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Abstract

Short burst transmission is of practical relevance in e.g. low power sensor or tacti-

cal networks that deploy frequency hopping. The channel conditions can be seen as

mutually uncorrelated for each burst due to their spectral and or temporal separa-

tion. Because of this time variant nature, a recurring acquisition of the impairment

parameters is required for each burst. This thesis proposes a blind joint estimation

of several channel parameters in a flat fading environment for continuous phase mod-

ulation bursts that is realized by the expectation maximization algorithm. The main

contributions are first the determining of the true estimation performance bounds

of the considered transmission case, second the formulation of the expectation and

maximization steps to enable the joint computation of the maximum likelihood pa-

rameter estimates and third the analysis of the parameters’ scalar likelihood functions

to obtain an optimized initialization grid for the algorithm. It is shown, that the joint

estimator produces unbiased estimates in the relevant receive power regions and its

performance in terms of the mean squared estimation error achieves the theoretical

limits and slightly outperforms a state of the art pilot based estimator. Furthermore,

the effective throughput is discussed and bit and frame error rates are compared to

each other and to the perfectly synchronized receiver. The proposed method provides

a superior performance in these metrics because of the inherently higher spectral effi-

ciency than the pilot based contender. Its computational complexity is quantitatively

analyzed and efficient computation steps and further approaches to decrease it are

outlined.
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Kurzfassung

Die Übertragung von kurzen Bursts ist von praktischer Bedeutung in z. B. leis-

tungsbegrenzten Sensor- oder taktischen Netzen, die Frequency Hopping einsetzen.

Die Kanalbedingungen können aufgrund ihrer spektralen und/oder zeitlichen Tren-

nung für jeden Burst als unkorreliert angesehen werden. Aufgrund dieser zeitlichen

Variabilität ist eine wiederkehrende Erfassung der Kanalparameter für jeden Burst

erforderlich. In dieser Arbeit wird eine blinde, gemeinsame Schätzung mehrerer

Kanalparameter in einer flachen Fading-Umgebung für Continuous Phase Modu-

lation Bursts vorgeschlagen, die durch den Expectation Maximization-Algorithmus

realisiert wird. Die Hauptbeiträge sind erstens die Bestimmung der wahren Gren-

zen der Schätzgenauigkeit für den betrachteten Übertragungsfall, zweitens die For-

mulierung der Expecation- und Maximization-Schritte für die gemeinsame Berech-

nung der Maximum-Likelihood-Parameterschätzungen, und drittens die Analyse der

skalaren Likelihood-Funktionen der Parameter, um ein optimiertes Initialisierungsgit-

ter für den Algorithmus zu erhalten. Es wird gezeigt, dass der gemeinsame Schätzer

erwartungstreue Schätzungen in den relevanten Empfangsleistungsbereichen erzeugt

und seine Leistung in Bezug auf den Schätzfehler die theoretischen Grenzen erreicht

und dabei einen pilotbasierenden Schätzer leicht übertrifft. Darüber hinaus wird der

effektive Durchsatz diskutiert und die Bit- und Rahmenfehlerraten werden miteinan-

der und mit dem perfekt synchronisierten Empfänger verglichen. Die vorgeschlagene

Methode bietet eine überlegene Leistung in diesen Metriken aufgrund der inhärent

höheren spektralen Effizienz als der pilotbasierte Konkurrent. Der Rechenaufwand

wird quantitativ analysiert und es werden effiziente Berechnungsschritte und weitere

Ansätze zur Verringerung der Komplexität aufgezeigt.
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Chapter 1

Introduction

This chapter starts with a brief introduction of two short burst transmissions appli-

cations. First, tactical frequency hopping (FH) systems and second, sensor networks

of which both widely use continuous phase modulation (CPM), for which important

aspects are discussed. The main topic of this work, namely the estimation of channel

parameters in short burst CPM transmissions, is then put in focus with a comprehen-

sive literature overview of related works. After the thesis organization is outlined, its

contributions are listed before concluding this chapter with common notations used

in this work.

1.1 Motivation and Background

The first application of short burst transmission considered are tactical networks,

that typically use the very high frequency (VHF) and ultra high frequency (UHF)

bandwidths between 30 MHz to 400 MHz. They deploy FH mainly to avoid inten-

tional interference [1] by changing the carrier frequency in a (pseudo) random and

discontinuous fashion [2]. For this to succeed, the hop time must not exceed a certain

time depending on the jamming device’s distance and technology [1]. While a hop

time of 1 ms was considered as plenty of protection against jamming devices [3], [4] a

few more years back, it is considered as the upper limit of protective hopping times

in more recent literature [1].

1



1 Introduction

(a) Frequency hopping network with
(potentially more than one) user

transmitting data bursts on changing
carrier frequencies.

(b) Sensor network sporadically
transmitting data bursts on potentially

different frequencies.

Figure 1-1: Two burst transmission scenarios that make use of changing carrier frequencies as an
electronic protection measure (EPM).

While the data transmission can very well be of a continuous character, the fre-

quency switch constitutes a technical discontinuation and thus each hop is considered

as an individual burst. In this case, a carrier frequency switch causes a change in

the attenuation of the signal due to the in general frequency selective environment.

Furthermore, the transmitter and receiver oscillators’ mismatch during one burst is

more or less independent from the previous one. If a time division multiple access

(TDMA) scheme is used in the network and the transmission pauses for some time,

also the start of the next burst is unknown (in a probably well defined range). These

conditions make a recurring acquisition of the channel parameters fading factor (FF),

carrier frequency offset (CFO), carrier phase offset (CPO) and timing offset (TO)

necessary.

In the second considered use case, the data transmission is of burst character

not because of the discontinuation in form of a frequency hop, but due to the limited

amount of data to be transmitted, e.g. the collecting of sparse sensor data at a server.

FH can be used in these networks to gain diversity against bad channel conditions,

as it is done in the case of Bluetooth [5]. The pause between two transmission

bursts is considered to be long enough, to make the channel parameters mentioned

above uncorrelated, which again demands a recurring acquisition of those. Fig. 1-1

visualizes both scenarios.

Both in tactical [6, 7] and sensor [8–10] networks, the use of CPM as waveform is

2



1.1 Motivation and Background

popular because of its favorable properties in terms of power and bandwidth efficiency.

Especially in the context of ultra low power sensors with a planned lifetime of several

years, power efficiency is crucial. Moreover, CPM in the form of Gaussian minimum

shift keying (GMSK) is deployed in second generation mobile networks [11] and in

Bluetooth [5]. Further deployment areas where CPM is considered because of its

favorable properties are e.g. millimeter wave [12] and deep space communications [13].

Due to its continuous phase, high side lobes in the signal’s spectrum are avoided

and hence the average power spectrum is compact. The spectral efficiency can princi-

pally be arbitrarily increased by selecting appropriate waveform parameters which

generally increase the computational complexity of the optimal detector though.

CPM produces a constant amplitude signal, which enables the use of cost and power

efficient amplifying hardware near saturation in transmitter and receiver. While the

information conveyed by the signal is robust with regard to the non-linear distortions

caused by this, the spectral side lobes remain largely suppressed since the phase stays

continuous and thus CPM’s bandwidth efficiency is retained [14]. The advantages

of being able to deploy amplifiers near saturation and thereby saving backoff is e.g.

investigated in [15,16] and quantified as several decibels. By ensuring soft phase tran-

sitions, dependencies between adjacent symbol intervals arise that cause an inherent

trellis coding [14].

For this work, several different CPM waveform configurations are considered and

an exemplary baud rate of 42 kBaud is chosen, which is typical for tactical networks

[7]. The length of one burst is set to 𝑇Burst = 1 ms to fulfill the minimal requirements

stated in [1] regarding robustness against intentional interference. In Chapter 6, it is

briefly discussed that shorter hop times do not significantly change this thesis’ results.

The four channel parameters FF, CFO, CPO and TO have to be acquired in every

burst and no knowledge about them can be drawn from past bursts. Figure 1-2 shows

the burst structure schematically including the data symbol in the middle of the burst

and potential pilot and termination sequences in the beginning and end of it.

3



1 Introduction

Pilot Symbols Data Symbols Termination 
Symbols

TBurst

Figure 1-2: General burst structure consisting of data symbols and potential pilot and termination
sequences.

1.2 Related Work in Synchronization

This section gives an overview about channel parameter estimation methods struc-

tured in three categories: non-data aided (NDA), decision directed (DD) and data

aided (DA) estimation, whereas the first two are linked to the term blind estimation,

because no known pilot sequence is need to obtain the estimates in contrast to the

DA approaches. It is noted, that hybrid techniques exist, usually in the case where a

pilot sequence is utilized to obtain an acquisition on the parameters and some kind of

feedback loop to track and refine the results. The literature selection concentrates on

contributions that lie in the vicinity of channel parameter estimation in CPM burst

type transmission. For a comprehensive summary of different estimation methods in

CPM, it is referred to [17].

1.2.1 Non-Data Aided

NDA techniques usually utilize the signal statistics and thus are problematic for short

bursts, since the stochastic sample size is usually too small. Several NDA estimation

techniques for the above channel parameters for CPM transmissions can be found in

the literature, though many methods are limited to minimum shift keying (MSK)-

type transmissions [18–20] and thus are not applicable in general CPM configurations.

There are also some methods that work with arbitrary CPM parameters [21–25],

though do not provide very accurate estimates in terms of the mean square estimation

error (MSEE) as shown in [26–28]. Furthermore, these methods often only tackle the

estimation of a single parameter and not the joint estimation as required in the use

4



1.2 Related Work in Synchronization

cases described above. This also means in consequence, that the techniques are not

robust to deviations of the non-considered channel parameters and their performance

deteriorates further under the presence of those.

1.2.2 Decision Directed

Similar to the NDA methods, no pilot sequences are utilized in the parameter estima-

tion task. Instead, initial estimates are improved by taking decision about data sym-

bols into account. Though typical phase locked loop (PLL) methods [29] and Kalman

filter approaches [30–33] may use pilots to obtain their initial estimates, which con-

stitutes a degradation of the system’s spectral efficiency (SE). Furthermore, after the

parameter acquisition, they assume a continuous transmission in order to be able to

track the errors over the course of a much larger frame than the considered burst

represents. For that reason they are not applicable in burst type transmission. Per

survivor processing technique are able to operate without the help pf pilot symbols

when only a CPO is estimated [34], but rely on a pilot-based parameter acquisition

when the channel becomes more complex [35,36]. In both cases, they consider frames

much longer than in this work. Optimal, blind DD estimators were presented by the

author in [26–28] based on the expectation maximization (EM) algorithm for CPO,

CFO and joint CPO TO estimation. In [37], the single TO estimation was also tackled

by means of the EM algorithm.

1.2.3 Data Aided

The most cited work on DA estimation of channel parameters explicitly for burst

type CPM transmission is presented in [38]. It uses a specific pilot sequence to obtain

optimal estimates CFO, CPO and TO estimates for arbitrary CPM parameter con-

figurations in a feedforward fashion while using a computationally efficient algorithm.

Though there are some drawbacks to this method that are inherent to DA techniques.

First, the spectral efficiency is degraded by the pilot sequence. Second, (known) pilot

sequences can easily be detected and are therefore prone to intentional interference.

5



1 Introduction

Jamming specifically only the pilot sequence for synchronization is a very efficient

way to impede the complete transmission. This point is especially relevant in tac-

tical networks, where a focus on robustness in the system design is probably even

more present than elsewhere. Another pilot based scalar TO estimation method is

presented in [39].

1.3 Thesis Organization

Chapter 2 starts with defining the general CPM signal and introducing the equivalent

lowpass representation of burst-type CPM. The CPM trellis is defined and the tilting

process is addressed which transforms the possibly periodic trellis into a time invariant

one. The characteristics of typical VHF and UHF channels are outlined and based on

the coherence times and coherence bandwidths, a static (frequency) flat (SF) channel

model is introduced that is comprised by a flat fading component and carrier and

timing impairments. An optimal receiver is discussed in detail for this channel model

before giving brief overviews over the CPM trellis initialization and the deployment

of a channel decoder.

In Chapter 3, principal aspects of estimation theory are covered. The estima-

tion problem at hand is contextually placed in a general framework and classified

according to the attributes randomness, dimension and biasedness. A general theo-

retic performance limit is presented for the estimator, before computing well known

explicit bounds, that are generally not as tight as the absolute limit. It was then

derived, that for the specific case of the considered channel parameter estimation in

burst-type CPM, the computable bounds equal the absolute performance limit and

are hence perfectly suited for the practical estimator performance.

The proposed, blind estimator is subsequently discussed in great detail in Chap-

ter 4. The underlying machine learning technique EM is given an overview before

putting the considered problem in the general iterative EM framework and mathe-

matically deriving the respective components. Great attention is given to the starting

point problem of EM. To ensure the convergence to the global maximum of the four-

6



1.4 Contributions

dimensional objective function, the scalar log likelihood function (LLF) of the channel

parameters are investigated and the principal distance of two adjacent maxima is de-

termined analytically. An algorithmic description of the proposed method is given in

pseudo code, whereas for the most demanding computational tasks efficient solutions

are suggested.

In Chapter 5, the EM convergence behavior of the estimator is investigated and

a suited maximum number of iterations is found. Moreover, the effect of using addi-

tional information from a channel decoder is examined. The proposed, blind estimator

is then compared to an optimal pilot based method in terms of mean estimation value

(MEV), MSEE, effective throughput as well as coded and uncoded error rates in the

SF channel and in fast fading, frequency-selective channels. Additionally the proposed

estimation method is tested in a cable bound hardware setup. The computational

complexity of the estimator is analyzed quantitatively and set in context.

Chapter 6 restates the problem of channel parameter estimation in burst-type

CPM transmissions and summarizes the contributions of this thesis. An outlook of

worthwhile future research directions is given.

1.4 Contributions

• Formulation of the CPM signal’s optimal detection in the deduced SF channel

model on base of the Bahl-Cock-Jelinek-Raviv (BCJR) algorithm.

• Computation of the modified Cramér-Rao vector bound (MCRVB)s for the

channel parameter estimation in burst-type CPM transmission.

• Derivation of the relations that show the equality of each parameter’s MCRVB

and the true Cramér-Rao vector bound (CRVB) for the case of known data

sequences.

• Complete Derivation of the considered EM auxiliary function and its transfor-

mation to enable clear maximization steps.

7



1 Introduction

• Derivation of each parameter’s maximization step and demonstration of the

practical, mutual uncoupled nature of the parameter’s optimizations.

