
Editor Combinators — A First Account

Wolfram Kahl
∗

Oliver Braun Jan Scheffczyk

Department of Computing Science, Federal Armed Forces University Munich

Technical Report 2000-01, 16 June 2000

Abstract

In the functional programming context, parser generators are more and more replaced by parser com-
binator libraries. In the same way we strive to replace generators for syntax-directed editors by sets of
editor combinators, and present a first working prototype.

Since lexical behaviour of editors is more complex than that of parsers, we present the abstraction of
scanlets that are not only used to build parsers, but also to direct interactive editing.

In the course of this work we also identify uses for different extensions of Haskell towards second-order
polymorphism, only some of which are currently implemented in existing Haskell systems.

Contents

1 Introduction . 2

2 An Abstract View on (Part of) the Editor Interface . 4

3 Basic Component Editors . 5

4 Basic Editor Combinators . 6

5 An Example Editor . 7

6 Scanlets . 9

7 The Editor and Editor State Data-Types . 13

8 Locations . 14

9 Combining Editors for Recursive Types . 18

10 More Second-Order Polymorphism Needed! . 19

11 Changing the Behaviour . 19

12 Conclusion and Future Work . 20

A Implementation of the Editor Combinators . 22

A.1 Display Tools . 22

A.2 Auxiliary Functions . 23

A.3 Token Editors . 24

A.4 Grouping . 25

A.5 Product Editors . 26

A.6 Alternative Composition . 28

A.7 Mapping . 29

A.8 More Auxiliary Functions . 30

B The Modules . 32

B.1 The Editor Combinator Module Editor.lhs . 32

B.2 The Scanlet Module Scanlet.lhs . 32

B.3 Prelude Extensions ExtPrel.lhs . 32

B.4 A Main.lhs for Testing . 33

C Command Line Interface for Testing . 34

D FranTk Utilities . 35

E Editor Instances . 36

∗Contact author; e-mail: kahl@informatik.unibw-muenchen.de

2 1 INTRODUCTION

1 Introduction

Just as parsers may be generated from language descriptions via parser generators, also syntax-directed
editors may be generated from (more detailed) language descriptions; for a prominent example see [RT89].

Following [Wad85], there has evolved a strong tendency in the functional programming community to
construct parsers using parser combinators instead of via generators. One “school” uses monadic parser
combinators [HM98, Lei00], while for the fast, error-correcting “pre-compiling” parser combinators of
[SD96, SAA99] the monad abstraction turns out to be too restrictive.

The main advantages of the use of combinator libraries for parser construction (or, in fact, for any purpose)
are, as has frequently been explained, on one hand compositionality, and thus greater modularity, and
on the other hand the fact that only one language needs to be used, such that the full power of the host
language is also available for parser construction.

In this paper we set out to leverage these advantages for editor construction.

Before starting to define editor combinators, we need to clarify what an editor is. We use the following
definition:

An editor for a type a is a piece of machinery that allows to manipulate values of type a by
maintaining an internal state defining (perhaps among other data) a view on the current
value.
Of any one editor, there may be several editor instances active at any given moment, each
manipulating a different value of type a by maintaining its own value of the internal state
type.

Editors that most people will be familiar with are programs such as vi, Emacs, or edit; these programs
are mostly used to edit the contents of text files, so we consider these editors as editors which edit string
values. The internal state usually contains the edited strings together with at least a cursor position, a
display window which determines which part of the edited value is visible (where this display window
usually contains the cursor position), and often also selections or “clipboards”. The cursor position and
the display window together determine the view on the edited text; this can be influenced — without
changing the edited value — via cursor movements and other navigation actions.

Different editor instances of these editors are then different invocations of the same editor, which usually
edit different files, i.e., different string values.1

For more examples, in modern graphical user interfaces one encounters editors in many disguises: check
boxes serve as editors for Boolean values, and radio button groups for enumeration types — for these two
examples, there is often no extra internal state besides the represented value, although the mapping from
values to the optical appearance of the views may be non-trivial. Entry areas are often used as editors
for single lines of text, and “text widgets”, such as that of the Tk toolkit [Ous94], are configurable text
editors which may be embedded into larger applications and which may have lots of internal state.

Some editors, most notably programmable editors like Emacs, offer different “modes” for different file
formats: when editing program source files, certain key strokes will induce editor actions that are different
from those induced by the same key strokes when editing a text document. From our point of view, each
mode is an editor of its own (which probably shares some functionality with its base editor and with
other modes of that editor).

Now there are applications where different modes are activated for different regions of one text file: Block
comments may make the editor behave different from program code, equations may induce an extra
mode in a text editor, a literate programming system [Knu84] like the CWeb mode in emacs uses a text
document format mode for documentation, and a program code mode for code chunks.2

As programming languages and text document formats vary, it would be extremely attractive to be
able to combine arbitrary text editors with arbitrary program editors for arbitrary literate programming

1The possibility that an editor may offer multiple views on a single edited value is ignored here for the sake of simplicity,
but should not be too hard to incorporate into our approach.

2 The current document is actually a literate program containing the Haskell source code of the editor combinator library
it describes; for more information see page 22.

3

systems, all along the principle that a literate document consist of alternate text and program fragments,
separated by some markers specific to the literate programming system.

Our thesis is that such systems can be realised by a library of editor components and editor combinators,
together with an editor instantiation machinery :

• Editor components are basic building blocks, perhaps including editors for program chunks and editors
for text chunks, and also editors for the separating markers — for constant separators, the value edited
by the separator editors is the trivial value () (which is the unique value of the trivial type (), the
type of “zero-tuples”).
• Editor combinators are functions which take editors as arguments and construct new, combined

editors from them. The most important combinators are
– sequential composition for a sequence of two editors; the values edited by the combined editor

are pairs consisting of values of the component editors, and
– alternative composition for a choice of different editors for different values; the values edited by

the combined editor are elements of a variant type with an alternative for each component.
• Finally there needs to be a way to construct an editor instance from a combined editor, which

is provided by the editor instantiation machinery. For vi, this is just the program loader of the
underlying operating system, but then there are no easy-to-use combinators available that allowed vi
to be embedded seamlessly into more complicated applications. For a Tk text widget, the instantiation
machinery may be said to be the Tk runtime environment, and this may be used to create several
instances of “identical” editors within the same application.
For the combined editors built in this paper we use the Haskell GUI system FranTk [Sag99]. In pure
FranTk, an “edit area”, which essentially provides access to the Tk text widget, is characterised by
a list of “edit area configuration options” and instantiated into a “component” via application of the
function mkEdit :: [Conf Edit] -> Component — this allows the same abstract edit area (i.e., the
same list of edit area configuration options) to be instantiated into several distinct editor instances
within a single application.

The story so far is very similar to the setting of parser combinator libraries, which also provide elementary
parsers (on top of some primitive token concept), parser combinators, and a parser application function
that calls the combined parser on some concrete input, constructing a parsing result.

A more general approach to editors that change behaviour depending on the context of the editor’s focus
(which usually is the cursor position) is that of structure-oriented editors [RT89]. There, in extreme cases
the “mode” may change for every token of the input. For example, some editors provide “completion”
that attempts to guess identifiers or keywords from already-typed-in prefixes — such a feature only rarely
makes sense for numbers. Furthermore, recalling the literate programming example, the concept of token
may differ in different parts of the edited document, prohibiting the use of a single monolithic scanner.

From this we derive the motivation to generalise on the lexical level, too. We therefore replace the
primitive token concept of parser combinators by the concept of scanlet. A scanlet is intend to represent
scanning functionality for a single token class, but not as a finite-state machine that just accepts or rejects
as is sufficient for mere parsing. The concept of scanlet is tuned for the editor context, and is the essential
ingredient of primitive, token-level editors. Since features such as completion belong to the lexical level,
it is natural that such features can be incorporated into scanlets.

A combined editor will therefore draw from a scanlet library for its token editors, and then use combinators
to combine these into editors for grammatical structures. Like the situation in parser combinators, where
the result of parsing a string usually is not a string, but some (user-defined) data-structure, also in our
editor combinators we offer the possibility to combine editors that, from the point of view of the enclosing
application, edit user-defined data-structures via the (enriched) string view they present at the graphical
user interface.

In the context of functional programming, the best-known editor data-type (apart from primitive char-
acter list pairs and the like) is the Zipper of Huet [Hue97]. The Zipper provides a navigation and
modification interface for trees labelled with strings, and an efficient internal representation of the cur-
rent view which does not contain the current value, but an enriched representation of this value which is

4 2 AN ABSTRACT VIEW ON (PART OF) THE EDITOR INTERFACE

tuned towards efficient navigation and modification and also allows efficient reconstruction of the current
value from the current view.

The drawback of the Zipper is that it is geared towards a string representation of the edited data, and
does not allow direct editing of user-defined data-types. Huet shows how to construct custom zippers for
user-defined data-types, but for this construction to be really useful, generic programming tools would
be necessary since they would allow to mechanise the tedious task of creating the complex auxiliary
data-type definitions required there.

In [SdM99], a single-language structure editor is presented, where the internals are based on the Zipper of
Huet [Hue97]. A working implementation of this editor [SdMS00] is based on the graphical user interface
system FranTk [Sag99].

In this paper we sacrifice the efficiency of the zipper, concentrating on the task to identify the interface
that is needed for editor combinators

• that allow to easily construct editors for user-defined data-types,
• that can easily be used with present-day Haskell systems, and
• that allow to program the behaviour of the resulting editor on a reasonably high level.

We start the body of the paper in Sect. 2 by discussing algebraic properties that basic parts of the editor
interface will have to fulfil. Then we present a user-level view of our primitive editor building blocks in
Sect. 3, and of our primitive editor combinators in Sect. 4, where we also extend these with a few derived
combinators.

This allows us to present a full-fledged example editor in Sect. 5 even before we dive into the details of
lexical analysis composed from scanlets in Sect. 6.

In Sect. 7 we shortly sketch the implementation of our editor data-type, with details on the treatment of
locations following in Sect. 8. In Sects. 9 and 10 we discuss areas where more support for second-order
polymorphism in Haskell would be useful.

The full implementation of our editor combinator library may be found in the appendix and on our editor
combinator web page at URL: http://ist.unibw-muenchen.de/EdComb/.

2 An Abstract View on (Part of) the Editor Interface

From now on, we use the notation of the purely functional programming language Haskell [HPJW+92]
both for actual code fragments like declarations and definitions, prefixed with the “Bird tracks” of literate
Haskell programs, “> ”, and for laws, specifications and ficticious code, all prefixed with “< ”.

We assume the type of editors for values of type a and with internal state s to be an abstract type for
the time being:
> data Editor s a

Such an editor is an abstract entity of which there may be many concrete instances in any application,
and every instance will maintain its own state value of type s.

The value inside the editor can be extracted via:
> eExtract :: Editor s a -> s -> a

Conversely, for any value of type a it is possible to construct a default editor state with:
> eBuild :: Editor s a -> a -> s

For all reasonable editors we shall expect eBuild to be total and injective, and eExtract e to be the
left inverse of eBuild e, that is eExtract e . eBuild e = id :: a -> a, but we cannot expect full
isomorphism since eBuild e usually will not be surjective, and eExtract e not injective, and sometimes
not even total.

For initialisation we do not provide an initial value, but only an initial state:
> eEmpty :: Editor s a -> s

http://ist.unibw-muenchen.de/EdComb/

5

This allows us to define editors where eExtract e (eEmpty e) = undefined.

There are navigation functions which all have the same type, and which just serve to change the view on
the current value, which for this purpose is considered to be tree-structured:
> eRoot, eLeft, eRight, eUp, eDown :: Editor s a -> s -> s

They should not change the value itself, so we usually demand eExtract e . eNav e = eExtract e for
any eNav from the above.

In addition there are state predicates
> eLeftmost, eRightmost, eTopmost, eBottommost :: Editor s a -> s -> Bool

for which we have:
< eLeftmost e s = (eLeft e s == s)
< eRightmost e s = (eRight e s == s)
< eTopmost e s = (eUp e s == s)
< eBottommost e s = (eDown e s == s)

One might be tempted to demand eRight e (eLeft e s) = s whenever eLeftmost e s is false, but
this is actually too restricting.

