providing direct feedback from the client and the ability 
to use client-side libraries to access software. On the other hand, however, this approach creates unintended 
traces in the generated data sets that quickly reveal their synthetic origin and affect their realism and thus their 
relevance. To avoid such traces, this paper presents a hypervisor-based solution to eliminate such a client-side 
software component in a recent digital forensic data set generator, while compensating for its absence only 
through host-side means. To demonstrate the practicability of the proposed approach as well as the indistin
guishability of the generated traces, a multi-participant scenario is performed as a proof of concept to replicate a 
realistic attack scenario on a Linux system from a Kali attacker machine. During the evaluation, the generated 
data set is compared in terms of unintended traces and realism to a data set generated by the same framework 
using an agent component. In this way, we demonstrate the benefits and overall usefulness of an agent-less data 
synthesis approach.   

1. Introduction 

The demand for up-to-date and publicly available forensic data sets is 
high. In this paper, the definition from Grajeda et al. (2017) is used, who 
describe Digital Forensic (DF) data sets “as a collection of related, 
discrete items that [have] different meanings depending on the scenario 
and [were] utilized for some kind of experiment or analysis”. The au
thors point out limitations with existing data sets and the surrounding 
ecosystem for distribution. Many of them are not publicly available due 
to various reasons: some researchers lack the capability of sharing the 
data, others have privacy concerns, and last but not least some have not 
thought about sharing data sets at all. According to the evaluation of 
Grajeda et al. (2017), they found more missing aspects regarding the 
variety, timeliness, and maintenance. 

However, data is needed for various reasons in the cybersecurity 
field. For example, to enable (aspiring) digital forensics practitioners to 
train their investigation skills and get used to different operating systems 

and devices with their particular features (Garfinkel, 2010), and the 
broad spectrum of DF artifacts (Garfinkel et al., 2009). To make edu
cation and training more effective, the provided data must be complex 
and realistic enough to imitate real cases. 

Driven by the accumulating mass, heterogeneity and complexity of 
data in a DF investigation the demand to employ artificial intelligence 
and machine learning supported software in the forensic area is high 
(Mitchell, 2014; Mohsin, 2021; Garfinkel, 2012; Jarrett and Choo, 
2021). This therefore increases the demand for standardized, potentially 
labeled, and realistic data sets further, since these systems have to 
consume a huge amount of labeled data to be trained in finding corre
lations and recognizing patterns. Besides this rather new branch of 
software in the DF context, classic software tools also require large 
masses of data to conduct excessive validation of their functionality to 
show their reliability and make them, e.g., admissible in court (Carrier, 
2002). 

Due to the reasons given above and the status quo, it becomes clear 

* Corresponding author. Central Office for Information Technology in the Security Sector (ZITiS), Zamdorfer Straße 88, Munich, Bavaria, Germany. 
E-mail addresses: dennis.wolf@zitis.bund.de (D. Wolf), thomas.goebel@unibw.de (T. Göbel), harald.baier@unibw.de (H. Baier).  

Contents lists available at ScienceDirect 

Forensic Science International: Digital Investigation 

journal homepage: www.elsevier.com/locate/fsidi 

https://doi.org/10.1016/j.fsidi.2023.301690    

mailto:dennis.wolf@zitis.bund.de
mailto:thomas.goebel@unibw.de
mailto:harald.baier@unibw.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301690
https://doi.org/10.1016/j.fsidi.2023.301690
https://doi.org/10.1016/j.fsidi.2023.301690
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301690&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Forensic Science International: Digital Investigation 48 (2024) 301690

2

that it is not feasible to provide standardized and contemporary data in a 
large-scale manner without using computer-aided generation. This 
generation, as shown in Section 2 during our analysis of existing data 
synthesis frameworks, often utilizes client-side software to realize the 
actual user interactions on the client. This often leads to unintended 
artifact remnants during the data synthesis process, tainting the gener
ated data set and thus decreases its realism and applicability. Some 
frameworks try to delete these traces subsequently. However, this hap
pens more or less reliably. It is obvious that the initial prevention of 
traces is superior compared to their subsequent deletion. 

1.1. Contribution 

This work covers the following contributions:  

- Presentation of existing concepts and solutions to compensate for 
client-side software during data synthesis.  

- Analysis of issues and challenges when omitting client-side software 
and the respective compensation.  

- Provision of a reference implementation and a suitable proof of 
concept for Linux systems to demonstrate the usefulness of our agent- 
less approach. 

- Setting the resulting agent-less data set in comparison to a conven
tionally created one. 

The source code of our agent-less data synthesis approach can be 
downloaded from: https://github.com/dasec/ForTrace/tree/agentless 
-fortrace. 

1.2. Paper outline 

The remainder of the paper is structured as follows: Section 2 dis
cusses related work. It provides a brief overview of general means for the 
data sets and their generation in DF, a discussion about a recent proposal 
for an agent-less data synthesis solution, and a comparison of existing 
data synthesis frameworks. This leads us to the decision whether to 
develop a completely new framework or to expand existing software to 
meet our requirements. Section 3 discusses the necessary changes 
brought to the selected framework, in order to compensate for the 
removal of any client-side software and the sole reliance in host-side 
processing and control. In Section 4, we present our Linux attack sce
nario as a proof of concept. However, the proposed approach works 
completely OS-independent and a transfer to Windows or other oper
ating systems is easily possible. Afterwards, in Section 5, the generated 
data set is evaluated and compared to a conventionally generated one, so 
both the advantages and drawbacks of our agent-less concept become 
clear. Finally, Section 6 concludes this work and provides an outlook to 
further increase the utility and usability of the framework. 

2. Related work 

This section covers related work in the field of DF, reaching from 
general possibilities for data sets, over a recent approach for the removal 
of client-side software, to the evaluation of existing data synthesis 
frameworks in order to determine a potential candidate for an agent-less 
implementation. 

2.1. General aspects of data sets in digital forensics 

The generated data sets have to contain DF artifacts, which Casey 
(2004) defines as “any data stored or transmitted using a computer that 
support or refute a theory of how an offense occurred or that address 
critical elements of the offense such as intent or alibi”. 

Moch and Freiling (2009) stated that there are three well-known and 
tested approaches to manually obtain DF-relevant training images for 
digital investigators. Originally, they only wrote about the approaches 

in the context of hard disk image generation. 
The manual generation is a widespread approach, resulting in 

potentially high quality data sets with DF-relevant traces that can be 
used in training courses or workshops. The creator of the data set knows 
the ground truth, assuming he/she documents the creation thoroughly 
and conscientiously, and is the least constrained in creating it – 
compared to all other approaches. Nevertheless, the creation itself is 
rather time-consuming, which hinders the (large-scale) creation of new 
data sets drastically. Once such a data set is created, it is static and 
cannot be changed afterwards. There are some examples of manually 
created images, e.g., the Digital Corpora of Garfinkel et al. (2009) which 
includes image and RAM dumps, or the CFReDS portal from NIST.1 

For the second approach, the utilization of honeypots, a computer 
is attached to the Internet, to be attacked and compromised. Lin et al. 
(2014), for example, developed an active honeypot system and made it 
open-source. Since the result is based on illegal activities there are no 
real privacy restrictions and the data sets can be shared with the DF 
community. Unfortunately, the amount of generated data is limited due 
to high hardware requirements and the ubiquitous random component 
of whether the generated data is actually interesting enough. Addi
tionally, in the context of training purposes, the collected data needs to 
be examined in order to reconstruct the course of events and provide a 
suspected ground truth. 