• Analytical investigation of CFO, CPO and TO’s likelihood functions and de-

termination of the principal distance of two adjacent maxima in it.

• Design of an optimized grid of EM starting points and presentation of reduction

approaches.

• Algorithmic description of the proposed channel parameter estimator and sug-

gestions for efficient implementation of the most computationally complex parts.

• Analysis of the proposed algorithm’s convergence behavior and on the effect of

the incorporation of channel decoder information.

• Evaluation of the estimator and comparison to a pilot based alternative in terms

of MEV, MSEE, effective throughput as well as coded and uncoded error rates

in the SF channel and in fast fading, frequency-selective environments.

• Quantitative analysis of the computational complexity of the proposed algo-

rithm’s components.

This thesis differentiates itself from available literature foremost in the focus on

short burst transmission and in the puristic approach in contrast to hybrid techniques,

e.g. for acquisition and tracking, or parameter depending. This becomes especially

clear in tackling the starting point problem in an analytical way instead of diluting

this problem by using pilot symbols. It is noted, that the EM framework for estimat-

ing channel parameters in the context of synchronization of communication systems

was first published in [40, 41]. There, only linear modulations were considered and

the expectation step was achieved by computing the posterior probabilities through

utilizing a Turbo code [42]

The following publications resulted (directly and indirectly) from the work on this

thesis.
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Means of Expectation Maximization”, 2019 IEEE 90th Vehicular Technology

Conference (VTC2019-Fall), IEEE, 2019. pp. 1-7

• Lang, Lankl, 2020: ”Carrier Frequency Offset Estimation in Burst-Type CPM

via the EM Algorithm”, 2020 IEEE 91st Vehicular Technology Conference

(VTC2020-Spring), IEEE, 2020. pp. 1-6

• Lang, Lankl, 2021: ”Blind Joint Timing and Carrier Phase Estimation in Burst-

Type CPM”, 2021 IEEE 94th Vehicular Technology Conference (VTC2021-

Fall), IEEE, 2021. pp. 1-6

• Lang, Lankl, 2018: ”Very Short Channel Codes for Burst-Type Transmissions”,

MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM),

IEEE, 2018. pp. 1-6

• Lang, Lankl, 2019: ”Tail-Biting in Optimal CPM Detectors ”, IET Electronics

Letters, 2020, vol. 56, No. 3, pp. 141-144

• Lang, Lankl, 2022: ”A Comprehensive Study of CPM Trellis Initialization

Methods”, MILCOM 2022-2022 IEEE Military Communications Conference

(MILCOM), IEEE, 2018. pp. 78-83

Parts of Chapters 4 and 5 were already published in the first item of the list, whereas

the second to fourth show the research progress to that point. The last three papers

cover results on channel codes and (de)-modulation for burst type CPM transmissions

that came along the way.

1.5 Notation Conventions

In this section, notations used throughout this work are introduced:
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1 Introduction

• The imaginary unit is denoted as 𝑗 =
√

−1. The complex conjugate of a

complex number is written as (𝑎+ 𝑗𝑏)* = (𝑎− 𝑗𝑏).

• The operators Re{∙} and Im{∙} return the real and imaginary value of a com-

plex argument.

• The modulo operator is denoted as ∙mod ∙, ceiling, floor and rounding operators

as ⌈∙⌉, ⌊∙⌋ and ⌊∙⌉.

• If the sampling theorem is met by a sampling rate of 𝑇−1
0 , a signal can be

represented by the well known interpolation formula [11]

𝑥(𝑡) =
+∞∑︁

𝑛=−∞
𝑥(𝑛𝑇0) · si (𝜋(𝑡/𝑇0 − 𝑛)) , 𝑛 ∈ Z (1.1)

in which 𝑥(𝑛𝑇0) are the sampling values and si(𝑡) = sin(𝑡)/𝑡. The energy of the

signal is expressed as

𝐸𝑥 =
∫︁ +∞

−∞
|𝑥(𝑡)|2 d𝑡 (1.2)

=
∫︁ +∞

−∞

⃒⃒⃒⃒
⃒

+∞∑︁
𝑛=−∞

𝑥(𝑛𝑇0) · si (𝜋(𝑡/𝑇0 − 𝑛))
⃒⃒⃒⃒
⃒
2

d𝑡 (1.3)

=
+∞∑︁

𝑛=−∞
|𝑥(𝑛𝑇0)|2

∫︁ +∞

−∞
|si (𝜋(𝑡/𝑇0 − 𝑛))|2 d𝑡 (1.4)

= 𝑇0

+∞∑︁
𝑛=−∞

|𝑥(𝑛𝑇0)|2 , (1.5)

which gives the important relation between energy, sampling interval and sam-

pled values. The sum can be extracted due to the orthogonality of the si func-

tions and the integral can be resolved by Parseval’s theorem for example.

• The symmetric rectangular function of width 𝑥 is denoted as

rect
(︂
𝑡

𝑥

)︂
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 |𝑡| < 𝑥/2 ,

1/2 |𝑡| = 𝑥/2 ,

0 |𝑡| > 𝑥/2 .

(1.6)
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The edges with values 0.5 are given for the sake of mathematical correctness,

but need no further consideration in the scope of this work.

• The Dirac delta function is denoted as 𝛿(𝑡).

• Vectors can be upper and lower case and are written as underlined letters as 𝑥.

Their 𝑖’th element is referred to as 𝑥𝑖, whereas a subset of a vector is denoted

with its lower (𝑖) and upper (𝑘) index limits as 𝑥[𝑖 : 𝑘]. Matrices are upper

case letters and are denoted by an underset tilde 𝑋̃︁ with their 𝑘’th row and 𝑙′th

column element are specified by [𝑋̃︁]𝑘,𝑙.

• For a probability density function (PDF) and a probability mass function (PMF)

the lower case p and upper case P are used, respectively. The stochastic pro-

cesses are denoted as subscript to the probability symbols p and P. The proba-

bilities’ argument is the realization 𝑥 of the corresponding stochastic process 𝑥,

i.e. p𝑥 [𝑥 = 𝑥] ≡ p𝑥 [𝑥] and P𝑥 [𝑥 = 𝑥] ≡ P𝑥 [𝑥]. This notation should usually

suffice in terms of readability, as p and P are exclusively used for probabilities.

A sample function of a stochastic process is written as the process’s symbol

without the underline. If the PMF’s symbol P is underlined, P𝑥 [𝑥] shall denote

a vector of probabilities for every possible outcome of its argument. The (up-

right) symbol P should not be able to confuse with the (italic) variable of the

modulation index’s nominator 𝑃 , as they are never used in the same context.

• The operators E[∙] and Var[∙] compute the expected value and the variance,

respectively of their arguments.

E[𝑥] =
∫︁ +∞

−∞
𝑥 · p𝑥[𝑥] d𝑥 (1.7)

Var[𝑥] =
∫︁ +∞

−∞
(𝑥− E[𝑥])2 · p𝑥[𝑥] d𝑥 . (1.8)

The definition for discrete random variables is analog with sums and PMFs

instead of integrals and PDFs.

• The cross correlation function (CCF) of two weakly stationary processes 𝑥 and

11



1 Introduction

𝑦 is defined as

𝑅𝑥,𝑦(𝑡′) = E [𝑥*(𝑡) · 𝑦(𝑡+ 𝑡′)] , (1.9)

whereas the CCF’s computation of two sample functions 𝑥(𝑡) and 𝑦(𝑡) can be

calculated as

𝑅𝑥,𝑦(𝑡′) =
∫︁ +∞

−∞
𝑥*(𝑡) · 𝑦(𝑡+ 𝑡′) d𝑡 (1.10)

or equivalently for sampled signals and switched delay

𝑅𝑥,𝑦(𝑡′) = 𝑇0
∑︁
𝑘

𝑥*(𝑛𝑇0) · 𝑦(𝑛𝑇0 + 𝑡′) . (1.11)

• The transformation between the bandpass and lowpass domain and reverse

are defined such that the energies of deterministic and stochastic signals are

sustained and that systems do not change energies between in and output [43]

𝑥LP(𝑡) = 1√
2

· [𝑥BP(𝑡) + 𝑗ℋ {𝑥BP(𝑡)}] · 𝑒−𝑗2𝜋𝑓c𝑡 (1.12)

𝑅𝑥LP,𝑥LP(𝜏) = 1 · [𝑅𝑥BP,𝑥BP(𝜏) + 𝑗ℋ {𝑅𝑥BP,𝑥BP(𝜏)}] · 𝑒−𝑗2𝜋𝑓c𝜏 (1.13)

ℎLP(𝑡) = 1
2 · [ℎBP(𝑡) + 𝑗ℋ {ℎBP(𝑡)}] · 𝑒−𝑗2𝜋𝑓c𝑡 (1.14)

with ℋ {∙} denoting the Hilbert transform. The subscripts indicate the domain

and 𝑓c denoting the respective transformation frequency, which in this work is

exclusively the carrier frequency. Derived from (1.13), the bandpass process of

a white noise with constant power spectral density 𝑁0/2 leads to the equiva-

lent lowpass white noise of constant complex power spectral density 𝑁0 in the

relevant bandwidth.

• The log likelihood ratios (LLR) of binary symbols 𝑥𝑛 is defined as L (𝑥𝑛) =

log P𝑥𝑛 (𝑥𝑛 = 0) − log P𝑥𝑛 (𝑥𝑛 = 1) with log (without subscript) denoting the

natural logarithm. If the argument inside the LLR operator is a vector 𝑥, then

L(𝑥) shall denote the vector of LLRs.

• Several distributions are used throughout this thesis, which are defined as fol-

12
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lows. A random process following a uniform distribution 𝑥 ∼ 𝒰(𝑎, 𝑏) between

the edge values 𝑎, 𝑏 ∈ R with 𝑏 > 𝑎 is described by the PDF

p𝑥 (𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1
𝑏−𝑎 𝑎 ≤ 𝑥 ≤ 𝑏 ,

0 otherwise .
(1.15)

The definition of a real normal distributed process 𝑥 ∼ 𝒩 (𝜇, 𝜎) with mean 𝜇

and variance 𝜎2 is given as

p𝑥 (𝑥) = 1√
2𝜋𝜎2

𝑒− (𝑥−𝜇)2

2𝜎2 . (1.16)

The complex variant is defined as two zero mean normal processes as real

and imaginary part 𝑧 = 𝑥 + 𝑗𝑦, which gives the complex normal process

𝑧 ∼ 𝒞𝒩 (0,Var[𝑧] = Var[𝑥] + Var[𝑦]) whose variance is the sum of the real

and imaginary parts’ variances. A Rayleigh distributed process 𝑥 ∼ ℛ(𝜅) with

the real scaling factor 𝜅 has the PDF

p𝑥 (𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑥
𝜅2 𝑒

− 𝑥2
2𝜅2 𝑥 > 0 ,

0 otherwise .
(1.17)
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Chapter 2

System Overview

This paragraph opens up the chapter by giving an overview of the whole transceiver

chain that is depicted in Fig. 2-1, which is in itself a graphical glossary. The trans-

mitter structure is typical with binary information symbols 𝑢 that are encoded and

mapped to CPM symbols 𝑎 (cf. Section 2.6), which are converted by the CPM mod-

ulator into the signal 𝑠(𝑡) (cf. Section 2.1). In Section 2.2.1 the phase tilting is

explained which is modeled to either take place in the transmitter (on 𝑠(𝑡)) or the in

the receiver (on 𝑟(𝑡)). While the tilting is in practice usually realized in the receiver,

this differentiation will become relevant in Chapter 3. The modeling of the radio

channel is discussed in Section 2.3 and Section 2.4 covers the receive filter and the

transition from a time-continuous into a time-discrete signal by sampling.

The main part of the receiver comprises three information exchanging blocks:

• The soft-input-soft-output (SISO) CPM detector is handled in Section 2.5.

• The serially concatenated (SC) decoding setup including interleaver and mapper

and their according counterparts introduced in Section 2.6. It is noted, that

both the serially concatenated (SC) decoding setup and the CPM SISO detector

together ware what is usually referred to as the SC CPM setup [44].

• The blind and joint estimation of the channel parameters whose derivation is

the main contribution of this work and is explained in detail in Chapter 4.
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2 System Overview

Tx

Rx

ENC INT MAP CPM
MOD

TILT
TX

𝜙 {𝑠′(𝑡), 𝜆}

TILT
RX

CPM
SISO

DETECTOR

FRONT
END

VECTOR
ESTIMATOR

�̂� =
[︁
�̂�, 𝜈, 𝜃, 𝜏

]︁
SC

DECODING
SETUP

𝑢 𝑣 𝑣I 𝑎 𝑠(𝑡) 𝑠′(𝑡)

𝑟(𝑡)𝑟′(𝑡)

𝑟′(𝑘𝑇0)�̂�2
𝑤′

P [𝛾|𝑟′, 𝜆o)]

ℒ(𝜆o)

�̂�

P [𝑎|𝑟′, 𝜆o]

P [𝑎]
�̂�

Sec. 2.6 Sec. 2.1 Sec. 2.2.1

Sec. 2.4 Sec. 2.3

Sec. 2.5 Ch. 4

Figure 2-1: Block diagram of the complete transmission system. It furthermore serves as a graphical
glossary of the individual parts. Bold letters indicate vectors and hats above letters estimates,
respectively. In case of the PMFs, not only a probability vector of one element is passed (as the
drawing might imply for the sake of simplicity), but for all symbols. Also for the sake of clarity, the
probabilities vectors are not labeled with the corresponding processes. The trial value 𝜆o is short
for 𝜆old and its particular meaning is discussed in Chapter 4. The signal and variable names are
introduced in the denoted sections.

