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ABSTRACT:

In this paper, we present an automatic approach for the derivation of 3D building models of level-of-detail 1 (LOD 1) from point clouds
obtained from (dense) image matching or, for comparison only, from LiIDAR. Our approach makes use of the predominance of vertical
structures and orthogonal intersections in architectural scenes. After robustly determining the scene’s vertical direction based on the
3D points we use it as constraint for a RANSAC-based search for vertical planes in the point cloud. The planes are further analyzed to
segment reliable outlines for rectangular surfaces within these planes, which are connected to construct cuboid-based building models.
We demonstrate that our approach is robust and effective over a range of real-world input data sets with varying point density, amount

of noise, and outliers.

1 INTRODUCTION

The derivation of building medels from 3D point clouds 1s a very
active research topic in computer graphics, photogrammetry and
eeoinformatics (Wahl et al., 2008; Meixner and Leberl, 2011;
Huang et al., 2011). Research on the derivation of building mod-
els is focused on (a) reduction of the amount of data, (b) auto-
matic object recognition and reconstruction from unstructured 3D
point clouds, and {c) integration of semantics into building and
city models. Most of the work focuses on the analysis of terres-
trial and airborne LiDAR point clouds, which are highly accurate
and very dense. In contrast to LiDAR point clouds, point clouds
reconstructed from multiple images (Snavely et al., 2006, Hiep
et al., 2009; Agarwal et al., 2010; Bartelsen and Mayer, 2010,
Frahm et al., 2010) are less precise and not so dense, but reliable
enocugh to recognize objects and their parts by visual inspection.

Since point clouds can be generated very cost effectively from
images, we see a need for an automated analysis of these point
clouds. LOD 1 models representing buildings as cuboids with
planar and rectangular surfaces can be used for rectifying images
by means of homographies on the facades which can be used for
further facade analysis, e.g., the detection of windows (Lee and
Nevatia, 2004; Reznik and Mayer, 2008), or the description of
repetitive patterns (Wenzel et al., 2007). Furthermore, LOD 1
models will drastically reduce the amount of data. Triangulated
meshes of millions of points as obtained, e.g.. by Poisson surface
reconstruction (Kazhdan et al., 2006} can easily reach several Gi-
gabytes of memory leading to slow or no visualisation possibil-
ities. Contrarily, cuboid-based building models consisting of a
few planar, rectangular surfaces only need a few Kilobytes.

The recognition and reconstruction of buildings or their parts is
either done based on domain knowledge, e.g.. concerning the
shape of the objects of interest (Huang et al., 2011, on the re-
lation to other objects of the scene (Schmittwilken et al., 2009},
or on the piecewise intersection of planar, cylindrical, toric and
conical surfaces (Schnabel et al., 2007). In our work, we want to
find cuboid-based buildings, i.e., which either have the shape of a
cuboid, or can be decomposed into several, possibly overlapping
cuboids. This is the first step towards a hierarchical modeling
of detached buildings in rural and suburban areas where build-

149

ings typically stand alone or in small groups. In urban downtown
scenes, our approach will lead to building blocks rather than sin-
zle buildings.

Our appreoach is based on the detection of the principal cuboid
from 3D point clouds obtained during image orientation. As op-
posed to LiDAR data, such 3D points are often not very dense.
We assume that the four main walls of a building cerrespond to
four faces of a cuboid without top and bottom. By further repre-
senting every face by a plane, we obtain a unigque pair of parallel
orthogonal planes for our principal cuboid.

The cuboid estimation algorithm thus can be reduced to the deter-
mination of pairs of unique orthogonal planes in the given data.
This is conducted by means of RANSAC (Fischler and Bolles,
1981). Restricting the first stage of modeling 3D buildings to this
case of a rectangular groundplan, our approach robustly produces
reliable results from which further refinements can be made. pro-
gressively increasing the level of detail. This is illustrated by ex-
perimental results, using terrestrial data collected at a small vil-
lage in Southern Germay.

The paper is structured as follows. In Section 2 we give an
overview on existing approaches for detecting planes and recon-
structing buildings in 3D point clouds. We describe the concept
of our algorithm in Section 3 and present algorithmic details in
Section 4. After showing and discussing experiments in Sec-
tion 5, we conclude with future work in Section 6.

-

2 RELATED WORK

In this section, we summarize related work. We discuss general
approaches for the detection of geometric primitives in 3D point
clouds w.r.t. the detection of vertical planes. If the vertical direc-
tion is known, it can be used as a constraint for plane detection,
thus, we also comment on research in this direction. Because we
are interested in extending our work towards the detection and
modeling of building parts, we also introduce related work on
this topic.

