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ABSTRACT  

We present a formulation for isogeometric Kirchhoff–Love shell analysis on complex CAD models consisting of multiple trimmed patches. The 
method is based on the penalty coupling method presented in Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu MC ( Penalty 
coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to composite wind turbine blades. Computer Methods 
in Applied Mechanics and Engineering 2019; 346 :810–840. ) and extended to the application on arbitrary coupling curves defined either in the 
physical or parametric space. We present the detailed formulation ready for implementation. Different numerical tests demonstrate the accuracy 
and applicability of the method. 

KEYWORDS: isogeometric, Kirchhoff–Love shells, trimming, patch coupling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

plex geometries with simple tensor-product NURBS patches. 
For isogeometr ic analysis on tr immed patches, special integra- 
tion rules are necessary for trimmed elements, i.e. elements 
which are intersected by the trimming curve. Several approaches 
to perform IGA on trimmed geometries have been developed 
[ 25 –31 ], where many of them share similarities to immersed 
methods such as the finite cell method [ 32 ] or CutFEM [ 33 ]. 
Patch coupling is needed whenever a model consists of more 

than one NURBS patch. The difficulty comes from the fact that 
in complex CAD models patches are typically non-conforming, 
meaning that they do not share the same parametrization along 
a common boundary, or even non-watertight, meaning that 
there are small gaps and overlaps between the two patches to 
be coupled. In the case of Kirchhoff–Love shell analysis, an 
additional complication arises from the C 

1 continuity con- 
straint, which has to be imposed across patch boundaries. While 
the term C 

1 continuity actually applies only to smooth patch 
connections, we speak more generally of rotational continuity , 
meaning that the patches to be coupled must describe the same 
rotation around the common boundary, or, in other words, 
that the angle between patches must remain constant. A lot of 
research has been devoted to patch coupling for isogeometric 
Kirchhoff–Love shell analysis, and many different methods 
have been proposed, including strong coupling [ 4 , 34 –36 ], 
penalty methods [ 18 , 28 , 37 , 38 ] and Nitsche’s method [ 16 , 
31 , 39 ]. In [ 1 ], a simple and versatile penalty formulation has 
been presented for enforcing displacement and rotational con- 
tinuity between patches, as well as displacement and rotational 
boundary conditions, with a single, dimensionless, penalty pa- 
rameter. This formulation has been applied to the modeling and 
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1. INTRODUCTION 

Isogeometric analysis ( IGA ) has been introduced in [ 2 ], as a
new paradigm to better link and eventually merge computer-
aided design ( CAD ) and finite element analysis ( FEA ) through
a unified geometry description. More precisely, the concept of
IGA is to adopt the geometry description from CAD for analy-
sis. The standard technology for geometry description in CAD
is non-uniform rational B-splines ( NURBS ) , and, consequently,
NURBS have been adopted as shape functions for describing
the geometry and approximating the solution in IGA. Besides
their power in geometric modeling, NURBS have proven to be
excellent shape functions for various kinds of analysis [ 3 ], and
IGA has gained a lot of interest in many areas of computational
mechanics. An area where IGA probably had the most impact
is shell analysis, and many new shell element formulations have
been developed making use of the specific properties of NURBS
as shape functions [ 4 –14 ]. This holds especially for element for-
mulations based on the classical Kirchhoff–Love shell theory,
where the smoothness of NURBS finally enabled the formula-
tion of simple element formulations satisfying the necessary C 

