
IFAC PapersOnLine 53-2 (2020) 5561–5566

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2020.12.1567

10.1016/j.ifacol.2020.12.1567 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Guaranteed memory reduction in synthesis
of correct-by-design invariance controllers �

Elisei Macoveiciuc ∗ Gunther Reissig ∗

∗ Bundeswehr University Munich, Dept. Aerospace Eng., Inst. of
Control Eng., D-85577 Neubiberg (Munich), Germany,

elisei.macoveiciuc@unibw.de, http://www.reiszig.de/gunther/

Abstract: Formal methods for analysis of dynamical systems through construction of finite
symbolic abstractions have attracted significant interest as they allow solving complex control
problems in a fully automated fashion. Nevertheless, their practical application is currently
limited by the fact that they require enormous memory resources. We present a novel algorithm
for solution of invariance problems within abstraction-based framework, which guarantees large
storage reduction and fully applies to general non-linear plants. We also show that, in practice,
the algorithm is faster compared to other methods.

Keywords: correct-by-design, symbolic synthesis, nonlinear control systems, state-space
methods, formal methods.

1. INTRODUCTION

Rapid development and deployment of increasingly so-
phisticated electromechanical systems have stimulated the
demand to solve complicated control problems on con-
strained domains with highly non-linear, partially un-
known dynamics, possibly in the presence of obstacles
with non-trivial geometry. In addition, modern critical
infrastructure requires strong guarantees on the controller
behavior.

This has motivated research of formal methods of contin-
uous system analysis through construction of finite sym-
bolic models - abstractions (Reissig et al. (2017); Reissig
and Rungger (2019)). Discrete abstractions can then be
algorithmically processed to solve the given control task.
Moreover, if abstractions preserve certain relation to the
original system, the obtained controllers are correct-by-
design, i.e., solution of the continuous control problem is
guaranteed (Reissig et al. (2017)).

Despite the powerful theoretic capabilities, practical ap-
plication of vast majority of abstraction- based algorithms
has been limited due to the fact that construction of
symbolic models involves discretization of continuous state
space and thus suffers from large time and memory com-
plexity. This attracted extensive effort to increase applica-
bility of the method.

Methods applying to special classes of continuous systems
have been shown to cope with problems in higher dimen-
sions: see Zamani et al. (2015); Girard and Gössler (2019)
for abstractions without discretization of the state space
for stochastic and incrementally stable switched systems
respectively, Reißig (2010); Kim et al. (2017, 2018b); Pola

� This work has been supported by the German Research Founda-
tion (DFG) under grant no. RE 1249/4-1, as well as by AdaCore
(www.adacore.com). The first author is a Munich Aerospace schol-
arship recipient

et al. (2014); Nilsson and Ozay (2016); Mallik et al. (2019);
Hussien et al. (2017); Lavaei et al. (2017); Boskos and
Dimarogonas (2015); Dallal and Tabuada (2015) for ab-
straction of suitably decomposable continuous dynamics,
Yordanov et al. (2013), Mouelhi et al. (2013) for algo-
rithmic abstraction refinement for piece-wise affine and
incrementally stable switched systems respectively.

A notable abstraction and synthesis decomposition algo-
rithm for general continuous systems is presented by Meyer
et al. (2018). The method is able to drastically reduce time
and memory consumption at the cost of more conservative
obtained controllers. Kim and Arcak (2019) also provide
a general framework for modular construction of abstrac-
tions from components with similar drawback of additional
non-determinism. Another system-independent method by
Weber et al. (2017) optimizes state-space discretization
parameters. This method applies to every abstract specifi-
cation and can be combined with our proposed algorithm.

One more promising approach of reducing computational
effort that allows weaker assumptions on continuous dy-
namics is to merge abstraction construction and controller
synthesis into one step and to attempt to process only
those parts of the abstraction that are needed for solution
of the control task, i.e., abstractions are computed on-the-
fly. Rungger et al. (2013); Saoud et al. (2019) abstract
only control task-relevant parts of discrete-time linear and
monotone systems respectively. For reach-avoid problems,
methods by Rungger and Stursberg (2012); Hsu et al.
(2018a); Macoveiciuc and Reissig (2019) are applicable to
general classes of systems, with the latter work guarantee-
ing storage reduction. Algorithms independent of system
dynamics for invariance problems also exist. De Alfaro
and Roy (2007) provide a method to refine initial coarse
abstraction until safety or reachability property over ini-
tial states is proven. Li and Liu (2018) refine grids over
the state space during invariance synthesis using interval
analysis. Hsu et al. (2018b) pre-compute a number of

Guaranteed memory reduction in synthesis
of correct-by-design invariance controllers �

Elisei Macoveiciuc ∗ Gunther Reissig ∗

∗ Bundeswehr University Munich, Dept. Aerospace Eng., Inst. of
Control Eng., D-85577 Neubiberg (Munich), Germany,

elisei.macoveiciuc@unibw.de, http://www.reiszig.de/gunther/

Abstract: Formal methods for analysis of dynamical systems through construction of finite
symbolic abstractions have attracted significant interest as they allow solving complex control
problems in a fully automated fashion. Nevertheless, their practical application is currently
limited by the fact that they require enormous memory resources. We present a novel algorithm
for solution of invariance problems within abstraction-based framework, which guarantees large
storage reduction and fully applies to general non-linear plants. We also show that, in practice,
the algorithm is faster compared to other methods.

Keywords: correct-by-design, symbolic synthesis, nonlinear control systems, state-space
methods, formal methods.

1. INTRODUCTION

Rapid development and deployment of increasingly so-
phisticated electromechanical systems have stimulated the
demand to solve complicated control problems on con-
strained domains with highly non-linear, partially un-
known dynamics, possibly in the presence of obstacles
with non-trivial geometry. In addition, modern critical
infrastructure requires strong guarantees on the controller
behavior.

This has motivated research of formal methods of contin-
uous system analysis through construction of finite sym-
bolic models - abstractions (Reissig et al. (2017); Reissig
and Rungger (2019)). Discrete abstractions can then be
algorithmically processed to solve the given control task.
Moreover, if abstractions preserve certain relation to the
original system, the obtained controllers are correct-by-
design, i.e., solution of the continuous control problem is
guaranteed (Reissig et al. (2017)).

Despite the powerful theoretic capabilities, practical ap-
plication of vast majority of abstraction- based algorithms
has been limited due to the fact that construction of
symbolic models involves discretization of continuous state
space and thus suffers from large time and memory com-
plexity. This attracted extensive effort to increase applica-
bility of the method.