The second hand approach, the third approach, is of limited use in 
the context of this work, as it is only able to yield non-volatile data. It 
involves the acquisition of several used hard disks, e.g., sold on the 
secondary market (possibly a major cost factor), and the analysis of the 
contained data (again time-consuming and likely not very valuable). 
Furthermore, privacy regulations must be considered here before any 
data can be shared with the DF community. 

The automatic generation of data sets adds the fourth approach to 
this list, which was not covered by Moch and Freiling (2009). In recent 
years, several proposals have been made for its realization, as already 
mentioned before. The ongoing development of existing frameworks 
and the creation of new ones, which take up the shortcomings of pre
vious projects and try to improve them, continues. 

2.2. A previous attempt to prevent unwanted client-side data synthesis 
remnants 

The approach presented by Schmidt et al. (2023) is based on the 
creation and curation of a template library and the subsequent matching 
of included templates with the graphical output of the VM, using 
OpenCV’s Template Matching function.2 Once the template is found in 
the image, a mouse click is performed on the determined coordinates. 
The authors developed multiple high-level functions and wrapped them 
into a Python library that can be integrated into existing data synthesis 
frameworks. The library itself, however, does not qualify to be called a 
data synthesis framework, since it does not provide enough infrastruc
ture to actually drive simulations. 

Although the approach of Schmidt et al. (2023) is relevant to our 
work, the following limitations prevent its use in our scope. First, it is a 
very tedious task to create and maintain the necessary template library, 
especially if multiple applications, operating systems and desktop en
vironments should be supported by the data synthesis framework. 
Although this task could be facilitated by the community distributing the 
work, the management and sharing aspects still remain a large concern. 
Second, the used pattern matching algorithm is not resolution 
scale-invariant, i.e., all users would have to select the same screen res
olution for their simulation. Third, as soon as any GUI updates change 
the appearance of control elements, the provided templates must be 

1 https://cfreds.nist.gov/ (visited on October 10, 2023).  
2 https://docs.opencv.org/3.4/d4/dc6/tutorial_py_template_matching.html 

(visited on October 4, 2023). 

D. Wolf et al.                                                                                                                                                                                                                                    

https://github.com/dasec/ForTrace/tree/agentless-fortrace
https://github.com/dasec/ForTrace/tree/agentless-fortrace
https://cfreds.nist.gov/
https://docs.opencv.org/3.4/d4/dc6/tutorial_py_template_matching.html


Forensic Science International: Digital Investigation 48 (2024) 301690

3

updated. The simulation of previous software versions requires to keep a 
history of templates in the generator library, which further increases its 
size. 

As a result, we make use of a different approach and rely on keyboard 
shortcuts to control the VM, which is easier to implement and more 
reliable, as we show in Section 3. 

2.3. Existing data synthesis frameworks in digital forensics 

In what follows we assess existing data synthesis frameworks in 
digital forensics. Our goal is to come up with a decision whether to 
develop a new framework or build our approach based on an existing 
one. Our assessment is based on some criteria that a framework must 
fulfill in order to be useful for our agent-less approach:  

- Provision of coherent data sets on different layers, including RAM, 
disk images, and network dumps  

- Open-source, including all the software on which it depends  
- Actively maintained  
- Broad OS support 

Table 1 lists six examined automatic and mostly open-source data 
synthesis frameworks which were evaluated based on the points given 
above. The number of actively maintained frameworks is rather limited. 
The majority is only intended to simulate Windows guests. The first 
framework, ForGeOSI, is able to synthesize data across all different 
layers. It uses VirtualBox to host the VMs and solely relies on its Guest 
Additions to drive the simulation. Its simulation capabilities are rather 
limited. ForGeOSI is written in Python 2 and is not actively maintained 
anymore which disqualifies the software. The further research confirms 
the absence of any other framework that manages the synthesis without 
additional client-side software. For instance TraceGen, from Du et al. 
(2021) does not rely on a dedicated client-side agent, but requires the 
execution of Python scripts inside the VM. Since its code is not 
open-source, it is not possible to determine its exact functionality and 
the statements above are solely based on the paper and the listings given 
within. The last framework given in the table is called VMPOP and is 
based on the work of Park (2018). While the authors discuss the software 
concept in detail, the implementation is only a PoC, rather limited, and 
at no level that an extension of the project could be considered. 

ForTrace by Göbel et al. (2020) is an automatic data synthesis 
framework which is able to yield unique traces across all three relevant 
layers, i.e., network traffic, memory, and persistent storage. The 
framework is actively maintained and written in Python 3. A user can 
design scenarios using YAML files, simplifying access for 
non-Python-affine users. This enables the generation of data at a larger 
scale, only by modification of single entries in the configuration file of a 
scenario. ForTrace has a dedicated central agent component driving 
the simulation. Due to its modular structure, the central agent compo
nent can be detached from the rest of the software, hence we can 
compensate its absence. Thus, we decided to re-implement said frame
work with the agent-less functionality. 

3. Conversion of ForTrace to an agent-less approach 

In this section we present our agent-less approach on base of the 
selected framework ForTrace. The code base of ForTrace’s code base 
is large and built on its predecessor hystck (Göbel et al., 2020). Mul
tiple classes are involved in the simulation process, where the client-side 
agent takes a central role. Its removal makes a restructuring and 
reworking of the remaining framework necessary. A new structure was 
introduced to ForTrace by aligning its components to the ones 
exported by libvirt’s Python API.3 

3.1. Comparison of the old and new architecture 

Fig. 1 shows abstract views of both architectures: the old one with a 
client-side agent, and the new one that is compensating for its absence 
and only present on the host. Although the architectures are different, 
the general functionality of ForTrace remains the same. 

Fig. 1a depicts the current implementation of ForTrace. The 
Framework Master is responsible for the creation and administration of 
VMs, based on the provided configuration that applies to the whole 
simulation, including all VMs. Each VM, called a Participant, consists of 
several modules. The main module is the VM-associated Generator, 
which drives the simulation. Therefore, it may access Application 
Modules, which are providing interfaces to different applications on the 
client VM, and Guest Functionalities, accessible through the hyper
visor for general control of the VM, e.g., its power state. On each VM 
runs the ForTrace Agent, thus highlighted in a more vibrant color, 
since this is the client-side component of ForTrace, we eliminate 
throughout this work. The agent receives its command via a TCP socket 
that is opened on each VM. In order to minimize the unintended traces of 
this connection, each VM has one monitored network interface to access 
the Internet and local network, and a second unmonitored one, directly 
bound to the Framework Master. 

Typical problems resulting from the dependency of the agent are, for 
example, that the OS has to be configured so that the user logs in 
automatically in order to start the agent. This means that before the 
agent runs after the user logs in, a normal login including password 
input is not possible. 