1

continuity inherent to the theory. An isogeometric Kirchhoff–
Love shell formulation was first presented in [ 4 ] and was later
extended to account for local refinement [ 15 –17 ], material non-
linearities [ 5 , 18 , 19 ], fracture and damage [ 20 –23 ] and gradient
elasticity [ 24 ]. While IGA on a single NURBS patch is generally
simple and straightforward, there are two aspects which make it
more complicated for complex CAD models, namely trimming
and patch coupling. 
Trimming refers to “cutting off” parts of a surface along a trim-
ming curve, and it is an essential technology for modeling com- 
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ptimization of wind turbine blades in [ 40 ], and has been
xtended for phase-field fracture simulations of multipatch
hell structures in [ 41 , 42 ]. In [ 43 ], the formulation of [ 1 ] was
ewritten in a Hellinger–Reissner form, obtaining a penalty
oupling formulation with increased robustness, while [ 44 ]
eveloped a super-penalty approach based on [ 1 ] with optimal
onvergence rates. 
While the coupling formulation presented in [ 1 ] is generally
pplicable to arbitrary patch connections, only the simple case
f coupling along untrimmed patch boundaries has been consid-
red in the original contribution. In the present contribution, we
xtend this approach to the more general case of arbitrary cou-
ling curves. A focus is set on trimming curves due to their im-
ortance in CAD modeling, but the formulation is not limited to
rimming curves. Other relevant cases could be coupling along
ntersection curves of patches or imposing boundary conditions
long arbitrary curves within a patch. For all these cases, we as-
ume that the penalty constraint has to be enforced along an in-
ependent curve, which may be described either in the physi-
al space or in the parametric space of one of the patches. For
oth cases, we derive detailed formulations ready for implemen-
ation. Finally, the presented method is validated on a set of nu-
erical examples. First, we consider a well-known shell bench-
ark example with a simple geometry, which allows for valida-
ion against results obtained on an untrimmed single NURBS
atch. Secondly, we consider a complex geometry, obtained from
 CAD software using projection, trimming and sweeping op-
rations, demonstrating the versatility and applicability of the
ethod. For both examples, linear and geometrically nonlinear
nalyses are performed and validated against reference results,
onfirming the accuracy of the method. 

2. KIRCHHOFF–LOVE  SHELL  FORMULATION 

AND  PENALTY  PATCH  COUPLING  

n this section, the equations of the shell formulation and the
atch coupling formulation are briefly reviewed, where every-
hing is formulated in terms of geometric properties of the shell’s
idsurface in the deformed and undeformed configurations.
 point on the midsurface is described by the position vector
(ξ 1 , ξ 2 ) in the deformed configuration a nd b y ̊r (ξ 1 , ξ 2 ) in the
ndeformed configuration, with r = ̊r + u , where u is the dis-
lacement vector. ξ 1 and ξ 2 are curvilinear surface coordinates,
nd the notation ˚(·) generally refers to the undeformed config-
ration. Where suitable, we employ index notation with Greek
ndices ranging from 1 to 2, and partial derivatives are indicated
y a comma. The covariant tangent vectors of the surface are
btained as 

a α = 

∂r 
∂ξα

= r ,α. ( 1 ) 

he thickness direction of the shell is defined by the unit normal
ector 

a 3 = 

a 1 × a 2 
‖ a 1 × a 2 ‖ 

, ( 2 ) 

nd the thickness coordinate ξ 3 , with −t /2 ≥ ξ 3 ≥ t /2 and t as
he shell thickness. 
With the covariant base vectors, the strain variables ε and κ
epresenting membrane strains and curvature changes, respec-
ively, are defined as 

ε αβ = 

1 
2 
(a α · a β − å α · å β ) , ( 3 ) 

καβ = å α,β · å 3 − a α,β · a 3 . ( 4 ) 

ssuming linear elastic material, described by the material tensor
 , membrane forces n and moments m are obtained as 

n = t C ε , ( 5 ) 

m = 

t 3 

12 
C κ. ( 6 ) 

his formulation can be readily extended to nonlinear constitu-
ive models as shown in detail in [ 5 , 19 ]. The variational prob-
em is expressed by the virtual work principle, where virtual
uantities are denoted by δ and the internal virtual work of the
irchhoff–Love shell is obtained as 

δW 

int = 

∫ 

S 
( δε : n + δκ : m ) d S. ( 7 ) 

he integral in Eq. ( 7 ) can be computed in different ways, e.g.
tandard element-wise integration [ 2 ] or patch-wise integration
 45 ] for untrimmed NURBS patches. For trimmed elements,
pecial integration rules have to be adopted, and different
olutions have been proposed in the literature, including the
URBS-enhanced triangles method [ 25 , 26 ], the adaptive
aussian integration procedure [ 28 ] and the blending function
ethod [ 46 ]. In our implementation, we adopt the blending
unction approach, but we highlight that the formulation for
atch coupling along trimming lines as presented in the fol-
owing is independent of the integration scheme for trimmed
lements. 
If the shell structure is modeled by several NURBS patches,
ontinuity constraints have to be imposed on their interfaces.
or Kirchhoff–Love shells, these include displacement conti-
uity and rotational continuity. According to [ 1 ], this can be
btained by augmenting the virtual work expression by two
enalty terms W 

pd and W 

pr , enforcing displacement and ro-
ational continuity, respectively. Considering two patches S 