Methods applying to special classes of continuous systems
have been shown to cope with problems in higher dimen-
sions: see Zamani et al. (2015); Girard and Gössler (2019)
for abstractions without discretization of the state space
for stochastic and incrementally stable switched systems
respectively, Reißig (2010); Kim et al. (2017, 2018b); Pola

� This work has been supported by the German Research Founda-
tion (DFG) under grant no. RE 1249/4-1, as well as by AdaCore
(www.adacore.com). The first author is a Munich Aerospace schol-
arship recipient

et al. (2014); Nilsson and Ozay (2016); Mallik et al. (2019);
Hussien et al. (2017); Lavaei et al. (2017); Boskos and
Dimarogonas (2015); Dallal and Tabuada (2015) for ab-
straction of suitably decomposable continuous dynamics,
Yordanov et al. (2013), Mouelhi et al. (2013) for algo-
rithmic abstraction refinement for piece-wise affine and
incrementally stable switched systems respectively.

A notable abstraction and synthesis decomposition algo-
rithm for general continuous systems is presented by Meyer
et al. (2018). The method is able to drastically reduce time
and memory consumption at the cost of more conservative
obtained controllers. Kim and Arcak (2019) also provide
a general framework for modular construction of abstrac-
tions from components with similar drawback of additional
non-determinism. Another system-independent method by
Weber et al. (2017) optimizes state-space discretization
parameters. This method applies to every abstract specifi-
cation and can be combined with our proposed algorithm.

One more promising approach of reducing computational
effort that allows weaker assumptions on continuous dy-
namics is to merge abstraction construction and controller
synthesis into one step and to attempt to process only
those parts of the abstraction that are needed for solution
of the control task, i.e., abstractions are computed on-the-
fly. Rungger et al. (2013); Saoud et al. (2019) abstract
only control task-relevant parts of discrete-time linear and
monotone systems respectively. For reach-avoid problems,
methods by Rungger and Stursberg (2012); Hsu et al.
(2018a); Macoveiciuc and Reissig (2019) are applicable to
general classes of systems, with the latter work guarantee-
ing storage reduction. Algorithms independent of system
dynamics for invariance problems also exist. De Alfaro
and Roy (2007) provide a method to refine initial coarse
abstraction until safety or reachability property over ini-
tial states is proven. Li and Liu (2018) refine grids over
the state space during invariance synthesis using interval
analysis. Hsu et al. (2018b) pre-compute a number of

5562 Elisei Macoveiciuc et al. / IFAC PapersOnLine 53-2 (2020) 5561–5566

coarser abstractions and attempt to minimize the synthesis
effort spent at (partially computed) finer layers. While
demonstrating significant improvement on several exam-
ples, these methods may perform worse memory-wise as
a result of stored redundant abstractions, in cases where
successful synthesis heavily depends on computations at
finest layers, e.g. when system dynamics is heavily dis-
turbed or obstacle environment is complicated. Hussien
and Tabuada (2018) construct abstract transitions during
synthesis until a (safety or reachability) control problem is
solved. The mentioned approaches are heuristic in nature
and no guarantees on computational reduction can be
provided.

To summarize, guaranteed computational relief for invari-
ance problems without controller conservatism has been
obtained only for special classes of systems. In addition,
while significant speed-up via parallelization is achievable
for any system (Kim et al. (2018a)), state-of-the-art lacks
general methods for guaranteed storage reduction. Thus
memory remains major bottleneck of the abstraction-
based approach.

We present a novel on-the-fly synthesis algorithm for solu-
tion of invariance problems that does not require storage
of any part of symbolic model. The obtained controllers
are provably at least as permissible as the ones produced
by standard methods. Up to our knowledge, this is the first
work for invariance problems to require no special proper-
ties of continuous dynamics and to guarantee large storage
reduction without any additional controller conservatism.
We demonstrate on an example that, although we focused
on memory, the method outperforms other algorithms in
time as well.

2. PRELIMINARIES

The relative complement of the set A in the set B is
denoted by B \A. R, R+, Z and Z+ denote the sets of real
numbers, non-negative real numbers, integers and non-
negative integers, respectively, and N = Z+ \ {0}. card(A)
denotes cardinality of the set A. We adopt the convention
that ±∞ + x = ±∞ for any x ∈ R. [a, b],]a, b[, [a, b[,
and]a, b] denote closed, open and half-open, respectively,
intervals with end points a and b, e.g. [0,∞[= R+.
[a; b],]a; b[, [a; b[, and]a; b] stand for discrete intervals,
e.g. [a; b] = [a, b] ∩ Z, [1; 4[= {1, 2, 3}, and [0; 0[= ∅.
maxM , minM , supM and infM denote the maximum,
the minimum, the supremum and the infimum, respec-
tively, of the nonempty subset M ⊆ [−∞,∞].

f : A ⇒ B denotes a set-valued map from the set A into
the set B, whereas f : A → B denotes an ordinary map.
The set of maps A → B is denoted BA. If f is set-valued,
then f is strict and single-valued if f(a) �= ∅ and f(a) is a
singleton, respectively, for every a.

We identify set-valued maps f : A ⇒ B with binary
relations on A × B, i.e., (a, b) ∈ f iff b ∈ f(a). Moreover,
if f is single-valued, it is identified with an ordinary map
f : A → B. The restriction of f to a subset M ⊆ A is
denoted f |M . The inverse mapping f−1 : B ⇒ A is defined
by f−1(b) = {a ∈ A | b ∈ f(a)}, and the image of a subset
C ⊆ A under f is denoted f(C), f(C) =

⋃
a∈C f(a). The

set of minimum points of f in some subset Q ⊆ X is
denoted argmin {f(x) |x ∈ Q}.
Let R be an order on a set S. Then R is called a total
order if it is reflexive, transitive, antisymmetric, and either
(a, b) ∈ R or (b, a) ∈ R for any two elements a �= b in S.

Let A be a finite set endowed with a total order denoted by
≤. We slightly abuse notation by letting ⊥(A) denote the
(uniquely defined) singleton set containing the minimum
element in A, i.e., ⊥(A) = {a′ ∈ A | ∀a∈Aa

′ ≤ a} if A �= ∅,
and let ⊥(∅) = ∅.
�a, b� ⊆ Rn denotes a closed hyper-interval, i.e:

�a, b� = Rn ∩ ([a1, b1]× [a2, b2]× ...× [an, bn]), (1)

where a, b ∈ (R ∪ {±∞})n, a < b, a = (a1, ..., an), b =
(b1, ..., bn).