Further data available in any editor include a function to turn edited values into strings, and a function
to initialise the editor from a string:
> eShow :: Editor s a -> s -> String
> eRead :: Editor s a -> String -> s

Saving and reading back should of course return the initial edited value, so we demand:
< eExtract e . eRead e . eShow e = eExtract e

(This leads to problems with parsing when taken literally also for states for which eExtract e delivers
an only partially defined result.) We can compose eBuild e at the right and obtain:
< eExtract e . eRead e . eShow e . eBuild e = eExtract e . eBuild e = id

This shows that eShow e . eBuild e has to be injective, and eExtract e . eRead e has to be surjec-
tive. Only in very special circumstances injectivity of eRead e or even eExtract e . eRead e will be
necessary; we shall not demand these here.

An important combinator is a kind of map; however, in contrast to most other situations we here also
need the inverse of the embedding:
> eMap :: (a -> b) -> (b -> a) -> Editor s a -> Editor s b

This combinator is characterised by the following equations:
< eExtract (eMap f g e) = f . eExtract e
< eBuild (eMap f g e) = eBuild e . g

In order have an editor eMap f g e fulfil the above requirements whenever e does, we have to demand
that g is total and injective, f . g = id :: b -> b (so f has to be surjective), and since eExtract e
is surjective, we also need that f is total, too, if f . eExtract e is to be total.

If injectivity of eExtract e . eRead e was required, it would also be necessary that the restriction of
g . f to the range of eExtract e . eRead e was contained in the identity on a — failure to meet this
condition results in more different internal editor states for at least certain values in b.

3 Basic Component Editors

After discussing some aspects of editors in general, we now turn to the presentation of the concrete basic
component editors and editor combinators that we provide in our first editor combinator library.

We restricted ourselves to rather simple capabilities, although keeping in mind future extensibility. Some
of our design choices therefore may have to be revised for future developments.

6 4 BASIC EDITOR COMBINATORS

The most primitive editor has a constant appearance and no observable behaviour, so it is an editor for
the trivial type, and also has the trivial type as its internal state:
> tagEditor :: String -> Editor () ()

For non-constant lexical tokens, the primitive building block is tokenEditor which produces editors for
Strings, and uses for their internal state the type SPair which includes information about the current
position inside this string. A tokenEditor only serves for tokens of one fixed token class; therefore the
capability to recognise tokens of this token class must be built into the tokenEditor. We choose to do
this by supplying a scanlet that recognises the token class in question; where the scanlet type currently
happens to be the same as the parser type we use here, but the semantics is slightly different. Scanlets
are discussed in detail below in Sect. 6. The String arguments to the tokenEditor are the name of the
token class, and an initialisation string, respectively:
> tokenEditor :: String -> String -> Scanlet -> Editor SPair String

Below in Sect. 6 we shall see among other examples the following function which allows to construct
scanlets for any data-type that belongs to the type classes Read and Show:
> readScanlet :: (Read a, Show a) => a -> Scanlet

These scanlets are then the central ingredient for the corresponding editors — the dummy argument of
type a both in readScanlet and in readEditor is included only for typing reasons:
> readEditor :: (Read a, Show a) => String -> String -> a -> Editor SPair a

The two string arguments are passed on to tokenEditor, so creating editors for numbers is no effort at
all:
> intEditor = readEditor "<Integer>" "" (0 :: Integer)
> doubleEditor = readEditor "<Double>" "" (0 :: Double)

4 Basic Editor Combinators

Sequential composition of editors is graphical juxtaposition and results in an editor for a pair which has
a pair editor state of type PES x y; such a state includes a flag indicating which of the two components
contains the current position:3

> type PES x y = ((x, y), Bool)
> (<*>) :: Editor x a -> Editor y b -> Editor (PES x y) (a,b)

An important difference between tag- and tokenEditors on one hand and sequentially composed editors
on the other hand is that the internal states of the former are considered to be single units, while
the internal states of the latter are always considered to be sequences of units, which are composed
associatively via nested applications of <*>. This will be relevant when discussing locations in Sect. 8.

We also need a combinator for alternatives, with a sum editor state SES x y indicating which alternative
is actually valid:
> (<|>) :: Editor x a -> Editor y b -> Editor (SES x y) (Either a b)

Alternatively composed editors may have states which are single units and other states that are sequences;
when sequentially prepending such an alternative to some other editor, the location of that editor may
change depending on internal state changes of the alternative editor.

Therefore, and for other structuring purposes, we need a combinator that has to be employed for editors
that should be considered as representing a logical unit — this is relevant also for navigation and selection
behaviour. This combinator has a group editor state GES x which includes a flag to indicate whether or
not the current position focuses on the whole group:
> type GES s = (s, Bool)
> eGroup :: Editor s a -> Editor (GES s) a

3In modern parser combinators, for example in those of [SD96, SAA99], the sequence operator <*> is used with the type
Parser (a -> b) -> Parser a -> Parser b; for transferring such a type to our editor setting we would have needed an
additional argument of type b -> (a, a -> b), which is not a very natural decomposition setting. Therefore we considered
it more natural to build pair editors and let users employ eMap to transform them into editors for friendlier types.

7

Finally we have a combinator that allows construction of editors for recursive data-types — with its
second-order typing it takes a generic editor transformer as its argument and returns a fixed-point editor,
using generic datatype recursion DRec to construct a recursive state type:
> data DRec c = DRec (c (DRec c))

> eRec :: (forall s . Editor s a -> Editor (c s) a) -> Editor (DRec c) a

Its implementation creates a recursive editor via mapping the generic recursive datatype constructor and
its inverse across its state:
> eRec ee = e where e = eMapState DRec unDRec $ ee e

> unDRec (DRec x) = x

For the editor state mapping combinator used here, the laws of Sect. 2 imply that for an editor eMapState
f g e we need that f and g are both total, and g . f = id :: x -> x (so f is injective and g surjective).
> eMapState :: (x -> y) -> (y -> x) -> Editor x a -> Editor y a

On top of these basic combinators, we can define derived editor combinators.

As a first example consider “one-sided decoration editors” that are juxtapositions ignoring the value of
one component:
> (<*) :: Editor x a -> Editor y b -> Editor (PES x y) a
> e1 <* e2 = eMap fst (\a -> (a, eExtract e2 (eEmpty e2))) $ e1 <*> e2

> (*>) :: Editor x a -> Editor y b -> Editor (PES x y) b
> e1 *> e2 = eMap snd (\b -> (eExtract e1 (eEmpty e1), b)) $ e1 <*> e2

For one-sided composition with editors with trivial internal state we might be tempted to abuse eMapState
with a non-injective first argument to get rid of the PES () altogether, as in the following code:
< (<*<) :: Editor x a -> Editor () b -> Editor x a
< e1 <*< e2 = eMapState (fst . fst) (\x -> ((x,()),False)) $ e1 <* e2

< (>*>) :: Editor () a -> Editor y b -> Editor y b
< e1 >*> e2 = eMapState (snd . fst) (\y -> (((),y),True)) $ e1 *> e2

However, the elimination of the Boolean overhead in PES has unwanted side effects: in <*< constructions
it is, for example, impossible to reach a rightmost location via eRight since the “projection” always
assigns positions in the left component — since eRightmost is inherited from the full composition it still
requires True in the overhead.

Therefore, we have to provide special primitive combinators for this purpose — these can never focus on
the ignored component:
> (<*<) :: Editor x a -> Editor () b -> Editor x a
> (>*>) :: Editor () a -> Editor y b -> Editor y b

5 An Example Editor

To illustrate the working of our editor combinator library, we work through an example editor for the
following datatype for arithmetic expressions:
> data Expr = Var String | Num Integer | BinOp Op Expr Expr
> data Op = Plus | Minus | Mult | Div

The global structure of the associated combinator editor is essentially the same as that of the correspond-
ing combinator parser:

We chose a fully parenthesised representation of operator applications, and, since for typing reasons we
cannot directly program a recursive editor here, we define the kernel functional for expression editors as
follows:
> mkExprEditor0 e = identEditor <|> intEditor <|> eParen (e <*> opEditor <*> e)

For variable names, we use a scanlet for identifiers that we define in the next section:
> identEditor = tokenEditor "<Ident>" "" identScanlet

8 5 AN EXAMPLE EDITOR

Parenthesisation is taken care of by a simple auxiliary combinator that uses left and right decoration:
> eParen e = eGroup (tagEditor "(" >*> e <*< tagEditor ")")

The heart of opEditor is a simple alternative:
> opEditor0 = (tagEditor "+" <|> tagEditor "-") <|> (tagEditor "*" <|> tagEditor "/")

What now remains to be done is gluing the parts together mainly by implementing adaptation functions
between the user-defined data-types and their representations in the raw combined editors. This is all
rather mechanical and might even be automated by generic programming tools.

First of all we identify the value type of opEditor0, which is an editor for a nested binary sum of trivial
alternatives:
> type OpRepr = Either (Either () ()) (Either () ())
> opEditor0 :: Editor OpEditState OpRepr

The abstraction function opA :: OpRepr -> Op and the representation function opR :: Op -> OpRepr
are trivial to program and might be generated automatically:
> opA (Left x) = case x of Left _ -> Plus; Right _ -> Minus
> opA (Right x) = case x of Left _ -> Mult; Right _ -> Div

> opR Plus = Left $ Left ()
> opR Minus = Left $ Right ()
> opR Mult = Right $ Left ()
> opR Div = Right $ Right ()

The operator editor is simply the result of mapping these abstraction and representation functions over
the value type of opEditor0:
> opEditor :: Editor OpEditState Op
> opEditor = eMap opA opR opEditor0

Its state is given here only for completeness’ sake:
> type OpEditState = SES (SES () ()) (SES () ())

Similarly, we also have to identify the representation of the expression data-type in terms of the binary
sum and product data-types used for value type construction by the basic editor combinators:
> type ExprRepr = Either String (Either Integer (Expr, (Op, Expr)))

Mapping the expression abstraction and representation turns mkExprEditor0 into an expression editor
transformer, albeit between editors with different state types (the abstraction and representation functions
themselves are again a trivial affair):
> mkExprEditor1 :: Editor y Expr -> Editor (ExprEditStateF y) Expr
> mkExprEditor1 = eMap exprA exprR . mkExprEditor0

> exprA :: ExprRepr -> Expr
> exprR :: Expr -> ExprRepr

> exprA (Left s) = Var s
> exprA (Right (Left i)) = Num i
> exprA (Right (Right (e1, (op, e2)))) = BinOp op e1 e2

> exprR (Var s) = Left s
> exprR (Num i) = Right (Left i)
> exprR (BinOp op e1 e2) = Right (Right (e1, (op, e2)))

Once second-order type matching is supported we shall be able to directly use our combinator eRec for
building editors for recursive datatypes:
< -- ficticious!
< exprEditor0 = eRec mkExprEditor1

For the time being, however, we have to take a short detour (equivalent to a slightly longer detour
involving eRec — the details are discussed in Sect. 9): First of all we have to identify the expansion of
ExprEditStateF that lies behind the state type of the result editor of mkExprEditor1 — we may use the
type inference mechanisms of the respective Haskell system for this purpose:

9

> type ExprEditStateF y = SES SPair (SES SPair (GES (PES y (PES OpEditState y))))

Next we have to produce a recursive data-type building on this type constructor, and define the inverse
of its constructor:
> data ExprEditState = ExprEditState (ExprEditStateF ExprEditState)
> unExprEditState (ExprEditState x) = x

The resulting isomorphism pair serves to create an editor with a recursive state type:
> exprEditor :: Editor ExprEditState Expr
> exprEditor = e where e = eMapState ExprEditState unExprEditState $ mkExprEditor1 e

Since navigation is not handled locally by the supplied combinators, we wrap the editor into a binding
that associates the arrow keys with the editor’s respective navigation functions:
> exprEditor1 = eBind (stdArrowReact exprEditor) exprEditor

This editor can now be instantiated and turned into a FranTk component via
> editorComponent :: Editor s a -> WComponent

so that a stand-alone structured expression editor is obtained through the following line:
> main = display (editorComponent exprEditor1)

6 Scanlets

Since we have to localise token recognition, we cannot have a full scanner, but have to assemble the
scanner from small pieces that we call scanlets.