The iterative exchange of information by two entities is widely known as the Turbo

concept. In this case, the SISO detector forms a Turbo decoder with the channel

decoder as well as a Turbo synchronizer with the vector estimator. Hereby the channel

code’s utilization is optional for the estimation of the channel parameter. Both cases

will be treated in the following chapters. This double Turbo setup will show to enable

an optimal channel parameter estimation without the help of pilot symbols.
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2.1 Continuous Phase Modulation

2.1 Continuous Phase Modulation

2.1.1 Bandpass Definition of Continuous CPM Signal

CPM is a format that covers a large range of phase modulations such as MSK or

GMSK. A general definition of CPM can be found, among others, in [11]. For this

work the CPM signal shall be defined in the style of [14]. Beginning with the formu-

lation of the continuous (i.e. non-burst) passband signal

𝑠BP(𝑡) =
√︃

2𝐸𝑆
𝑇

cos
(︁
2𝜋𝑓𝑐𝑡+ 𝜑(𝑡, �̃�) + 𝜑0

)︁
, (2.1)

it is clear that CPM has a constant amplitude with power 𝐸𝑆/𝑇 with 𝐸𝑆 and 𝑇

depicting the symbol energy and duration, respectively. The carrier frequency 𝑓𝑐 and

the phase function

𝜑(𝑡, �̃�) = 2𝜋ℎ
+∞∑︁

𝑛=−∞
𝑎𝑛𝑞(𝑡− 𝑛𝑇 ) (2.2)

further define the signal. The choice of an initial phase offset 𝜑0 is arbitrary and set

to 𝜑0 = 0 throughout this work without loss of generality. The modulation index ℎ =

𝑃/𝑄 scales the phase pulses 𝑞(𝑡) and is typically a fraction of two positive, mutually

prime integers 𝑃 and 𝑄 with 𝑃 < 𝑄. The elements of the data symbol vector �̃� with

𝑎𝑛 being the 𝑛-th data symbol modulate the height of 𝑞(𝑡). They are independent

and identically distributed (i.i.d.) and drawn with equal probability from the symbol

alphabet 𝒜 whose cardinality |𝒜| = 𝑀 is equal to the modulation order 𝑀 . The

alphabet is constructed in the following fashion 𝒜 = {±1 ± 3, . . . ,±(𝑀 − 1)}, which

gives the important cases of binary (𝑀 = 2) and quaternary (𝑀 = 4) alphabets of

𝒜 =

⎧⎪⎪⎨⎪⎪⎩
{−1,+1} 𝑀 = 2 ,

{−3,−1,+1,+3} 𝑀 = 4 .
(2.3)

The time derivative of the phase function d𝜑
d𝑡 gives the instantaneous frequency de-

viation of the CPM signal, whereas the respective derivative of the phase pulse

𝑔(𝑡) = d𝑞(𝑡)
d𝑡 gives a frequency pulse and is typically of a rectangular (REC), raised
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0 𝐿𝑇/2 𝐿𝑇
0

1
2𝐿𝑇

1
𝐿𝑇

(a) 𝑔REC(𝑡) = 1
2𝐿𝑇

0 𝐿𝑇/2 𝐿𝑇
0

1
2𝐿𝑇

1
𝐿𝑇

(b) 𝑔RC(𝑡) = 1
2𝐿𝑇

(︀
1 − cos

(︀ 2𝜋𝑡
𝐿𝑇

)︀)︀ 0 𝐿𝑇/2 𝐿𝑇
0

1
2𝐿𝑇

1
𝐿𝑇

(c) 𝑔GA(𝑡) = 𝑄(2𝜋𝐵GA(𝑡−𝑇/2))√︀
log 2

− 𝑄(2𝜋𝐵GA(𝑡+𝑇/2))√︀
log 2

0 𝐿𝑇/2 𝐿𝑇
0

0.25

0.5

(d) REC phase pulse 𝑞REC(𝑡).

0 𝐿𝑇/2 𝐿𝑇
0

0.25

0.5

(e) RC phase pulse 𝑞RC(𝑡).

0 𝐿𝑇/2 𝐿𝑇
0

0.25

0.5

(f) GA phase pulse 𝑞GA(𝑡).

Figure 2-2: Frequency and phase pulses of REC, RC and GA shape. The mathematical descriptions
of the frequency pulses are given in the upper row’s captions. The bandwidth time product of the
GA pulse in this case is 𝐵GA𝑇 = 1/(𝐿− 1).

cosine (RC) or Gaussian (GA) form, as displayed in Fig. 2-2.

It is common for the frequency pulses to be confined to a duration of 𝐿𝑇 with

𝐿 taking positive integer values and stating the pulse length in symbol durations.

Hereby their total area is defined to equal 0.5. This leads to the phase pulse’s defini-

tion

𝑞(𝑡) =
𝑡∫︁

0

𝑔(𝑡′) d𝑡′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑡 ≤ 0 ,
𝑡∫︀

0
𝑔(𝑡′) d𝑡′ 0 < 𝑡 ≤ 𝐿𝑇 ,

1
2 𝑡 > 𝐿𝑇 .

(2.4)

The most right part of (2.4) shall again emphasize the temporal confinement of the

frequency pulse. While full response (𝐿 = 1) CPM has non overlapping symbols,

partial response (𝐿 > 1) CPM introduces non-linear intersymbol interference (ISI)

due to its interfering phase symbols. The pulse choice has direct influence on the
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estimation of a time offset through its normalized frequency pulse energy

𝐺2(0)𝑇 = 𝑇
∫︁ +∞

−∞
𝑔2(𝑡) d𝑡 . (2.5)

The expression 𝐺2(0) stands for the spectral direct component of the squared pulse

and reflects the origin of its influence derived in Chapter 3.

GA frequency pulses are defined by the pulse bandwidth time product 𝐵GA𝑇 [11]

and have to be truncated since they are generally of infinite length. The truncation

𝐿 =
⌈︁

1
𝐵GA𝑇

+ 1
⌉︁

is chosen in these cases such that the truncation error is insignificant

and (2.4) still holds in very good approximation. As an example, for 𝐵GA𝑇 = 0.5

and therefore 𝐿 = 3, the approximation error is about 1.122 ·10−9 with respect to the

normalized energy 𝐺2(0)𝑇 .

2.1.2 Equivalent Lowpass Representation of the Burst-Type

CPM Signal

In this section, the CPM signal is transformed into the equivalent lowpass domain

and then a description of the burst-type CPM signal bis introduced. As it is notated

in Section 1.5 the bandpass lowpass transformation shall preserve the signal’s energy

and thus the complex envelope with respect to the carrier frequency 𝑓c writes as

𝑠LP(𝑡) =
√︃
𝐸𝑆
𝑇

exp
(︁
𝑗𝜑(𝑡, �̃�)

)︁
. (2.6)

The subscript LP indicating the equivalent lowpass domain will be omitted in the

rest of this work. The definitions of the phase function 𝜑(𝑡, �̃�) and the phase pulse

𝑞(𝑡) in Sec. 2.1.1 remain valid in the lowpass domain without adjustments. Figure

2-3 shows the block diagram of the CPM burst modulation.

To define the bursts, windowing is necessary in the partial response case, whereas

full response signals are also multiplied with a properly shifted rectangular function

for the sake of the definition’s consistency. Moreover the information bearing phase

function is slightly adjusted. This leads to the following definition of a CPM burst
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P → S 𝑞(𝑡) 𝑒𝑗∙

2𝜋ℎ √︁
𝐸𝑆/𝑇

rect
(︁
𝑡−𝑁𝑇/2
𝑁𝑇

)︁
𝑎

𝑁−1∑︁
𝑛=−(𝐿−1)

𝑎𝑛𝛿(𝑡− 𝑛𝑇 )
⏟  ⏞  

𝜑(𝑡, 𝑎) 𝑠(𝑡)

Figure 2-3: Block diagram of the CPM modulator depicted as a violet block in Fig. 2-1. The CPM
symbols are transformed from a parallel vector to a serial impulse train (weighted with the values
of 𝑎), which is convolved with 𝑞(𝑡). The rest depicts (2.7) and (2.8).

consisting of 𝑁 symbols

𝑠(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
√︁

𝐸𝑆

𝑇
exp (𝑗𝜑(𝑡, 𝑎)) 0 ≤ 𝑡 ≤ 𝑁𝑇 ,

0 otherwise
(2.7)

with the adjusted phase function

𝜑(𝑡, 𝑎) = 2𝜋ℎ
𝑁−1∑︁

𝑛=−(𝐿−1)
𝑎𝑛𝑞(𝑡− 𝑛𝑇 ) . (2.8)

Hereby, data symbols with negative indices are only used for initialization of the CPM

trellis and not transmitted. The phase at the time origin is therefore defined as

𝜑(𝑡 = 0, 𝑎−(𝐿−1) . . . 𝑎−1) = 2𝜋ℎ
−1∑︁

𝑛=−(𝐿−1)
𝑎𝑛𝑞(−𝑛𝑇 ) . (2.9)

Each respective symbol time slot 𝑛𝑇 ≤ 𝑡 < (𝑛+ 1)𝑇 in (2.8) is described by

𝜑𝑛(𝑡, 𝑎) = 2𝜋ℎ
𝐿−1∑︁
𝑙=0

𝑎𝑛−𝑙𝑞(𝑡− (𝑛− 𝑙)𝑇 ) +
⎡⎣𝜋ℎ 𝑛−𝐿∑︁

𝑘=−(𝐿−1)
𝑎𝑘

⎤⎦mod 2𝜋
⏟  ⏞  

Ψ𝑛

. (2.10)

While the first addend in (2.10) defines the phase trajectory of the 𝑛’th symbol,

the second addend describes a phase offset Ψ𝑛 which is called the phase state and

dependent on all completed past symbols. All non-completed past symbols comprise

the correlative state vector 𝐴𝑛 =
[︁
𝑎𝑛−(𝐿−1), . . . , 𝑎𝑛−1

]︁
, which jointly forms the signal
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state 𝑆𝑛 = [Ψ𝑛, 𝐴𝑛] with the phase state (cf. Section 2.2.2). The symbol vector

𝑎 =
[︁
𝑎−(𝐿−1), . . . , 𝑎−1, 𝑎0, . . . , 𝑎𝑁−1

]︁
is comprised by 𝐿 − 1 symbols that define the

initial symbol state of the burst and 𝑁 transmitted data symbols.

2.2 Trellis Representation of the CPM Signal

2.2.1 Phase Tilting of the CPM Signal

As it is thoroughly outlined in [14], CPM can be interpreted as a trellis coded mod-

ulation and as such the symbol sequence is a Markov chain. For some parameter

combinations the CPM trellis is time variant and its Markov chain is periodic with

every two states and e.g. for implementation aspects this is a non-desired property.

An elegant solution to generally make the trellis and thus its Markov chain time in-

variant is to introduce a phase tilt according to [14]. This tilt is usually realized by

setting the carrier oscillator frequency in the transmitter or receiver off by

𝜉 = ℎ
𝑀 − 1

2𝑇 . (2.11)

The tilted phase function (cf. (2.10)) is then expressed as

𝜑′
𝑛(𝑡, 𝑎) = 𝜑𝑛(𝑡, 𝑎) + 2𝜋𝜉𝑡 (2.12)

for 𝑛𝑇 ≤ 𝑡 < (𝑛 + 1)𝑇 . While the tilt is inherently synchronized in time when

realizing it in the process of mixing the signal up in the transmitter, it is not in the

corresponding down mixing in the receiver. Chapter 3 will shed some more light on

the consequences of this matter. To obtain a clean formulation of the tilted signal and

to differentiate transmitter and receiver tilting, the boolean variable 𝛽 is introduced

𝛽 =

⎧⎪⎪⎨⎪⎪⎩
0 Tilting realized in receiver ,

1 Tilting realized in transmitter .
(2.13)
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(∙)𝛽

𝑒𝑗2𝜋𝜉𝑡

(∙)1−𝛽

𝑠(𝑡)

𝑠′(𝑡)

𝑟(𝑡)

𝑟′(𝑡)
𝑒𝑗2𝜋𝛽𝜉𝑡 𝑒𝑗2𝜋(1−𝛽)𝜉𝑡

Figure 2-4: Block diagram of the CPM tilting depicted as a black block in Fig. 2-1. The tilting is
realized either in the transmitter (𝛽 = 1) or in the receiver (𝛽 = 0).

According to (2.13) the phase tilt is either realized in the transmitter (𝛽 = 1) or in

the receiver (𝛽 = 0). Figure 2-4 illustrates the tilting process.

The case of transmitter tilting is unusual in practice and more of theoretical

interest in Chapter 3. For that matter, the tilting shall be realized in the receiver,

i.e. 𝑠′(𝑡) ≡ 𝑠(𝑡), unless stated otherwise.

2.2.2 Time Invariant CPM Trellis

In this work only invariant trellises of tilted CPM signals are considered and hence

only the tilted phase function from (2.12) is of relevance. With the introduction of

the unipolar symbols

𝑎′
𝑛 = 𝑎𝑛 +𝑀 − 1

2 ∈ 𝒜′ = {0, 1, . . . ,𝑀 − 1} (2.14)

(2.12) can be reformulated in the 𝑛’th symbol slot as

𝜑′
𝑛(𝑡, 𝑎′) = 4𝜋ℎ

𝐿−1∑︁
𝑙=0

𝑎′
𝑛−𝑙𝑞(𝑡− (𝑛− 𝑙)𝑇 ) +

⎡⎣2𝜋ℎ
𝑛−𝐿∑︁

𝑘=−𝐿+1
𝑎′
𝑘

⎤⎦mod 2𝜋
⏟  ⏞  

Ψ′
𝑛

. (2.15)

As it was already mentioned briefly in Section 2.1.2 the CPM trellis code is described

by memory states

𝑆 ′
𝑛 = [Ψ′

𝑛, 𝐴
′
𝑛] , (2.16)
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2.2 Trellis Representation of the CPM Signal

The 𝑛’th phase state in the tilted case is defined by

Ψ′
𝑛 =

⎡⎣2𝜋ℎ
𝑛−𝐿∑︁

𝑘=−𝐿+1
𝑎′
𝑘

⎤⎦mod 2𝜋 ∈ {0, 𝜓, . . . , (𝑄− 1)𝜓} (2.17)

with 𝜓 = 2𝜋/𝑄, whereas

𝐴′
𝑛 =

[︁
𝑎′
𝑛−(𝐿−1), . . . , 𝑎

′
𝑛−1

]︁
(2.18)

describes the correlative state with unipolar symbols. The phase state’s recursive

relation is governed by

Ψ′
𝑛 =

[︁
Ψ′
𝑛−1 + 2𝜋ℎ · 𝑎′

𝑛−𝐿

]︁
mod 2𝜋 . (2.19)

In Figure 2-5, an exemplary trellis with its states and further concise properties is

shown.