Fig. 1b shows the new architecture, where the central agent 
component is removed and all functionality is located on the host. The 
Simulation Monitor resembles large parts of ForTrace’s Framework 
Master. It is tasked with the creation of all participating domains, lib
virt’s term for VMs, and their individually associated Generators. The 
Simulation Monitor holds the connection to the hypervisor, wrapped in 
the VirshSession object, the root YAML configuration, and the method 
that enables cross-domain communication. The latter feature is espe
cially useful if an action on one VM should trigger another action on a 
different one, without tainting the generated data sets with unusual 
communication. Otherwise, the VMs are strictly separated from each 
other. Each VM has only one monitored network interface, which is 
connected to a libvirt network with Internet access, which is far more 
realistic than before. 

One or more Participants are tied to and controlled by the Simulation 
Monitor. The actual VM is wrapped inside the VirshDomain object of a 
participant. This object provides access to the Guest Functionalities, like 
power-management of the VM. Application Modules interact with their 
associated VM through the QEMU Monitor, a piece of software able to 
send complex commands – including mouse and key inputs – to QEMU. 
These inputs appear completely transparent to the simulated guest like a 
normal keyboard or mouse. The actual objects, representing the appli
cations, are created on the host and are only intended to be used as 
wrappers around the QEMU Monitor. The communication between 
ForTrace and a VM via the QEMU Monitor cannot be captured with a 
network sniffer, since it happens entirely locally and not via TCP sockets 
as before. Since there is no additional software running on the guest to 
provide feedback to ForTrace, the communication to the VMs is uni
directional, meaning a command is issued to a VM, but there is no 
response whether it was successful. This is the main drawback of the 
agent-less approach, which must be mitigated in order to be able to use 
this approach reliably. Ideas to do so rely on the only remaining channel 
that provides feedback about the system state: the graphical output of a 
VM. It requires different steps to make it computer-readable, depending 
on the kind of feedback that is needed. The two approaches imple
mented so far are described in Section 3.2.2. Since the Generator 
component of ForTrace was completely rewritten as well and takes a 
central role in the new implementation, it is discussed more thoroughly 
in Section 3.3. 3 https://libvirt.org/api.html (visited on September 5, 2023). 

D. Wolf et al.                                                                                                                                                                                                                                    

https://libvirt.org/api.html


Forensic Science International: Digital Investigation 48 (2024) 301690

4

3.2. VM interaction 

ForTrace might interact with VMs in two different ways: via a 
console connection or through the already mentioned QEMU Monitor. 
Each method has its own advantages and disadvantages, which are 
explained in the following subsections. 

3.2.1. Console interaction 
By modifying the VM’s configuration file, one is able to expose a 

guest’s console to the host in the form of a pseudo TTY. This enables 
ForTrace to acquire the terminal and interact with it. Commands can 
be sent to the terminal and the output is transferred back into For
Trace, so it can be processed. For example, one can send the command 
echo Hello, World! to the VM and expect Hello, World! as an 
output. This is a huge advantage, as the communication without a client- 
side agent is otherwise limited and more unidirectional. With a working 
terminal session, this restriction is lifted for non-graphical interaction, e. 
g., servers like the one used in our proof of concept in Section 4.1. 

After the connection is established, the module will run some initial 
setup commands to prepare the shell for ForTrace. Commands – 
elevated ones as well – can be entered, and their output is returned. As 
the communication happens through a libvirt console channel and is 
presented to the guest as a character device – like a regular keyboard, 
mouse, or serial port – it does not travel over the network, thus keeping 
the network dump clean and making the second control network su
perfluous, removing this additional trace of ForTrace from the simu
lation. Multiple channels can be added to a VM’s configuration, which 
allows ForTrace to use more than one console simultaneously. 

Several limitations related to the communication via libvirt console 
were discovered during the implementation and subsequent evaluation 
of the simulation results. These are discussed in the following. 

First, in order to provide a connection for the first console channel 
the guest has to activate a systemd unit called serial-getty@hvc0.service. 
This has to be done for each console device of the VM, incrementing the 
unit’s number. Logs related to the opening and closing of a terminal 

session are generated and may be found during the evaluation. 
Second, when performing a live system analysis, one is able to list all 

active user sessions of a system. This can, for example, be achieved with 
Volatility’s linux_check_tty plugin. As with the systemd service, the 
console type is clearly visible in the TTY column. Normally, the value is 
something like pts/* or tty* (* denoting a number). The term “hvc” – 
hypervisor console – can clearly be put into the context of virtualization, 
as such a console would not be present on a non-virtualized system. It is 
possible to add a console as a serial device to the hardware configuration 
of a VM. Then, the value in the TTY column is something like “ttyS0”. 
This may be less noticeable, however, the console applications, with 
their current implementation, discontinue to work properly. 

Third, the prompt of a console is usually not static and often displays 
the current working directory. With each directory change the prompt 
would have to be updated. If the user misspells a path, the prompt is not 
changed and a timeout error is thrown. To circumvent such behavior 
and keep the code much simpler, the prompt is changed at the beginning 
of each login, so it is static throughout the session. As the change is only 
temporary and limited to a single user, no additional privileges are 
required, thus the resulting traces are minimal. The change command, 
however, shows up in the shell history. In a post-processing step, the 
prompt-change command would need to be purged from the shell’s 
history file. However, it is better to avoid the generation of traces 
completely, instead of removing them afterwards, since this process is 
error-prone and fundamentally opposite to the whole concept of this 
paper. 

3.2.2. Graphical interaction 
To enable GUI interaction with a VM, the new base class is extended 

with a desktop environment attribute. The user needs to provide the ex
pected desktop environment in the configuration file, so that ForTrace 
is able to construct the correct object for interaction. This attribute 
represents the whole graphical part of a VM. It keeps track of all active 
applications and the one that is currently in focus, i.e., receiving mouse 
and keyboard input. All applications can send and receive data through 

Table 1 
Existing automatic data synthesis frameworks in digital forensics. The supported layers are read as follows: P = persistent, M = memory, N = network.  

Framework/Publication Layers Virtualization software Client-side software OS support Maintained Open source 

Forensig2/(Moch and Freiling, 2009, 2012) P/− /− KVM, QEMU SSH-Server Linux ⨯ ✓ 
ForGeOSI/- P/M/N VirtualBox VirtualBox Guest Additions Linux/Windows ⨯ ✓ 
ForGen/- P/− /− VirtualBox, Vagrant Puppet, VirtualBox Guest 

Additions 
Windows ⨯ ✓ 

VMPOP/(Park, 2018) P/− /− VirtualBox, VMWare, 
KVM, QEMU 

VirtualBox Guest Additions Windows ⨯ ✓ 

TraceGen/(Du et al., 2021) P/− /N VirtualBox VirtualBox Guest Additions, 
local Python scripts 

Windows ? ⨯ 

ForTrace/(Göbel et. al, 2022) P/M/N KVM, QEMU ForTrace Agent Windows ✓ ✓  

Fig. 1. Comparison of ForTrace architecture with and without a client-side agent.  