We define the scanlet type similar to a one-result parser type, but with a different intended semantics:
a scanlet returns Nothing if the input clearly does not start with a token of the token class the scanlet
represents, and can never be extended to such a token, and it returns Just (tok, rest) if the input
can be “legally” segmented into init++rest and init “identifies” tok. Here, “legally” means essentially
at a token border, and the concept of “identification” gives the scanlet designer considerable power to
implement keyboard shortcuts and completion, as for example a string may be taken to “identify” a token
if the token is the input’s only completion inside the scanlet’s token class.
> type Scanlet = String -> Maybe (String,String)

A completion scanlet for a single string can be defined in the following way:
> completionScanlet :: String -> Scanlet
> completionScanlet s1 s2 = let (init,rest) = splitAt (length s2) s1
> in if not (null s2) && init == s2 then Just (s1,rest) else Nothing

Example behaviour of completion scanlets is the following:
< completionScanlet "while" "w" = Just ("while","")
< completionScanlet "while" "where" = Nothing
< completionScanlet "while" "whiley" = Just ("while","y")

The last example shows that, without additional information about how to recognize token borders, these
completion scanlets are still too simplistic for general use.

Another example for scanlet construction works for arbitrary types that belong to both the Read and
Show classes; it employs reads to check for the presence of a legal input, and converts it back to the
recognised token via show — this is powerful, but of course rather inefficient.

We use a dummy argument together with the Haskell 98 prelude function asTypeOf to indicate the desired
type to the class member functions:
> readScanlet :: (Read a, Show a) => a -> Scanlet
> readScanlet x s = case reads s of [] -> Nothing
> (y,rest):_ -> Just (show (y ‘asTypeOf‘ x), rest)

This yields, for example, readScanlet (0::Double) "12a" = Just ("12.0","a").

10 6 SCANLETS

Using these scanlets, and eMap with show (which usually should be injective) and read, we obtain token
editors for Read and Show types:
> readEditor :: (Read a, Show a) => String -> String -> a -> Editor SPair a
> readEditor title s x =
> eMap (\ s -> ((read s) ‘asTypeOf‘ x)) show $ tokenEditor title s $ readScanlet x

Another example is the identifier scanlet we used in our example editor. We employ the usual convention
that identifiers should start with letters and contain only alphanumeric characters:
> identScanlet [] = Nothing
> identScanlet (c:cs) | Char.isAlpha c = let (ls, rest) = span Char.isAlphaNum cs
> in Just (c:ls, rest)
> | otherwise = Nothing

Parsing with Scanlets

Apart from being used in the interactive editor, scanlets also have to be the basic building blocks for the
parser associated with the editor.

We use a parser type that replaces the usual list of successes [Wad85] with at most one success, since this
is closer to the situation in an editor where only one possible interpretation of the current buffer state is
kept (we have eExtract :: Editor s a -> s -> a and not eExtract :: Editor s a -> s -> [a]):
> type Parser a = String -> Maybe (a,String)

> (<<$>>) :: (a -> b) -> Parser a -> Parser b
> f <<$>> p = \ cs -> case p cs of Nothing -> Nothing
> Just (x,rest) -> Just (f x, rest)

Instead of the more customary
> (<<*>>) :: Parser (a -> b) -> Parser a -> Parser b

we need a variant that commits to the current alternative if the first parser succeeds, and applies the
returned function to a default argument if the second parser fails:
> pSeqDft :: Parser (a -> b) -> Parser a -> a -> Parser b
> pSeqDft p q dft = \ cs ->
> case p cs of Nothing -> Nothing
> Just (f, cs’) -> Just (f y,cs’’)
> where (y,cs’’) = case q cs’ of
> Nothing -> (dft,cs’) -- [] instead of cs’?
> Just qresult -> qresult

The committing at the first component has as another consequence that parsing results become available
lazily, improving performance considerably. A minor point deserving consideration is that it might be
reasonable to throw away the remaining input in the error case, or otherwise to investigate possibilities
that allow to reconstruct partially defined values.

The alternative parser is again standard:
> (<<|>>) :: Parser a -> Parser a -> Parser a
> p <<|>> q = \ cs -> case p cs of Nothing -> q cs
> Just result -> Just result

Every editor has a parser for its state type, which is used to implement eRead:
> eParser :: Editor s a -> Parser s

> eRead :: Editor s a -> String -> s
> eRead e ss = case eParser e ss of Nothing -> eEmpty e
> Just (s,ss’) -> s

In parser combinators — let us take as reference those of [SD96, SAA99] — there are two kind of primitive
token parsers: on one hand one for recognising one specific token provided as an argument:
> UU_Parsing.pSucceed :: UU_Parsing.Symbol s => s -> UU_Parsing.Parser s s

11

On the other hand there is
> UU_Parsing.pToken :: UU_Parsing.Symbol s => UU_Parsing.Parser s s

which just returns the next token, and which can, in conjunction with the combinator <?>, be turned
into a parser that recognises only tokens from a specific token class — this is a frequent pattern, since
not for all token classes parsers can be assembled conveniently via pSucceed and the alternative parser
combinator.

In our approach, these token class parsers are constructed directly from scanlets; they inspect the scanlet
results of prefixes of the input as long as the scanlet does not return Nothing (cTrue = const True),
filtering those where the second component of the scanlet result is empty and the first equals the scanlet
input, and of these return the last element:
> scanletP :: Scanlet -> Parser String
> scanletP scanlet s =
> let ps = map (keep1 scanlet) (splits s) -- splits s = zip (inits s) (tails s)
> ps’ = takeWhile ((maybe False cTrue) . fst) ps
> ps’’ = [p | (Just (pref,[]), p@(init,rest)) <- ps’ , pref == init]
> in case ps’’ of [] -> Nothing; l -> Just (last l)

> keep1 f p@(x,y) = (f x, p)

Interactive Use of Scanlets

Consider the following examples for behaviour of scanlets and of scanlet parsers:
< readScanlet (0::Double) "12" = Just ("12.0","")
< readScanlet (0::Integer) "12" = Just ("12","")

< scanletP (readScanlet (0::Double)) "12" = Nothing
< scanletP (readScanlet (0::Integer)) "12" = Just ("12","")

This implies that in a language that uses these scanlets, integer literals and floating point literals are
disjoint, and the parser will be able to differentiate without any problems.

In the editor, however, the behaviour of the scanlets indicates that, after receiving the input "12", it is
not yet clear which token the user wants, and both possibilities should be kept open.

Therefore, the alternative editor state not only includes its two obvious alternatives, but also a third
un-committed alternative, where it behaves essentially like a tokenEditor, but checking its input not
only with a single scanlet, but with scanlets for the initial tokens of all possible alternatives.

More concretely, we define the following datatype to represent one such alternative by a triple containing
a scanlet for its initial token, a string that might be used in interactive selection (perhaps via a pop-up
menu), and a function determining the resulting editor state from the current input, should the alternative
be chosen:
> type First s = (Scanlet, String, String -> s)

We can easily map string and state transformers over lists of Firsts:
> mapFirst :: (String -> String) -> (s -> t) -> First s -> First t
> mapFirst f g (scl,str,t) = (scl,f str,g . t)
> mapFirsts f g = map (mapFirst f g)

We have to look more closely into interaction with the editor now: every editor has a function determining
its behaviour for keyboard input
> eReact :: Editor -> KeyReact s

where the reaction type currently returns a triple containing the result state, an indication whether the
input key was consumed, and an indication whether the editor will not accept further input:
> type Reaction s = (s, Maybe Key, Bool)
> type React s = s -> Reaction s
> type KeyReact s = Key -> React s

12 6 SCANLETS

Since the additional information is mostly for communication inside composed Editors, we provide a
simple reaction function for external use:
> eKey :: Editor s a -> Key -> s -> s
> eKey e k = fst3 . eReact e k

The internal states of the tokenEditor and of the un-committed alternative represent a string together
with the current position inside that string in a standard way via a pair of strings, the first of which is
reversed:
> type LPair a = ([a],[a])
> type SPair = LPair Char

We use functions lpEmpty, lpLeft, lpRight, lpBuild, lpExtract etc. (see A.3) for manipulating this
kind of state. A first simple application is the reaction for a single scanlet, as it is used in the tokenEditor:
> scanletReact :: Scanlet -> KeyReact SPair
> scanletReact scanlet k p@(init,rest) =
> let current = lpExtract p
> currentOk = case scanlet current of Nothing -> False
> Just (_,u) -> null u
> in case k of KeyChar c -> let new = lpExtract (init,c:rest)
> in case scanlet new of
> Nothing -> (p,Just k, currentOk)
> Just (init’, []) -> ((c:init, rest),Nothing,False)
> Just (init’, rest’) -> (p, Just k, currentOk)
> Delete -> (lpEmpty,Nothing,False)
> BackSpace -> lpBackSpace p
> _ -> (p,Just k, currentOk)

> lpBackSpace :: React (LPair a)
> lpBackSpace p@(xs, ys) = case xs of [] -> (p,Just BackSpace,True)
> (_:xs’) -> ((xs’, ys), Nothing, False)

In the reaction function of editors constructed via <|>, we are confronted with a list of Firsts which
decide what the SPair representing the current state is transformed into.

Our current implementation does the following when confronted with character input:

• cs is bound to the string that the current state is going to represent if the character c is accepted,
• firsts’ is that selection of firsts (obtained via firstsFilter) for which the scanlet does not

signal rejection, adorned with the additional information
– Nothing when the scanlet reports an exact fit, i.e., when cs contains a complete token with its

boundary, resp.
– Just s when the scanlet considers another token s as “identified”.

• If there is precisely one exact fit, this is used.
• In the absence of perfect fits,

– if there is exactly one loose fit, this is used,
– if there is no loose fit either, the key is rejected,
– otherwise the key is accepted into the un-commited state.

• Also if there are several exact fits, the key is accepted into the un-commited state.

This seems to work satisfactorily on the small examples we have tried, but might need adjustment upon
further investigation.
> firstsFilter :: String -> [First s] -> [(First s,Maybe String)]
> firstsFilter [] = map (\fi -> (fi,Just []))
> firstsFilter cs = foldr h []
> where h fi@(scl,_,_) fis =
> case scl cs of
> Nothing -> fis
> Just (s,_) -> (fi, if cs == s then Nothing else Just s) : fis

13

> firstsReact :: [First (Either SPair b)] -> Key -> SPair -> Reaction (Either SPair b)
> firstsReact firsts k p =
> case k of
> KeyChar c ->
> let p’ = lpInsert c p
> cs = lpExtract p’
> firsts’ = firstsFilter cs firsts
> test1 (o,m) = case m of Nothing -> True; _ -> False
> (full,start) = partition test1 firsts’
> in case full of
> [((scl,str,f),_)] -> (f cs,Nothing,False)
> [] -> case start of
> [((scl,str,f),Just s)] -> (f s,Nothing,False)
> [] -> (Left p,Just k,False)
> _ -> (Left p’, Nothing, False)
> _ -> (Left p’, Nothing, False)
> BackSpace -> tupd3_1 Left $ lpBackSpace p
> _ -> (Left p,Just k,False)

Once the desired semantics is settled, there is of course also considerable room for improvements with
respect to efficiency here.