In the tilted CPM trellis, there are 𝑁Ψ′ = 𝑄 phase states and 𝑁𝐴′ = 𝑀𝐿−1

correlative states, whose product gives the total number of states in each stage of the

time invariant trellis

𝑁𝑆′ = 𝑁Ψ′ ·𝑁𝐴′ = 𝑄 ·𝑀𝐿−1 . (2.20)

Each state 𝑆 ′
𝑛 has 𝑀 output branches, which are determined by the current symbol

𝑎′
𝑛. This gives a total number of

Γ = 𝑄 ·𝑀𝐿 (2.21)

unique branches. A mapping function 𝑚(Ψ′
𝑛, 𝐴

′
𝑛, 𝑎

′
𝑛) is introduced to establish a

relation between the integral branch number 𝛾𝑛 ∈ {0, . . . ,Γ − 1} and the current

state 𝑆 ′
𝑛 with the current data symbol 𝑎′

𝑛. Referring to Fig. 2-5, the trellis branches

are numbered in ascending order from top to bottom and with the mapping function

being defined as

𝛾𝑛 = 𝑚(Ψ′
𝑛, 𝐴

′
𝑛, 𝑎

′
𝑛) = Ψ′

𝑛

𝜓
·𝑀𝐿 +

𝑛∑︁
𝑘=𝑛−(𝐿−1)

𝑀𝑛−𝑘 · 𝑎′
𝑘 . (2.22)
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[0, 0]

[0, 1]

[𝜓, 0]

[𝜓, 1]

[2𝜓, 0]

[2𝜓, 1]

𝛾𝑛

𝑆 ′ = [Ψ′, 𝐴′] 𝑆 ′
𝑛 𝑆 ′

𝑛+1

𝛾𝑛 = 0, 𝑎′
𝑛 = 0

𝛾𝑛 = 1, 𝑎 ′
𝑛 = 12

3
4

5

6

7
8
9

10

11

Figure 2-5: Exemplary trellis for a ℎ = 1/3, 𝑀 = 2, 𝐿 = 2 waveform. The states are depicted
as circles and the branches as lines. While blue lines denote a current 𝑎′

𝑛 = 0 symbol, red lines
a 1. In this trellis, relevant variables from the text are: 𝜓 = 2𝜋/3, 𝑁𝑆′ = 6, 𝑁Ψ′ = 3, 𝑁𝐴′ = 2,
Γ = 12. The ascending numeration of 𝛾𝑛 is given by black numbers labeling the branches. Examples
of the successor (cf. (2.26)) and predecessor (cf. (2.27)) sets are 𝒮([𝜓, 1]) = {[2𝜓, 0], [2𝜓, 1]} and
𝒫([𝜓, 1]) = {[0, 1], [𝜓, 0]}.

Two mapping functions are defined, so that the phase state Ψ′
𝑛 and the symbols[︁

𝑎′
𝑛−(𝐿−1), . . . , 𝑎

′
𝑛

]︁
that comprise the correlative state and the current symbol can be

obtained by the partial inverse functions

Ψ′
𝑛 = 𝑚Ψ′

𝑛
(𝛾𝑛) =

⌊︂
𝛾𝑛
𝑀𝐿

⌋︂
· 𝜓 (2.23)

𝑎′
𝑛−𝑙 = 𝑚𝑎′

𝑙
(𝛾𝑛) =

⌊︂
𝛾𝑛
𝑀 𝑙

⌋︂
mod 𝑀 , 𝑙 ∈ {0, . . . , 𝐿− 1} . (2.24)

The trellis branches 𝛾𝑛 will mostly be referred to as pseudo symbols (in contrast to

the data symbols 𝑎′
𝑛) in this work’s remainder and its unique signal representation is
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2.3 Radio Channel for Burst Transmissions in the VHF/UHF Band

given as

𝑐𝛾𝑛(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
exp

(︁
𝑗
[︁
4𝜋ℎ∑︀𝐿−1

𝑙=0 𝑚𝑎′
𝑙
(𝛾𝑛)𝑞(𝑡+ 𝑙𝑇 ) +𝑚Ψ′

𝑛
(𝛾𝑛)

]︁)︁
0 ≤ 𝑡 < 𝑇 ,

0 otherwise .
(2.25)

It is emphasized that the pseudo symbol’s signal elements are not shifted by 𝑛𝑇 in

time and tilted throughout this work.

Equations (2.16), (2.18) and (2.19) govern the transition relation between the

trellis states and allow for the definition of the set of a state’s possible successors and

predecessors

𝒮(𝑠) := The set of all possible successors to state 𝑠, (2.26)

𝒫(𝑠) := The set of all possible predecessors to state 𝑠. (2.27)

and a further mapping function defines the relation between the pseudo symbol 𝛾𝑛
and two consecutive states 𝑆 ′

𝑛 and 𝑆 ′
𝑛+1

𝛾𝑛 = 𝑚𝛾𝑛

(︁
𝑆 ′
𝑛 = 𝑠, 𝑆 ′

𝑛+1 = �̇�
)︁

(2.28)

For one burst, there are 𝑁 + 1 trellis stages, that are interconnected by the 𝑁

pseudo symbols. Whereas the initial state 𝑆 ′
0 is usually defined by convention, a

priori information about the final state 𝑆 ′
𝑁 is not necessarily available, which possibly

deteriorates the receiver’s performance [45]. Counter actions will be discussed in Sec.

2.5.2.

2.3 Radio Channel for Burst Transmissions in the

VHF/UHF Band

The system model considered in this work includes a radio channel over which the

transmission takes place. Radio channels have several properties which can impair the
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2 System Overview

transmission [11] that are discussed and specified in this section. As it was introduced

in Section 1.1, the considered transmission frequencies lie in the VHF and UHF band,

i.e. the carrier frequency take values between 30 MHz < 𝑓c < 400 MHz.

2.3.1 Contemplations on the Channel Characteristics

The communication scenario involves non-stationary transmitters and receivers, whose

movements induce time variance in the channel that is usually expressed by the

Doppler spread. Two cases of aerial and ground vehicular network subscribers are con-

sidered with exemplary maximum velocities of 𝑣max, aerial = 300 m s−1 and 𝑣max, ground =

30 m s−1, respectively. The Doppler spread is a (two-sided) bandwidth 𝐵Dop =

2𝑓Dop, max that is limited by the maximum Doppler shift 𝑓D, max to both sides. The

Doppler shift 𝑓Dop is maximized when the two transceivers move in exactly opposing

directions [43]

|𝑓Dop, max| = 𝑣max,1 + 𝑣max,2

𝑐0
· 𝑓c . (2.29)

In Table 2.1, the Doppler spreads are given for the two edge values 30 MHz and

400 MHz of the considered transmission band and for the three combinations of both

aerial, both ground and one of each transceiver in the connection. The coherence time

𝑇coh = 𝐵−1
Dop (also given in Table 2.1) gives a measure about the channel’s temporal

correlation or in other words how fast the channel is changing. In order to assume

a quasi static (time invariant) channel over the course of one transmission burst, the

coherence time has to be much larger than the burst length, which is 𝑇Burst = 1 ms in

the considered system. At least for lower carrier frequencies, this condition is fulfilled.

Depending on the topographical properties of the transmission environment, dif-

ferent power delay profiles can lead to different extents of frequency selective fad-

ing [43]. In [46] the results of a measurement campaign from 2012 regarding the chan-

nel conditions of ground communications in the range of 34.150 MHz to 363.750 MHz

are reported. Four fundamental topographical scenarios were considered (urban, ru-

ral, hilly and mountainous) and typical power delay profiles are reported. Moreover,

the metric 𝐷99 % is given for every scenario as the delay spread that is not exceeded
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2.3 Radio Channel for Burst Transmissions in the VHF/UHF Band

Table 2.1: Doppler spreads and coherence times for several scenarios. 𝑣max = 𝑣max,1 + 𝑣max,2 is the
maximum relative velocity of the respective transceivers.

Aerial/Aerial Ground/Ground Aerial/Ground
|𝑣max| 600 m s−1 60 m s−1 330 m s−1

𝑓c 30 MHz 400 MHz 30 MHz 400 MHz 30 MHz 400 MHz

|𝑓Dop, max| 60 Hz 800 Hz 6 Hz 80 Hz 33 Hz 440 Hz
𝐵Dop 120 Hz 1600 Hz 12 Hz 160 Hz 66 Hz 880 Hz
𝑇coh 8.3 ms 0.63 ms 83.3 ms 6.25 ms 15.2 ms 1.12 ms

Table 2.2: Delay spreads and coherence bandwidths of several environments from [46]. These results
were reported for a carrier frequency of 𝑓C = 74.175 MHz and the delay spread values specify the
upper bound for 99 % of the time.

Urban Rural Hilly Mountainous

𝐷99 % 2.2 µs 0.9 µs 4.9 µs 11.8 µs
𝐵coh 455 kHz 1.11 MHz 208 kHz 91 kHz

in 99 % of the measurement time. It is noted, that worst case delay spreads can

lie above that value though. The delay spread’s inverse is the coherence bandwidth

𝐵coh = 𝐷−1
99 % which gives an indicator of the channel’s frequency selectivity. Both

parameters are presented in Table 2.2 for the different scenarios.

In case 𝐵coh ≫ 2𝐵99 %, the channel’s frequency response can be considered flat,

i.e. as a constant factor. Hereby 2𝐵99 % specifies the two-sided bandwidth which

contains 99 % of the CPM signal’s power and is calculated in this work according

to [43]. In Table 5.1, the bandwidths of the considered waveforms are given and take

values between 29.4 kHz ≤ 2𝐵99 % ≤ 97.4 kHz.

This work will focus on a ground to ground communication link, for which a real-

istic channel model is available. In any specific combination of topography (excluding

the mountainous environment) and signal waveform, the coherence bandwidth 𝐵coh

exceeds the signal bandwidth 𝐵99 % to a smaller or larger extent. For that fact, a
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flat channel transfer function (i.e. a frequency non-selective) channel is assumed. De-

pending on the carrier frequency, the coherence time 𝑇coh is larger or much larger than

the burst duration 𝑇Burst and thus suggests assuming a quasi static (time invariant)

channel impulse response over the course of one burst. Furthermore, the mixing os-

cillator precision in the transceivers shall suffice to assume a constant sampling rate,

a constant CFO and a constant CPO (i.e. a lack of phase noise) over the course of

one burst. The time invariance of the channel shall be given for each burst, but due

to spectral (in FH systems) or temporal (sensor networks) separation of transmission

bursts, the channel states of any two bursts are mutually independent and thus no

tracking of the channel is possible. To sum up, the channel of each burst will be

modeled as an independent SF channel, which will serve as the base of designing the

estimator in Chapter 4. The above described simplifications (time invariance and

frequency flat fading for each burst) will be evaluated in Section 5.8.1, where the

actual power delay profiles of [46] are considered.

2.3.2 System Modeling of the Channel

Based on the assumed SF channel model, only one propagation path with a scalar

attenuation is considered and the Doppler spread simplifies to a Doppler shift. Fur-

thermore, a carrier phase mismatch and time delay are considered. All necessary

parameters (namely the FF 𝛼, CFO 𝜈, CPO 𝜃 and TO 𝜏) comprise the parameter

vector

𝜆 = [𝛼, 𝜈, 𝜃, 𝜏 ] (2.30)

and define the system operator alongside the additive white Gaussian noise (AWGN)

term 𝑤(𝑡) with noise power density 𝑁0. The system’s output signal is

𝑟(𝑡) = 𝜙 {𝑠′(𝑡), 𝜆} = 𝛼 · 𝑠′(𝑡− 𝜏) · 𝑒𝑗(2𝜋𝜈(𝑡−𝑡0)+𝜃) + 𝑤(𝑡) , (2.31)

which is graphically presented in Fig. 2-6. The time reference in the CFO term is

relevant in terms of estimation performance and will be treated in detail in Chapter
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𝛼 · 𝛿(𝑡− 𝜏)
𝑠′(𝑡)

𝜙 {𝑠′(𝑡), 𝜆}

𝑤(𝑡)𝑒𝑗(2𝜋𝜈(𝑡−𝑡0)+𝜃)

𝑟(𝑡)

Figure 2-6: Block diagram of the channel’s system operator depicted as a blue block in Fig. 2-1.
The input of the system is scaled by 𝛼, delayed by 𝜏 , rotated by 𝜃 and shifted in frequency by 𝜈. In
the CFO term, the time reference 𝑡0 is incorporated. The complex, additive white noise has a noise
power density of 𝑁0.

3. This SF channel model serves as base to designing the synchronization algorithm

in Chapter 4.

In the following, the elements of 𝜆 are discussed and defined:

• According to [11], the path gain for a frequency flat channel can be modeled as

a Rayleigh distributed random variable

𝛼 ∼ ℛ(𝜅 = 1/
√

2) (2.32)

in which the scaling factor 𝜅 was chosen so that E [𝛼2] = 1. The phase rotation

of the channel is considered below together with the CPO.

• The CFO is the sum of the Doppler shift and the frequency offset between

the oscillators in transmitter and receiver. While the first depends on the ve-

locity of the subscribers, the second is determined by the oscillator accuracy

and thus both are proportional to the carrier frequency. Since the CFO has

two origins with arguably two different statistical properties, it first seems rea-

sonable to consider them separated. While a PDF proportional to a Doppler

spectrum would be a sensible choice for the frequency shift in the channel [43],

the statistics of the oscillator deviations is hardware dependent. To keep the

approach simple, both effects are considered mutually and a uniform distri-

bution is chosen as it is non-informative and thus the most general approach.

The oscillator accuracy of typical, commercially available software defined radio
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(SDR)s is about 2.5 ppm (parts per million) when not externally synchronized

and 0.01 ppm when they are [47]. While hardware with inferior quality may be

installed in cheap sensors, tactical radios can be assumed to have high quality

oscillators with a self-sustaining quality of 1 ppm. This value is chosen for the

further considerations and it is referred to Section 4.4.5 for the consequences

of other oscillator choices. In combination with 𝑓C = 400 MHz, this leads to a

maximum possible offset of

|𝑓Osc, max| = 2 · 10−6 · 400 MHz = 800 Hz (2.33)

due to each transceiver’s hardware inaccuracies in opposing directions. The

sum of the Doppler spread (160 Hz, cf. Table 2.1 for ground communications

at 𝑓c = 400 Hz) and the oscillator effect (2 · 800 Hz, cf. (2.33)) gives the width

of the CFO process’s uniform distribution

𝜈𝑇 ∼ 𝒰 (−0.021,+0.021) (2.34)

in which a symbol rate of 𝑇−1 = 42 kBaud (cf. Table 5.1) was inserted to obtain

normalized values for the CFO.