D. Wolf et al.                                                                                                                                                                                                                                    



Forensic Science International: Digital Investigation 48 (2024) 301690

5

the desktop environment object. Thus, one application is able to notify 
another application about a changed state (e.g., application A informs 
the desktop environment about its termination), so the latter updates the 
focus and the list of opened applications. With this architecture it is 
possible to express application dependencies, i.e., parent and child 
windows, whereby, for example, closing the parent window also closes 
all child windows. However, if the focus is lost during the simulation, the 
results might be unpredictable. Thus, excessive testing is necessary 
before integrating any new application or functionality into the frame
work. To mitigate the problem, it is advisable to maintain the newly 
developed unit test suite so that each application can be tested indi
vidually. For instance, uncaught popup windows might lead to a dead
lock situation during the simulation process, since they can swallow later 
inputs. 

ForTrace’s original approach interacting with open applications 
via their own specific objects was rewritten in this work. GenericAppli
cation is the abstract base class for all application objects and defines the 
baseline of necessary attributes and methods a graphical application has 
to offer, e.g., closing the application window. Each application has a 
name and a UUID, which can be used to identify an application, even if 
there are multiple instances of it opened at the same time. 

Along the new inheritance hierarchy, the application classes get 
more specialized, extending the instantiated objects with more 
application-specific features. For example, a text editor has to be able to 
save a document but is not able to browse to a given Internet address. 
Common features that both applications share, however, are that both 
can be closed and can process text input from the user. Users can extend 
the framework by adding new children to the application hierarchy and 
implementing the necessary interfaces. 

The main problem of graphical interaction without an agent is the 
unidirectional communication channel, since the graphical part of a VM 
can only be observed by taking pictures and drawing conclusions about 
the VM’s state. When using a client-side agent, it most likely uses APIs to 
the applications under its control, which provide feedback about 
received inputs. So there are multiple questions ForTrace has to deal 
with: Is an input truly processed? What is the current state of the VM’s 
user interface? Are there any popups, warnings, etc., that have to be 
closed? All these questions should be answerable by the framework, so a 
simulation is not completely blind between start and end and might 
react to certain events. Currently, the framework supports two low-level 
solutions to remedy the situation. Both are based on the graphical 
channel of a VM since it can be accessed without a client-side agent. 

First, the extract_text method is intended to be used to start an Optical 
Character Recognition (OCR) on the application window. Currently, this 
method extracts the text from the whole screen since it cannot determine 
the borders of individual application windows. There are multiple 
functions to test, whether a (similar) string is contained in the OCR 
result, e.g., the function shown in Listing 1 that matches a list of sub- 
strings (second parameter) with a string similarity algorithm against 
the extracted text. This method is more reliable than simple pattern 
matching like in the approach of Schmidt et al. (2023), since the content 
of, e.g., popup windows and cookie banners can be predicted in a more 
general fashion. For instance almost every cookie banner, how different 
they may look in general, contains certain keywords like "Accept" or 
"Decline". This enables ForTrace to react to the actual information 
displayed on the screen rather than to the patterns it might contain. Also 
this approach does not require the provision of a curated template li
brary and can be integrated into the code more easily. 

Listing 1. Performing OCR to catch a cookie popup window.  

The second approach lies in the computation of similarity between 
images, which is similar to the approach of Schmidt et al. (2023). In 

order to be able to compare screenshots of a VM and reference images 
against each other, it was decided to compute the similarity between two 
images using the Normalized Root Mean-Square Error (NRMSE).4 For 
example, this approach is used to determine whether a VM is booted and 
ready to receive user input, by taking pictures in fixed time intervals and 
comparing them against each other, thus rendering a template library 
superfluously. It is assumed that once the boot process has been 
completed, the boot screen is rather static, which results in a low 
NRMSE. Of course, other and more complex methods for image simi
larity can be integrated into the framework as well. However, as dis
cussed in Section 2.2, this approach has several drawbacks, hence it is 
used only in the described case so far. 

3.3. Redesign of the ForTrace Generator 

The Generator component was rewritten to meet all new re
quirements. The exact purpose of this class was redefined, and thus its 
interface scaled down drastically. However, the general behavior is still 
the same: The first operation consists of loading all defined and default 
collections (patterns for actions) into the Generator. The next step, the 
setup of all needed applications, is omitted in the new Generator 
implementation and handled on the fly. It makes use of the new appli
cation structures explained in Sections 3.2.1 and 3.2.2, which are more 
flexible regarding the provisioning of applications. Thus, applications 
can now be opened and closed multiple times during a simulation, which 
enhances the realism of the generated data. The penultimate step con
sists of the generation of individual actions, based on the provided 
collections and applications. Finally, the list of generated actions is 
shuffled, which concludes the Generator’s initialization. 

The new implementation of the Generator is strictly limited to the 
loading of collections, generation of actions, and their execution in 
random order. One instance of a Generator serves a single VM. The 
interaction possibilities a Generator has on its list of actions are visu
alized in Fig. 2. The first phase – the generation – creates all to-be- 
simulated actions after each other, hence the list is sorted at the 
beginning. In the next step, all actions of the list are shuffled, after the 
seed provided within the configuration. Afterwards, the execution of 
actions (represented by the arrow above an action) might be started by 
calling the Generator’s execute method, which starts the iteration over 
the list. 

With the new implementation of ForTrace, more complex actions 
are wrapped into their own objects and can be grouped into attack- or 
server-interactions. Further interaction categories might be added in the 
future if the need arises. The Generator must not implement complex 
interactions with a VM in its own logic but is urged to call methods 
provided by these action objects, thus keeping the actual execution logic 
separated. Throughout the execution of actions, it falls to the Generator 
to respond to certain, predefined events. As an example, the action to 
retrieve a file from a simulated server can only be completed if there are 
files present on the server. Thus, an action for retrieval might send back 
an error event and asks the Generator to be executed again, but at a later 
time. The Generator has to react to this event and must reorder the event 
in the list of actions. Fig. 2 shows the reordering of a server interaction in 
the fourth line. 

Attack-interactions pose a special kind of action element, since there 
exact number of calls is unknown. They were implemented this way, so 
the user does not have to know the number of calls necessary to conclude 
the attack. Rather this responsibility falls to the Generator, which 
dynamically reacts on the status of an attack-object and adds or removes 
calls to the list of actions, as shown in the last two lines of Fig. 2. 

All actions specific to a VM’s life-cycle are extracted from the 

4 https://github. 
com/scikit-image/scikit-image/blob/v0.21.0/skimage/metrics/simple_metrics. 
py/#L50-L108 (visited on September 22, 2023). 

D. Wolf et al.                                                                                                                                                                                                                                    

https://github.com/scikit-image/scikit-image/blob/v0.21.0/skimage/metrics/simple_metrics.py/#L50-L108
https://github.com/scikit-image/scikit-image/blob/v0.21.0/skimage/metrics/simple_metrics.py/#L50-L108
https://github.com/scikit-image/scikit-image/blob/v0.21.0/skimage/metrics/simple_metrics.py/#L50-L108


Forensic Science International: Digital Investigation 48 (2024) 301690

6

Generator and now fall into the domain of the Simulation Monitor. 
Among them are: the initial boot and final shutdown of a VM, the 
starting and stopping of the network sniffer, and the generation of the 
(final) RAM and image dumps. All the described changes contribute to 
the Generator’s encapsulation and independence of the simulated VM. 