7 The Editor and Editor State Data-Types

The editor data-type is defined as a record providing all the primitive editor functionality; some of the
other functions presented above are derived from these. The record fields may be devided into groups as
follows:

The navigation group comprises proper navigation functions that change the current position, and
predicates checking properties of the current position:
> data Editor s a = Editor
> {eRoot, eLeft, eRight, eUp, eDown :: s -> s
> ,eLeftmost, eRightmost, eTopmost, eBottommost :: s -> Bool

The value group has been discussed extensively in Sect. 2:
> ,eBuild :: a -> s
> ,eExtract :: s -> a
> ,eEmpty :: s

The location group will be discussed in the next section:
> ,eIsGroup :: s -> Bool
> ,eSeqWidth :: s -> Int
> ,eFocus :: Loc -> s -> s
> ,eLoc, eCharLoc :: s -> Loc

The parsing group contains as essential components the parser and the scanning aid eFirsts. Fur-
thermore there is the function eAlternatives, which is derived from eFirsts and returns a list of
alternatives that are open from the current state, where every alternative is represented by its token
name (the second component of First) together with the state the editor will be in if that alternative is
chosen. Finally, eTokNames delivers a list which is non-empty only when the current focus is inside token
editors or un-committed alternatives, and then indicates the currently acceptable token classes, also via
the second components of the respective Firsts:
> ,eParser :: Parser s
> ,eFirsts :: [First s]
> ,eAlternatives :: s -> [(String,s)]
> ,eTokNames :: s -> [String]

14 8 LOCATIONS

Closely related to the parsing group is the reaction function; since its scope may however be much larger,
we list it separately:
> ,eReact :: Key -> React s

Finally, the display group serves the connection with the GUI system; it contains a function eLook to
produce a view of the sub-component which is currently in focus, and eView to produce a view of the
whole editor state:
> ,eLook :: InLoc -> s -> ViewList
> ,eView :: InLoc -> s -> ViewList
> }

The types of eLook and eView essentially stem from the structure editor of Sufrin, de Moor and Sage
[SdMS00], and the GUI side functionality of editorComponent (mentioned at the end of Sect. 5) is an
adapted version of their GUI machinery. In a future version, an attractive generalisation will be to replace
the editor combinator interface to the type ViewList by a suitable class interface, such that these two
fields would have the following types:
< ,eLook :: EView v => InLoc -> s -> v
< ,eView :: EView v => InLoc -> s -> v

The class EView then had to support an interface that would correspond very closely to that of pretty
printing combinator libraries [Hug95, Wad98].

The full definition of the editor combinators mainly consists of “plumbing” of all these components, see
appendix A.

In Sect. 4 we have hidden the sum editor state used in editors constructed by the alternative <|>; after
the discussion in the Sect. 6 it should now be obvious that the natural choice is the following:
> type SES x y = Either SPair (Either x y)

The left component serves for the un-committed state, and the right keeps a committed alternative (which
can be uncommitted again via the delete key).

Recall that the internal state of editors constructed with eGroup is given by:
> type GES s = (s, Bool)

If we were to mimic the Brackets of [SdM99], we could use
< type GES z = (z, Maybe Bool)

with Nothing taking the rôle of False; the Just alternatives then would indicate whether the whole
group is the current sub-structure, or only one step on the path. Thus we would easily get access to much
more powerful editing operations.

8 Locations

For graphical interaction with the editor state we need a concept of locations. Actually, we need two
views on our concept of locations, as presented in the first subsection. After that we discuss the location
handling in the two combinators most directly involved with locations, namely grouping and pairing.

Outside and Inside Locations

As usual, we use lists of integers as the standard location type:
> type Loc = [Int]

Our locations are top-down, and the levels are generated by grouping. Furthermore, we distinguish
between groups and other components in the following way:

15

• The function
> eIsGroup :: Editor s a -> s -> Bool

may be used to determine whether the top-level structure of the current state of an editor is a
grouping.

• In a grouping, the location (i:is) refers to a part (as indicated by is) of the i-th logical sub-unit
of the contents of the grouping.

• If an editor state is not a grouping, it is considered to represent a sequence of logical units, and (i:is)
refers to a part (as indicated by is) of the i-th logical unit in that sequence.

For determining the length of the sequence represented by non-group editor states, which may essentially
result from arbitrary nestings of <*>, we use
> eSeqWidth :: Editor s a -> s -> Int

which returns 1 for group editor states.

The function
> eLoc :: Editor s a -> s -> Loc

determines the location of the current focus inside an editor state; it presents a location identifying a
component of the edited value from outside. Therefore we call elements of type Loc outside locations.

Note that our locations currently identify components of the edited value, not of the visible string rep-
resentation of that value. This implies that those parts of the string representation that correspond to
trivial components of the value and are hidden via one of the combinators <*< and >*> do not have a
location of their own, but are considered to be decoration of the grouping that immediately contains
them.

A variant of the outside location also respects position inside a token:
> eCharLoc :: Editor s a -> s -> Loc

This will differ from the result of eLoc at most in an additional last element.

Both variants are therefore appropriate as input for the function eFocus which, regardless of the present
current position, modifies the editor state to focus on the selected position:
> eFocus :: Editor s a -> Loc -> s -> s

After focusing on an existing location, the location is the one focused on:
< eLoc e (eFocus e loc s) = loc -- if loc is legal for s
< eCharLoc e (eFocus e loc s) = loc -- if loc is legal for s

Focusing does not change the represented value:
< eExtract e (eFocus e loc s) = eExtract e s

Focusing on the current character location does not even change the editor state:
< eFocus e (eCharLoc e s) s = s

In contrast to these outside locations, inside locations comprise location information that is passed from
the outside to component editors. This kind of information is needed for local actions that need “their
position” inside the whole, for example to enable event bindings referring to the current location.

In order to enable inner editors to pass on inside location in such a way that every component editor
“knows” which outside location refers to it, we have to include information about the grouping status
and whether we are in a hidden branch.

An element (rloc,mi,hidden) of the type InLoc of inside locations
> type RLoc = [Int]
> type InLoc = (RLoc, Maybe Int, Bool)

is passed to an editor from the outside with the following meaning:

• rloc is the reverse of the outside location of the immediately enclosing group.
• hidden is True iff the current component is inside a hidden branch.

16 8 LOCATIONS

• mi is Nothing if the current component is hidden, or if it is the immediate contents of a grouping
where it was not Nothing, and mi is Just i if the current component is the i-th component in the
sequence of local sub-units making up the immediately enclosing grouping.

The topmost inside location therefore is the following:
> topInLoc = ([],Nothing,False)
The following auxiliary function is used on entry into hidden components, which are assigned to the
enclosing group, ignoring the eventual index position in the sub-unit sequence:
> hideInLoc (rloc,mi,_) = (rloc, Nothing, True)
Finally, whenever a component receives an inside location, it may translate it into the outside location of
itself inside the global context using the function loc1ToLoc — if a component is inside a hidden structure,
it belongs to the grouping indicated by the main location; otherwise it has to take the sequence index
into account:
> inLocToLoc (rloc, mi, hidden) = let rl’ = case mi of Nothing -> rloc
> Just i -> i : rloc
> in reverse rl’
If the support for second-order polymorphism was extended appropriately (see Sect. 10), we would intro-
duce a single inside-location-propagation function
> eUseInLoc :: Editor s a ->
> (forall s’ b . Editor s’ b -> InLoc -> s’ -> r) ->
> InLoc -> s -> r
for which the following law would hold:
< eLoc e s = eUseInLoc e (e loc s -> inLocToLoc loc) topInLoc s

Location Handling in Groupings

The trivial facts about a grouping are that it is a grouping, and therefore represents exactly one logical
unit:
> ,eIsGroup = const True
> ,eSeqWidth = const 1
The location-relevant components of eGroup therefore have to check whether the contents of the group
is again a group, since then one level of the location has to be consumed resp. produced.

For focusing, we omit the check whether the consumed index is in fact 1, which is the only correct
possibility here:
> ,eFocus = (\ loc (x,_) -> case loc of
> [] -> (eRoot e x, True)
> (i : is) -> if eIsGroup e x
> then (eFocus e is x,False) -- assuming i == 1
> else (eFocus e loc x,False))
For producing the external location we use a common auxiliary function that inserts a 1 for groupings:
> mkloc0 :: s -> Loc -> Loc
> mkloc0 x l = case l of [] -> [1]
> (i:is) -> if eIsGroup e x then 1 : l else l
eLoc and eCharLoc are then built in the same way — further abstraction would require the kind of
second-order polymorphism discussed in Sect. 10.
> ,eLoc = (\ (x,top) -> if top then [] else mkloc0 x (eLoc e x))
> ,eCharLoc = (\ (x,top) -> if top then [] else mkloc0 x (eCharLoc e x))
For inside locations in groupings, we use the following auxiliary function:
> contloc (rloc, mi , True) = (rloc, Nothing, True)
> contloc (rloc, Nothing, False) = (rloc, Just 1 , False)
> contloc (rloc, Just i , False) = (i:rloc, Nothing, False)
This definition is justified by the fact that, for polymorphic functions
> h :: forall s’ b . Editor s’ b -> InLoc -> s’ -> r
the ficticious location propagation function eUseInLoc would have the following definition in the case of
eGroup:
< eUseInLoc (eGroup e) h iloc s = eUseInLoc e h (contloc iloc) s

17

Location Handling in Pairings

Pairings are definitely not groupings, and have as their width the sum of the widths of their components:
> ,eIsGroup = const False
> ,eSeqWidth = (\ ((x,y),r) -> eSeqWidth e1 x + eSeqWidth e2 y)

For pairings, we assemble the auxiliary function for external locations from two sub-functions, and for
the second we already expect the width wl of the first editor state component x as an argument:
> mkloc wl x y r l1 l2 = if r then mkloc2 wl y l2 else mkloc1 x l1

In both cases we have to do the group checking again — probably a more elegant setup can be found
that moves this level insertion into eGroup:
> mkloc1 :: x -> Loc -> Loc
> mkloc1 x l = if eIsGroup e1 x then 1 : l else l

For the second component, the width wl of the first component is needed to serve as sequence index
offset:
> mkloc2 :: Int -> y -> Loc -> Loc
> mkloc2 wl y l = let l’ = if eIsGroup e2 y then 1:l else l
> in case l’ of [] -> [wl + 1]
> (i:is) -> wl+i : is

eLoc and eCharLoc again use this in the same way:
> ,eLoc = (\ ((x,y),r) -> let wl = eSeqWidth e1 x
> l2 = eLoc e2 y
> l1 = eLoc e1 x
> in mkloc wl x y r l1 l2)
> ,eCharLoc = (\ ((x,y),r) -> let wl = eSeqWidth e1 x
> l2 = eCharLoc e2 y
> l1 = eCharLoc e1 x
> in mkloc wl x y r l1 l2)

Focusing has to reassemble the argument location for the right component if that is not a grouping; in
the grouping cases, one level has to be dropped:
> ,eFocus = (\ l ((x,y),r) -> case l of
> [] -> ((eFocus e1 [] x, y), False)
> (i:is) -> let wl = eSeqWidth e1 x
> in if i <= wl
> then let l’ = if eIsGroup e1 x then is
> else l
> in ((eFocus e1 l’ x, y), False)
> else let l’ = if eIsGroup e2 y then is
> else i-wl : is
> in ((x,eFocus e2 l’ y), True)
>)

Conversely for the auxiliary functions for inside locations, which strictly speaking need not expect Nothing
for the mi component:
> contloc1 iloc@(rloc, mi, hidden) =
> if hidden then (rloc, Nothing , True)
> else (rloc, Just (maybe 1 id mi), False)

> contloc2 (rloc, mi, hidden) x =
> if hidden then (rloc, Nothing , True)
> else (rloc, Just $ eSeqWidth e1 x + maybe 1 id mi, False)

18 9 COMBINING EDITORS FOR RECURSIVE TYPES

9 Combining Editors for Recursive Types

The keys to constructing Editors for recursive types are eRec and eMap. First of all we have to identify
the functor behind the recursive data type — in the case of lists this is the following:
> type ListF a l = Either (a,l) ()

Now it is possible to build an editor combinator for this functor (the state type will be explained later):
> listFEditor :: Editor x a -> Editor y l -> Editor (ListEditF x y) (ListF a l)
> listFEditor eA eL = (eA <*> eL) <|> trivEditor

Then we need abstraction (listA) and representation (listR) isomorphisms for the recursive type in
question:
> listA :: ListF a [a] -> [a]
> listA (Left (x,xs)) = x:xs
> listA (Right _) = []

> listR :: [a] -> ListF a [a]
> listR [] = Right ()
> listR (x:xs) = Left (x,xs)

Using these as arguments to eMap, we construct an editor combinator that, when partially applied to an
element editor, returns an editor transformer for the recursive type:
> listFEditor1 :: Editor x a -> (Editor y [a] -> Editor (ListEditF x y) [a])
> listFEditor1 eA eL = eMap listA listR $ listFEditor eA eL

It would now be nice if we could directly use eRec, with ListEditF x instantiated for c, and define:
< -- ficticious!!
< listEditor1 eA = eRec (listFEditor1 eA)

However, there is currently no Haskell extension that treats c in the type of eRec as a second-order type
variable — this is closely related to the restriction that type synonyms must not be partially applied.