A 

nd S 

B that share an interface curve L , the penalty terms are
efined as 

δW 

pd = 

∫ 

L 
αd (u A − u B ) · (δu A − δu B ) dL , ( 8 ) 

δW 

pr = 

∫ 

L 
αr 

((
a A 3 · a B 3 − å A 3 · å B 3 

) (
δa A 3 · a B 3 + a A 3 · δa B 3 

)
+ 

(
a A n · a B 3 − å A n · å B 3 

) (
δa A n · a B 3 + a A n · δa B 3 

))
dL , 

( 9 ) 

here the penalty parameters αd and αr are controlled by a single
imensionless penalty parameter α as 
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Figure 1 Patch S 

A trimmed by curve L , which is also the coupling 
line, with the vectors a A t , a 

A 
n and a 

A 
3 . The covariant base vectors a 

A 
1 

and a A 2 , and the mesh lines are indicated in red. 
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αd = α
E t 

h (1 − ν2 ) 
, ( 10 )

αr = α
E t 3 

12 h (1 − ν2 ) 
, ( 11 )

with E as Young’s modulus, ν as Poisson’s ratio and t as thickness
of the shells, while h is an average element length in L . If mate-
rial and/or thickness parameters vary between the patches to be
connected, one may simply use their average values for Eqs. ( 10 )
and ( 11 ) . For further details, reference is made to [ 1 ], where α
= 10 3 has been found as a problem-independent recommended
value. 
The vector a n denotes a unit vector lying in the tangent plane

of the patch and perpendicular to L . It can be computed from
the out-of-plane normal vector a 3 and the unit tangent vector a t 
of L as 

a n = a t × a 3 , ( 12 )

a t = 

˜ a t 
‖ ̃  a t ‖ 

, ( 13 )

where ̃  a t is the covariant tangent vector of the coupling curve L ,
see Fig. 1 . 
The augmented virtual work expression then reads as 

δW = δW 

int + δW 

pd + δW 

pr − δW 

ext = 0 , ( 14 )

where δW 

ext is the external virtual work. The variational formu-
lation ( 14 ) provides the basis for the solution via a numerical
discretization scheme. Since δW 

int contains second derivatives
of the solution ( cf. Eq. ( 4 ) ) , C 

1 -continuous shape functions are
needed for discretization, which can be provided by NURBS-
based IGA within each NURBS patch, while continuity across
patch interfaces is enforced by the penalty terms δW 

pd and δW 

pr .
We note that this formulation requires only displacement de-
grees of freedom, but no rotational degrees of freedom. This also
motivates the specific formulation of δW 

pr ( 9 ) , which does not
employ rotations, only normal vectors and their scalar products.
After discretization, Eq. ( 14 ) is linearized and solved via a

Newton–Raphson scheme 

∂ 2 δW 

∂ u r ∂ u s 

u s = −∂δW 

∂u r 
, ( 15 )

where u r and u s represent the displacement degrees of freedom,
i.e. control point displacements. The first derivatives of δW rep-
resent the components of the residual force vector R, while the
second derivatives correspond to the tangent stiffness matrix K.
Accordingly, Eq. ( 15 ) can be expressed in the classical format as

K
u = −R. ( 16 )

The variations of δW 

int and δW 

ext with respect to u r and u s can
be found in detail in [ 4 , 5 ], those of the penalty terms δW 

pd and
δW 

pr are derived in [ 1 ]. While the variations of δW 

pd are stan-
dard, those of δW 

pr are more specific and are repeated here for
the sake of clarity in the following discussion: 

∂W 

pr 

∂u r 
= 

∫ 

L 
αr 

((
a A 3 · a B 3 − å A 3 · å B 3 

) (
a A 3 ,r · a B 3 + a A 3 · a B 3 ,r 

)
+ 

(
a A n · a B 3 − å A n · å B 3 

) (
a A n,r · a B 3 + a A n · a B 3 ,r 

))
d L , 

( 17 )

∂W 

pr 

∂ u r ∂ u s 
= 

∫ 

L 
αr 

((
a A 3 · a B 3 − å A 3 · å B 3 

) (
a A 3 ,rs · a B 3 

+ a A 3 ,r · a B 3 ,s + a A 3 ,s · a B 3 ,r + a A 3 · a B 3 ,rs 
)