A family of sets (Xi)i∈[1;n], ∀i∈[1;n]Xi ⊆ Y forms a cover

of Y if
⋃n

i=1 Xi = Y .

3. PROBLEM STATEMENT

3.1 Control systems

We consider continuous-state discrete-time systems of the
form

x(t+ 1) ∈ F (x(t), u(t)), (2)

where x(t) ∈ X and u(t) ∈ U represents the state and
the input signal, respectively. The set-valued transition
function F : X × U ⇒ X represents dynamics of the
control system. In this paper we assume that F is defined
implicitly through a solution to an initial value problem for
differential inclusions. We start by providing definitions of
controller and of closed-loop behavior associated with it,
which we adapt from (Reissig and Rungger (2019)) for the
case of invariance problems.

Definition 1. A system is a triple

(X,U, F) (3)

where X and U are nonempty state and input alphabets
and F : X × U ⇒ X is a strict transition map. A pair
(u, x) ∈ UZ+ × XZ+ is a solution of the system (3) if (2)
holds for all t ∈ Z+.

A controller C for the system (3) (denoted by C ∈
F(X,U)) is a quintuple

(Z,Z0, X̃, Ũ ,H) (4)

where Z, Z0, X̃, Ũ are non-empty state, input and output

controller alphabets, Z0 ⊆ Z, X ⊆ X̃, Ũ ⊆ U , and H : Z×
X̃ ⇒ Z× Ũ is strict. A triple (u, z, x) ∈ ŨZ+ ×ZZ+ × X̃Z+

is a solution of the controller (4) if z(0) ∈ Z0 and

(z(t+ 1), u(t)) ∈ H(z(t), x(t)), (5)

holds for all t ∈ Z+.

Definition 2. Let S denote the system (3) and suppose
that C ∈ F(X,U), where C is of the form (4).

The behavior B(C × S) ⊆ (U × X)Z+ of the closed loop
composed of C and S is defined by the requirement that
(u, x) ∈ B(C × S) iff there exists a signal z : Z+ → Z such
that (u, z, x) is a solution of C and (u, x) is a solution of
S. In addition, the behavior initialized at p ∈ X is defined
as Bp(C × S) = {(u, x) ∈ B(C × S) |x(0) = p}.

 Elisei Macoveiciuc et al. / IFAC PapersOnLine 53-2 (2020) 5561–5566 5563

coarser abstractions and attempt to minimize the synthesis
effort spent at (partially computed) finer layers. While
demonstrating significant improvement on several exam-
ples, these methods may perform worse memory-wise as
a result of stored redundant abstractions, in cases where
successful synthesis heavily depends on computations at
finest layers, e.g. when system dynamics is heavily dis-
turbed or obstacle environment is complicated. Hussien
and Tabuada (2018) construct abstract transitions during
synthesis until a (safety or reachability) control problem is
solved. The mentioned approaches are heuristic in nature
and no guarantees on computational reduction can be
provided.

To summarize, guaranteed computational relief for invari-
ance problems without controller conservatism has been
obtained only for special classes of systems. In addition,
while significant speed-up via parallelization is achievable
for any system (Kim et al. (2018a)), state-of-the-art lacks
general methods for guaranteed storage reduction. Thus
memory remains major bottleneck of the abstraction-
based approach.

We present a novel on-the-fly synthesis algorithm for solu-
tion of invariance problems that does not require storage
of any part of symbolic model. The obtained controllers
are provably at least as permissible as the ones produced
by standard methods. Up to our knowledge, this is the first
work for invariance problems to require no special proper-
ties of continuous dynamics and to guarantee large storage
reduction without any additional controller conservatism.
We demonstrate on an example that, although we focused
on memory, the method outperforms other algorithms in
time as well.

2. PRELIMINARIES

The relative complement of the set A in the set B is
denoted by B \A. R, R+, Z and Z+ denote the sets of real
numbers, non-negative real numbers, integers and non-
negative integers, respectively, and N = Z+ \ {0}. card(A)
denotes cardinality of the set A. We adopt the convention
that ±∞ + x = ±∞ for any x ∈ R. [a, b],]a, b[, [a, b[,
and]a, b] denote closed, open and half-open, respectively,
intervals with end points a and b, e.g. [0,∞[= R+.
[a; b],]a; b[, [a; b[, and]a; b] stand for discrete intervals,
e.g. [a; b] = [a, b] ∩ Z, [1; 4[= {1, 2, 3}, and [0; 0[= ∅.
maxM , minM , supM and infM denote the maximum,
the minimum, the supremum and the infimum, respec-
tively, of the nonempty subset M ⊆ [−∞,∞].

f : A ⇒ B denotes a set-valued map from the set A into
the set B, whereas f : A → B denotes an ordinary map.
The set of maps A → B is denoted BA. If f is set-valued,
then f is strict and single-valued if f(a) �= ∅ and f(a) is a
singleton, respectively, for every a.

We identify set-valued maps f : A ⇒ B with binary
relations on A × B, i.e., (a, b) ∈ f iff b ∈ f(a). Moreover,
if f is single-valued, it is identified with an ordinary map
f : A → B. The restriction of f to a subset M ⊆ A is
denoted f |M . The inverse mapping f−1 : B ⇒ A is defined
by f−1(b) = {a ∈ A | b ∈ f(a)}, and the image of a subset
C ⊆ A under f is denoted f(C), f(C) =

⋃
a∈C f(a). The

set of minimum points of f in some subset Q ⊆ X is
denoted argmin {f(x) |x ∈ Q}.
Let R be an order on a set S. Then R is called a total
order if it is reflexive, transitive, antisymmetric, and either
(a, b) ∈ R or (b, a) ∈ R for any two elements a �= b in S.

Let A be a finite set endowed with a total order denoted by
≤. We slightly abuse notation by letting ⊥(A) denote the
(uniquely defined) singleton set containing the minimum
element in A, i.e., ⊥(A) = {a′ ∈ A | ∀a∈Aa

′ ≤ a} if A �= ∅,
and let ⊥(∅) = ∅.
�a, b� ⊆ Rn denotes a closed hyper-interval, i.e:

�a, b� = Rn ∩ ([a1, b1]× [a2, b2]× ...× [an, bn]), (1)

where a, b ∈ (R ∪ {±∞})n, a < b, a = (a1, ..., an), b =
(b1, ..., bn).