• As it was for the CFO, the origins of the CPO are twofold. First, in a frequency

flat channel, the phase rotation of the channel is usually modeled uniformly

around the unit circle [11] and second, the generally independent oscillator

phases in the transceivers translate to an equally circular uniform distribution

of their offset. The sum of both offsets gives the modeled CPO process and

its distribution is the convolution of both circular uniform distributions which

gives

𝜃 ∼ 𝒰 (−𝜋,+𝜋) (2.35)

due to the wrapping at ±𝜋.

• In FH systems, a frame synchronization is usually available, which leads a
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coarse range of a residual TO to be estimated. The range and the statistics of

the values within is naturally dependent on the synchronization technique on

which no assumptions shall be made at this point. Therefore the TO is assumed

to be uniformly distributed over one symbol duration, i.e.

𝜏/𝑇 ∼ 𝒰 (−0.5,+0.5) . (2.36)

The synchronization algorithm derived in Chapter 4 will not assume any prior

knowledge about the parameters, though it will be pointed out how to incorporate

such information in the algorithm.

2.4 Front End

As shown in Fig. 2-1, the input signal to the front end is the tilted signal (𝛽 = 0)

𝑟′(𝑡) = 𝜙 {𝑠(𝑡), 𝜆} · 𝑒𝑗2𝜋𝜉𝑡

= 𝛼𝑒𝑗(2𝜋𝜈(𝑡−𝑡0)+𝜃) · 𝑠(𝑡− 𝜏) · 𝑒𝑗2𝜋𝜉𝑡 + 𝑤′(𝑡) .
(2.37)

Due to the tilting happening in the receiver (cf. Section 2.2.1), the additive noise

𝑤′(𝑡) is the tilted version of 𝑤(𝑡) but with identical statistical properties. At this

point, 𝑤′(𝑡) is modeled as with the constant complex (lowpass domain) noise power

density 𝑁0 > 0, is not band limited and thus of infinite power and only has practical

relevance by the following band limitation. The receive filter in the lowpass domain

is modeled as an optimal rectangular function

𝐻R(𝑓) =

⎧⎪⎪⎨⎪⎪⎩
1 |𝑓 | ≤ 𝐵0

0 otherwise
(2.38)

with 𝐵0 being the one-sided system bandwidth. The system bandwidth is chosen so

that 𝐻R(𝑓) shall let the CPM signal pass effectively without distortions (respecting

the potential frequency offsets 𝜈 and 𝜉). Therefore, the received signal is still called
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𝑟′ after the receive filter. The noise power is now limited to 2𝐵0𝑁0. Next, the filtered

signal is sampled under (effectively) meeting the Nyquist sampling theorem at a rate

of 𝑇−1
0 and given as

𝑟′(𝑘𝑇0) = 𝑟′(𝑡)|𝑡=𝑘𝑇0 (2.39)

with 𝑘 being an integer in the interval 0 ≤ 𝑘 ≤ 𝑁𝐾−1 and𝐾 = 𝑇/𝑇0 representing the

oversampling factor. The energy of the signal is computed according to (1.5). The

time continuous and discrete representations are exchangeable when the sampling

theorem is met [17]. While the continuous representation is convenient to derive the

theoretical bounds in Chapter 3, the digital receiver parts in this chapter and in

Chapter 3 are described by the time discrete signal. The sampled values of one burst

𝑟′(𝑘𝑡0) can be stored in a vector

𝑟′ [0 : 𝑁𝐾 − 1] = [𝑟′(0), 𝑟′(𝑇0), 𝑟′(2𝑇0), . . . , 𝑟′(𝑁𝑇 − 2𝑇0), 𝑟′(𝑁𝑇 − 𝑇0)] (2.40)

such that the vector’s argument specifies its lower and upper index limit separated

by the colon. If, as in the equation above, the complete burst is stored in the vec-

tor, the limit specification is usually omitted and only 𝑟′ is written. The vectorized

representation is used mainly in the arguments of PDFs and PMFs as well as in the

discussion of implementation aspects in Section 4.5.

By choosing the inverse of the (two-sided) system bandwidth (and as such the

receive filter width) as the sampling interval 𝑇0 = 1/(2𝐵0), the sampled noise process

𝑤′(𝑘𝑇0) keeps its whiteness due to the fitting spectral repetition and its presumed

stationarity [43]. For that reason, the noise variable is still called 𝑤′ although it is

not the same signal anymore and it is modeled as a complex normal distribution with
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the same power as the continuous noise process before the sampling

𝑤′(𝑘𝑇0) ∼ 𝒞𝒩
(︂

0, 𝜎2
𝑤′ = 𝑁0

𝑇0

)︂
, (2.41)

Re {𝑤′(𝑘𝑇0)} ∼ 𝒩
(︂

0, 𝜎2
Re{𝑤′} = 𝑁0

2𝑇0

)︂
, (2.42)

Im {𝑤′(𝑘𝑇0)} ∼ 𝒩
(︂

0, 𝜎2
Im{𝑤′} = 𝑁0

2𝑇0

)︂
, (2.43)

𝑅Re{𝑤′},Im{𝑤′} = 0 . (2.44)

The CCF in (2.44) of Re{𝑤′} and Im{𝑤′} states, that the real and imaginary parts

of 𝑤′(𝑘𝑇0) are uncorrelated. The system introduced above is rather theoretical and

its practical implications shall be discussed briefly. First, the rectangular receive filter

is to be replaced by another technically more feasible Nyquist filter. Second, if for

whatever reason the filter bandwidth 2𝐵0 significantly exceeds the physical signal

bandwidth, noise with higher power than necessary and even potential interference

by other (communication) signals are passed to the detector succeeding the receive

filter. In this constellation, this could happen e.g. when a specific sampling rate 𝑇−1
0

is desired. If then a filter with a width better suited to the transmit signal is applied,

the noise samples will lose their property of being uncorrelated, which is usually dealt

with by applying a whitening filter [43].

For soft input detectors such as the below following SISO CPM detector, the

knowledge about the noise power or rather variance is crucial. It could e.g. be

estimated directly by measuring the received power in an unoccupied time slot in the

FH system. Another way in CPM would be to measure the amplitude variance that

has to stem from the additive noise in a flat fading channel. The noise variance is

estimated in this work by the formula

�̂�2
𝑤′ = �̂�0

𝑇0
= 2

√︂
Var

[︁
|𝑟′(𝑘𝑇0)|2

]︁
, (2.45)

which is derived in Appendix A.1. The idea behind this is, that in a constant ampli-

tude signal all amplitude variations must be caused by the additive noise. This is of
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course only valid in the SF channel model motivated above. The actual estimate is

calculated by computing the variance of the realization of the received signal. Large

noise samples (in relation to the transmit signal samples) can switch the sign of the

superposed received signal. The estimator in (2.45) takes only the absolute value

though, so that the noise estimates tend to be too small in these cases.

2.5 Soft-Input-Soft-Output CPM Detector

As the SISO detector acts as the link between the two further central receiver elements

(cf. Fig. 2-1), this section introduces it in detail. Recalling (2.37) and (2.39), the

detector’s input signal is expressed as

𝑟′(𝑘𝑇0) = 𝛼𝑒𝑗(2𝜋𝜈(𝑘𝑇0−𝑡0)+𝜃) · 𝑠(𝑘𝑇0 − 𝜏) · 𝑒𝑗2𝜋𝜉𝑘𝑇0 + 𝑤′(𝑘𝑇0) (2.46)

for 0 ≤ 𝑘 < 𝐾𝑁 . If the channel TO is assumed to be known (or estimated well

enough), the CPM phase is appropriately tilted at this point (cf. (2.12)) and hence the

trellis is time invariant. In this work a coherent CPM detector is deployed for which

also the CFO and CPO have to be synchronized properly. The absolute knowledge

about 𝜆 is in general not available to the receiver, only estimates are. The following

derivations are carried out under the assumption, that a reliable estimate �̂� of the

channel parameter vector is known. The noise variance was already estimated in a

preceding receiver block and thus �̂�2
𝑤′ is also available.

2.5.1 MAP Detector for a Trellis Coded CPM Signal

As it was introduced in 2.2 the CPM signal can be interpreted as a trellis coded

modulation and thus the utilization of the BCJR algorithm produces a posteriori

probabilities of the transmitted data symbols 𝑎′
𝑛 ∈ {0, . . . ,𝑀 − 1} [48]. Hence it

realizes the maximum a posteriori (MAP) detector for the CPM signal. The symbol
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2.5 Soft-Input-Soft-Output CPM Detector

a posteriori probabilities

P𝑎′
𝑛|𝑟′

[︁
𝑎′
𝑛|𝑟′, �̂�

]︁
=
∑︁
Ψ′

𝑛

∑︁
𝐴′

𝑛

P𝛾𝑛|𝑟′

⎡⎢⎢⎣𝑚𝛾𝑛([Ψ′
𝑛, 𝐴

′
𝑛] , 𝑎′

𝑛)⏟  ⏞  
Eq. (2.22)

|𝑟′, �̂�

⎤⎥⎥⎦ (2.47)

for 0 ≤ 𝑛 ≤ 𝑁 − 1 are calculated as the sum of probabilities of every trellis branch

𝛾𝑛 that represents the data symbol 𝑎′
𝑛 and are required as soft inputs for the channel

decoder. A posteriori probabilities of the trellis branches themselves

P𝛾𝑛|𝑟′

[︁
𝛾𝑛|𝑟′, �̂�

]︁
=

p𝛾𝑛,𝑟
′

[︁
𝛾𝑛, 𝑟

′|�̂�
]︁

p𝑟′

[︁
𝑟′|�̂�

]︁ (2.48)

for 𝛾𝑛 ∈ {0, . . . ,Γ − 1} are direct outputs of the BCJR (cf. (2.52)) and are crucial

for the parameter estimation in Chapter 4.

The essential components of the BCJR are the forward 𝑓𝐹𝑛 (𝑠) and backward 𝑓𝐵𝑛 (�̇�)

state occupation probability measures as well as the path metric 𝑓𝑀𝑛 (𝑠, �̇�) and are

defined as the following PDFs

𝑓𝐹𝑛 (𝑠) = p𝑆′
𝑛,𝑟

′

[︁
𝑠, 𝑟′ [0 : 𝑛𝐾 − 1] |�̂�

]︁
, (2.49)

𝑓𝐵𝑛 (�̇�) = p𝑟′|𝑆′
𝑛

[︁
𝑟′ [𝑛𝐾 : 𝑁𝐾 − 1] |�̇�, �̂�

]︁
, (2.50)

𝑓𝑀𝑛 (𝑠, �̇�) = p𝑆′
𝑛+1,𝑟

′|𝑆′
𝑛

[︁
�̇�, 𝑟′ [𝑛𝐾 : (𝑛+ 1)𝐾 − 1] |𝑠, �̂�

]︁
. (2.51)

It is noted, that the process 𝑟′ is denoted in distributions for the sake of readability

although only parts of the received vector 𝑟′ are subject to the distribution. The

product of (2.49), (2.50) and (2.51) gives the joint probability that can be inserted in

(2.48)

p𝛾𝑛,𝑟
′

[︁
𝑚𝛾𝑛(𝑠, �̇�), 𝑟′|�̂�

]︁
= P𝑆′

𝑛,𝑆
′
𝑛+1

[𝑠, �̇�] · 𝑓𝐹𝑛 (𝑠) · 𝑓𝑀𝑛 (𝑠, �̇�) · 𝑓𝐵𝑛+1(�̇�), (2.52)

where the mapping function from (2.28) was used. The term P𝑆′
𝑛,𝑆

′
𝑛+1

[𝑠, �̇�] denotes

a prior information about the state transitions, e.g. from a channel decoder in a SC

CPM receiver. In case no prior knowledge about the transition is (yet) available,
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the probability equals the constant Γ−1. The forward and backward variables are

computed recursively as

𝑓𝐹𝑛 (𝑠) =
∑︁

�̇�∈𝒫(𝑠)
P𝑆′

𝑛,𝑆
′
𝑛+1

[�̇�, 𝑠] · 𝑓𝐹𝑛−1(�̇�) · 𝑓𝑀𝑛 (�̇�, 𝑠) (2.53)

𝑓𝐵𝑛 (𝑠) =
∑︁

�̇�∈𝒮(𝑠)
P𝑆′

𝑛,𝑆
′
𝑛+1

[𝑠, �̇�] · 𝑓𝐵𝑛+1(�̇�) · 𝑓𝑀𝑛 (𝑠, �̇�) , (2.54)

with initial values 𝑓𝐹0 (𝑠) and 𝑓𝐵𝑁 (𝑠) discussed in Section 2.5.2. It is straight forward

that the sum over all possible forward state occupation probabilities of the last state

is equal to the likelihood of the parameter 𝜆

ℒ(�̂�) = p𝑟′

[︁
𝑟′|�̂�

]︁
(2.55)

=
∑︁
𝑠

p𝑆′
𝑁 ,𝑟

′

[︁
𝑠, 𝑟′|�̂�

]︁
(2.56)

=
∑︁
𝑠

𝑓𝐹𝑁 (𝑠) . (2.57)

This property will find application in the coarse parameter estimation detailed in

Section 4.5.1.

The path metric in (2.51) is transformed under the use of Bayes’ theorem into

𝑓𝑀𝑛 (𝑠, �̇�) = P𝑆′
𝑛+1|𝑆′

𝑛

[︁
�̇�|𝑠, �̂�

]︁
· p𝑟′|𝑆′

𝑛,𝑆
′
𝑛+1

[︁
𝑟′ [𝑛𝐾 : (𝑛+ 1)𝐾 − 1] |𝑠, �̇�, �̂�

]︁
(2.58)

= 1/𝑀 · p𝑟′|𝑆′
𝑛,𝑆

′
𝑛+1

[︁
𝑟′ [𝑛𝐾 : (𝑛+ 1)𝐾 − 1] |𝑠, �̇�, �̂�

]︁
(2.59)

since the event of two successive states 𝑆 ′
𝑛 = 𝑠 and 𝑆 ′

𝑛+1 = �̇� in a Markov chain gen-

erally does not have any prior information by itself and furthermore is independent

on 𝜆. The path metrics as it is expressed in (2.59) are the probability densities of the

received pseudo symbols 𝛾𝑛 = 𝑚𝛾𝑛(𝑠, �̇�) given the trellis transition that define these.