+ 

(
a A 3 ,s · a B 3 + a A 3 · a B 3 ,s 

) (
a A 3 ,r · a B 3 + a A 3 · a B 3 ,r 

)
+ 

(
a A n · a B 3 − å A n · å B 3 

) (
a A n,rs · a B 3 + a A n,r · a B 3 ,s 

+ a A n,s · a B 3 ,r + a A n · a B 3 ,rs 
)

+ 

(
a A n,s · a B 3 + a A n · a B 3 ,s 

) (
a A n,r · a B 3 + a A n · a B 3 ,r 

))
d L . 

( 18 )

We note that the penalty terms for rotational continuity require
only the out-of-plane normal vectors a 3 of both patches and the
in-plane normal vector a n of one of the patches, as well as their
variations with respect to u r and u s . It also should be noted that
a 3 and its variations are part of the structural stiffness matrix de-
rived from δW 

int ( see Eqs. ( 4 ) and ( 7 ) ) , and can be found in de-
tail in [ 5 ]. The variations of a n are obtained by applying the chain
rule to Eq. ( 12 ) as 

a n,r = a t,r × a 3 + a t × a 3 ,r , ( 19 )

a n,rs = a t,rs × a 3 + a t,r × a 3 ,s + a t,s × a 3 ,r + a t × a 3 ,rs , 

( 20 )

where the variations of a t are obtained from Eq. ( 13 ) as 

a t,r = 

1 
‖ ̃  a t ‖ 

( ̃  a t,r − ( a t · ˜ a t,r ) a t ) , ( 21 )

a t,rs = − 1 
‖ ̃  a t ‖ 

( a t,s · ˜ a t,r ) a t + 

1 
‖ ̃  a t ‖ 

2 ( 2 ( a t · ˜ a t,r ) ( a t · ˜ a t,s ) a t 

− ( a t · ˜ a t,s ) ̃  a t,r − ( a t · ˜ a t,r ) ̃  a t,s ) . ( 22 )

With Eqs. ( 19 ) –( 22 ) we have all terms needed for the compu-
tation of rotational penalty terms, provided that ̃  a t and its vari-
ations with respect to the degrees of freedom of the patch S 

A

are accessible. If the coupling curve L corresponds to an edge of
one of the patches ( which can then be assigned as S 

A ) , ̃  a t cor-
responds to either a 1 or a 2 of that patch, depending on the edge.



Penalty coupling of trimmed isogeometric Kirchhoff–Love shell patches • 159 

A  

v  

n  

b  

o  

t
 

a  

s  

i  

d  

m  

a

I  

i  

p  

c  

s  

f

W  

c  

t  

r

a

w
 

o  

d  

b

S  

s  

c  

t

I  

a

w  

s

Figure 2 Scordelis–Lo roof: geometry, dimensions in mm and 
division into trimmed patches by the trimming curves highlighted in 
red. The trimming curves are a projection of the dash–dotted arcs 
from the x –y plane onto the surface. The radius of the arcs is 
142 mm, and their distance from the y –z symmetry plane of the 
geometry is 8 mm. 
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ccordingly, the variations ̃  a t,r and ˜ a t,rs are simply given by the
ariations of a 1 or a 2 , which, again, are part of the structural stiff-
ess matrix derived from δW 

int ( see Eqs. ( 3 ) and ( 7 ) ) , and can
e found in detail in [ 5 ]. Furthermore, the integration domain
f Eqs. ( 17 ) and ( 18 ) and its parametrization are then given by
he corresponding patch edge [ 1 ]. 
However, in many cases, coupling is not performed simply
long patch boundaries, but along trimming curves. Other pos-
ible scenarios could be the coupling of two patches along their
ntersection curve or the imposition of Dirichlet boundary con-
itions along arbitrary curves within a patch via the penalty for-
ulation. The formulation presented in the next section can be
pplied to all these cases. 

3.  COUPLING  ALONG  ARBITRARY  LINES 

n this section, the penalty formulation for rotational continu-
ty ( 17 ) –( 22 ) , initially proposed in [ 1 ], is extended to the ap-
lication on arbitrary coupling curves. In general, such coupling
urves may be described as NURBS curves either in the physical
pace or in the parametric spaces of the patches involved. In the
ollowing, both cases are presented in detail. 