4. Linux attack scenario as a proof of concept 

As a PoC, in this section we present a sample data synthesis scenario 
involving an attack on a file-sharing service using SFTP, starting from an 
attacker VM to the victim VM. As mentioned before, the agent-less 
approach works OS-independent, and necessary interfaces are already 
in place where needed, which will make the re-implementation of 
ForTrace truly capable of simulating Windows and macOS guests, 
besides other Linux distributions (and their desktop environments). 

Since the number of frameworks capable of simulating Linux sce
narios, especially using different distributions, is limited and the flexi
bility of the agent-less approach should be demonstrated, a scenario in 
this domain was developed. 

Not only the SFTP server is completely simulated by ForTrace, but 
also the attacking machine. Two very general interfaces were developed 
to drive multi-staged attacks and generic server interactions. The latter 
is not limited to SFTP servers, but also capable of running other web- 
servers as well, including non-data-sharing services, such as mail 
servers. Both interfaces are integrated into ForTrace’s Generator, 
described in Section 3.3, and provide callable action elements. This is a 
new feature introduced to ForTrace and capable to integrate more 
diverse and complex actions in scenarios. 

Fig. 3 shows the general procedure undertaken by ForTrace when 
executing a scenario. Depending on the type of provided YAML config
uration, the setup process merges cascading ones. A Generator is created 
for each VM, as described in Section 3.3. Once the Generator setup is 
completed, the VMs can be booted. If further setup steps are required, e. 
g., the installation of software, they are performed right before the 
scenario is started. The user can specify to perform RAM dumps at any 
time, and create image dumps, once the scenario is completed. 

4.1. The victim – an Ubuntu SFTP server 

The server runs on Ubuntu 22.04.2 LTS without any installed desktop 
environment, leaving the terminal the only option to receive user input. 
The server uses ProFTPD to provide a SFTP server inside the local 

network. 
The attack is based on CVE-2015-3306,5 which was published on 

18th May 2015 and affects all ProFTPD versions up to and including 
1.3.6. 

To enrich the scenario, multiple users are registered on the server. 
Their actual number, names, passwords, and group memberships are 
modifiable. This is part of the default Linux server setup procedure, 
which takes place automatically before the simulation starts and is also a 
new component brought into ForTrace. The installation of the 
required software is handled automatically during the setup phase as 

Fig. 2. Visualization of modification steps undertaken by ForTrace’s Gener
ator on the list of actions. B=Browser action, A = Attack action, 
S=Server action. 

Fig. 3. Procedure for creating scenario-based image files.  

5 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3306 (visited 
on June 21, 2023). 

D. Wolf et al.                                                                                                                                                                                                                                    

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3306


Forensic Science International: Digital Investigation 48 (2024) 301690

7

well. 
Users interact with the server by placing private files within their 

respective user directories. Either a pool of files can be specified and/or 
ForTrace is instructed to generate files on demand. The latter involves 
the Faker library6 to generate filenames and content (Nandakumar, 
2022). 

4.2. The attacker – a Kali Linux machine 

The attacker uses Kali 2023.2 with GNOME as desktop environment 
in this scenario. For simplicity, the Metasploit framework is utilized for 
the majority of the attack. Also, ForTrace’s pseudo-TTY module (see 
Section 3.2.1) was extended to enhance the interaction with the Meta
sploit Shell, e.g., provide better output, open a Meterpreter session, etc. 
The Metasploit-related classes are completely OS-independent and only 
require a TTY-session. 

A more detailed description of the whole attack can be found in 
Appendix A. Certain aspects of the attack can be changed through the 
configuration without the need to write Python code. To be able to apply 
it to other attacks as well, the Cyber Kill Chain, defined by Lockheed 
Martin (Hutchins et al., 2010), was used to subdivide the configuration 
so that the meaning of each option is better understood from the context. 
The configuration as such can influence individual aspects, but cannot 
change the nature of the attack itself. Fundamentally different attacks 
have to be implemented as Python code, even if they are welcome to 
make use of the configuration setup or reuse parts of this attack’s 
implementation. 

During the scenario, the attacker browses on a pool of hacking- 
related websites among others on a random basis. To make the sce
nario more realistic, a website can be parsed with the Python library 
BeautifulSoup7 for HTML elements, to extract any associated links. It can 
be chosen from which elements links should be returned, e.g., all images 
on the website, all hyperlinks, and so on. The scraping process is per
formed on the host, thus independent of the client’s used browser and 
without leaving uncommon traces on the simulated VM. Some files are 
then downloaded through the extracted links to enrich the scenario. 
ForTrace’s Generator adds the accessed links directly to the respective 
action to preserve the ground truth. 

5. Evaluation of generated data 

This section analyses the results of the scenario developed in Section 
4. With minimal changes to the configuration, it is possible to obtain a 
RAM dump, a network dump, and an image dump of every involved VM. 
The scenario however dictates that all three layers of data are only 
present for the Ubuntu server. On the attacker side, there is only the 
image available. The generated data set, the used configuration, and 
generated logs are available via our Zenodo upload.8 

5.1. Comparison of artifacts left by previous ForTrace version 

The most recent ForTrace implementation regarding the support 
for Linux with a client-side agent was implemented and discussed by a 
student writing his bachelor’s thesis. The author found some traces 
during the evaluation of the other Linux scenario performed in his work, 
which are listed in Table 2 with the information whether they could be 
omitted with the agent-less approach. The traces found are discussed 
below and compared to see if they are also present in the current 
implementation. 

In order to start the agent an autostart entry needs to be created 

during the installation of a guest. This file, located in the main user’s 
home directory, remains on the system and is therefore included in the 
generated disk image. At startup, for which the command can be 
extracted from the memory dump as shown in Listing 2, the agent es
tablishes a connection to the constant IP address 192.168.102.1 on 
port 11000, which is routed through the private network interface, 
which every VM must have. Although the connection might be hidden 
from the network sniffer, an analysis of the RAM dump reveals the 
opened socket. As there is neither a client-side agent nor an IP-based 
connection to the hypervisor, no such artifacts are generated with the 
new approach. Furthermore, a VM has no second network interface for 
private communication with ForTrace, which means that this trace is 
also eliminated. 

Listing 2. Autostart command for the ForTrace agent extracted from the 
memory dump. 

One larger part in the class for console interaction, discussed in 
Section 3.2.1, deals with the password prompt that is shown after a 
command is prefixed with sudo. Since the previous implementation of 
ForTrace started commands on the guest via the subprocess module, it 
had no method to interact with the detached stdin afterwards. Hence, 
the /etc/sudoers file was modified to disable the password prompt 
for the "fortrace" user completely. The modification is not reverted at the 
end of a simulation, thus visible in the resulting image. The initial 
modification of the file is documented in the system logs as well. Since 
this file is one of the first sources in an investigation, the modification 
drastically decreases the realism of the resulting data set. 