The corresponding sampled signal 𝑐𝛾𝑛(𝑘𝑇0) (cf. (2.25)) of each transition is deter-

ministic and the metrics calculation in an AWGN environment writes as the applied

definition of the multivariate (2𝐾) normal distribution. Since all noise samples are
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2.5 Soft-Input-Soft-Output CPM Detector

i.i.d., it can be expressed as the product of 2𝐾 independent normal distributions

𝑓𝑀𝑛 (𝑠, �̇�) = 1
𝑀 (𝜋�̂�2

𝑤′)𝐾
· exp

(︃
− 1
�̂�2
𝑤′

𝐾−1∑︁
𝑘=0

⃒⃒⃒
𝑟′(𝑘𝑇0 + 𝑛𝑇 ) − 𝑐𝑚𝛾𝑛 (𝑠,�̇�)(𝑘𝑇0, �̂�)

⃒⃒⃒2)︃
(2.60)

considering �̂�2
𝑤′ = 2𝜎2

Im{𝑤′} = 2𝜎2
Re{𝑤′}. The knowledge of �̂� is used to scale, rotate

(with the time origin 𝑡0 being respected in the CFO correction) and delay the pseudo

symbols to match the received signal

𝑐𝑚𝛾𝑛 (𝑠,�̇�)(𝑘𝑇0, �̂�) = �̂�𝑒+𝑗
(︀

2𝜋[𝜈(𝑘𝑇0+𝑛𝑇−𝑡0)+𝜉𝜏 ]+𝜃
)︀
𝑐𝑚𝛾𝑛 (𝑠,�̇�)(𝑘𝑇0 − 𝜏) . (2.61)

Since the received signal was tilted ahead of a TO correction, the term +𝑗2𝜋𝜉𝜏

accounts for the thereby induced phase offset. Furthermore the pseudo symbols must

experience a CFO according to their position 𝑛. The approach of manipulating the

pseudo symbols has several advantages over correcting the received signal instead.

First, the received signal does not need to be interpolated to obtain correct for the

induced channel delay and second, the noise power in (2.60) does not need to be

adjusted. By using the equality from Appendix A.2, (2.60) is reformulated as

𝑓𝑀𝑛 (𝑠, �̇�) = 1
𝑀

· 1
(𝜋�̂�2

𝑤′)𝐾
×

exp
(︃

− 1
�̂�2
𝑤′

𝐾−1∑︁
𝑘=0

[︂
|𝑟′(𝑘𝑇0 + 𝑛𝑇 )|2 +

⃒⃒⃒
𝑐𝑚𝛾𝑛 (𝑠,�̇�)(𝑘𝑇0, �̂�)

⃒⃒⃒2]︂)︃
×

exp
(︃

− 1
�̂�2
𝑤′

𝐾−1∑︁
𝑘=0

−2 Re
{︁
𝑟′(𝑘𝑇0 + 𝑛𝑇 ) · 𝑐*

𝑚𝛾𝑛 (𝑠,�̇�)(𝑘𝑇0, �̂�)
}︁)︃

(2.62)

∝ exp
(︃

− 1
�̂�0

�̂�2𝐸S + 2𝑇0

�̂�0

𝐾−1∑︁
𝑘=0

Re
{︁
𝑟′(𝑘𝑇0 + 𝑛𝑇 ) · 𝑐*

𝑚𝛾𝑛 (𝑠,�̇�)(𝑘𝑇0, �̂�)
}︁)︃

(2.63)

with all constant factors being omitted in (2.63). Whereas the energy of the received

symbol 𝑟′(𝑘𝑇0 + 𝑛𝑇 ) is obviously constant, all pseudo symbols 𝑐𝑚𝛾𝑛 (𝑠,�̇�)(𝑘𝑇0, �̂�) have

the equal energy �̂�2𝐸S due to the constant amplitude property of CPM and thus

their squared amplitude is also constant. However, for (2.57) to produce comparable

results for different FFs in �̂�, it must be included.

The evaluation of (2.63) can e.g. be realized by convolving 𝑟′(𝑘𝑇0 + 𝑛𝑇 ) with a
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filter bank with filters ℎ𝛾(𝑘𝑇0) = 𝑐*
𝛾(−𝑘𝑇0, �̂�) and sampling the result in the symbol

clock 𝑇 .

2.5.2 Initialization of the State Occupation Variables

In [45, 49], the negative effect on the symbol error rate is discussed when the start

and end states of the CPM trellis are not appropriately initialized. Thus, in order

to carry out the recursive calculations of (2.53) and (2.54) effectively, the forward

state occupations of the first stage 𝑓𝐹0 (𝑠) and backward state occupations of the

last stage 𝑓𝐵𝑁 (�̇�) need to be initialized. While there are methods for defining the final

trellis state, they usually pose spectral (trellis termination [50]) or computational (tail

biting [45]) overhead. Especially in burst systems the spectral overhead in terminating

may become significant. Several initialization methods are compared in [49]. In this

work, the correlative zero state (CZS) from [49] that constitutes a trade off between

the spectral efficiency and impact on the symbol error rate is chosen. Figure 2-7

graphically demonstrates an exemplary CZS termination.

By applying the CZS method, the CPM signal is terminated by 𝑁CZS = 𝐿 − 1

zero CPM symbols to reach the correlative state 𝐴′
𝑁 =

[︁
𝑎𝑁−(𝐿−1) = 0, . . . , 𝑎𝑁−1 = 0

]︁
.

The phase state Ψ′
𝑁 is not defined and therefore arbitrary. In contrast, classical

termination [50] spends more symbols to reach a predefined phase and correlative

state. By setting 𝐴′
0 = 𝐴′

𝑁 = 0, the trellis possesses a defined start and end correlative

state. In CPM tail biting the first and last correlative state are also equal but unlike to

the CZS approach not known, which entails the computation of 𝑁𝐴′ BCJR instances

[45].

In tilted CPM, all signals 𝑟′(𝑡)·𝑒𝑗𝑧𝜓 represent the same digital message as 𝑟′(𝑡) [14]

with 𝑧 being an integer and 𝜓 representing the phase state’s angle. This property is

called rotational invariance and will prove useful in Section 4 since a received signal

does not need to be synchronized to the exact CPO but rather only to the remainder

𝜃0 = 𝜃 mod 𝜓. The reduced range 𝜃0 ∈ [−𝜓/2; +𝜓/2] makes the estimation easier (cf.

Section 4.4) without deteriorating the signal’s detection. For this to work, the CPM

trellis must allow all states with a CZS 𝐴′
0 = 0 as a start state opposed to only the all
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[0, 0]

[0, 1]

[𝜓, 0]

[𝜓, 1]

[2𝜓, 0]

[2𝜓, 1]

𝛾0 𝛾1 𝛾𝑁−2 𝛾𝑁−1

𝑆 ′ = [Ψ′, 𝐴′] 𝑆 ′
0 𝑆 ′

1 𝑆 ′
2 𝑆 ′

𝑁−2 𝑆 ′
𝑁−1 𝑆 ′

𝑁

Figure 2-7: Visualization of the trellis (cf. Fig. 2-5) initialization by the CZS termination method.
𝐴′

0 = 𝐴′
𝑁+1 = 0 determines the correlative state of 𝑆′

0 and 𝑆′
𝑁+1. While the last phase state Ψ′

𝑁+1 is
generally unknown, Ψ′

0 is left unfixed in case of CPO estimation due to CPM’s rotational invariance.
White states are unreachable and thus their branches are omitted. The dashed lines indicate the
middle part of the trellis.

zero sate 𝑆 ′
0 = [0, 0]. Figure 2-7 also accounts for this fact and depicts the start and

end trellis states initialization used in this work. In (2.61), 𝜃 can be replaced with 𝜃0

without further consequences.

2.6 Channel Coding

Albeit convolutional codes being a common outer channel code for serially concate-

nated CPM systems with iterative decoding [44], [51], the code of choice in this work

is the Polar code [52]. This is due to the need for trellis initialization in convolutional

codes for the same reasons as addressed in Sec. 2.5.2. The Polar code as a block code

does not have this restriction and can be computationally as well as spectrally more

efficient than a comparable convolutional code in the application of burst transmis-

sions [53]. Because of the lower bit error rate at the same code rate [54], a systematic

Polar code is used in this work. The decoder is realized according to [55] and called

successive cancellation (SCAN) decoder, while variable code rates are achieved by

shortening the Polar codes [56].
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SISO
DECODER DEI. P → L

INT. L → P

LA(𝑣)

LA(𝑣I)

�̂� P [𝑎|𝑟′, 𝜆o]

P [𝑎𝑛]

L(𝑣I)LE(𝑣I)

9

L(𝑣) LE(𝑣)

9

Figure 2-8: Block diagram of the SC CPM channel decoder that depicts the iterative information
passing between the decoder and the detector. Bold letters indicate vectors and L(𝑥) contains the
LLRs of every element of 𝑥. In the case of PMFs, a probability vector of every element 𝑎′

𝑛 ∈ 𝒜′, 0 ≤
𝑛 < 𝑁) out of 𝑎′ is passed. For the sake of clarity, the probabilities vectors are not labeled with the
corresponding processes.

Figure 2-1 shows the encoding procedure: After systematically encoding the in-

formation bits 𝑢, the code bits 𝑣 are interleaved to avoid sequence error propagation.

To obtain the CPM data symbols 𝑎, the interleaved bits 𝑣I are converted according to

Gray mapping [11]. In Fig. 2-8, the SC counterpart on the receiver side is depicted.

Together with the SISO detector, this block builds the SC CPM scheme with

iterative decoding on which [44] and [51] give details. It is shortly explained as

follows. The a posteriori probability vectors P𝑎′
𝑛|𝑟′

[︁
𝑎′
𝑛|𝑟′, �̂�

]︁
of the CPM symbols are

mapped to code bit probabilities and converted to log likelihood ratios L(𝑣I) to be

passed on the forward branch. After being deinterleaved, they are fed as a priori LA(𝑣)

to the channel decoder, which generates a posteriori information L(𝑣) that is passed

backward. To obtain extrinsic information LE(𝑣) = L(𝑣) − LA(𝑣), the information of

the forward branch is subtracted. To restrict the exchange to extrinsic information is

crucial to all kinds of Turbo decoding setups such as e.g. parallel concatenated [42]

or block [57] Turbo codes. Afterwards LE(𝑣) is reinterleaved and converted to the

probability domain to be passed as a priori probabilities P𝑎′
𝑛

[𝑎𝑛] of the CPM symbols

back to the SISO detector. The state transition probabilities P𝑆𝑛,𝑆𝑛+1
[𝑠, �̇�] in (2.52),

(2.53) and (2.54) are then set to P𝑎′
𝑛

[𝑎𝑛] according to which transition the data

symbols 𝑎′
𝑛 correspond. In case more than one loop is carried out, the extrinsic

information in the forward branch must be calculated by LE(𝑣I) = L(𝑣I) − LA(𝑣I).

Investigations about the usefulness of this iterative setup in short burst transmissions

were conducted in [53] with the result that none or one iteration provide the best cost
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performance trade off. Eventually, estimates �̂� of the information bits are obtained

by the channel decoder.

2.7 Key Points of the Chapter

• The CPM signal was introduced in the bandpass and lowpass domain and the

trellis properties for tilted signals were discussed.

• Channel conditions in the VHF and UHF transmission band were addressed in

the ground to ground communication scenario. Hereby the Doppler spread of

moving transceivers was defined and delay spreads of typical environments were

presented. By comparing the corresponding coherence time and bandwidths

with the signal properties, the channel model was reasoned to be simplified to

a time invariant and frequency flat model, on which the estimator in Chapter

4 is based on.

• The optimal detection of the CPM signal in the SF channel was treated by

means of the BCJR algorithm, which constitutes the MAP detector. Mapping

functions between trellis transitions and data symbols have been defined to

prepare the notation used in later chapters.
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Chapter 3

Theoretical Treatment of

Maximum Likelihood Parameter

Estimation

The general problem of parameter estimation comes in manifold applications and one

of them lies in communications systems. The estimation of modulation parameters

and of channel parameters are two exemplary cases with this thesis focusing on the

latter. While there are several estimation rules in general, the two approaches of

maximum likelihood (ML) and MAP are dominant in communications engineering

[11]. In the following, the ML approach is followed for the reasons outlined in Section

3.1. The connection to the MAP rule is given when sensible.

According to [58], there are four components that describe the general estimation

problem. The specific problem of this thesis under the use of an ML estimation rule

fits the framework as follows and as illustrated in Fig. 3-1:

• Parameter space: This space is defined in Section 2.3.2 by (2.32), (2.34), (2.35)

and (2.36) that govern the single parameter spaces of the vector 𝜆 = [𝛼, 𝜈, 𝜃, 𝜏 ].

• Probabilistic Mapping from Parameter Space to Observation Space: The (blind)

estimation problem of channel parameters 𝜆 in communication systems poses

mainly two obstacles. First, the parameters are not directly observable, but

43



3 Theoretical Treatment of Maximum Likelihood Parameter Estimation
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Figure 3-1: ML channel parameter estimation problem set in a general framework in the style of [58].
The observation space consists of a noisy version of the transmit signal.

only through a noisy and deviated version 𝑟(𝑡) of the original. Second, as

any communication signal, the CPM signal carries unknown data 𝑎, that are a

nuisance in terms of parameter estimation. While the first one for itself would

not be too hard to overcome (e.g. by the use of pilot sequences), the second one

makes the estimation problem challenging. The probabilistic relation between

the channel parameters and the observation used in this work is given by the

likelihood function ℒ(𝜆) or equally by the LLF of 𝜆

log ℒ(𝜆) = log
(︁
p𝑟 [𝑟|𝜆]

)︁
(3.1)

= log
⎛⎝∑︁

𝑎

p𝑟,𝑎 [𝑟, 𝑎|𝜆]
⎞⎠ . (3.2)

The difficulty in handling the LLF arises from the fact, that the logarithm’s

argument in (3.2) is a sum of exponential terms in the case of i.i.d. noise

samples (cf. (2.52) and its following equations) and thus cannot be reduced with

the logarithm function. In the above equation, 𝑎 is a vector and describes the

sequence of data symbols that are in direct relationship to the trellis transitions

𝛾.

• Observation space: Usually this is a finite dimensional space, which would re-

quire appropriate sampling of the received signal. This was done in (2.39) under
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the assumption, that the sampling theorem was met.

• Estimation rule: In this work, the ML solution will be sought

�̂� = argmax
𝜆

log ℒ(𝜆) . (3.3)

As mentioned above, the presence of the unknown data symbols 𝑎 as a latent

variable in the LLF (cf. (3.2)) leads to a sum of exponential terms inside the

logarithm. Essentially because of this obstacle, the ML solution is hard to be

obtained analytically. In Chapter 4 it will be explained in detail, how the EM

algorithm can be utilized to overcome this problem by iteratively obtaining an

ML estimate.