3.1 Coupling curve in the physical space 
e assume that the coupling curve L is described as a spatial
urve c (η) in the physical space with η as the curve parame-
er. The tangent ̃  a t can be obtained as the curve’s derivative with
espect to η: 

˜ a t = 

∂c 
∂η

, ( 23 ) 

nd integrals along this curve can be generally computed as ∫ 

L 
dL = 

∫ η=1 

η=0 
‖ ̃  a t ‖ dη, ( 24 ) 

here, without loss of generality, 0 ≤ η ≤ 1 is assumed. 
For the penalty terms ( 17 ) and ( 18 ) , ̃  a t needs to be projected
nto S 

A such that the variations ̃  a t,r and ̃  a t,rs with respect to the
egrees of freedom of S 

A can be computed. This projection can
e obtained as follows: 

˜ a A t = c 1 a A 1 + c 2 a A 2 = 

(
c · a A 1 

)
a A 1 + 

(
c · a A 2 

)
a A 2 . ( 25 ) 

ince the location of the coupling curve within the parametric
pace of S 

A does not change during deformation, the coefficients
 1 and c 2 can equally be computed in the undeformed configura-
ion 

˜ a A t = c 1 a A 1 + c 2 a A 2 = 

(
c̊ · å A 1 

)
a A 1 + 

(
c̊ · å A 2 

)
a A 2 . ( 26 ) 

n Eq. ( 26 ) , ̃  a A t depends only linearly on u , and the variations ̃  a A t,r ,
˜ 
 

A 
t,rs are simply obtained as 

˜ a A t,r = 

(
c̊ · å A 1 

)
a A 1 ,r + 

(
c̊ · å A 2 

)
a A 2 ,r , ( 27 ) 

˜ a A t,rs = 

(
c̊ · å A 1 

)
a A 1 ,rs + 

(
c̊ · å A 2 

)
a A 2 ,rs , ( 28 ) 

here the variations of a 1 and a 2 are already contained in the
tructural stiffness matrix and are detailed in [ 5 ]. 
3.2 Coupling curve in the parametric space 
lternatively, the coupling curve may be directly described as
lanar curve in the parametric space of one of the patches. In the
ollowing, this patch is indicated as S 

A , and the coupling curve
s c A : 

c A (η) = 

[ 

c A 1 (η) 

c A 2 (η) 

] 

. ( 29 ) 

he tangent ̃  a A t ( in the physical space ) and its variations are then
imply obtained as 

˜ a A t = 

∂c A 1 
∂η

a A 1 + 

∂c A 2 
∂η

a A 2 , ( 30 ) 

˜ a A t,r = 

∂c A 1 
∂η

a A 1 ,r + 

∂c A 2 
∂η

a A 2 ,r , ( 31 ) 

˜ a A t,rs = 

∂c A 1 
∂η

a A 1 ,rs + 

∂c A 2 
∂η

a A 2 ,rs , ( 32 ) 

nd integration is performed as ∫ 

L 
dL = 

∫ η=1 

η=0 

∥∥˜ a A t ∥∥dη. ( 33 ) 

3.3 Point inversion and point projection 
or the evaluation of the integral terms in Eqs. ( 17 ) and ( 18 ) ,
he coordinates of the integration points, defined in the para-
etric space of the coupling curve, are needed in the parametric
paces of the patches. This is called point inversion. In complex
AD models, patch connections are often not watertight, which
eans that the corresponding trimming curves on both patches
o not exactly coincide. In such cases, the integration points
eed to be projected onto the patches. ( If the coupling curve is
efined in the parametric space of S 

A , projection is needed only
nto S 

B . ) In our implementation, we employ the algorithm from
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Figure 3 Linear analysis of the trimmed model of the Scordelis–Lo roof. The displayed mesh comprises 20 × 25 for the side patches and 
15 × 20 elements for the central patch, before trimming. This mesh has 1831 total degrees of freedom for p = 2 and 2143 degrees of freedom 

for p = 3. The deformed structure is scaled by a factor of 15 for visualization purposes, and the color scheme indicates the displacement in 
z -direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Linear analysis of the trimmed model of the Scordelis–Lo 
roof. Convergence of the vertical displacement u z at the midpoint of 
the side edge for different mesh densities and degrees of the shape 
functions. 
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[ 47 ], which is a simple and efficient method based on a Newton
iteration, involving only position and tangent vectors of points
on the curve and the patches. For the detailed algorithm, we refer
to [ 47 ]. An interesting feature of this algorithm is that it works
equally for point inversion and point projection. This is an im-
portant advantage, since in complex multipatch CAD models, it
is not necessarily clear which patch connections are watertight
and which are not. The penalty coupling formulation presented
in the previous sections together with this algorithm for point
inversion/projection allows for structural analysis on complex
CAD models with arbitrary patch connections. 