Through the qemu-install command, issued in the automatic 
installation scripts, several groups are created during the VM setup and 
remain in the /etc/group file, e.g., libvirt, libvirt-qemu, 
libvirt-dnsmasq. The automated installation scripts cannot be 
used with the new implementation of ForTrace, since they have not 
been adjusted so far. The libvirt configuration needs to be changed in 
several sections, e.g., the video settings need to be set to "vga" (to detect 
the mouse), consoles to be used by ForTrace need to be added. If they 
are rewritten for convenience reasons the mentioned groups will most 
certainly be part of the disk image again. The commands issued during 
the installation, e.g., to install required Python packages, are included in 
the history file too. With the adapted guestfs component, which can 
already be used to transfer files to the powered-off VM, the groups and 
Bash history file could be modified, without leaving traces in the system 
logs. Anyhow, since the scripts are currently not used, neither the group 
file nor the Bash history is tainted by any libvirt or QEMU artifacts, and 
the installation process of new VMs is rather simple and well docu
mented. As discussed in Section 3.2.1, the Bash history contains the 
command to perform a prompt change, once the user is logged in. Far 
less traces, compared to the situation before. The implementation of the 
console interaction module could be changed to handle changing 
prompts and keeping the history clean. 

When executing Python code or importing a Python module for the 
first time, a directory named __pycache__ is created in the module 

Table 2 
Overview of traces found by a former ForTrace evaluation and 
statement if they are omitted through the agent-less approach.  

Traces Omitted 

Installation Logs ✓ 
Shell History ⨯ 
Password-less sudoer ✓ 
ForTrace Python Library ✓ 
Agent-Process & autostart entry ✓  

6 https://github.com/joke2k/faker (visited on May 5, 2023).  
7 https://www.crummy.com/software/BeautifulSoup/ (visited on June 21, 

2023).  
8 https://zenodo.org/records/8359194. 

D. Wolf et al.                                                                                                                                                                                                                                    

https://github.com/joke2k/faker
https://www.crummy.com/software/BeautifulSoup/
https://zenodo.org/records/8359194


Forensic Science International: Digital Investigation 48 (2024) 301690

8

directory, containing compiled Python source code, also called “byte 
code”. This caching process is done for performance reasons, as this 
makes the loading of Python modules much faster because the compi
lation phase can be bypassed (Warsaw, 2009). Since ForTrace is 
implemented in Python, the agent is also implemented in Python and is 
therefore cached in the aforementioned directory. This results in mul
tiple accesses and creations of pre-compiled byte files that are visible in 
an investigation of the disk image. The new implementation brings 
several advantages in this regard. For one, there can be no For
Trace-related byte files on the system because there was never For
Trace-related software installed. On the host side, all Python files are 
cached as usual, thus providing the familiar performance. Second, the 
Python installation on VMs, if there is any, remains devoid of any 
ForTrace packages and requirements. By omitting the agent, there is 
no need for any special software or even a Python installation on the 
simulated client, and the system can be configured in the most open 
way. 

The last artifact found by the student is located in the RAM dump of a 
scenario. Log messages from the client-side agent process (and thus very 
likely the whole process) can be found. When Firefox is actively used and 
controlled by ForTrace the Gecko driver9 leaves log messages in the 
RAM as well. Other APIs for application control act similarly, thus often 
tainting the data set further and decreasing its realism. In this case, too, 
it behaves similarly to the previously discussed artifacts: Since there is 
no foreign software on the VM, it cannot leave any strange logs or traces. 

5.2. Means to minimize traces left by a client-side agent 

Of course, the authors of ForTrace knew about the traces and tried 
to mitigate them, hence providing two methods, which should be added 
to the end of each scenario. Both methods are implemented for Windows 
only, at the time of writing. Thus, in this comparison, their capabilities 
in a Linux environment have to be extrapolated from the real imple
mentation. These methods were necessary, since the traces could not be 
omitted with the agent component in place. However, it is clearly better 
to avoid traces than to remove them afterwards. 

The first method _initClean removes artifacts within the Event Log 
and the Prefetch directory, generated during the configuration of the 
template. As for the latter, there is no real equivalent to Windows’ 
Prefetch directory on a Linux system. The equivalent of Windows’ Event 
Log, however, in Linux is the journal. The journal is sealed (Marson 
et al., 2013), so single entries cannot be removed trivially. However, 
what is in the journal, that reveals the ForTrace simulation? No 
additional software was installed on the VM so that no traces of e.g., a 
running agent can be generated. Still, as mentioned in Section 3.2.1, the 
interaction through the libvirt console is visible in the logs. The messages 
in the journal file cannot be removed or modified. This would result in a 
corruption of the file, leading to a failing integrity check. 

The second method _cleanUp wipes artifacts created through For
Trace during the execution of the scenario. Again, this method is not 
required anymore when having no agent present on the system, as there 
are no Python or autostart files or ForTrace installation folders in any 
user directory. 

Through modification of the VM configuration file, which is used by 
libvirt, KVM can be advised to hide itself; a feature available since 
version 1.2.8. It has to be manually added to the VM’s configuration, 
along with the hypervisor feature policy change in the “vcpu” section 
(Hampton, 2018). This suppresses boot log entries regarding the virtu
alization of the system. Disadvantages caused by setting this option 
could not be determined. In any case, this option is not specific to the 
agent-less approach, and shall therefore only be mentioned here. 

To summarize the insights gained in this section: many unintended 
traces can be avoided by omitting the client-side agent. The only 

drawback is the “hvc” string referring to the console connection and the 
more sophisticated host-side logic required to mitigate the drawbacks of 
the absence of the agent. 

6. Conclusion and future work 

With the removal of the agent component, many parts of ForTrace 
had to be rewritten. Various interactions – both graphical and non- 
graphical – can be simulated on Linux guests, completely transparent 
to them. The utilized QEMU Monitor is independent of the underlying 
OS, and hence works on Windows guests as well. Therefore, agent-less 
support for Windows is easy to implement as the integration points for 
Windows and macOS are already provided with our new implementa
tion of the ForTrace framework. 

Ideas to prevent certain traces created during the simulation were 
presented in different sections of this work. These findings are funda
mentally valuable and can in any case be used for future simulations. 
Whether there are more unintended traces on VMs (especially on those 
running Windows) needs to be determined thoroughly in future research 
once the implementation supports other operating systems. Most of the 
traces, previously found during a former evaluation of ForTrace, were 
omitted or drastically mitigated through the removal of the agent. Of 
course, this decision is followed by other problems. The limited feedback 
of the graphical channel resembles the central one and is only partially 
solved through the image similarity and text recognition. In order to 
provide a useable and robust framework, window elements and popups 
need to be recognized reliably. This problem can potentially be solved 
better by employing machine learning or integrating automated UI 
testing solutions like AskUI10 than, for example, by the OpenCV 
approach of Schmidt et al. (2023), because the latter would probably 
require providing all targeted elements (for every OS/distribution/GUI) 
in the form of images before the simulation can be started. This would 
lead to an enormous (manual) workload and breaks every time a GUI is 
updated. Of course the first approach, however implemented, is more 
complex than simple pattern matching, but will pay off in the long run. 