For being able to use eRec, we therefore first have to identify the state type of the editors involved:
> type ListEditF x l = SES (PES x l) ()

Then we have to wrap ListEditF in a newtype:
> newtype ListEditFF x y = ListEditFF (ListEditF x y)
> unListEditFF (ListEditFF x) = x

This allows us to use eMapState to create a variant of listFEditor1 where the type variable y is a
proper argument to a real type constructor application, which implies that the partial application of this
combinator may be used as argument for eRec:
> listFEditor2 :: Editor x a -> Editor y [a] -> Editor (ListEditFF x y) [a]
> listFEditor2 eA eL = eMapState ListEditFF unListEditFF $ listFEditor1 eA eL

> listEditor2 :: Editor x a -> Editor (DRec (ListEditFF x)) [a]
> listEditor2 eA = eRec (listFEditor2 eA)

In view of all the effort necessary to arrive at the application of eRec one may as well consider to directly
create a recursive type for the editor state, and then feed the isomorphisms into eMapState, thus arriving
at the editor combinator for the recursive type without use of eRec:
> data ListEdit x = ListEdit (ListEditF x (ListEdit x))
> unListEdit (ListEdit x) = x

> listEditor0 :: Editor x a -> Editor (ListEdit x) [a]
> listEditor0 eA = eL
> where eL = eMapState ListEdit unListEdit $ listFEditor1 eA eL

We hope that future language extensions will enable direct use of eRec, allowing production of editor
combinators for recursive types without having to identify the type constructors for the editor states.

Since usually we want a list to appear as one unit with many children, we group them on the top level:
> listEditor :: Editor x a -> Editor (GES (ListEdit x)) [a]
> listEditor = eGroup . listEditor0

The most natural alternative, namely inserting eGroup into listEditor1, would yield an interface re-
flecting the cons-structure of lists, where the n-th element of a list is n levels below the root.

19

10 More Second-Order Polymorphism Needed!

One drawback of our approach is that the values represented by the sub-editors at different positions
may be of many different types, so that a function to retrieve such a value would have an existentially
quantified result type: selected :: Editor s a -> s -> exists b . b. Such a result would be very
difficult to process further.

The same holds for the internal states of sub-editors.

One approach to solve this kind of problem in a general way is to use universally quantified types. The
following function takes as arguments an editor e and a generic function h that may be applied to editors
with arbitrary state and value types, but always returns a result of some fixed type r; it then returns a
function that acts on internal states of e and returns as result (of type r) the result of applying h to the
currently selected sub-editor and its corresponding sub-state.
> eCurrent :: Editor s a ->
> forall r. ((forall s’ b . Editor s’ b -> s’ -> r) -> s -> r)

It is possible to declare this function in GHC, but it is not possible to define it as necessary with the
current type system since its polymorphic argument function needs to be passed to sub-editors of <*>
etc., and this would imply foralls in result types.

The actual definitions would be rather straightforward — the primitive editors are always their own
selection:
< eCurrent e@(tagEditor str) h x = h e x
< eCurrent e@(tokenEditor title str scl) h x = h e x

For sequential composition we have to descend into the selected component, even in the decoration
variants where the decoration component is inaccessible by navigation:
< eCurrent (e1 <*> e2) h ((x,y),r) = if r then eCurrent e2 h y else eCurrent e1 h x
< eCurrent (e1 <*< e2) h x = eCurrent e1 h x
< eCurrent (e1 >*> e2) h y = eCurrent e2 h y

For eGroup, the whole editor is the argument of h if the current position focuses on the whole group:
< eCurrent e@(eGroup e’) h p@(x,top) = if top then h e p else eCurrent e’ h x

Mapping is again trivial:
< eCurrent (eMap f g e) = eCurrent e
< eCurrent (eMapState f g e) h x = eCurrent e h $ f x

The only combinator that might be perceived as non-straightforward is the alternative, since in its
uncommitted state there is no component editor related to its state — but since in that state the location
is always top, the argument function has to be applied to the whole editor again:
< eCurrent (e1 <|> e2) h (Right (Left x)) = eCurrent e1 h x
< eCurrent (e1 <|> e2) h (Right (Right y)) = eCurrent e2 h y
< eCurrent e@(e1 <|> e2) h s@(Left lp) = h e s

Obviously, this use of second-order polymorphism is not very involved, since we just pass polymorphic
functions along until they are finally applied. If second-order polymorphism is included in some future
standardisation of Haskell, we would therefore plead to make also this kind of application possible. In
view of the current justification for prohibiting such uses, namely feasibility of type inference, we would
gladly put type annotations wherever needed in order to be able to freely handle polymorphic functions.

11 Changing the Behaviour

It is easy to define a preemptive pairing combinator <*!> which allows to type the second component
before the first:
> (<*!>) :: Editor x a -> Editor y b -> Editor (PES x y) (a,b)

20 12 CONCLUSION AND FUTURE WORK

Let us first look into its application. For this purpose we slightly modify the expression editor of Sect. 5,
by using a preemptive pairing before the binary operator:
> mkBinEdit0 e = (tagEditor "(" >*> e) <*!> opEditor <*> (e <*< tagEditor ")")
> mkExprEdit0 e = identEditor <|> intEditor <|> eGroup (mkBinEdit0 e)

Since this does not change any of the types involved we can finish the definition of the expression editor
exactly as before:
> mkExprEdit1 = eMap exprA exprR . mkExprEdit0
> exprEdit = e where e = eMapState ExprEditState unExprEditState $ mkExprEdit1 e

If the user just types “+-*/12a+3b*4c/5d” into this editor, the resulting display will be
“((((12/a)*(3+b))-(4*c))+(5/d))”. This is implemented simply by extracting the eFirsts of the
second component and prepending them (after adaptation) to the eFirsts of the pair editor:
> e1 <*!> e2 = let e’ = e1 <*> e2
> h y = ((eEmpty e1,y),False)
> f2 = mapFirsts (’_’:) h $ eFirsts e2
> in e’ {eFirsts = f2 ++ eFirsts e’}

Note that the letters jump into the next component by themselves, since the integer scanlet rejects them
and the reaction in pairings passes rejected keys on to the right.

Together with the list editor combinator from Sect. 9 we then construct an editor that allows to edit one
expression per line:
> exprListEditor :: Editor (GES (ListEdit ExprEditState)) [Expr]
> exprListEditor = listEditor (exprEdit <*< tagEditor "\n")

Here, keys that are “superfluous” on the expression level flow over into the next line to build or modify
an expression there.

Note that currently there is no means to insert expression in-between existing elements of the list, since
this requires locations to be refined into the “brackets” of [SdM99], which we have not yet implemented.

This expression list editor is just a small example to demonstrate how already now we can achieve
interesting effects with little effort.

12 Conclusion and Future Work

In parallel to the move from parser generators to parser combinators we have shown that also the move
from editor generators to editor combinators is feasible. Confronted with the more complex requirements
on the lexical level we have introduced the abstraction of scanlets that brings comfort and flexibility to
the user interface, and at the same time continues to function as the basis for the parser, that, of course,
has to be combined alongside the combined editor.

Although our first prototype is now working, there is still a lot of work to be done. A straight-forward
extension will be to add a clipboard. Allowing more powerful editing actions as with the Bracket type
of [SdM99] should not be difficult either, as pointed out in Sect. 7. It should also be possible to transfer
(and abstract) further features of their editor, such as precedence and associativity integration.

Other features of structure editors, as can be found e.g. in [RT89], will surely make their way into future
generations of editor combinators, which for this purpose might want to integrate the first-class attribute
grammars of [dM99].

Browser Combinators

A browser can be seen as an editor where either there can be no changes to the represented value, or
where the value may be changed by navigation, such that the equations
> eExtract e . eRight e = eExtract e

REFERENCES 21

etc. do not necessarily hold anymore.

Therefore our editor combinators can also be used as browser combinators, and interesting new applica-
tions open up, such as intercepting certain kinds of links or monitoring certain kinds of activities.

Our editor combinator library is of course work in progress; a snapshot of a reasonably current state will
be kept at http://ist.unibw-muenchen.de/EdComb/.

Acknowledgements. We would like to thank Oege de Moor and Meurig Sage for giving out the code
of their structure editor and of FranTk. We also would like to thank Lothar Schmitz for his comments
on a draft version of this paper.

References

[dM99] Oege de Moor. First-class attribute grammars. Available via URL:
http://web.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm, 1999.

[HM98] Graham Hutton and Erik Meijer. Monadic parsing in Haskell. J. Functional Programming, 8(4):437–
444, July 1998.

[HPJW+92] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, et al. Report on the programming language
Haskell, a non-strict purely functional language, version 1.2. ACM SIGPLAN Notices, 27(5), 1992.
See also http://haskell.org/.

[Hue97] Gérard Huet. The Zipper. J. Functional Programming, 7(5):549–554, 1997. Functional Pearl.

[Hug95] John Hughes. The Design of a Pretty-printing Library. In J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, volume 925 of LNCS, pages 53–96. Springer, 1995.

[Knu84] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.

[Lei00] Daan Leijen. Parsec, a fast combinator parser, 2000. URL:
http://www.cs.uu.nl/~daan/parsec.html.

[Ous94] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[RT89] Thomas Reps and Tim Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-based Editors. Texts and Monographs in Computer Science. Springer, 1989.

[SAA99] S.D. Swierstra and P.R. Azero Alcocer. Fast, error correcting parser combinators: A short tutorial.
In Jan Pavelka, Gerard Tel, and Miroslav Bartosek, editors, SOFSEM’99, Theory and Practice of In-
formatics, 26th Seminar on Current Trends in Theory and Practice of Informatics, 1999, November,
volume 1725 of LNCS, pages 111–129, 1999.

[Sag99] Meurig Sage. FranTk – a declarative GUI system for Haskell, 1999. URL:
http://haskell.cs.yale.edu/FranTk/.

[SD96] S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting combinator parsers. In
J. Launchbury, E. Meijer, and T. Sheard, editors, Second International Summer School on Advanced
Functional Programming, volume 1126 of LNCS, pages 184–207. Springer, 1996.

[SdM99] Bernard Sufrin and Oege de Moor. Modeless structure editing. In A. W. Roscoe and J.C.P. Wood-
cock, editors, Proceedings of the Oxford-Microsoft symposium in Celebration of the work of Tony
Hoare, September 13–15, 1999. 1999.

[SdMS00] Bernard Sufrin, Oege de Moor, and Meurig Sage. An extensible structure editor. 2000. Available
via URL: http://web.comlab.ox.ac.uk/oucl/work/oege.demoor/.

[Wad85] Philip Wadler. How to replace failure by a list of successes — A method for exception handling,
backtracking, and pattern matching in lazy functional languages. In Proceedings of the Second
Conference on Functional Programming Languages and Computer Architecture, LNCS, pages 113–
128. Springer, 1985.

[Wad98] Philip Wadler. A prettier printer, 1998. Available via
http://cm.bell-labs.com/cm/cs/who/wadler/topics/recent.html.

[Wil92] Ross N. Williams. FunnelWeb User’s Manual, May 1992. Part of the FunnelWeb distribution,
available at http://www.ross.net/funnelweb/.

http://ist.unibw-muenchen.de/EdComb/
http://web.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm
http://haskell.org/
http://www.cs.uu.nl/~{}daan/parsec.html
http://haskell.cs.yale.edu/FranTk/
http://web.comlab.ox.ac.uk/oucl/work/oege.demoor/
http://cm.bell-labs.com/cm/cs/who/wadler/topics/recent.html
http://www.ross.net/funnelweb/

22 A IMPLEMENTATION OF THE EDITOR COMBINATORS

Appendix

The current document has been written in FunnelWeb [Wil92], a language-independent literate program-
ming system with support for the generation of several files from a single document. The Haskell code
that can be retrieved from the web site indicated above has been produced from this document via the
code tangling capabilities of FunnelWeb.

The standard document output of FunnelWeb includes detailed information where every code chunk is
headed — we have disabled this information for the sake of readability.

In this appendix, however, we enable just the display of FunnelWeb macro calls inside code chunks, so
that items like “MacroName[123]” appear inside code chunks to indicate that at this position the code
chunk named MacroName and with first chunk number 123 is included in the Haskell output.

Although these names and numbers do not appear in their defining positions, it should usually be clear
from the context which code chunks are referred to, and the items like “MacroName[123]” only serve as
a hint.