4. NUM ERIC  AL  EXAM PLES  

The formulation presented in the previous sections is now tested
on selected numerical examples. The first example is the well-
known Scordelis–Lo roof problem. In this case, the geometry
wi l l be divided into three trimmed patches while a single patch
IGA solution is used as a reference. The second example presents
a more complex geometry consisting of two intersecting tubes.
Here, we use the commercial FEA program Abaqus of Dassault
Systems for computing a reference solution. All geometries are
created in the CAD program Rhinoceros of McNeel . For both ex-
amples, we perform linear and geometrically nonlinear analysis,
and in all simulations, the value α = 10 3 for the penalty coeffi-
cient is used. 

4.1 Scordelis–Lo roof 
The Scordelis–Lo roof is one of the problems included in the
shell obstacle course [ 48 ]. We divide the geometry into three
patches as in [ 31 ], see Fig. 2 . The red lines indicate the trim-
ming curves, which are obtained as the projection of two circu-
lar arches with radius 142 mm from the x –y plane onto the shell.
At the curved edges, the displacements in x and z -direction are
constrained, while the other two edges are left free. The penalty
coupling is enforced along the trimming curves defined in the
parametric space of the outer patches. A uniformly distributed
load is imposed in the negative z -direction. Linear elastic mate-
rial is considered, with Young’s modulus E = 4.32 ×10 8 N/mm 

2

and Poisson’s ratio ν = 0. The shell thickness is t = 0.25 mm. We
first perform geometrically linear analysis with the load equal to
90 N/mm 

2 , as usually considered in the literature. Figure 3 de-
picts the resulting deformed geometry with a color plot of the de-
formation in z -direction for one of the considered meshes, while
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Figure 5 Result of the geometrically nonlinear analysis for the trimmed model of the Scordelis–Lo roof in terms of displacements in z -direction. 

Figure 6 Load–displacement curves for the single patch and trimmed 
models of the geometrically nonlinear Scordelis–Lo roof problem. 
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Figure 7 Intersecting tubes problem: geometry, dimensions in mm 

and division in patches by the black and by the red curve, which is 
also a trimming line. Edges along which symmetry conditions are 
imposed are highlighted in blue. The reference point P for the 
comparison of the displacements in the linear model is highlighted in 
green. 
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ig. 4 shows the convergence of the solution, in terms of z dis-
lacement at the midpoint of the side edge, for degrees p = 2 and
 = 3. The converged reference value is taken as u z = 0.3006 mm
rom the result of the single patch analysis [ 4 ]. 
To test the proposed formulation in the large displacement
ramework, we increase the load up to 5000 N/mm 