A family of sets (Xi)i∈[1;n], ∀i∈[1;n]Xi ⊆ Y forms a cover

of Y if
⋃n

i=1 Xi = Y .

3. PROBLEM STATEMENT

3.1 Control systems

We consider continuous-state discrete-time systems of the
form

x(t+ 1) ∈ F (x(t), u(t)), (2)

where x(t) ∈ X and u(t) ∈ U represents the state and
the input signal, respectively. The set-valued transition
function F : X × U ⇒ X represents dynamics of the
control system. In this paper we assume that F is defined
implicitly through a solution to an initial value problem for
differential inclusions. We start by providing definitions of
controller and of closed-loop behavior associated with it,
which we adapt from (Reissig and Rungger (2019)) for the
case of invariance problems.

Definition 1. A system is a triple

(X,U, F) (3)

where X and U are nonempty state and input alphabets
and F : X × U ⇒ X is a strict transition map. A pair
(u, x) ∈ UZ+ × XZ+ is a solution of the system (3) if (2)
holds for all t ∈ Z+.

A controller C for the system (3) (denoted by C ∈
F(X,U)) is a quintuple

(Z,Z0, X̃, Ũ ,H) (4)

where Z, Z0, X̃, Ũ are non-empty state, input and output

controller alphabets, Z0 ⊆ Z, X ⊆ X̃, Ũ ⊆ U , and H : Z×
X̃ ⇒ Z× Ũ is strict. A triple (u, z, x) ∈ ŨZ+ ×ZZ+ × X̃Z+

is a solution of the controller (4) if z(0) ∈ Z0 and

(z(t+ 1), u(t)) ∈ H(z(t), x(t)), (5)

holds for all t ∈ Z+.

Definition 2. Let S denote the system (3) and suppose
that C ∈ F(X,U), where C is of the form (4).

The behavior B(C × S) ⊆ (U × X)Z+ of the closed loop
composed of C and S is defined by the requirement that
(u, x) ∈ B(C × S) iff there exists a signal z : Z+ → Z such
that (u, z, x) is a solution of C and (u, x) is a solution of
S. In addition, the behavior initialized at p ∈ X is defined
as Bp(C × S) = {(u, x) ∈ B(C × S) |x(0) = p}.

3.2 Invariance problems

Definition 3. Let S be a system of the form (3). An
invariance control problem is a tuple

(X,U, F, g) (6)

where g : X×X×U → R+∪{∞}. The problem (6) is called
qualitative if g maps into the set {0,∞}, and otherwise (6)
is quantitative.

To solve an invariance problem of the form (6) means to
find controllers that minimize, in a worst-case sense, the
total cost J : (U ×X)Z+ → [0,∞] defined by

J(u, x) =
∞∑
t=0

g(x(t), x(t+ 1), u(t)), (7a)

where (u, x) ∈ Bp(C×S), C ∈ F(X,U). More formally, the
closed-loop performance L : X → [0,∞] of (6) associated
with the controller C ∈ F(X,U) is given by

L(p) = sup
(u,x)∈Bp(C×S)

J(u, x), (8)

and the achievable performance V : X → [0,∞] associated
with (6) is defined by

V (p) = inf
C∈F(X,U)

sup
(u,x)∈Bp(C×S)

J(u, x). (9)

If L = V , then the controller C ∈ F(X,U) is said to solve
the invariance problem (6).

Let (X,U, F) be a system of the form (3). SupposeD ⊆ X,
M ⊆ X is a target and an obstacle set, respectively. Let
and

g(p, q, u) =

{
∞, if p ∈ M ∪ (X \D)

0, otherwise
(10)

Then, the qualitative invariance problem (6) corresponds
to the requirement that the system trajectories should
remain in D while avoiding obstacles for infinitely large
period of time. Note, in this case, V −1(0) represents
maximal controlled invariant subset of D.

3.3 Abstractions

We start this section with definition (Reissig and Rungger
(2019)) of relation which is used to link abstraction to the
original (continuous) system.

Definition 4. Let Π0 = (X0, U0, F0, g0) and Π be of the
form (6). The relation R : X0 ⇒ X is a valuated feedback
refinement relation from Π0 to Π, denoted Π0 �R Π,
if R is strict and the following conditions hold for all
(p0, p), (q0, q) ∈ R and all u ∈ U :

(1) U ⊆ U0;
(2) g0(p0, q0, u) ≤ g(p, q, u);
(3) R(F0(p0, u)) ⊆ F (p, u).

We now briefly describe a method to construct abstrac-
tions according to Reissig et al. (2017).

Let Π0 = (X0, U0, F0, g0) be a control problem with
(X0, U0, F0) continuous-state sampled system of the form
(2), where X0 = �a, b� ⊆ Rn, U0 = �u, v� ⊆ Rm.

Let X be a cover of X0, U ⊂ U0, card(U) < ∞. X can be
specified through discretization parameters (d1, d2, ..., dn),
where di is the number of grid points in state space

dimension i, i = 1, n. Grid points are then taken as centers
of hyper-intervals (1) that form X.

Let x ∈ X,x = �a, b� and F0(�a, b� , u) ⊆ F̄0(�a, b� , u).
Define

F (x, u) =
{
y ∈ X

∣∣ y = �c, d� ∧ �c, d� ∩ F̄0(�a, b� , u) �= ∅
}

The usage of over-approximation F̄0(�a, b� , u) of the set
F0(�a, b� , u) in the above definition is motivated by the
fact that in contrast to over-approximations, exact reach-
able sets are not possible to compute for general non-linear
systems. Note, F also possesses implicit representation via
functionality to compute intersecting sets with reachable
set over-approximations. This fact is exploited in construc-
tion of on-the-fly synthesis algorithms.

Then Π = (X,U, F, g) is an abstraction preserving valued
feedback refinement relation to Π0, provided that function
g : X×X×U → R+∪{∞} is defined to meet requirement
(2) of definition 4.