This work showed the strengths and first of all the general usability 
of this novel client-side agent-less approach driving a complete Linux 
scenario that will be further developed in future works to extend and 
validate its full potential. 

Appendix A. Stages of the executed proof of concept attack 

Reconnaissance The attacker uses masscan to find all network 
participants in the subnet. This yields the Ubuntu Server. Next, nmap is 
run to discover the FTP service running on this server, revealing 
ProFTPD as the driving software. Then the attacker searches for 
ProFTPD-related modules and finds one suited for version 1.3.5. 

Weaponization As already mentioned in Section 4.1 the Ubuntu 
Server runs ProFTPD version 1.3.5 which is vulnerable to CVE-2015- 
3306. Metasploit provides with exploit/unix/ftp/proftpd_modcopy_exec the 
associated module11 to perform the exploit. 

Delivery The module is configured to deliver a TCP reverse shell as a 
PHP file to the public writable web directory /var/www/html. 

Exploitation after successful delivery of the payload, the delivered 
reverse shell is triggered, which then reaches out to the attacker’s ma
chine and is registered as a new session in the Metasploit console. 

Installation The adversary investigates the crontab file (/etc/ 
crontab) and locates a script that is used to make backups via rsync. 
To make sure all files can be accessed by this script it is run with root 
permissions. However, the permissions on the script itself are mis
configured and grant every user write access, so arbitrary commands 

9 https://github.com/mozilla/geckodriver (visited on June 13, 2023). 

10 https://www.askui.com/ (visited on December 3, 2023).  
11 https://www.rapid7.com/db/modules/exploit/unix/ftp/proftpd_modc 

opy_exec/ (visited on April 12, 2023). 

D. Wolf et al.                                                                                                                                                                                                                                    

https://github.com/mozilla/geckodriver
https://www.askui.com/
https://www.rapid7.com/db/modules/exploit/unix/ftp/proftpd_modcopy_exec/
https://www.rapid7.com/db/modules/exploit/unix/ftp/proftpd_modcopy_exec/


Forensic Science International: Digital Investigation 48 (2024) 301690

9

might be executed. 
By modifying the backup script, the attacker changes /etc/sudo

ers so the www-data user is allowed to use sudo without 
authentication. 

After the cron job has run, the adversary can create a systemd unit 
with root privileges to open a reverse shell, so a connection can be 
established anytime in the future. Users are free to write their own unit 
file or script and include it in the attack. In this scenario the malicious 
service hides as a user management-related service. Once the file is 
uploaded to the system, it is moved into the /etc/systemd/system 
directory, and then enabled and started, so an opened multi-handler 
inside the Metasploit Console can receive the connection. 

Command and Control The interaction is completely manual and 
realized from within the Metasploit Console. For convenience, the 
opened root shell is upgraded to a Meterpreter session again. 

Actions and Objectives The adversary starts the collection of rele
vant files and extracts them via the download command of the newly 
opened Meterpreter session. These files can be specified via the config
uration file, in the eponymous section. They are grouped in batches, so 
each batch can be executed by the Generator on a random basis. 

Optionally cover-up steps – all executed in a root shell on the target – 
can be added via the configuration, as long as they follow the obligatory 
convention. Eventually, with the shutdown of the Metasploit framework 
the automatic cleanup (of Metasploit) is started, which removes exploit- 
related files from the target. 

References 

Carrier, B., 2002. Open Source Digital Forensics Tools. 
Casey, E., 2004. Digital Evidence and Computer Crime: Forensic Science, Computers and 

the Internet, second ed. ed. Academic Press, London ; San Diego, Calif. OCLC. 
ocm53356563.  

Du, X., Hargreaves, C., Sheppard, J., Scanlon, M., 2021. TraceGen: user activity 
emulation for digital forensic test image generation. Forensic Sci. Int.: Digit. Invest. 
38, 301133 https://doi.org/10.1016/j.fsidi.2021.301133. https://linkinghub.else 
vier.com/retrieve/pii/S2666281721000317. 

Garfinkel, S.L., 2010. Digital forensics research: the next 10 years. Digit. Invest. 7, 
S64–S73. https://doi.org/10.1016/j.diin.2010.05.009. https://www.sciencedirect. 
com/science/article/pii/S1742287610000368. 

Garfinkel, S., 2012. Lessons learned writing digital forensics tools and managing a 30TB 
digital evidence corpus. Digit. Invest. 9, S80–S89. https://doi.org/10.1016/j. 
diin.2012.05.002. URL: https://www.sciencedirect.com/science/article/pii/S17 
42287612000278. 

Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G., 2009. Bringing science to digital 
forensics with standardized forensic corpora. Digit. Invest. 6, S2–S11. https://doi. 
org/10.1016/j.diin.2009.06.016. https://linkinghub.elsevier.com/retrieve/pii/S17 
42287609000346. 

Göbel, T., Schäfer, T., Hachenberger, J., Türr, J., Baier, H., 2020. A novel approach for 
generating synthetic datasets for digital forensics. In: Peterson, G., Shenoi, S. (Eds.), 
Advances in Digital Forensics XVI. Springer International Publishing, Cham, 
pp. 73–93. https://doi.org/10.1007/978-3-030-56223-6_5. 

Göbel, T., Maltan, S., Türr, J., Baier, H., Mann, F., 2022. ForTrace - a holistic forensic 
data set synthesis framework. Forensic Sci. Int.: Digit. Invest. 40, 301344 https:// 
doi.org/10.1016/j.fsidi.2022.301344. 

Grajeda, C., Breitinger, F., Baggili, I., 2017. Availability of datasets for digital forensics – 
and what is missing. Digit. Invest. 22, S94–S105. https://doi.org/10.1016/j. 
diin.2017.06.004. https://linkinghub.elsevier.com/retrieve/pii/S1742287617 
301913. 

Hampton, M., 2018. Answer to ”Hiding Virtual machine status from guest operating 
system”. https://superuser.com/a/1389159. 

Hutchins, E.M., Cloppert, M.J., Amin, R.M., 2010. Intelligence-Driven Computer 
Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill 
Chains. 

Jarrett, A., Choo, K.K.R., 2021. The impact of automation and artificial intelligence on 
digital forensics. WIREs Forensic Science 3, e1418. https://onlinelibrary.wiley.com/ 
doi/abs/10.1002/wfs2.1418, 10.1002/wfs2.1418. _eprint: https://onlinelibrary. 
wiley.com/doi/pdf/10.1002/wfs2.1418.  

Lin, Y.D., Lee, C.Y., Wu, Y.S., Ho, P.H., Wang, F.Y., Tsai, Y.L., 2014. Active versus passive 
malware collection. Computer 47, 59–65. https://doi.org/10.1109/MC.2013.226 
conference Name: Computer.  