A Implementation of the Editor Combinators

Here we fill in the remainder of the full definitions of our editor combinators, which would only have
detracted from the most interesting points presented in the body of this report. A few simple auxiliary
functions that we use in several places can be found in our prelude extensions in appendix B.3.

A.1 Display Tools

Since we still re-use much of the display machinery of the structure editor of [SdMS00], we also use the
following central type for display chunks:
> type TreeView = Listener TreeTag -> Listener TreeTag -> Int -> [Structured]

Since we currently do not use the Int designed for indentation, we have to insert ad-hoc zeros in certain
places.

For administrative purposes we enrich TreeViews with further information, which currently is the tag of
the first token if any:
> type View = (TreeView,Maybe String)

We also need a correspondingly enriched list variant:
> type ViewList = ([TreeView],Maybe String)

Concatenation of ViewLists passes on the first token of the whole:
> concViewList :: ViewList -> ViewList -> ViewList
> concViewList (v1,ms1) (v2,ms2) = (v1++v2, maybe ms2 Just ms1)

More importantly, ViewLists also may need to be flattened to Views:
> flattenTreeViews’ :: ViewList -> View
> flattenTreeViews’ (v,ss) = (tv,ss)
> where
> tv lst lst’ n = concat (map (($n) . ($lst’) . ($lst)) v)

This happens mostly for the purpose of tagging them as a single unit, which only makes sense if the list
is non-empty:
> flattenTreeViews :: TreeTag -> ViewList -> View
> flattenTreeViews tag (v,ss) = (tv,ss)
> where
> (tv0,_) = flattenTreeViews’ (v,ss)
> tv lst lst’ n = case tv0 lst lst’ n of
> [] -> []
> structs -> [STextTagged structs (mkEditTag [useIdent (identify tag)])]

A.2 Auxiliary Functions 23

Since the string contents of Structured text can be retrieved via structuredToString (see page 36)
without reference to any further GUI components (the listener arguments to the TreeViews are used only
for non-text components of Structured), we can implement eShow via eView:
> eShow :: Editor s a -> s -> String
> eShow e x = let tvs = eView e topInLoc x
> structs = fst (flattenTreeViews’ tvs) undefined undefined 0
> in concat (map structuredToString structs)

eLook’ is used mainly for debugging purposes and returns the string representation of the selected
component:
> eLook’ :: Editor s a -> s -> String
> eLook’ e x = let dloc = eLoc e x
> tag = tagOfLoc dloc
> tvs = eLook e topInLoc x
> (tv,_) = flattenTreeViews’ tvs
> structs = tv undefined undefined 0
> in concat (map structuredToString structs)

The main view function that is called from the GUI is the following:
> viewEditor :: Editor s a -> s ->
> Listener TreeTag -> Listener TreeTag -> [Structured]
> viewEditor e x lst lst’ =
> let (tv,_) = flattenTreeViews’ (eLook e topInLoc x)
> in tv lst lst’ 0

A.2 Auxiliary Functions

For first experiments we provide a simple reaction wrapper that translates cursor keys into navigation
functions, special character keys like Space and Return into standard KeyChar keys, and ignores modifier
key presses:
> stdArrowReact :: Editor s a -> KeyReact s -> KeyReact s
> stdArrowReact e r k x = case k of
> CursorUp -> if eTopmost e x
> then (x, Just k, undefined)
> else (eUp e x, Nothing, undefined)
> CursorDown -> if eBottommost e x
> then (x, Just k, undefined)
> else (eDown e x, Nothing, undefined)
> CursorRight -> if eRightmost e x
> then (x, Just k, undefined)
> else (eRight e x, Nothing, undefined)
> CursorLeft -> if eLeftmost e x
> then (x, Just k, undefined)
> else (eLeft e x, Nothing, undefined)
> Return -> r (KeyChar ’\n’) x
> Space -> r (KeyChar ’ ’) x
> Alt -> noreact x
> Control -> noreact x
> Shift -> noreact x
> Caps -> noreact x
> _ -> r k x
> where noreact s = (s,Nothing,False)

A very simple auxiliary editor combinator allows to turn such a reaction wrapper into an editor wrapper:
> eBind :: (KeyReact s -> KeyReact s) -> Editor s a -> Editor s a
> eBind rr e = e {eReact = rr (eReact e)}

24 A IMPLEMENTATION OF THE EDITOR COMBINATORS

For extracting eAlternatives from Firsts we use the following, somewhat ad-hoc definition:
> fToA :: First s -> (String,s)
> fToA (sc,s,f) = (s,f "")

This can be used directly to generate default alternatives for any editor:
> eDefaultAlternatives :: Editor s a -> [(String,s)]
> eDefaultAlternatives e = map fToA $ eFirsts e

Finally we need a few derived navigation functions which will help in the definitions of the primitive
navigation functions of combined editors:
> eLeftEnd z x = if eLeftmost z x then x else eLeftEnd z (eLeft z x)
> eRightEnd z x = if eRightmost z x then x else eRightEnd z (eRight z x)
> eUpToTop z x = if eTopmost z x then x else eUpToTop z (eUp z x)
> eRootDefault z x = eLeftEnd z (eUpToTop z x)

A.3 Token Editors

The LPair manipulation functions mentioned in Sect. 6 are defined as follows:
> lpEmpty = ([],[])
> lpIsEmpty (xs,ys) = null xs && null ys
> lpLeft p@([],_) = p
> lpLeft (x:xs, ys) = (xs, x:ys)
> lpRight p@(_,[]) = p
> lpRight (xs, y:ys) = (y:xs, ys)
> lpExtract (xs,ys) = reverse xs ++ ys
> lpMake i = pupd1 reverse . splitAt i
> lpBuild l = (reverse l,[])
> lpLength (xs,ys) = length xs + length ys
> lpStart p = ("",lpExtract p)
> lpLeftmost = null . fst
> lpRightmost = null . snd
> lpInsert x (xs,ys) = (x:xs, ys)

Further LPair functions more specifically oriented towards their application in our editors are the fol-
lowing:
> lpLoc = (:[]) . length . fst
> lpFocus [] = lpStart
> lpFocus (i:_) = lpMake i . lpExtract

Since the token editors are responsible for displaying actual text, they are also responsible to implement
event bindings on that test and therefore need to know their internal position; the external position
extracted from this is used to bind mouse events in crown resp. crown’ (see page 35), where crown is
used in hidden components and crown’ adds an identifying tag to tokens that represent a non-trivial
part of the edited data-structure.
> inLocStringView loc@(_,_,hidden) s =
> let tag = tagOfLoc (inLocToLoc loc)
> mycrown = if hidden then crown else crown’
> in if null s then ([],Nothing) else ([mycrown s tag],Just tag)
> lpLook loc x = inLocStringView loc (lpExtract x)
> lpView loc x = inLocStringView loc (lpExtract x)

A token editor is equipped with a title string for the token name, used e.g. in choice menus, a start
string for initialisation, and a scanlet for recognising its tokens, and uses mostly the LPair and scanlet
functions to build an editor from this information:

A.4 Grouping 25

> tokenEditor :: String -> String -> Scanlet -> Editor SPair String
> tokenEditor title start scanlet = e where
> e = Editor
> {eRoot = lpStart, eLeft = lpLeft, eRight = lpRight, eUp = id, eDown = id
> ,eLeftmost = lpLeftmost, eRightmost = lpRightmost
> ,eTopmost = cTrue, eBottommost = cTrue
> ,eBuild = lpBuild, eExtract = lpExtract
> ,eEmpty = eBuild e start
> ,eIsGroup = cTrue
> ,eSeqWidth = const 1
> ,eFocus = lpFocus, eLoc = const [], eCharLoc = lpLoc
> ,eParser = lpMake 0 <<$>> scanletP scanlet
> ,eFirsts = [(scanlet, title, lpBuild)]
> ,eAlternatives = const $ eDefaultAlternatives e
> ,eTokNames = const [title]
> ,eReact = scanletReact scanlet
> ,eLook = lpLook, eView = lpView
> }

The editor for constant strings is a more trivial variant of the tokenEditor; we use it as an editor for
the type (), so that it has no internal state at all. Nevertheless it needs a scanlet for parsing and for
interactive selection; for the time being we use the completion scanlet introduced on page 9:
> tagEditor :: String -> Editor () ()
> tagEditor str = e where
> scanlet = completionScanlet str
> e = Editor
> {eRoot = id, eLeft = id, eRight = id, eUp = id, eDown = id
> ,eLeftmost = cTrue, eRightmost = cTrue, eTopmost = cTrue, eBottommost = cTrue
> ,eBuild = const (), eExtract = const (), eEmpty = ()
> ,eIsGroup = const True
> ,eSeqWidth = const $ if null str then 0 else 1
> ,eFocus = cId, eLoc = const [], eCharLoc = const []
> ,eParser = const () <<$>> scanletP scanlet
> ,eFirsts = [(scanlet,str,const ())]
> ,eAlternatives = const $ eDefaultAlternatives e
> ,eTokNames = const []
> ,eReact = (\ k -> (\ (_,mk,b) -> ((),mk,b)) .
> scanletReact scanlet k . (const (reverse str,"")))
> ,eLook = (\ loc x -> inLocStringView loc str)
> ,eView = (\ loc x -> inLocStringView loc str)
> }

> trivEditor :: Editor () ()
> trivEditor = tagEditor ""

> constEditor :: a -> String -> Editor () a
> constEditor a s = eMap (const a) (const ()) $ tagEditor s

A.4 Grouping

A group represents one level for the definition of locations.

Recall that the state of the group editor is defined to contain a flag which is True if the whole group is
the current sub-structure, and False if the current sub-structure is an internal part of the group:
> type GES s = (s, Bool)
> topGroup x = (x,True)

26 A IMPLEMENTATION OF THE EDITOR COMBINATORS

> inGroup x = (x,False)

> eGroup :: Editor s a -> Editor (GES s) a
> eGroup (e :: Editor s a) = e’ where
GroupAux[115]
> e’ = Editor
> {eRoot = pupd (eRoot e) cTrue
> ,eUp = (\ p@(x,top) -> if top then p
> else if eTopmost e x then (eRoot e x,True)
> else (eUp e x,False))
> ,eDown = (\ (x,top) -> (if top then eRoot e x else eDown e x, False))
> ,eLeft = (\ p@(x,top) -> if top then p else (eLeft e x, top))
> ,eRight = (\ p@(x,top) -> if top then p else (eRight e x, top))
> ,eLeftmost = (\ (x,top) -> if top then True else eLeftmost e x)
> ,eRightmost = (\ (x,top) -> if top then True else eRightmost e x)
> ,eTopmost = (\ (x,top) -> top)
> ,eBottommost = (\ (x,top) -> if top then False else eBottommost e x)
> ,eExtract = (eExtract e) . fst
> ,eBuild = (\ a -> (eBuild e a,True))
> ,eEmpty = (eEmpty e, True)
GroupComponents[113]
> ,eParser = topGroup <<$>> eParser e
> ,eFirsts = mapFirsts id inGroup (eFirsts e)
> ,eAlternatives = (\ (x,top) -> if top
> then eDefaultAlternatives e’
> else map (pupd2 inGroup) $ eAlternatives e x)
> ,eTokNames = (\ (x,top) -> if top then [] else eTokNames e x)
> ,eReact = (\ k (x,top) ->
> case k of
> Delete | top -> (eEmpty e’,Nothing,False)
> BackSpace | top -> ((eDownR e x, False),Nothing, False)
> _ -> let (x’,mk,b) = eReact e k x
> in case mk of Nothing -> ((x’,False), Nothing, b)
> Just k -> ((x’,top),mk,b))
> ,eLook = (\ loc p@(x,top) ->
> if top then eView e’ loc p
> else eLook e (contloc loc) x)
> ,eView = (\ loc (x,top) ->
> let tag = tagOfLoc $ inLocToLoc loc
> loc’ = contloc loc
> v = eView e loc’ x
> (tv,ss) = flattenTreeViews tag v
> in ([tv],ss))
> }

A.5 Product Editors

The product editor state PES x y contains the two component editor states together with a Boolean
indicating whether the current position is in the second component:
> type PES x y = ((x, y), Bool)

Most of the components of the product editor just have to refer to the active sub-editor; some kind of
communication between the two sub-editors happens when eLeft and eRight cross the border between
them, and when a key press inside the active first sub-editor is rejected and passed on to the second
sub-editor:

A.5 Product Editors 27

> (<*>) :: Editor x a -> Editor y b -> Editor (PES x y) (a,b)
> (e1 :: Editor x a) <*> (e2 :: Editor y b) = let
ProductAux[121]
> e = Editor
> {eRoot = eRootDefault e
> ,eUp = (\ ((x,y),r) -> (if r then (x,eUp e2 y) else (eUp e1 x,y), r))
> ,eDown = (\ ((x,y),r) -> (if r then (x,eDown e2 y) else (eDown e1 x,y), r))
> ,eLeft = (\ ((x,y),r) -> if r
> then if eLeftmost e2 y
> then ((eRightEnd e1 (eUpToTop e1 x), eUpToTop e2 y),False)
> else ((x,eLeft e2 y), r)
> else ((eLeft e1 x, y), r)
>)
> ,eRight = (\ ((x,y),r) -> if r then ((x, eRight e2 y), r)
> else if eRightmost e1 x
> then ((eUpToTop e1 x, eRoot e2 y), True)
> else ((eRight e1 x, y), r)
>)
> ,eLeftmost = (\ ((x,y),r) -> not r && eLeftmost e1 x)
> ,eRightmost = (\ ((x,y),r) -> r && eRightmost e2 y)
> ,eTopmost = (\ ((x,y),r) -> if r then eTopmost e2 y else eTopmost e1 x)
> ,eBottommost = (\ ((x,y),r) -> if r then eBottommost e2 y
> else eBottommost e1 x)
> ,eBuild = (\(a,b) -> ((eBuild e1 a, eBuild e2 b), False))
> ,eExtract = (\((x,y),r) -> (eExtract e1 x, eExtract e2 y))
> ,eEmpty = ((eEmpty e1, eEmpty e2), False)
ProductComponents[120]
> ,eParser = (\ x y -> ((x,y),False)) <<$>>
> eParser e1 ‘pSeqDft‘ eParser e2 $ eEmpty e2
> ,eFirsts = mapFirsts id (\x -> ((x,eEmpty e2), False)) (eFirsts e1)
> ,eAlternatives = (\ ((x,y),r) ->
> if r then map (pupd2 (\y -> ((x,y),r))) $ eAlternatives e2 y
> else map (pupd2 (\x -> ((x,y),r))) $ eAlternatives e1 x)
> ,eTokNames = (\ ((x,y),r) -> if r then eTokNames e2 y else eTokNames e1 x)
> ,eReact = (\ key s@((x,y),r) -> if r
> then let (y’, mk,b) = eReact e2 key y
> in (((x,y’),True),mk,b)
> else case eReact e1 key x of
> (x’,Nothing,b) -> (((x’,y),b),Nothing,False)
> (x’, Just k, True) -- not consumed, but satisfied
> -> let (y’, mk, b) = eReact e2 k y
> in (((x’,y’),True),mk,b)
> (x’, Just k, False) -- not consumed and angry
> -> (s, Just k, False)
>)
> ,eLook = (\ loc ((x,y),r) -> if r then eLook e2 (contloc2 loc x) y
> else eLook e1 (contloc1 loc) x)
> ,eView = (\ loc ((x,y),r) -> eView e1 (contloc1 loc) x
> ‘concViewList‘ eView e2 (contloc2 loc x) y)
> }
> in e

Decoration at the right is completely trivial:
> (<*<) :: Editor x a -> Editor () b -> Editor x a
> e1 <*< e2 = Editor
> {eRoot = eRoot e1, eUp = eUp e1, eDown = eDown e1

28 A IMPLEMENTATION OF THE EDITOR COMBINATORS

> ,eLeft = eLeft e1, eRight = eRight e1
> ,eLeftmost = eLeftmost e1, eRightmost = eRightmost e1
> ,eTopmost = eTopmost e1, eBottommost = eBottommost e1
> ,eBuild = eBuild e1, eExtract = eExtract e1, eEmpty = eEmpty e1
> ,eIsGroup = eIsGroup e1, eSeqWidth = eSeqWidth e1, eFocus = eFocus e1
> ,eLoc = eLoc e1, eCharLoc = eCharLoc e1
> ,eParser = const <<$>> eParser e1 ‘pSeqDft‘ eParser e2 $ ()
> ,eFirsts = eFirsts e1, eAlternatives = eAlternatives e1, eTokNames = eTokNames e1
> ,eReact = eReact e1
> ,eLook = eLook e1
> ,eView = (\ loc x -> eView e1 loc x ‘concViewList‘ eView e2 (hideInLoc loc) ())
> }

With decoration at the left the only critical point is parsing, i.e., eParser together with eFirsts. Al-
though the hidden component e1 does not have a location of its own, because of our deterministic approach
to parsing it still is crucial in determining whether the decorated component is to be instantiated in the
case of its choice.
> (>*>) :: Editor () a -> Editor y b -> Editor y b
> e1 >*> e2 = e where
> e = Editor
> {eRoot = eRoot e2, eUp = eUp e2, eDown = eDown e2
> ,eLeft = eLeft e2, eRight = eRight e2
> ,eLeftmost = eLeftmost e2, eRightmost = eRightmost e2
> ,eTopmost = eTopmost e2, eBottommost = eBottommost e2
> ,eBuild = eBuild e2, eExtract = eExtract e2, eEmpty = eEmpty e2
> ,eIsGroup = eIsGroup e2, eSeqWidth = eSeqWidth e2, eFocus = eFocus e2
> ,eLoc = eLoc e2, eCharLoc = eCharLoc e2
> ,eParser = (\ x y -> y) <<$>> eParser e1 ‘pSeqDft‘ eParser e2 $ eEmpty e2
> ,eFirsts = mapFirsts id (const (eEmpty e)) (eFirsts e1)
> ,eAlternatives = eAlternatives e2, eTokNames = eTokNames e2
> ,eReact = eReact e2
> ,eLook = eLook e2
> ,eView = (\ loc y -> eView e1 (hideInLoc loc) () ‘concViewList‘ eView e2 loc y)
> }

A.6 Alternative Composition

Recall that the sum editor state contains either an uncommitted SPair, or a state of one of two alternative
state types:
> type SES x y = Either SPair (Either x y)

Most of the components are then straightforward plumbing; the one crucial field, eReact, has already been
discussed in Sect. 6. The auxiliary function firstsFilter defined there is also used to let eAlternatives
present exactly the currently still possible alternatives.
> (<|>) :: Editor x a -> Editor y b -> Editor (SES x y) (Either a b)
> (e1 :: Editor x a) <|> (e2 :: Editor y b) = e where
> e = Editor
> {eRoot = eitheR lpStart (eitheR (eRoot e1) (eRoot e2))
> ,eUp = eitheR id (eitheR (eUp e1) (eUp e2))
> ,eDown = eitheR id (eitheR (eDown e1) (eDown e2))
> ,eLeft = eitheR lpLeft (eitheR (eLeft e1) (eLeft e2))
> ,eRight = eitheR lpRight (eitheR (eRight e1) (eRight e2))
> ,eLeftmost = either lpLeftmost (either (eLeftmost e1) (eLeftmost e2))
> ,eRightmost = either lpRightmost (either (eRightmost e1) (eRightmost e2))
> ,eTopmost = either cTrue (either (eTopmost e1) (eTopmost e2))
> ,eBottommost = either cTrue (either (eBottommost e1) (eBottommost e2))

A.7 Mapping 29

> ,eExtract = either (altExtract . fst . unJust . altParser . lpExtract) altExtract
> ,eBuild = Right . eitheR (eBuild e1) (eBuild e2)
> ,eEmpty = Left lpEmpty
> ,eIsGroup = either cTrue (either (eIsGroup e1) (eIsGroup e2))
> ,eSeqWidth = either (const 1) (either (eSeqWidth e1) (eSeqWidth e2))
> ,eFocus = (\ loc -> eitheR (lpFocus loc) (eitheR (eFocus e1 loc) (eFocus e2 loc)))
> ,eLoc = either (const []) (either (eLoc e1) (eLoc e2))
> ,eCharLoc = either lpLoc (either (eCharLoc e1) (eCharLoc e2))
> ,eParser = Right <<$>> altParser
> ,eFirsts = mapFirsts id (Right . Left) (eFirsts e1) ++
> mapFirsts id (Right . Right) (eFirsts e2)
> ,eAlternatives = (\ s ->
> let f1 = map (pupd2 (Right . Left)) . eAlternatives e1
> f2 = map (pupd2 (Right . Right)) . eAlternatives e2
> in case s of
> Left lp -> map (fToA . fst) $ firstsFilter (lpExtract lp) $ eFirsts e
> Right e -> either f1 f2 e)
> ,eTokNames = (\ s -> case s of
> Left lp -> map snd3 $ eFirsts e
> Right e -> either (eTokNames e1) (eTokNames e2) e)
> ,eReact = (\ k x -> case k of
> Delete | eTopmost e x && eSeqWidth e x == 1
> -> (Left lpEmpty,Nothing,False)
> _ -> case x of
> Left p -> firstsReact (eFirsts e) k p
> Right y -> tupd3_1 Right $ ldistr3 $ eitheR (eReact e1 k) (eReact e2 k) y)
> ,eLook = (\ loc -> either (lpLook loc) (either (eLook e1 loc) (eLook e2 loc)))
> ,eView = (\ loc -> either (lpView loc) (either (eView e1 loc) (eView e2 loc)))
> }
> altParser = (Left <<$>> eParser e1) <<|>> (Right <<$>> eParser e2)
> altExtract = eitheR (eExtract e1) (eExtract e2)

A.7 Mapping

eMap is actually the simplest primitive combinator with respect to implementation — we only have to
adapt the value interface:
> eMap :: (a -> b) -> (b -> a) -> Editor s a -> Editor s b
> eMap f g e =
> e {eBuild = eBuild e . g
> ,eExtract = f . eExtract e
> }

While the value type only occurs in these two fields, the state type occurs in all fields, so that for
eMapState we have to insert the adaptation functions everywhere:
> eMapState :: (x -> y) -> (y -> x) -> Editor x a -> Editor y a
> eMapState (f :: x -> y) (g :: y -> x) (e :: Editor x a) = Editor
> {eRoot = f . eRoot e . g, eLeft = f . eLeft e . g, eRight = f . eRight e . g
> ,eUp = f . eUp e . g, eDown = f . eDown e . g
> ,eLeftmost = eLeftmost e . g, eRightmost = eRightmost e . g
> ,eTopmost = eTopmost e . g, eBottommost = eBottommost e . g
> ,eBuild = f . eBuild e, eExtract = eExtract e . g, eEmpty = f (eEmpty e)
> ,eIsGroup = eIsGroup e . g
> ,eSeqWidth = eSeqWidth e . g
> ,eFocus = (\ loc -> f . eFocus e loc . g)
> ,eLoc = eLoc e . g

30 A IMPLEMENTATION OF THE EDITOR COMBINATORS

> ,eCharLoc = eCharLoc e . g
> ,eParser = f <<$>> eParser e
> ,eFirsts = mapFirsts id f (eFirsts e)
> ,eAlternatives = map (pupd2 f) . eAlternatives e . g
> ,eTokNames = eTokNames e . g
> ,eReact = (\ k -> (\ (x,mk,b) -> (f x,mk,b)) . eReact e k . g)
> ,eLook = (\ loc -> eLook e loc . g)
> ,eView = (\ loc -> eView e loc . g)
> }

A.8 More Auxiliary Functions

Many more auxiliary functions such as derived navigation operations will be useful in later stages of this
development.

In the GUI we need a function to extract the tag of the first token of the currently selected sub-component:
> eLocTag e s = snd $ eLook e topInLoc s

Most of the functions presented in the following are derived from their zipper equivalents in the structure
editor of [SdMS00].

First we list material that needed to be adapted to our different setting.