4. ON-THE-FLY SYNTHESIS METHOD WITH
MEMORY REDUCTION GUARANTEES

Algorithm 1

Input: Control problem Π = (X,U, F, g), W0,c0
Input: Operator P
Input: Function ProcessTransitions
Require: X, U finite
1: W := P (W0) // W : value function
2: X ⊇ Q :⊇ {x ∈ X|W (x) �= W0(x)} // Q: queue
3: E := ∅ // E: set of settled states
4: c := c0 // c: controller
5: while Q �= ∅ do
6: ∅ �= Y :⊆ argmin {W (x) |x ∈ Q}
7: Q := Q \ Y
8: E := E ∪ Y
9: (Q, c,W) := ProcessTransitions(Π, E, Y,Q, c,W)

Output: c, W

We use Algorithm 1 to solve invariance problems on
abstractions of continuous-state systems. c : X ⇒ U and
W : X → R+∪{∞}. Commands of the form X ⊇ Q :⊇ M
on line 2 require that a set Q satisfying M ⊆ Q ⊆ X
is chosen, and similarly for the command on line 6. The
Algorithm 9 iteratively expands E, and finds all (x, u)
such that F (x, u) and E satisfy certain relation. Thus,
standard implementation of line 9 requires the inverse of
map F to be available. While F is assumed to be given
implicitly, F−1, in general, can only be accessed from F
stored appropriately in memory. Representation of full F
in memory before synthesis is necessary for all standard
abstraction-based algorithms, and suffers from extreme
memory costs.

We further provide an on-the-fly variant of algorithm 1
by constructing suitable ProcessTransition function. In
contrast to existing approaches, the proposed method does
not require storage of any part of F in memory. Note that
algorithm 1 has the same structure as Dijkstra algorithm
for reach-avoid problems (Reissig and Rungger (2019)).
However, functionality of line 9 algorithmically differs for
invariance case. We start by providing conditions under
which algorithm 1 solves a finite invariance problem.

5564 Elisei Macoveiciuc et al. / IFAC PapersOnLine 53-2 (2020) 5561–5566

Loop Invariant 1. Let Π be of the form (6) and V be
the achievable performance for Π.

E ∩Q = ∅ ∧W−1(]0,∞]) ⊆ E ∪Q ⊆ X (11a)

V ≥ W ≥ PQ(W) (11b)

where
PQ(W)(p) = min {∞,WQ(p)} (12)

WQ(p) = inf
u∈U

sup
q∈F (p,u)\Q

g(p, q, u) +W (q), (13)

sup ∅ = ∞. Let LC be the closed-loop performance of:

C = (Z,Z,X,U,H) (14)

where Z is any singleton set and H : Z × X ⇒ Z × U is
any map satisfying

∅ �= H(Z, p) ⊆
{
Z × U, if c(p) = ∅
Z × c(p), otherwise

(15)

for all p ∈ X and c - output of algorithm 1.

Proposition 5. Let Π = (X,U, F, g) be a control problem
with finite X and U and g satisfying (10). Assume P
defined as follows:

P (W)(p) = min

{
∞, inf

u∈U
sup

q∈F (p,u)

g(p, q, u) +W (q)

}

(16)
and let ∀x∈Xc0(x) = U Then the following statements hold
for Algorithm 1 (Π, 0, c0,P):

(1) Loop Invariant 1 holds for Π upon execution of lines
3-4.

(2) Assume that each call to the function ProcessTransi-
tions in Algorithm 1 terminates. Assume (11a) holds
upon every execution of line 9 then Y �= ∅, E∩Y = ∅
after every execution of line 6. Moreover, set E is
strictly enlarged after every execution of line 5 and
Algorithm 1 terminates returning c and W .
Assume exists sequence (Πi)i∈[1;N] Πi = (X,U, Fi, g),
Fi - strict, ∀i,j∈[1;N],i<jFi ⊆ Fj ⊆ F , such that (11b)
holds for Πi upon execution of line 9 on iteration i
of the while- loop. Then Ṽ = W upon termination,
where Ṽ is the achievable performance (9) associated

with Π̃ = ΠN .
(3) Relation

∀x∈W−1(0)F (x, c(x)) ⊆ (W−1(0)∪Q)∧c(x) �= ∅ (17)

holds upon execution of lines 3-4. Assume, in addition
that (17) holds for Fi upon execution of line 9 on
iteration i of the while- loop. Then C defined by (14)

and (15) is a static controller for (X,U, F̃) solving Π̃.

4.1 On-the-fly method

Before turning to actual implementation of the function
to process transitions we introduce auxiliary definitions.

Definition 6. Let Π0 = (X0, U0, F0, g0),Π be of the form
(6) such that Π0 �R Π. A map F− : X × U ⇒ X is called
backward transition map associated with Π if the following
holds :

∀(x,u,y)∈X×U×X∀x/∈F−(y,u)R
−1(y) ∩ F0(R

−1(x), u) = ∅
(18)

In practice, F− is constructed (analogously to F described
in Section 3.3) finding intersecting abstract states with

over-approximations of reachable sets of the continuous
system, but at negative sampling time. Thus, for any
(x, u) ∈ X × U a set of functions is available to compute
F−(x, u) on demand. Also note that due to the use of over-
approximations of sets in construction of F and F− we
have F− �= F−1. Adopting the use of F− in our synthesis
algorithm allows us to avoid storage of any part of F while
keeping the time consumption reasonable.

Let Π = (X,U, F, g),Π0 �R Π. We now define an auxiliary
control problem associated with Π

Π̃ = (X,U, F̃ , g) (19)

with ∀(x,u)∈X×U F̃ (x, u) ⊆ F (x, u) ∧ ∀y∈F (x,u)\F̃ (x,u)x /∈
F−(y, u) and F− satisfying (18).

The following is evident.

Lemma 7. Let Π0,Π be such that Π0 �R Π and Π̃ be as
in (19). Then Π0 �R Π̃

We continue with implementation of the function Pro-
cessTransitions.

Function 2 ProcessTransitions

Input: Π = (X,U, F, g), E, Y , Q, c, W
Require: F− satisfying (18)
1: for all y ∈ Y do
2: for all (x, u) : x ∈ F−(y, u) ∧ x /∈ E ∪ Q ∧

(c(x) = U ∨ c(x) = {u}) do
3: if c(x) = {u} ∧ y ∈ F (x, u) then
4: c(x) := ⊥{v ∈ U |u < v ∧ F (x, v) ∩ E = ∅}
5: else if c(x) = U ∧ cardU > 1 then
6: c(x) := ⊥{v ∈ U |F (x, v) ∩ E = ∅}
7: if c(x) = ∅ then
8: Q := Q ∪ {x}
9: W (x) = ∞

Output: Q,c,W

Theorem 8. Assume hypothesis of Proposition 5. Let Π =
(X,U, F, g) be the input to the algorithm 1 and function
ProcessTransitions be implemented as function 2. Assume,
in addition, Π0 given such that Π0 �R Π.