There exist several approaches for building recognition and re-
construction from point clouds which depend on precise and very
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dense 3D data. E.g., Vosselman (2009) discusses recent meth-
ods which rely on LiDAR point clouds with densities of 20 to
50 points per m* from airborne scanners or a couple of thousand
points per m? from terre strial scanners. For such very dense point
clouds typically 3D information of each point’s neighborhood can
be found by clustering the points or by determining planar surface
patches. Yet, it is not suited for noisy and not very dense point
clouds derived from image matching.

Wosselman and Klein (2010) review point cloud segmentation,
i.e., the detection of subsets of points which form geometric prim-
itives, such as planes, cones, cylinders, or tori. They group the
methods for point cloud segmentation into three different types:
The first type is based on the Hough transform (Hart, 2009),
where the best hypothesis is detected in a derived parameter
space. It is often used when searching for planes and other ge-
ometric primitives with a low-dimensional parameter space { Vos-
selman and Klein, 2010). The second type consists of all ap-
proaches which reconstruct surfaces based on edge detection or
region growing (Vieira and Shimada, 2003). Again, neighbor-
hood information is used to determine normal vectors at each
point, which are used to estimate surface curvature values. Also
the recent work by Schindler and Forstner (2011) falls into this
category. It suffers from gaps in the data and too much noise.
Thus, the algorithms often converge showing errors caused by lo-
cal inconsistencies in the data. The last group contains all ap-
proaches based on variants of RANSAC (Fischler and Bolles,
1981), where minimal subsets of points are randomly drawn to
generate a primitive. After several iterations, the best model is
selected. An efficient approach which successively detects vari-
ous primitives in large point clouds has been proposed by Schn-
abel etal. (2007). This approach does not rely on dense data, and,
therefore, seems to be adaptable to our problem.

If the vertical direction of a scene is known, the detection of verti-
cal planes can be enforced. The determination of vanishing points
from images has been an active topic of research in photogram-
metry and computer vision (Rother, 2000; Almansa et al., 2003;
Schmitt and Priese, 2009; Forsmer, 2010). The main idea is that,
on the image plane, line segments, which are projections of par-
allel lines in object space, intersect in unique points. Yet these
above algorithms will probably fail for less regular data, such as
old timber-framed buildings (Fig. 1). Additionally, the accuracy
of the vertical direction derived in image space is limited when
projected in 3D by the accuracy of the camera calibration. Op-
posed 1o the work above, Hansen (2007) directly detects the ver-
tical direction on 3D point clouds yet the approach only works
on Legoland scenes without any less regular objects such as, e.g.,
trees, cars, and people. Furthermore, the approach by Hansen
(2007) assumes a ground plane, which is often not valid. For
our application, the detection of the vertical direction should be
invariant to architectural imperfections, such as when doors, or
the timber-frame and windows are not perfectly aligned with the
vertical direction.

Several approaches make use of LIDAR point clouds to derive
detailed facade models for downtown areas (Becker and Haala,
2008, Herndndez and Marcotegui, 2009; Hohmann et al., 2009).
The LiDAR points are used to detect the principal plane which
is interpreted as the facade and facade components such as win-
dows, stairs, or oriels are segmented. All these approaches are
not directly applicable to the detection of detached buildings, but
will be considered, when we will refine the building models.

3 OVERVIEW OF THE ALGORITHM

The input to our system is an unstructured 3D point cloud P with
points p; from image matching (or LIDAR). Its output is a set
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Figure 1: Image of a timber-framed building, where the detection
of the vertical direction in image space will probably fail.

of connected rectangular surfaces sg, ie., the plane parameters,
the description of the rectangular outline of each surface, and the
adjacency graph between the surfaces. The surfaces are supposed
to represent building walls and dominant building parts, such as
balconies and oriels.

In our workflow (Fig. 2) we first estimate the surface normal 1y
and the surface curvature value = forevery point. For the reliable
computation of the vertical direction v = (ve, vy, v 7 in R we
suppose a prevalence of vertical walls and orthogonal intersec-
tions in the architectural scenes from which P originates. Thus,
v is derived from the biggest cluster of locally estimated vertical
directions, improved by an analysis of points on straight 3D edges
in the point cloud, and refined using least-squares adjustment.

The vertical direction 1s used as a constraint for a multi-step
RANSAC-based detection of vertical planes in the point cloud,
assuming a known metric scale over P. In each step, parallel
planes are detected by plane sweeping and the surface outlines of
these planes are estimated by line sweeping.

Finally, the surfaces are connected to each other, constructing a
surface adjacency graph. This is necessary for constructing a con-
sistent geometric polyhedron within the point cloud.