Marson, G.A., Poettering, B., 2013. Practical secure logging: seekable sequential key 
generators. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., 
Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., 
Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Crampton, J., Jajodia, S., 
Mayes, K. (Eds.), Computer Security – ESORICS 2013, vol. 8134. Springer Berlin 
Heidelberg, Berlin, Heidelberg, pp. 111–128. https://doi.org/10.1007/978-3-642- 
40203-6_7. http://link.springer.com/10.1007/978-3-642-40203-6_7. series Title: 
Lecture Notes in Computer Science.  

Mitchell, F., 2014. The Use of Artificial Intelligence in Digital Forensics: an Introduction. 
Digital Evidence and Electronic Signature Law Review 7. https://doi.org/10.14296/ 
deeslr.v7i0.1922. http://journals.sas.ac.uk/deeslr/article/view/1922. 

Moch, C., Freiling, F.C., 2009. The forensic image generator generator (Forensig2). In: 
2009 Fifth International Conference on IT Security Incident Management and IT 
Forensics, pp. 78–93. https://doi.org/10.1109/IMF.2009.8. 

Moch, C., Freiling, F.C., 2012. Evaluating the forensic image generator generator. In: 
Gladyshev, P., Rogers, M.K. (Eds.), Digital Forensics and Cyber Crime. Springer, 
Berlin, Heidelberg, pp. 238–252. https://doi.org/10.1007/978-3-642-35515-8_20. 

Mohsin, K., 2021. Artificial intelligence in forensic science. SSRN Electron. J. https://doi. 
org/10.2139/ssrn.3910244. 

Nandakumar, S., 2022. Faker library in python - an intriguing expedient for data 
scientists. https://towardsdatascience.com/faker-library-in-python-an-intriguing-e 
xpedient-for-data-scientists-7dd06f953050. 

Park, J., 2018. TREDE and VMPOP: cultivating multi-purpose datasets for digital 
forensics – a Windows registry corpus as an example. Digit. Invest. 26, 3–18. https:// 
doi.org/10.1016/j.diin.2018.04.025. https://linkinghub.elsevier.com/retrieve/pii 
/S1742287617303614. 

Schmidt, L., Kortmann, S., Hupperich, T., 2023. Improving trace synthesis by utilizing 
computer vision for user action emulation. Forensic Sci. Int.: Digit. Invest. 45, 
301557 https://doi.org/10.1016/j.fsidi.2023.301557. https://linkinghub.elsevier. 
com/retrieve/pii/S2666281723000665. 

Warsaw, Barry, 2009. Pep 3147 – PYC repository directories | peps. python.org. https://p 
eps.python.org/pep-3147/. 

D. Wolf et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2666-2817(23)00209-3/sref1
http://refhub.elsevier.com/S2666-2817(23)00209-3/sref2
http://refhub.elsevier.com/S2666-2817(23)00209-3/sref2
http://refhub.elsevier.com/S2666-2817(23)00209-3/sref2
https://doi.org/10.1016/j.fsidi.2021.301133
https://linkinghub.elsevier.com/retrieve/pii/S2666281721000317
https://linkinghub.elsevier.com/retrieve/pii/S2666281721000317
https://doi.org/10.1016/j.diin.2010.05.009
https://www.sciencedirect.com/science/article/pii/S1742287610000368
https://www.sciencedirect.com/science/article/pii/S1742287610000368
https://doi.org/10.1016/j.diin.2012.05.002
https://doi.org/10.1016/j.diin.2012.05.002
https://www.sciencedirect.com/science/article/pii/S1742287612000278
https://www.sciencedirect.com/science/article/pii/S1742287612000278
https://doi.org/10.1016/j.diin.2009.06.016
https://doi.org/10.1016/j.diin.2009.06.016
https://linkinghub.elsevier.com/retrieve/pii/S1742287609000346
https://linkinghub.elsevier.com/retrieve/pii/S1742287609000346
https://doi.org/10.1007/978-3-030-56223-6_5
https://doi.org/10.1016/j.fsidi.2022.301344
https://doi.org/10.1016/j.fsidi.2022.301344
https://doi.org/10.1016/j.diin.2017.06.004
https://doi.org/10.1016/j.diin.2017.06.004
https://linkinghub.elsevier.com/retrieve/pii/S1742287617301913
https://linkinghub.elsevier.com/retrieve/pii/S1742287617301913
https://superuser.com/a/1389159
http://refhub.elsevier.com/S2666-2817(23)00209-3/sref11
http://refhub.elsevier.com/S2666-2817(23)00209-3/sref11
http://refhub.elsevier.com/S2666-2817(23)00209-3/sref11
https://onlinelibrary.wiley.com/doi/abs/10.1002/wfs2.1418
https://onlinelibrary.wiley.com/doi/abs/10.1002/wfs2.1418
https://doi.org/10.1109/MC.2013.226
https://doi.org/10.1007/978-3-642-40203-6_7
https://doi.org/10.1007/978-3-642-40203-6_7
http://link.springer.com/10.1007/978-3-642-40203-6_7
https://doi.org/10.14296/deeslr.v7i0.1922
https://doi.org/10.14296/deeslr.v7i0.1922
http://journals.sas.ac.uk/deeslr/article/view/1922
https://doi.org/10.1109/IMF.2009.8
https://doi.org/10.1007/978-3-642-35515-8_20
https://doi.org/10.2139/ssrn.3910244
https://doi.org/10.2139/ssrn.3910244
https://towardsdatascience.com/faker-library-in-python-an-intriguing-expedient-for-data-scientists-7dd06f953050
https://towardsdatascience.com/faker-library-in-python-an-intriguing-expedient-for-data-scientists-7dd06f953050
https://doi.org/10.1016/j.diin.2018.04.025
https://doi.org/10.1016/j.diin.2018.04.025
https://linkinghub.elsevier.com/retrieve/pii/S1742287617303614
https://linkinghub.elsevier.com/retrieve/pii/S1742287617303614
https://doi.org/10.1016/j.fsidi.2023.301557
https://linkinghub.elsevier.com/retrieve/pii/S2666281723000665
https://linkinghub.elsevier.com/retrieve/pii/S2666281723000665
https://peps.python.org/pep-3147/
https://peps.python.org/pep-3147/

	Hypervisor-based data synthesis: On its potential to tackle the curse of client-side agent remnants in forensic image gener ...
	1 Introduction
	1.1 Contribution
	1.2 Paper outline

	2 Related work
	2.1 General aspects of data sets in digital forensics
	2.2 A previous attempt to prevent unwanted client-side data synthesis remnants
	2.3 Existing data synthesis frameworks in digital forensics

	3 Conversion of ForTrace to an agent-less approach
	3.1 Comparison of the old and new architecture
	3.2 VM interaction
	3.2.1 Console interaction
	3.2.2 Graphical interaction

	3.3 Redesign of the ForTrace Generator

	4 Linux attack scenario as a proof of concept
	4.1 The victim – an Ubuntu SFTP server
	4.2 The attacker – a Kali Linux machine

	5 Evaluation of generated data
	5.1 Comparison of artifacts left by previous ForTrace version
	5.2 Means to minimize traces left by a client-side agent

	6 Conclusion and future work
	Appendix A Stages of the executed proof of concept attack
	References