Then each call to func. 2 terminates and there ex-
ists sequence (Πi)i∈[1;N] Πi = (X,U, Fi, g), of the form

(19),ΠN = Π̃ Fi - strict, ∀i,j∈[1;N],i<jFi ⊆ Fj ⊆ F , such
that Loop invariant 1 and (17) hold for Πi upon execution
of line 9 on iteration i of the while- loop.

Remark 1. Note that computations of function 2 are struc-
tured according to order placed on finite set U (lines 4, 6).
Existence of order relations on continuous state and input
sets is also exploited by Saoud et al. (2019). However their
work is applicable only to monotone systems. In contrast
we require only abstract input set to be ordered and a
suitable (total) order relation can always be defined since
cardU < ∞. This places no assumption on continuous
dynamics.

We can now provide correctness result of the proposed
method defined by algorithm 1 together with function 2.

Theorem 9. Assume hypotheses of Proposition 5 and The-
orem 8. Let Π = (X,U, F, g) be the input to the algorithm
1 and Π0 be such that Π0 �R Π .

 Elisei Macoveiciuc et al. / IFAC PapersOnLine 53-2 (2020) 5561–5566 5565

Loop Invariant 1. Let Π be of the form (6) and V be
the achievable performance for Π.

E ∩Q = ∅ ∧W−1(]0,∞]) ⊆ E ∪Q ⊆ X (11a)

V ≥ W ≥ PQ(W) (11b)

where
PQ(W)(p) = min {∞,WQ(p)} (12)

WQ(p) = inf
u∈U

sup
q∈F (p,u)\Q

g(p, q, u) +W (q), (13)

sup ∅ = ∞. Let LC be the closed-loop performance of:

C = (Z,Z,X,U,H) (14)

where Z is any singleton set and H : Z × X ⇒ Z × U is
any map satisfying

∅ �= H(Z, p) ⊆
{
Z × U, if c(p) = ∅
Z × c(p), otherwise

(15)

for all p ∈ X and c - output of algorithm 1.

Proposition 5. Let Π = (X,U, F, g) be a control problem
with finite X and U and g satisfying (10). Assume P
defined as follows:

P (W)(p) = min

{
∞, inf

u∈U
sup

q∈F (p,u)

g(p, q, u) +W (q)

}

(16)
and let ∀x∈Xc0(x) = U Then the following statements hold
for Algorithm 1 (Π, 0, c0,P):

(1) Loop Invariant 1 holds for Π upon execution of lines
3-4.

(2) Assume that each call to the function ProcessTransi-
tions in Algorithm 1 terminates. Assume (11a) holds
upon every execution of line 9 then Y �= ∅, E∩Y = ∅
after every execution of line 6. Moreover, set E is
strictly enlarged after every execution of line 5 and
Algorithm 1 terminates returning c and W .
Assume exists sequence (Πi)i∈[1;N] Πi = (X,U, Fi, g),
Fi - strict, ∀i,j∈[1;N],i<jFi ⊆ Fj ⊆ F , such that (11b)
holds for Πi upon execution of line 9 on iteration i
of the while- loop. Then Ṽ = W upon termination,
where Ṽ is the achievable performance (9) associated

with Π̃ = ΠN .
(3) Relation

∀x∈W−1(0)F (x, c(x)) ⊆ (W−1(0)∪Q)∧c(x) �= ∅ (17)

holds upon execution of lines 3-4. Assume, in addition
that (17) holds for Fi upon execution of line 9 on
iteration i of the while- loop. Then C defined by (14)

and (15) is a static controller for (X,U, F̃) solving Π̃.

4.1 On-the-fly method

Before turning to actual implementation of the function
to process transitions we introduce auxiliary definitions.

Definition 6. Let Π0 = (X0, U0, F0, g0),Π be of the form
(6) such that Π0 �R Π. A map F− : X × U ⇒ X is called
backward transition map associated with Π if the following
holds :

∀(x,u,y)∈X×U×X∀x/∈F−(y,u)R
−1(y) ∩ F0(R

−1(x), u) = ∅
(18)

In practice, F− is constructed (analogously to F described
in Section 3.3) finding intersecting abstract states with

over-approximations of reachable sets of the continuous
system, but at negative sampling time. Thus, for any
(x, u) ∈ X × U a set of functions is available to compute
F−(x, u) on demand. Also note that due to the use of over-
approximations of sets in construction of F and F− we
have F− �= F−1. Adopting the use of F− in our synthesis
algorithm allows us to avoid storage of any part of F while
keeping the time consumption reasonable.

Let Π = (X,U, F, g),Π0 �R Π. We now define an auxiliary
control problem associated with Π

Π̃ = (X,U, F̃ , g) (19)

with ∀(x,u)∈X×U F̃ (x, u) ⊆ F (x, u) ∧ ∀y∈F (x,u)\F̃ (x,u)x /∈
F−(y, u) and F− satisfying (18).

The following is evident.

Lemma 7. Let Π0,Π be such that Π0 �R Π and Π̃ be as
in (19). Then Π0 �R Π̃

We continue with implementation of the function Pro-
cessTransitions.

Function 2 ProcessTransitions

Input: Π = (X,U, F, g), E, Y , Q, c, W
Require: F− satisfying (18)
1: for all y ∈ Y do
2: for all (x, u) : x ∈ F−(y, u) ∧ x /∈ E ∪ Q ∧

(c(x) = U ∨ c(x) = {u}) do
3: if c(x) = {u} ∧ y ∈ F (x, u) then
4: c(x) := ⊥{v ∈ U |u < v ∧ F (x, v) ∩ E = ∅}
5: else if c(x) = U ∧ cardU > 1 then
6: c(x) := ⊥{v ∈ U |F (x, v) ∩ E = ∅}
7: if c(x) = ∅ then
8: Q := Q ∪ {x}
9: W (x) = ∞

Output: Q,c,W

Theorem 8. Assume hypothesis of Proposition 5. Let Π =
(X,U, F, g) be the input to the algorithm 1 and function
ProcessTransitions be implemented as function 2. Assume,
in addition, Π0 given such that Π0 �R Π.

Then each call to func. 2 terminates and there ex-
ists sequence (Πi)i∈[1;N] Πi = (X,U, Fi, g), of the form

(19),ΠN = Π̃ Fi - strict, ∀i,j∈[1;N],i<jFi ⊆ Fj ⊆ F , such
that Loop invariant 1 and (17) hold for Πi upon execution
of line 9 on iteration i of the while- loop.