3D point cloud

I nermal vectors I Icuwaturevalues

vertical direction
vertical planes
surface outlines

| surface adjacency graph |

Figure 2 Workflow of propesed algorithm.

4 DETAILS OF THE ALGORITHM

Vertical Direction Computation: For the computation of the
vertical direction, we first determine the normal vectors n; for
each point p; by fitting the best plane in least-squares sense to a
local neighborhood P;,- with radius r centered around and includ-
ing pi. The value of v is derived from the input data assuming
a known metric scale of the point cloud P. For points with less



International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012
XXII ISPRS Congress, 25 August — 01 September 2012, Melbourne, Australia

Figure 3: Left: view of a detached building. Right Part of the
derived point cloud with points of high curvature values marked
in red

than five neighbors within v, alternatively a five-nearest neighbor
search is performed. Following (Berkmann and Caelli, 1994), an
approximation for 1y is obtained from the eigenvalue analysis of
the covariance matrix C; of P, defined by

1Pur|
1 , P
Ci= 5 S e, -Pip; -P) (0
T :=1

with p; € Py and [Fits centroid. The eigenvector corresponding
to the smallest eigenvalue An of C; is a reasonable estimate of
;. According to (Pauly et al,, 2002), an approximation of the
curvature of Py is given by

Ao

- (2)
Ao+ A1+ Az

Ti
where Ag. Aq, and Az are the non-negative eigenvalues of C;
(Fig. 3).

For the determination of the vertical direction v, we first per-
form a RANSAC-based search. Secondly, we evaluate points
near straight 3D edges to obtain additional evidence for the verti-
cal direction.

To compute a hypothesis of the vertical direction, we iteratively
select randomly two distinet points p; and p; and compute the
cross product of their normals vi; = 1 = ny. This random
point pair selection is repeated many times. Since most buildings
have roof areas smaller than the sum of the areas of all walls,
we assume 1o find more point pairs on orthogonal walls than in
any other combination. Thus, the biggest cluster of hypotheses
corresponds to the verlical direction v, which is computed by a
least-square fit.

We found that for all major surface variations in architectural
scenes, i.e. edges in the point clouds. the upper 30%-quantile
of points with respect to the curvature value = is usually a good
estimate, i.e. we consider all points with = = 0.7 + max(w;).
In each iteration of our RANSAC-based search for additional ev-
idence of the vertical direction, we randomly select two distinct
points of this subset of P and construct a straight line through
both points. If a sufficient number of points lie close to the line
and if the line goes towards the vertical direction vo determined
above within a tolerance of 20 degrees, we consider the line for
an improved determination of the vertical direction v. The latter
is obtained by applying a least-square fit to all accepted lines,

Detection of Vertical Planes: A major goal of our work is to
determine planar surfaces s, with surface normals ny approxi-
matively perpendicular to v, because these surfaces can be inter-
preted as walls of buildings or facade parts, We segment the planes
by means of a RANSAC-based search (Schnabel et al., 2007).

1. Randomly select two distinct points p and ¢ from P.

2. Derive plane hy from p and q taking v into account by
{Polyanin and Manzhirov, 2007 )

= Pr ¥ — Py = Ps
i | g=—p: 9y —Py 9 —P-

vy Ty vy

I
=
=

L

Compute the distance of all points in P 1o 1.

4. Score hy by counting the number of points whose distance
Lo the plane is smaller than a threshold which is derived from
the metric scale of P.

The above steps correspond to a single iteration of the algorithm.
They are repeated for a predefined number of times. The best
hypothesis is selected and refined by a least-squares fit over its
supporting points (Fig. 4). We then look for planes parallel to the
fitted plane by sweeping along its normal vector. Afterwards, we
repeat the RANSAC-based plane detection, to search for planes
with other crientations considering only the remainder of the
points of P. To account for that walls in architectural scenes may
not always be perfectly vertically orented, a final validation step
ensures that all the detected planes are perpendicular to v within
a tolerance.

Figure 4: Three views on point cloud (blue). In red. the inlier
points of the best plane detected by our RANSAC formulation
{top and center), and inlier points of a detected plane with two
clusters for balcony fronts (bottom).