2 and per-
orm geometrical nonlinear analysis. The results of a single patch
odel with a mesh constituted by 15 × 20 elements and of
he trimmed model having a mesh as the one depicted in Fig. 3
re compared ( the degree of the shape functions is p = 3 in
oth cases ) . Figure 5 shows the final deformed geometry of
he trimmed model, while Fig. 6 depicts the load–displacement
urves ( with u z evaluated again at the midpoint of the side edge )
or the trimmed and untrimmed models, showing an excellent
greement. 
4.2 Intersecting tubes 
his example features a complex CAD geometry constituted by
wo intersecting cylinders connected by a fil let. It is inspired by
 similar example proposed in [ 31 ], but in our case a different
eometry of the fil let is considered. Figure 7 shows the geome-
ry, the dimensions and the division into patches. Due to sym-
etry, only half of the geometry is modeled. The model consists
f three patches, two for the cylinders ( the larger one wi l l be re-
erred to as patch 1 and the smaller one as patch 2 ) and one for
he fil let ( referred to as patch 3 ) . Patch 1 is tr immed by the tr im-
ing curve indicated in red in Fig. 7 . This curve is obtained as
he projection of the circle indicated by a dash–dotted line from
he x –y plane onto the cylinder. The fillet is created by a sweep
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Figure 8 Detai ls of one of the two rai l curves along which the sweep 
operation for generating patch 3 is performed. Control points 
coordinates refer to the coordinate system with the origin in the 
point corresponding to the intersection of the axes of the two 
cylinders, control weights are all unitary, the polynomial degree is 
p = 3 and the knot vector is [0, 0, 0, 0, 0.5, 1, 1, 1, 1]. 
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operation between this trimming curve and the lower boundary
of patch 2. The rails for the sweep operation are two curves ly-
ing in the y –z plane. The first one is depicted with a detailed de-
Figure 9 Linear analysis for the intersecting tubes problem with internal pr
deformation is scaled by a factor of 2 × 10 3 , the color scheme indicates the
represents the undeformed geometry. 
scription in Fig. 8 , and the second one is defined symmetrically
to it with respect to the x –z plane. Patch 1 and patch 3 are cou-
pled along the trimming curve defined in the parametric space
of patch 1, while patch 2 and patch 3 are coupled along the lower
edge of patch 2. On the free boundaries, indicated by blue lines
in Fig. 7 , symmetry conditions are applied, which are imposed
via the same penalty formulation [ 1 ]. The polynomial degree is
p = 4 for all the three patches, and meshes counting 44 × 66,
36 × 44 and 32 × 23 control points are used for patches 1, 2 and
3, respectively. The shell thickness is t = 0.2 mm, and a linear
elastic material with Young’s modulus E = 3 × 10 6 N/mm 

2 and
Poisson’s ratio ν = 0.3 is considered. 
First, we perform linear analysis for a load corresponding to

internal pressure of 1 MPa on all patches. Figure 9 displays the
deformed geometry with a color scheme indicating the absolute
displacement magnitude, together with the undeformed config-
uration for reference. The displacement in z -direction at point P
depicted in Fig. 7 is equal to u z = 1.477 × 10 −3 mm. For val-
idation, this result is compared with one obtained by the com-
mercial finite-element software Abaqus using a general purpose
quadratic shell element with reduced integration ( S8R ) . The
Abaqus solution for point P is u z = 1.501 × 10 −3 mm, show-
ing a good agreement with the solution obtained applying the
proposed formulation, also for this challenging geometry. 
As for the Scordelis–Lo roof example, we further test the for-

mulation in the geometrically nonlinear setting. In order to in-
duce more bending deformation, we change the loading and
boundary conditions. Instead of internal pressure, we impose a
displacement of 3.5 mm in the positive y -direction at the top
edge of patch 2, removing the symmetry condition on this edge
and without imposing any other constraint. In order to prevent
essure. The full structure is shown for visualization purposes. The 
 absolute displacement magnitude, while the shaded surface 
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Figure 10 Geometrically nonlinear analysis for the intersecting tubes problem with imposed displacement. The full structure is shown for 
visualization purposes. The color scheme indicates the absolute displacement magnitude, while the shaded surface represents the undeformed 
geometry. 

Figure 11 Load–displacement curves for the finite element and 
isogeometric models of the geometrically nonlinear example of the 
intersecting tubes. 
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igid body motions, a point support in z -direction is applied
t point P. Figure 10 displays the undeformed and deformed
onfigurations with the magnitude of the displacements, while
ig. 11 depicts the corresponding load–displacement curves, to-
ether with the finite-element solution obtained from Abaqus
or comparison. Also in this case, a good match can be ob-
erved. The load–displacement curves also show the highly non-
inear behavior of the structure, although deformations are sti l l
uite moderate, with a critical point corresponding to local
uckling. 
5. CONCLUSION 

n this paper, we have presented a penalty-based patch coupling
ethod allowing for isogeometric Kirchhoff–Love shell analysis
n trimmed multipatch CAD models. The method is based on
he penalty formulation presented in [ 1 ], which is extended to
he application along arbitrary curves. While a focus is on trim-
ing curves due to their relevance in CAD modeling, the for-
ulation can be applied to any arbitrary curve, which may be
efined either in the physical space or in the patch’s paramet-
ic space. For both cases, the detailed formulations have been
resented in a ready-for-implementation form. We have tested
he method on two numerical examples of different geometric
omplexity under linear and geometrically nonlinear analysis,
emonstrating the accuracy and applicability of the proposed
pproach. 
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