Remark 1. Note that computations of function 2 are struc-
tured according to order placed on finite set U (lines 4, 6).
Existence of order relations on continuous state and input
sets is also exploited by Saoud et al. (2019). However their
work is applicable only to monotone systems. In contrast
we require only abstract input set to be ordered and a
suitable (total) order relation can always be defined since
cardU < ∞. This places no assumption on continuous
dynamics.

We can now provide correctness result of the proposed
method defined by algorithm 1 together with function 2.

Theorem 9. Assume hypotheses of Proposition 5 and The-
orem 8. Let Π = (X,U, F, g) be the input to the algorithm
1 and Π0 be such that Π0 �R Π .

Then there exists Π̃,Π0 �R Π̃ such that Algorithm 1 solves
Π̃.

Remark 2. The fact that Π0 and Π̃ are related through
R guarantees that the obtained controllers are correct-by-
design (Reissig et al. (2017)).

4.2 Time and memory consumption

Let n = card(X),m =
∑

p∈X

∑
u∈U card(F (p, u)),m− =∑

p∈X

∑
u∈U card(F−(p, u)). The storage cost of full ab-

straction is evidently O(m).

Theorem 10. Assume hypotheses of Proposition 5 and
Theorem 8. Let Π = (X,U, F, g) be the input to the
algorithm 1. Additionally assume that

∀x∈X∃�a,b�⊆Rnx = �a, b� (20)

∀(x,u)∈X×U∃�a,b�⊆RnF (x, u) = {x ∈ X |x ∩ �a, b� �= ∅}
(21)

Then there exists implementation of function 2 such that
Algorithm 1 together with function 2

(1) requires O(n) memory
(2) requires O(m+m−) time.

4.3 Controller conservatism

We end this section by discussing solution of the original
(continuous) problem Π0 and conservatism of obtained
controllers.

Theorem 11. Assume hypothesis of theorem 9. Let Π =
(X,U, F, g) be the input to the algorithm 1, Π0, Π̃ be as in

theorem 8 and W = Ṽ be the value function in the output
of algorithm 1, where Ṽ is the achievable performance for
Π̃. Let V be the achievable performance for Π. Then

V0(x0) ≤ Ṽ (x) ≤ V (x) for every (x0, x) ∈ R

Remark 3. Most symbolic synthesis algorithms available
in the literature solve Π which is an abstraction of a
(continuous- state) system constructed using reachable
sets at positive sampling time only. The above result
implies that the maximal controlled invariant set obtained
by solving Π̃ is at least as large as the invariant set
obtained by solving Π.

5. NUMERICAL EXAMPLE

We compare the proposed on-the-fly algorithm 1 against
its standard variant, SCOTS (Rungger and Zamani
(2016)) implementation of the fixed point iteration, and
on-the-fly algorithm by Hsu et al. (2018b) implemented in
the MASCOT tool. Standard variant of algorithm 1 and
SCOTS pre-compute full abstraction before synthesis.

Our current implementation of both standard and on-
the-fly versions of algorithm 1 stores abstraction and
controllers in sparse matrices, SCOTS is able to use
sparse matrices or Binary Decision Diagrams (BDDs) for
abstraction storage and MASCOT uses BDDs only.

5.1 Control problem

Consider disturbed pendulum model (Reißig (2010))

(a) (b) - scaled (a)

Fig. 1. (a) - maximal controlled invariant sets by on-the-fly
(green and blue) and standard (green only) variants of
algorithm 1, simulated closed loop trajectory (black)
from initial state (red) controlled only by on-the-fly
algorithm.

ẋ ∈
(

x2

− sin(x1)− cos(x1)u+ w

)
(22)

where disturbance signal w(t) ∈ [−0.5, 0.5] includes
unknown friction dynamics. We find a controller that
restricts system trajectories to an invariant subset of
[π − 1, π + 1] × [−1, 1] with u ∈ [−1.9, 1.9]. To construct
abstraction, discretization parameters (sec. 3.3) for state
and input sets are (256, 256) and (19) respectively. The
sampling time is 0.2 seconds. MASCOT uses 3 abstraction
layers with sampling times 0.8, 0.4, 0.2. (see Hsu et al.
(2018b)).

5.2 Discussion of results

Time and memory comparisons are presented in Table 1.
On this example full abstraction in the BDD form is more
than 3 times smaller compared to sparse matrix (lines 3-5
of Table 1). This comes at the cost of time consumption,
increased by at least 6 times. Note, however, that the BDD
memory savings cannot be guaranteed.

Table 1.

Algorithm or Tool Memory (MB) Time (s)

On-the-fly algorithm 1 20 4

Standard algorithm 1 500 14

SCOTS (BDDs) 140 76

SCOTS (sparse matrices) 460 5

MASCOT 293 32

The on-the-fly algorithm 1 required at least 7 times less
memory compared to all other methods and was also
faster. Figure 1 depicts maximal invariant sets obtained by
standard and on-the-fly variants of algorithm 1. In accor-
dance with remark 3 the maximal invariant set produced
by the on-the-fly algorithm is larger than the one produced
by the standard method.

REFERENCES

Boskos, D. and Dimarogonas, D.V. (2015). Decentralized
abstractions for feedback interconnected multi-agent
systems. In Proc. IEEE Conf. Decision and Control
(CDC), Osaka, Japan, 15-18 December 2015, 282–287.

Dallal, E. and Tabuada, P. (2015). On compositional
symbolic controller synthesis inspired by small-gain the-
orems. In Proc. IEEE Conf. Decision and Control
(CDC), Osaka, Japan, 15-18 December 2015, 6133–
6138.

5566 Elisei Macoveiciuc et al. / IFAC PapersOnLine 53-2 (2020) 5561–5566

De Alfaro, L. and Roy, P. (2007). Solving games via
three-valued abstraction refinement. In International
Conference on Concurrency Theory, 74–89. Springer.

Girard, A. and Gössler, G. (2019). Safety synthe-
sis for incrementally stable switched systems using
discretization-free multi-resolution abstractions. Acta
Inform.

Hsu, K., Majumdar, R., Mallik, K., and Schmuck, A.K.
(2018a). Lazy abstraction-based control for reachability.
https://arxiv.org/abs/1804.02722v1.

Hsu, K., Majumdar, R., Mallik, K., and Schmuck, A.K.
(2018b). Lazy abstraction-based control for safety spec-
ifications. In Proc. 57th IEEE Conf. Decision and Con-
trol (CDC), Miami, FL, USA, 17-19 December 2018,
4902–4907.