Determination of the Surface Outline:  While the detecied
planes are infinite geometric entities, we are looking for surfaces
st with finite well defined outlines. For this, we analyze the spa-
tial distribution of all points supporting a plane. First, we remove
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Figure 5: Line sweep for surface outline determination in a per-
spective view: Points on the surface (red). the center (black
dot), the four sweep lines (black lines) and their sweep directions
(black arrows).

all isolated points on the plane. Second, we perform a cluster
analysis to obtain different surfaces on the same plane. Then for
each cluster, we construct the convex hull, as we found that it
pives a rough estimation of the surface outline. Finally, to deter-
mine a more accurate estimate of the surface outline in the form
of a rectangle, we perform four line sweeps in every cluster start-
ing at its center, two along v and the other two orthogonal to v
and the surface normal (Fig. 5). Candidates for the borders of
the rectangle are taken from the convex hull and are scored by
counting the number of inliers supporting these lines. The best
line model per sweeping direction is chosen and a least-squares
fit is performed for its inliers. In our experiments, we were more
successful with this procedure than by analyzing the point den-
sities of inliers at each sweeping step. This is due to the very
high point density variations on doors and windows. Finally, we
check, if there are close parallel and overlapping surfaces. In this
case, we merge the points from those surfaces and determine the
outline of the combined surface.

Construction of Surface Adjacency Graph: In this step, we
derive topological information for the surfaces and adjust the cor-
responding parameters. After checking all pairs of distinct sur-
faces, we recursively connect adjacent surfaces considering only
pairs of non-parallel surfaces. If a vertical surface border ends
inside another surface, hoth are connected to each other and the
smaller surface is interpreted as building part, such as a balcony
or an oriel. If two surfaces have very close borders, we connect
the surfaces, interpreting them as walls. This is repeated until no
further surfaces can be connected. After these steps gaps may
still remain in the boundary of a building. They must be closed,
if a closed polyhedral medel for the building should be achieved
(Fig. 6).

5 EXPERIMENTS

‘We implemented our algorithms using the point cloud library by
Rusu and Cousins (2011} and we tested our approach on several
point clouds from image matching. For image orientation and
derivation of a sparse point clouds, we used software similar to
Snavely et al. (2006); Bartelsen and Mayer (2010). The sparse
point clouds often consist of approximately 50 to 100 thousand
points. These can be highly unequally distributed and often have
huge gaps in the data, especially in the shadow areas. Addition-
ally, we used the semi-global matching by Hirschmiiller (2008) to
derive significantly denser point clouds containing points in the
range of a million and above.
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Figure 6: Rectangles derived from the segmented planes to serve
as the basis for constructing an adjacency graph.

We have tested our examples on a dozen point clouds derived
from images at a small village in Southemn Germany, and one ad-
ditional data set showing the castle of Ettlingen, taken from the
benchmark data set of (Strecha et al., 2008). On the one side,
we tested our approach on data derived frm simply shaped build-
ing, and on the other side, we used more difficult objects as L-
shaped buildings, or buildings with highly decorated facades or
with many other parts, such as balconies, oriels, and stairs. We
present some examples on the performance of our algorithm in
figs. 7Tto 12,

During our experiments, we restricted ourselves during all
RANSAC searches by using a unique number of 1000 iterations.
However, due to variation in scale from one dataset to another,
we adapted the RANSAC threshold according to a known metric
scale of each input point cloud. Thus, the absolute value of this
threshold is approximately 20 cm.

When inspecting our results, we always find the major four verti-
cal walls of each building. Attached building parts, such as bal-
conies and oriels, are not included in our building models, so far.
We are able to detect smaller surfaces corresponding to minor
building parts, but we did not consider them when constructing
the surface adjacency graph. We will carry on with this refine-
ment step, when modeling building on the next level-of-detail.
Then we also consider to close the building models by additional
roof and ground surfaces to produce consistent LOD 2 models.

Figure 7: Left: Image of building consisting of four major walls
standing on a slope. Right: The derived point cloud consists of
76000 points, the four major walls were successfully detected,
segmented and connecied.

6 CONCLUSION

We presented an automatic appreach for deriving cuboid-based
building models from point clouds reconstructed from multiple
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Figure 8: Left: Image of building consisting of four major walls
standing on a slope. Right: The derived point cloud consists of
273000 points, the four major walls were successfully detected,
segmented and connected.

Figure 9: Left: Image of building consisting of four major walls
having a dominant entrance and stairs at one side. Right: The
derived point cloud consists of 271 000 points, the four major
walls were successfully detected, segmented and connected.

images. It detects vertical planar surfaces assuming the dom-
inance of orthogonal intersections. The approach was tested
with point clouds of buildings from image matching with vary-
ing scale, point density and amount of noise and has proven its
robustness.

In future, we want to produce a closed building footprint harmo-
nizing the height of each wall and its neighboring walls. Then we
are able to estimate the top and the bottom borders of the build-
ing, yielding a final closed polyhedral for the building, i.e., its
LOD 1 model. Afterwards, we will refine the model to models
with more details, LOD 2 and higher. Also, we anticipate as a
future work, the integration of many mere geometric primitives
such as spheres, cones, and cylinders.
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