3.1 Classification of the Estimator

The estimator shall be classified by three features. First, the parameter space can be

described by two different types of parameters. On the one hand, a random variable

governed by an a priori probability distribution and on the other, an unknown, but

deterministic quantity that constitutes the parameter. For the former case, a MAP

estimation rule can be reasonable, if the distribution is known a priori. Although a

priori PDF’s were defined for the four scalar parameters of FF, CFO, CPO and TO

in Section 2.3.2, the unknown parameter vector 𝜆 shall be treated as non-random and

deterministic. Three of the four parameters were assumed to be uniformly distributed

and therefore of limited usefulness in a MAP estimation rule. For this and the sake

of generality, all parameters are treated as unknown and deterministic and hence the

ML estimation rule shall be applied. Second, the dimension of the parameter 𝜆 is

distinguished. If it is a scalar, one speaks of single estimation and in case of a vector

of joint estimation. In this work, all four channel parameters from Section 2.3.2 shall

be estimated jointly. And third, the unbiasedness of the estimator is considered. If,
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3 Theoretical Treatment of Maximum Likelihood Parameter Estimation

on average, correct estimates are produced

E
[︁
�̂�𝑖
]︁

= 𝜆𝑖 (3.4)

the estimator is called unbiased, which is in general a favorable property. As it will

be shown in Chapter 5, the considered methods fulfill (3.4) in general.

The estimator derived in this work is thus classified as an unbiased, joint estimator

of a non-random parameter vector and in the following the respective theoretical

performance limits shall be discussed.

3.2 The Theoretic Performance Limit of Joint and

Unbiased Estimators

A natural question that arises in the field of parameter estimation is the estimator’s

precision and its gap to the theoretical optimum. The measure that is typically re-

ferred to in this context is the Fisher information (FI) [58]. It expresses how much

information an observation 𝑟(𝑘𝑇0) carries about an unknown parameter 𝜆𝑖 by cal-

culating the expected negative curvature of the LLF log ℒ(𝜆𝑘). In the case of the

above classified estimator, the FI is stored in a symmetric matrix called the Fisher

information matrix (FIM) 𝐼̃︀(𝜆), which is expressed as the expectation over the partial

derivatives of the LLF [58]

[︁
𝐼̃︀(𝜆)

]︁
𝑘,𝑙

= E𝑟

⎡⎣𝜕 log
(︁
p𝑟 [𝑟|𝜆]

)︁
𝜕𝜆𝑘

·
𝜕 log

(︁
p𝑟 [𝑟|𝜆]

)︁
𝜕𝜆𝑙

⎤⎦ (3.5)

= −E𝑟

⎡⎣𝜕2 log
(︁
p𝑟 [𝑟|𝜆]

)︁
𝜕𝜆𝑘𝜕𝜆𝑙

⎤⎦ . (3.6)

In the presumed case of properly filtered and sampled signal (cf. Section 2.4), no

information gets lost and the noise properties are retained and hence the sampled

version can be used without loss of generality. In this case of a joint estimation, the

information about each parameter 𝜆𝑖 is stored in the 𝑖’th diagonal element [𝐼̃︀(𝜆)]𝑖,𝑖.
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3.3 The Modified Fisher Information Matrix

While the FI states directly how much information can be inferred from data obeying

the the LLF, a more practical metric to evaluate an estimator’s performance is the

variance of the estimation error

Var
[︁
�̂�𝑖 − 𝜆𝑖

]︁
= E

[︁
(�̂�𝑖 − 𝜆𝑖)2

]︁
− E

[︁
�̂�𝑖 − 𝜆𝑖

]︁2
(3.7)

which can be measured directly at the output of an estimator. In the case of un-

biasedness, the error variance is equal to the MSEE E
[︁
(�̂�𝑖 − 𝜆𝑖)2

]︁
because of (3.4).

The variance is typically benchmarked against the well known Cramér-Rao bound

(CRB) or the CRVB in joint estimation, respectively. The error variance of a jointly

estimated 𝜆𝑖 is hereby lower bounded by the 𝑖’th diagonal element of the FIM’s inverse

CRVB(𝜆𝑖) =
[︁
𝐼̃︀−1(𝜆)

]︁
𝑖,𝑖

(3.8)

≤ Var
[︁
�̂�𝑖 − 𝜆𝑖

]︁
, (3.9)

where the estimator is called efficient if Var
[︁
�̂�𝑖 − 𝜆𝑖

]︁
= CRVB(𝜆𝑖). The non-diagonal

elements describe dependencies of the parameters’ joint estimation, e.g. [𝐼̃︀(𝜆)]𝑘,𝑙 ̸= 0

for 𝑘 ̸= 𝑙 states a coupling in the joint estimation of 𝜆𝑘 and 𝜆𝑙 (cf. Section 3.3). So

generally non-diagonal elements are desirable to be zero. The scalar counter part to

the CRVB, which is called the CRB, will never exceed the vector version

CRB(𝜆𝑖) =
[︁
𝐼̃︀−1(𝜆)

]︁
𝑖,𝑖

(3.10)

≤ CRVB(𝜆𝑖) , (3.11)

since the estimation of 𝜆𝑖 under the knowledge of every other parameter of 𝜆 is at

least as accurate as if the other parameters are unknown.

3.3 The Modified Fisher Information Matrix

For the same reasons that prevent (3.2) being analytically tractable, if the LLF is

dependent on a latent variable (i.e. the random and unknown data sequence 𝑎), the
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3 Theoretical Treatment of Maximum Likelihood Parameter Estimation

true FIM is generally not tractable, either. In [59] and [60] this problem was overcome

by defining an analytically tractable information matrix for that case which is called

modified Fisher information matrix (MFIM). Here, not the LLF log
(︁
p𝑟 [𝑟|𝜆]

)︁
must be

differentiated, but the simpler structured posterior measure log
(︁
p𝑟|𝑎 [𝑟|𝑎, 𝜆]

)︁
, which

boils down to an exponential function in the case of an AWGN channel. Further-

more, the expectation is now taken with regard to the simpler structured posterior

distribution and thus the MFIM computes as

[︁
𝐼̃︀𝑀(𝜆)

]︁
𝑘,𝑙

= E𝑟,𝑎

⎡⎣𝜕 log
(︁
p𝑟|𝑎 [𝑟|𝑎, 𝜆]

)︁
𝜕𝜆𝑘

·
𝜕 log

(︁
p𝑟|𝑎 [𝑟|𝑎, 𝜆]

)︁
𝜕𝜆𝑙

⎤⎦ (3.12)

= −E𝑟,𝑎

⎡⎣𝜕2 log
(︁
p𝑟|𝑎 [𝑟|𝑎, 𝜆]

)︁
𝜕𝜆𝑘𝜕𝜆𝑙

⎤⎦ . (3.13)

The derivatives are computed with regard to the true 𝜆. Similar to (3.8), a bound

will be derived from the MFIM in the next section that is a lower bound to the true

CRVB. In case the received signal is superposed by noise as specified in (2.41) to

(2.44), the MFIM from (3.12) can be simplified to

[𝐼̃︀𝑀(𝜆)]𝑘,𝑙 = 2𝑇0

𝑁0

𝑁𝐾−1∑︁
𝑘=0

E𝑎

[︃
Re

{︃
𝜕𝑟(𝑘𝑇0, 𝑎, 𝜆)

𝜕𝜆𝑘
· 𝜕𝑟

*(𝑘𝑇0, 𝑎, 𝜆)
𝜕𝜆𝑙

}︃]︃
(3.14)

with

𝑟(𝑘𝑇0, 𝑎, 𝜆) =
[︂
𝛼𝑒𝑗(2𝜋𝜈(𝑘𝑇0−𝑡0)+𝜃) ·

√︁
𝐸S/𝑇𝑒

𝑗2𝜋ℎ
∑︀𝑁−1

𝑛=−(𝐿−1) 𝑎𝑛𝑞(𝑘𝑇0−𝜏−𝑛𝑇 )

· 𝑒𝑗2𝜋𝛽𝜉(𝑘𝑇0−𝜏) + 𝑤(𝑡)
]︂

· 𝑒𝑗2𝜋(1−𝛽)𝜉𝑘𝑇0 ,
(3.15)

where the definitions of (2.7), (2.8), (2.12), (2.13) and (2.31) are applied. It is noted,

that first, the received signal is considered here after the sampling process. Second,

the signal is either tilted in the transmitter (𝛽 = 1) when the tilt is subject to the

channel delay 𝜏 or in the receiver (𝛽 = 0). Third, the time reference in the CFO term

is set to half the burst length (𝑡0 = 𝑁𝑇/2) in order to obtain a symmetric observation

window which will lead to a minimal CPO bound [60]. In a practical view, this is

just a little trick in the receiver to set the time reference as preferred. Carrier phase
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3.3 The Modified Fisher Information Matrix

and frequency are linked by 𝑡0 and the above stated value enables a minimal CPO

estimation variance.

The derivation of the MFIM and the MCRVB for CPM were principally carried

out in [61] for FF, CFO, CPO and TO. However, these bounds do neither account

for a shifted observation window due to the TO, nor for a transmitter tilted CPM

signal, which shall be investigated in this work. It is also noted, that the unknown

amplitude of the transmitted signal is estimated in [61], whereas in this work the

fading factor, i.e. the amplitude of the received signal, is considered. This leads to

a difference in the signal-to-noise power ratio (SNR) definition, because of the direct

coupling of 𝐸S with the signal’s amplitude (cf. (2.7)). The derivation necessary for

this work’s bounds is carried out in Appendix B.1 with the following MFIM as result

𝐼̃︀𝑀(𝜆) =2𝛼2𝐸S

𝑁0
𝑁×⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝛼2 0 0 0

0 4
3𝜋

2
(︁

1
4𝑁

2𝑇 2 + 3𝜏 2
)︁

2𝜋𝜏 −2𝛽𝜋2ℎ𝑀−1
𝑇
𝜏

0 2𝜋𝜏 1 −𝛽𝜋ℎ𝑀−1
𝑇

0 −2𝛽𝜋2ℎ𝑀−1
𝑇
𝜏 −𝛽𝜋ℎ𝑀−1

𝑇
𝜋2ℎ2

(︁
4𝐺2(0)𝑇 𝑀2−1

3𝑇 2 + 𝛽 (𝑀−1)2

𝑇 2

)︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.16)

in which several CPM parameters are used (cf. Table 5.1). The term 𝐺2(0)𝑇 describes

the normalized frequency pulse energy (cf. (2.5)).

As in the case of the FIM, non-diagonal elements different from zero in the MFIM

(cf. (3.16)) stand for a coupling between channel parameters, e.g. [𝐼̃︀𝑀(𝜆)]𝑘,𝑙 ̸= 0

indicates, that small deviations of �̂�𝑘 from its true value lead to a skewed estimation

of �̂�𝑙 and vice versa. Based on this, the following conclusions can be drawn from the

MFIM:

• For the MFIM’s first element, the FF, no coupling is present, i.e. the first

row and the first column consist of zeros exclusively besides the diagonal ele-

ment. Thus it is assumed, that a reasonably reliable estimate �̂� can be obtained

without further synchronization of the other parameters.
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3 Theoretical Treatment of Maximum Likelihood Parameter Estimation

• As can be seen from the according non-diagonal elements of 𝜆2 = 𝜈 and 𝜆3 = 𝜃,

the coupling depends on the actual value of the TO. For 𝜏 = 0, a perfect

symmetric observation window is achieved and the coupling disappears, which

is in accordance to the observation window contemplations in e.g. [60,62]. If the

time reference of the CFO 𝑡0 was set to zero, the coupling would be represented

by a much larger term. An intuitive explanation for this behavior is, that in

general for a symmetric window the CFO induced phase is known be zero in

the middle of the window and have an arbitrary value 𝜑1 in the start and the

negative −𝜑1 in the end. In contrast of a non-symmetric window only the start

phase 𝜑1 = 0 is known. The consequence of the absence of symmetry in the

observation window is a negative impact on the CPO estimation whereas the

CFO estimation remains unaffected.

• The TO is coupled to both the CFO and the CPO according to the MFIM for the

case of transmitter tilting (𝛽 = 1). Since the tilt (i.e. a known frequency offset)

is subject to the unknown TO 𝜏 , an unknown phase offset is introduced by this.

As in the above case of an asymmetric observation window, this is assumed

to have a negative impact on the CPO estimation. Since the tilt introduces

a constant, but known frequency offset, the CFO estimation again remains

unaffected. It can be observed, that the coupling between 𝜏 and 𝜈 is described

by the value [𝐼̃︀𝑀(𝜆)]2,4 = −2𝛽𝜋2ℎ𝑀−1
𝑇
𝜏 and that this value is the product of

the CPO’s couplings to CFO and TO [𝐼̃︀𝑀(𝜆)]2,3 · [𝐼̃︀𝑀(𝜆)]3,4 = [𝐼̃︀𝑀(𝜆)]2,4. This

fact suggests, that the three parameters CFO, CPO and TO are not mutually

coupled (as the structure of the MFIM would imply) but only the CPO is

coupled to the other two and [𝐼̃︀𝑀(𝜆)]2,4 represents the link through the CPO.

• In case of receiver tilting (𝛽 = 0), the basically symmetric observation window

(𝑡0 = 𝑁𝑇/2, ignoring 𝜏) gives an essentially diagonal matrix, which means

that every parameter can principally be estimated independently if the other

parameter estimates lie close enough to according their true value. This is in

general a favorable property, which is why it was opted to only consider this
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3.4 The Modified Cramér-Rao Vector Bound

specific time reference 𝑡0.