Hussien, O., Ames, A., and Tabuada, P. (2017). Abstract-
ing partially feedback linearizable systems composition-
ally. IEEE Control Systems Letters, 1(2), 227–232.

Hussien, O. and Tabuada, P. (2018). Lazy controller
synthesis using three-valued abstractions for safety and
reachability specifications. In Proc. 57th IEEE Conf.
Decision and Control (CDC), Miami, FL, USA, 17-19
December 2018, 3567–3572.

Kim, E., Arcak, M., Khaled, M., and Zamani, M. (2018a).
Major computational breakthroughs in the synthesis
of symbolic controllers via decomposed algorithms. In
Proc. 21st Intl. Conf. Hybrid Systems: Computation and
Control (HSCC), Porto, Portugal, April 11-13, 2018,
285–286. ACM.

Kim, E.S. and Arcak, M. (2019). Abstractions for symbolic
controller synthesis are composable. arXiv preprint
arXiv:1807.09973.

Kim, E.S., Arcak, M., and Seshia, S.A. (2017). Symbolic
control design for monotone systems with directed spec-
ifications. Automatica J. IFAC, 83, 10–19.

Kim, E.S., Arcak, M., and Zamani, M. (2018b). Construct-
ing control system abstractions from modular compo-
nents. In Proc. 21st Intl. Conf. Hybrid Systems: Com-
putation and Control (HSCC), Porto, Portugal, April
11-13, 2018, 137–146. ACM.

Lavaei, A., Soudjani, S.E.Z., Majumdar, R., and Zamani,
M. (2017). Compositional abstractions of interconnected
discrete-time stochastic control systems. In Proc. 56th
IEEE Conf. Decision and Control (CDC), Melbourne,
Australia, 12-15 December 2017, 3551–3556.

Li, Y. and Liu, J. (2018). Invariance control synthesis
for switched nonlinear systems: an interval analysis
approach. IEEE Trans. Automat. Control, 63(7), 2206–
2211.

Macoveiciuc, E. and Reissig, G. (2019). Memory effi-
cient symbolic solution of quantitative reach-avoid prob-
lems. In Proc. American Control Conference (ACC),
Philadelphia, U.S.A., 10-12 July 2019, 1671–1677. doi:
10.23919/ACC.2019.8814850.

Mallik, K., Schmuck, A., and Majumdar, R. (2019). Com-
positional synthesis of finite state abstractions. IEEE
Transactions on Automatic Control, 64(6), 2629–2636.

Meyer, P.J., Girard, A., and Witrant, E. (2018). Composi-
tional abstraction and safety synthesis using overlapping
symbolic models. IEEE Trans. Automat. Control, 63(6),
1835–1841.

Mouelhi, S., Girard, A., and Gössler, G. (2013). CoSyMA:
A tool for controller synthesis using multi-scale ab-

stractions. In Proc. 16th Intl. Conf. Hybrid Systems:
Computation and Control (HSCC), Philadelphia, PA,
U.S.A., April 8-11, 2013, 83–88. ACM, New York, NY,
USA.

Nilsson, P. and Ozay, N. (2016). Control synthesis for large
collections of systems with mode-counting constraints.
In Proc. 19th Intl. Conf. Hybrid Systems: Computation
and Control (HSCC), Vienna, Austria, April 12-14,
2016, 205–214.

Pola, G., Pepe, P., and Di Benedetto, M.D. (2014). Sym-
bolic models for networks of discrete-time nonlinear con-
trol systems. In American Control Conference (ACC),
2014, 1787–1792. IEEE.

Reißig, G. (2010). Abstraction based solution of com-
plex attainability problems for decomposable continuous
plants. In Proc. 49th IEEE Conf. Decision and Control
(CDC), Atlanta, GA, U.S.A., 15-17 December 2010,
5911–5917. doi:10.1109/CDC.2010.5718125.

Reissig, G. and Rungger, M. (2019). Symbolic optimal
control. IEEE Trans. Automat. Control, 64(6), 2224–
2239. doi:10.1109/TAC.2018.2863178.

Reissig, G., Weber, A., and Rungger, M. (2017). Feedback
refinement relations for the synthesis of symbolic con-
trollers. IEEE Trans. Automat. Control, 62(4), 1781–
1796. doi:10.1109/TAC.2016.2593947. .

Rungger, M., Mazo, M., and Tabuada, P. (2013).
Specification-guided controller synthesis for linear sys-
tems and safe linear-time temporal logic. In Proc. 16th
Intl. Conf. Hybrid Systems: Computation and Control
(HSCC), Philadelphia, PA, U.S.A., April 8-11, 2013,
333–342. ACM.

Rungger, M. and Stursberg, O. (2012). On-the-fly model
abstraction for controller synthesis. In Proc. American
Control Conference (ACC), Montréal, Canada, 27-29
June 2012, 2645–2650.

Rungger, M. and Zamani, M. (2016). SCOTS: A tool
for the synthesis of symbolic controllers. In Proc. 19th
Intl. Conf. Hybrid Systems: Computation and Control
(HSCC), Vienna, Austria, April 12-14, 2016, 99–104.

Saoud, A., Ivanova, E., and Girard, A. (2019). Efficient
synthesis for monotone transition systems and directed
safety specifications. In Proc. 58th IEEE Conf. Deci-
sion and Control (CDC), Nice, France, 11-13 December
2019, 6255–6260.

Weber, A. and Reißig, G. (2013). Local characterization
of strongly convex sets. J. Math. Anal. Appl., 400(2),
743–750. doi:10.1016/j.jmaa.2012.10.071.

Weber, A. and Reissig, G. (2014). Classical and strong
convexity of sublevel sets and application to attainable
sets of nonlinear systems. SIAM J. Control Optim.,
52(5), 2857–2876. doi:10.1137/130945983.

Weber, A., Rungger, M., and Reissig, G. (2017). Op-
timized state space grids for abstractions. IEEE
Trans. Automat. Control, 62(11), 5816–5821. doi:
10.1109/TAC.2016.2642794.

Yordanov, B., Tůmová, J., Černá, I., Barnat, J., and
Belta, C. (2013). Formal analysis of piecewise affine
systems through formula-guided refinement. Automatica
J. IFAC, 49(1), 261–266.

Zamani, M., Abate, A., and Girard, A. (2015). Symbolic
models for stochastic switched systems: a discretization
and a discretization-free approach. Automatica J. IFAC,
55, 183–196.