When calculating sibling locations we have to take into account that our locations are top-down:
> locSibling :: Loc -> Loc -> Bool
> locSibling [] [] = False
> locSibling [] _ = False
> locSibling _ [] = False
> locSibling [x] [y] = y > x
> locSibling (x:xs) (y:ys) = x == y && locSibling xs ys

> sibling :: Editor s a -> s -> Loc -> Bool
> sibling e x = locSibling (eLoc e x)

One use of siblings is for a crude approximation of cursor positions when the focus is on an empty
sub-editor (which is impossible in [SdMS00]): we look right, and if necessary also left, for a non-empty
component, but restrict the search to siblings in the hope that between siblings there are not too many
interfering hidden decorations:
> leaning :: Editor s a -> s -> Maybe (Either TreeTag TreeTag)
> leaning e s = let
> leaningR e loc s = let sR = eRight e s
> locR = eLoc e sR
> in if locSibling loc locR
> then case eLocTag e sR of
> Nothing -> leaningR e locR sR
> Just t -> Just (tagOfLoc locR)
> else Nothing
> leaningL e loc s = let sL = eLeft e s
> locL = eLoc e sL
> in if locSibling locL loc
> then case eLocTag e sL of
> Nothing -> leaningL e locL sL
> Just t -> Just (tagOfLoc locL)
> else Nothing
> loc = eLoc e s
> in case leaningR e loc s of
> Just t -> Just (Right t)
> Nothing -> fmap Left $ leaningL e loc s

A.8 More Auxiliary Functions 31

The following is from [SdMS00], but as long as we still don’t have brackets, it is essentially useless:
> bracket0 :: Editor s a -> Loc -> s -> s
> bracket0 e l x = if sibling e x l
> then eFocus e l x
> else x

For the time being, we only carry () in the clipboard.
> type Clip = ()
> emptyClip = ()

> type Edit0 s = EditAction s Clip

> idEdAct :: EditAction s c
> idEdAct (st,c) = ((st,c),[])

> type EStatus s = EditSt s Clip -- = (s,())

The remaining functions stem directly from [SdMS00]:
> type Paint a b = a -> (a,[b]) -- a is state, b is update information

> (-.-) :: Paint a b -> Paint a b -> Paint a b
> (-.-) f g s = (u, p++q)
> where (t,p) = g s
> (u,q) = f t

> type EditSt s c = (s, c) -- state, clipboard
> type EditAction s c = Paint (EditSt s c) s

> nav :: (s -> s) -> EditAction s c
> nav f (s,c) = ((f s, c),[])

> eDownR :: Editor s a -> s -> s
> eDownR e = eRightEnd e . eDown e

> eNext :: Editor s a -> s -> s
> eNext e x = if eBottommost e x then eRightup e x else eDown e x

> ePrev :: Editor s a -> s -> s
> ePrev e x = if eBottommost e x then eLeftup e x else eDownR e x

> eRightup :: Editor s a -> s -> s
> eRightup e = eRight e . until (\x -> eTopmost e x || not (eRightmost e x)) (eUp e)

> eLeftup :: Editor s a -> s -> s
> eLeftup e = eLeft e . until (\x -> eTopmost e x || not (eLeftmost e x)) (eUp e)

> eNextSuchThat :: Editor s a -> (s -> Bool) -> s -> s
> eNextSuchThat e p x = if p x’ then x’ else x
> where x’ = until (\x -> eTopmost e x || p x) (eNext e) (eNext e x)

> ePrevSuchThat :: Editor s a -> (s -> Bool) -> s -> s
> ePrevSuchThat e p x = if p x’ then x’ else x
> where x’ = until (\x -> eTopmost e x || p x) (ePrev e) (ePrev e x)

> eChildSuchThat :: Editor s a -> (s -> Bool) -> s -> s

32 B THE MODULES

> eChildSuchThat e p x = if p x’ then x’ else x
> where x’ = until (\x -> eRightmost e x || p x) (eRight e) (eDown e x)

> eChildSuchThatR :: Editor s a -> (s -> Bool) -> s -> s
> eChildSuchThatR e p x = if p x’ then x’ else x
> where x’ = until (\x -> eLeftmost e x || p x) (eLeft e) (eDownR e x)

B The Modules

B.1 The Editor Combinator Module Editor.lhs

We collect all the editor combinator machinery into a module of its own; we have not yet strived to make
the Editor type abstract and export only the combinators and certain access functions, but this will of
course be desirable for a more mature version:
--
-- file comment[208]
--
-- $Id: EdComb.fw,v 1.9 2000/06/16 20:28:59 kahl Exp kahl $
--

> module Editor where

> import FranTkUtils
> import FranTk(Key(..), Listener)
> import ComponentWidgets(Structured(..))
> import Scanlet
> import ExtPrel
> import List(partition)

> infixr 4 <*>, <*!>, <*, *>, <*<, >*>
> infixr 3 <|>
Editor[17]

B.2 The Scanlet Module Scanlet.lhs

Since scanlets are independent from the rest of the editor combinator machinery and might also find uses
in other contexts, we collect the scanlet-specific material from Sect. 6 into a module of its own:
--
-- file comment[208]
--
-- $Id: EdComb.fw,v 1.9 2000/06/16 20:28:59 kahl Exp kahl $
--

> module Scanlet where

> import ExtPrel

Scanlet[55]

B.3 Prelude Extensions ExtPrel.lhs

There are certain prelude-level functions that we use throughout; we collect these together with some
basic parsing stuff into one module:

B.4 A Main.lhs for Testing 33

--
-- file comment[208]
--
-- $Id: EdComb.fw,v 1.9 2000/06/16 20:28:59 kahl Exp kahl $
--

> module ExtPrel where

> infixl 4 <<$>>, ‘pSeqDft‘
> infixl 3 <<|>>

> init’ [] = []
> init’ l = init l
> last’ x [] = x
> last’ x l = last l

> cId = const id
> cTrue = const True
> cFalse = const False

ExtPrel[75]

> data DRec c = DRec (c (DRec c))
> unDRec (DRec x) = x

> unJust (Just x) = x
> unJust Nothing = error "unJust Nothing"

> pupd2 g (x,y) = (x, g y)
> pupd f g (x,y) = (f x, g y)

> fst3 (x,_,_) = x
> snd3 (_,y,_) = y
> thrd3 (_,_,z) = z
> ldistr3 (Left (x,y,z)) = (Left x, y, z)
> ldistr3 (Right (x,y,z)) = (Right x, y, z)
> tupd3_1 f (x,y,z) = (f x, y, z)

> eitheR f g = either (Left . f) (Right . g)

Parser type[64]

B.4 A Main.lhs for Testing

A full-fledged editor based on our combinators only needs a few definitions like those in Sect. 5, including
the definition for main seen there, and a few imports.

Here we also include an import CLEdit for the command line interface of the next section.
--
-- file comment[208]
--
-- $Id: EdComb.fw,v 1.9 2000/06/16 20:28:59 kahl Exp kahl $
--

> module Main(main,mkExprEditor1,mkExprEditor0) where

34 C COMMAND LINE INTERFACE FOR TESTING

> import Editor
> import EditorInstance
> import FranTk(display)
> import CLEdit
> import Char

exprEditor[32]

> run e = display $ editorComponent $ eBind (stdArrowReact e) e

> main :: IO ()
> main = run $ exprListEditor
> -- main = interactEditor exprListEditor Nothing
> -- main = run exprEdit
> -- main = run exprEditor
> -- main = interactEditor exprEditor Nothing

C Command Line Interface for Testing

Since the editor combinators themselves do not rely on any GUI assumptions at all, for testing purposes
it is sometimes handy to have a command line interface that eschews the problems frequently related
with GUIs.

For quick experiments, we use a vi-like key binding to emulate the cursor keys:
> charToKey :: Char -> Key
> charToKey ’k’ = CursorUp
> charToKey ’j’ = CursorDown
> charToKey ’l’ = CursorRight
> charToKey ’h’ = CursorLeft
> charToKey ’x’ = Delete
> charToKey ’b’ = BackSpace
> charToKey c = KeyChar c

This allows us to program a character based editor state transformer that additionally emits a string
containing information about the editor state:
> useKey :: Editor s a -> Char -> s -> (s, String)
> useKey e c s = let s’ = eKey e (charToKey c) s
> in (s’, eShow e s’ ++ " ||| " ++
> show (eCharLoc e s’) ++ " " ++
> show (eLoc e s’) ++ " ‘‘" ++
> eLook’ e s’ ++ "’’ ")

> accum s f [] = []
> accum s f (x:xs) = let (s’,u) = f x s
> in u : accum s’ f xs

Embedding an editor into interact is then completely straightforward:
> interactEditor :: Editor s a -> Maybe a -> IO ()
> interactEditor e ma = let e’ = eBind (stdArrowReact e) e
> init = case ma of
> Nothing -> eEmpty e’
> Just a -> eBuild e’ a
> react = accum init (useKey e’)
> in interact $ unlines . react . filter (/= ’\n’)

35

We package this up in a module CLEdit:
--
-- file comment[208]
--
-- $Id: EdComb.fw,v 1.9 2000/06/16 20:28:59 kahl Exp kahl $
--

> module CLEdit(interactEditor) where

> import Editor
> import FranTk(Key(..))

charToKey [192]

D FranTk Utilities

All the FranTk interface that has to be accessible from the editor combinators is collected into the module
FranTkUtils.

This comprises mostly auxiliary material taken or adapted from the structure editor of [SdMS00].
--
-- file comment[208]
--
-- $Id: EdComb.fw,v 1.9 2000/06/16 20:28:59 kahl Exp kahl $
--
-- Material in this file has mostly been taken resp. adapted
-- from the ‘‘extensible structure editor’’ of
-- Bernard Sufrin, Oege de Moor, and Meurig Sage,
-- available via http://web.comlab.ox.ac.uk/oucl/work/oege.demoor/

> module FranTkUtils where

> import FranTk
> import List (intersperse)

> structsMap :: ([Structured] -> [Structured]) -> (Int -> Int) -> TreeView -> TreeView
> structsMap fs fi v lst lst’ m = fs $ v lst lst’ (fi m)

------ modified material from structedit/ViewType.hs

View [153]

LocUtils[98]

> crown’ :: String -> TreeTag -> TreeView
> crown’ x lbl lst lst’ n =
> if null x then []
> else let structs = crown x lbl lst lst’ n
> in [STextTagged structs (mkEditTag [useIdent (identify lbl)])]

> crown :: String -> TreeTag -> TreeView
> crown x lbl lst lst’ n
> = if null x then []
> else [STextTagged [SText x] (mousePress 3 (tellL lst’ lbl) $
> mousePress 1 (tellL lst lbl) $
> mkEditTag [foregroundB blue])]

36 E EDITOR INSTANCES

------ unmodified material from structedit/ViewType.hs

-- tree tags

> type TreeTag = String

> tagOfLoc :: Loc -> TreeTag
> tagOfLoc = (’p’:) . concat . intersperse "p" . map show

> locOfTag :: TreeTag -> Loc
> locOfTag = map read . numbers
> where numbers [] = []
> numbers [a] = []
> numbers y = y0 : numbers y1
> where (y0,y1) = span (/=’p’) (tail y)

------ modified material from structedit/Structured.hs

> structuredToString :: Structured -> String
> structuredToString (SText s) = s
> structuredToString (STextTagged ss _) = concat (map structuredToString ss)
> structuredToString (STextMark _) = []
> structuredToString (STextGroup ss _) = concat (map structuredToString ss)

E Editor Instances

Finally there is a module EditorInstance that defines the function
> editorComponent :: Editor s a -> WComponent

which creates a FranTk GUI component as an instance of its argument editor. This can then be
displayed, as seen in Main above.

Part of this module is again adapted from the file Structured.hs of the structure editor of [SdMS00].

Since it does not contribute in an essential way to the understanding of our editor combinators, we do
not include it in this document. The editor combinator web site contains a copy of all source files so that
experimenting is possible.

	Introduction
	An Abstract View on (Part of) the Editor Interface
	Basic Component Editors
	Basic Editor Combinators
	An Example Editor
	Scanlets
	The Editor and Editor State Data-Types
	Locations
	Combining Editors for Recursive Types
	More Second-Order Polymorphism Needed!
	Changing the Behaviour
	Conclusion and Future Work
	Implementation of the Editor Combinators
	Display Tools
	Auxiliary Functions
	Token Editors
	Grouping
	Product Editors
	Alternative Composition
	Mapping
	More Auxiliary Functions

	The Modules
	The Editor Combinator Module Editor.lhs
	The Scanlet Module Scanlet.lhs
	Prelude Extensions ExtPrel.lhs
	A Main.lhs for Testing

	Command Line Interface for Testing
	FranTk Utilities
	Editor Instances