3.4 The Modified Cramér-Rao Vector Bound

The resulting bounds from the MFIM are called MCRVBs and computed the same

way as in (3.8) as the diagonal elements of the MFIM’s inverse

MCRVB(𝜆𝑖) =
[︁
𝐼̃︀−1
𝑀 (𝜆)

]︁
𝑖,𝑖
. (3.17)

Inserting (3.16) into (3.17) eventually gives the following bounds

MCRVB(𝛼) = 1
2𝑁 · 1

𝐸S/𝑁0
, (3.18)

MCRVB(𝜈) = 3
2𝜋2𝑁3𝑇 2 · 1

𝛼2𝐸S/𝑁0
, (3.19)

MCRVB(𝜃) =
[︃

1
2𝑁 + 6𝜏 2

𝑁3𝑇 2 + 𝛽
3

8𝑁𝐺2(0)𝑇 · 𝑀 − 1
𝑀 + 1

]︃
· 1
𝛼2𝐸S/𝑁0

, (3.20)

MCRVB(𝜏) = 3𝑇 2

8𝜋2𝑁ℎ2 (𝑀2 − 1)𝐺2(0)𝑇 · 1
𝛼2𝐸S/𝑁0

. (3.21)

While all bounds are indirectly proportional to 𝐸S/𝑁0, the last three are also indirectly

proportional to the squared FF 𝛼2. While the first bound only depends on the noise

power, the others rise accordingly as less signal energy is received with decreasing

FF. It is noted, that all four bounds are valid only if the data sequence 𝑎 consists of

i.i.d. data symbols 𝑎𝑘. This assumption is used throughout this section.

3.4.1 Comparison of the MCRVB with Its Scalar Version

First, the vector bounds are compared to their scalar counter parts called modified

Cramér-Rao bound (MCRB), which are computed as the inverse terms of the diagonal

elements of the MFIM (cf. (3.17))

MCRB(𝜆𝑖) = [𝐼̃︀𝑀(𝜆)]−1
𝑖,𝑖 . (3.22)
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3 Theoretical Treatment of Maximum Likelihood Parameter Estimation

The MCRBs lower bound the error variance for single (in contrast to joint) param-

eter estimation of an unknown parameter under the knowledge of all other channel

parameters. The following observations can be made regarding the scalar MCRBs:

• The fading factor bound is equal in the scalar and vector case

MCRVB(𝛼) ≡ MCRB(𝛼) , (3.23)

which reflects the obvious decoupled nature of the FF parameter.

• Although the FF is assumed to be known in the scalar bounds, it still influences

the estimation performance and thus is present in the scalar bounds of carrier

frequency and phase as well as the timing.

• For the case of CFO 𝜈, it was presumed that the coupling terms in (3.16) only

state an indirect coupling to the TO 𝜏 through the CPO 𝜃. This statement

is directly confirmed by the equivalence of the corresponding scalar and vector

bound

MCRVB(𝜈) ≡ MCRB(𝜈) . (3.24)

Furthermore, the direct coupling to the CPO does not negatively affect the

performance limit in the joint estimation.

• The scalar bound of the CPO is given through (3.22) as

MCRB(𝜃) = 1
2𝑁 · 1

𝛼2𝐸S/𝑁0
. (3.25)

Clearly it is not affected by the induced phase offsets of the channel delay

and the therefore delayed tilting, because the TO responsible for both cases is

known. The vector bound can be expressed as

MCRVB(𝜃) = MCRB(𝜃) + PEN(𝜏) + PEN(𝛽) , (3.26)

where PEN(𝜏) = 6𝜏2

𝑁3𝑇 2 · 1
𝛼2𝐸S/𝑁0

and PEN(𝛽) = 𝛽 3
8𝑁𝐺2(0)𝑇 · 𝑀−1

𝑀+1 · 1
𝛼2𝐸S/𝑁0

denote
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penalties on the vector bound in comparison with the scalar bound. They are

directly related to [𝐼̃︀𝑀(𝜆)]2,3 and [𝐼̃︀𝑀(𝜆)]3,4, respectively. While PEN(𝛽) is a

design choice, PEN(𝜏) is unavoidable in joint estimation. Averaging PEN(𝜏)

with respect to 𝜏 (cf. (2.36)), the quotient PEN(𝜏)/MCRB(𝜃) = 𝑁−2 is nearly

zero (cf. Appendix B.2) though when the value from Table 5.1 is inserted for

𝑁 . Thus the relation between the scalar and the vector bound is

MCRVB(𝜃)

⎧⎪⎪⎨⎪⎪⎩
≈ MCRB(𝜃) 𝛽 = 0 ,

> MCRB(𝜃) 𝛽 = 1
(3.27)

with the first line being valid in very good approximation.

• The scalar TO bound calculates to

MCRB(𝜏) = 3𝑇 2

8𝜋2𝑁ℎ2 [(𝑀2 − 1)𝐺2(0)𝑇 + 3𝛽(𝑀 − 1)2] · 1
𝛼2𝐸S/𝑁0

(3.28)

and it can be observed that the transmitter tilting has a positive influence on

the scalar estimation performance through the term 3𝛽(𝑀 − 1)2. This influ-

ence however only holds up if the other channel parameters are known as it

vanishes in the according vector bound in (3.21). Therefore, the vector bound

is independent from the tilting process whereas the scalar bound is not

MCRVB(𝜏)

⎧⎪⎪⎨⎪⎪⎩
= MCRB(𝜏) 𝛽 = 0 ,

> MCRB(𝜏) 𝛽 = 1 .
(3.29)

In other words this means, that if no perfect information about the CPO is

available, the transmitter tilting brings no advantages (in TO estimation) and

additionally causes disadvantages (in CPO estimation). In [63], the principal

coupling of CPO and TO through an asymmetric spectrum was described, al-

though the specific effect in case of tilted CPM was not found in the literature.

It is for the last findings, that the tilting is realized exclusively in the receiver (i.e.
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𝛽 = 0) throughout the rest of this work. In the last paragraph of Section 2.2.1, this

decision was anticipated and all definitions from there on were already adjusted to it.

3.4.2 Comparison of the MCRVB with True Bounds

It is of natural interest how the MCRVB compares to the true CRVB and [60] proved

the general validity of

MCRVB(𝜆𝑖) ≤ CRVB(𝜆𝑖) , (3.30)

which gives an uncertainty whether the estimator is efficient when not reaching the

MCRVB. In [62], another scalar bound called the asymptotic Cramér-Rao bound

(ACRB) is derived, which approaches the true CRB for high SNR values. The problem

stated before, that a sum of exponential terms prevents an easy analytical expression

of the true CRB is circumvented by identifying, that this sum has only one dominant

addend for high values of 𝐸S/𝑁0 and consequently only taking this one term into

account. It is also shown there, that

MCRB(𝜆𝑖) = ACRB(𝜆𝑖) , if 𝑎 is discrete. (3.31)

In the case of the considered digital communication system, above equation is there-

fore valid. Furthermore, [62] also shows that in joint estimation the ACRB equals the

real vector bound if the FIM 𝐼̃︀ is not a function of the transmitted sequence 𝑎 and 𝑎

is known to the receiver

ACRB(𝜆𝑖) = CRVB(𝜆𝑖|𝑎) , if 𝐼̃︀ ̸= 𝑓(𝑎) (3.32)

and is less tight if the matrix depends on 𝑎

ACRB(𝜆𝑖) ≤ CRVB(𝜆𝑖|𝑎) , if 𝐼̃︀ = 𝑓(𝑎) . (3.33)

The receiver’s knowledge is thereby indicated by the additional argument in the

bound, i.e. CRVB(𝜆𝑖|𝑎) denotes the true CRVB in the case of transmitting a known
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3.4 The Modified Cramér-Rao Vector Bound

pilot sequence.

In [64], it was derived under the assumption of an a priori known 𝑎, that data

dependence in the FIM 𝐼̃︀ is only introduced by the timing (𝜏) and not by frequency

(𝜈) or phase (𝜃) estimation. This means, that an FIM for the unknown parameters 𝜈

and 𝜃 fulfills (3.32) (under the knowledge of 𝛼 and 𝜏). The MCRVBs derived in that

case are equal to (3.19) and (3.20), respectively. Combining (3.24), (3.27), (3.31) and

(3.32) allows for

MCRVB(𝜈) = CRVB(𝜈|𝑎) , (3.34)

MCRVB(𝜃) = CRVB(𝜃|𝑎) (3.35)

to be valid in the joint estimation case considered in this work.

For 𝛼, the true CRB (under knowledge of the transmitted sequence 𝑎) can be

derived analytically (cf. Appendix B.3) and writes as

CRB(𝛼|𝑎) = 1
2𝑁 · 1

𝐸S/𝑁0
= MCRVB(𝛼) . (3.36)

In the calculation of the MCRVB, no knowledge on the data 𝑎 is assumed, which

is why this bound is generally used for blind estimators that include NDA and DD

methods. In the case of a DD estimator and the presence of data in the transmission,

estimates on that data can be made available in the receiver, e.g. through a feedback

loop. Thus the modified bounds with and without i.i.d. data knowledge have the

relation [65]

MCRVB(𝜆𝑖|𝑎) ≤ MCRVB(𝜆𝑖) . (3.37)

with the equality being valid at sufficiently high SNR. Collecting the implications

of (3.11), (3.30) and (3.37) the derived modified bound from (3.18) equals the true

vector bound

MCRVB(𝛼) = CRVB(𝛼|𝑎) . (3.38)

In case of the remaining parameter TO, the line of argument as for the CFO and CPO

is not possible due to the FIM’s dependence on the data. However, a formulation
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of the true scalar CRB under the knowledge of the random data sequence is given

by [63] as

CRB(𝜏 |𝑎) =
∫︀+∞

−∞ (2𝜋𝑓)2𝑆𝑠𝑠(𝑓) d𝑓∫︀+∞
−∞ 𝑆𝑠𝑠(𝑓) d𝑓

(3.39)

in which the bound is only dependent on the characteristics of the power spectral den-

sity (PSD) 𝑆𝑠𝑠(𝑓) that can be calculated in the CPM case according to [43, 9.3.3]. The

denominator holds the power of the received signal, which is known to be 𝛼2𝐸S/𝑇 and

the nominator is referred to as the normalized moment of inertia in [63]. According

to [65], it can be expressed as

∫︁ +∞

−∞
(2𝜋𝑓)2𝑆𝑠𝑠(𝑓) d𝑓 = 4𝜋2ℎ2

𝑇
· E[𝑎2

𝑘] ·
∫︁ +∞

−∞
|𝐺(𝑓)|2 d𝑓

= 4𝜋2ℎ2

𝑇
· 𝑀

2 − 1
3 𝐺2(0) ,

(3.40)

where for the trivial computation of the expected value of the squared CPM symbols,

(2.3) is recalled. By inserting the expressions of power and moment of inertia into

(3.39), the relation MCRVB(𝜏) = CRB(𝜏 |𝑎) is verified. The same reasoning as in the

FF case leads now to the equality

MCRVB(𝜏) = CRVB(𝜏 |𝑎) . (3.41)

Figure 3-2 visualizes the derivations that can be summarized as

MCRVB(𝜆𝑖) = CRVB(𝜆𝑖|𝑎) . (3.42)

Based on the conclusions above, it should be possible for a DD estimator to be

MCRVB efficient at SNRs sufficiently high for the detector to principally provide

reliable estimates.
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MCRVB(𝜆𝑖) MCRB(𝜆𝑖)

ACRB(𝜆𝑖)CRVB(𝜆𝑖|𝑎)

=

=

=
=

(3.19), (3.20) (3.24), (3.27)

(3.31)

(3.32) 𝜆𝑖 ∈ {𝜈, 𝜃}

MCRVB(𝜆𝑖) CRB(𝜆𝑖|𝑎)

CRVB(𝜆𝑖|𝑎)MCRVB(𝜆𝑖|𝑎)

=

≤

≤

≥ =

(3.18), (3.21) (B.31), (3.39)

(3.11)

(3.30)

(3.37)

𝜆𝑖 ∈ {𝛼, 𝜏}

Figure 3-2: Relations between different lower bounds. The left part shows the relations of lower
bounds for the CFO 𝜈 and the CPO 𝜃, while the right part does it for the FF 𝛼 and the TO 𝜏 . The
corresponding equations are given for the bounds and the relations. The red equal sign in bold font
is the desired conclusion MCRVB(𝜆𝑖) = CRVB(𝜆𝑖|𝑎).

3.5 Key Points of the Chapter

• The modified Fisher information matrix for the considered burst type CPM

transmission was derived. The coupling terms were discussed and it was con-

cluded, that the matrix is quasi diagonal when the tilting is realized in the

receiver.

• Modified Cramér-Rao vector bounds were formulated for the four considered

channel parameters and compared to the scalar modified Cramér-Rao bounds.

The effect of transmitter tilting was investigated with regard to the bounds.

While being advantageous in the case of scalar TO estimation, the advantage

vanishes in the joint case with the side effect of a deteriorated CPO estimation.

• The MCRVBs were compared to the asymptotic and true Cramér-Rao bounds

and it was shown that for all four cases, that the modified vector bounds are

equal to the true vector bounds under the assumption of known data. This re-

sult was achieved by gathering relations between several bounds from numerous

publications.

• In DD estimators the knowledge on the transmitted sequence becomes available

at some point if the SNR is high enough. Thus the true bound in this case is

given by CRVB(𝜆𝑖|𝑎), for which a closed form expression could be derived by

showing the equality to MCRVB(𝜆𝑖). This analytically derived true bound will

serve as a suited benchmark in Chapter 5.
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Chapter 4

Channel Parameter Estimation

In the case of CPM signals transmitted in short bursts, several channel parameter

must be estimated and corrected to enable a successful detection of the data symbols.

The parameters to be estimated in the SE channel were introduced in Section 2.3 as

FF 𝛼, CFO 𝜈, CPO 𝜃, TO 𝜏 . The estimation of e.g. time variant, non-frequency flat

channel conditions as well as sample clock rate and phase noise is not subject to this

work.

In this chapter, the ML solution of the parameter vector 𝜆 = [𝛼, 𝜈, 𝜃, 𝜏 ] is sought

�̂� = argmax
𝜆

log
⎛⎝∑︁

𝑎

p𝑟,𝑎 [𝑟, 𝑎′|𝜆]
⎞⎠ (4.1)

= argmax
𝜆

log
⎛⎝∑︁

𝛾

p𝑟′,𝛾

[︁
𝑟′, 𝛾|𝜆

]︁⎞⎠ , (4.2)

where (3.2) was inserted in (3.3) in the first line. In the second line, the data symbols 𝑎

were exchanged with the pseudo symbols 𝛾 and the received signal was exchanged with

the tilted version. Both exchanges are deterministic (given proper trellis initialization)

and reversible. As it was already outlined in the beginning of Chapter 3, the LLF

is not analytically tractable and thus no closed form ML solution can be formulated.

An estimator will be derived and thoroughly discussed that obtains the ML solution

iteratively by means of the EM algorithm.

The main ideas of Sections 4.2 to 4.5 were published in [66], though are described
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4 Channel Parameter Estimation

in much more detail in this thesis. Numerous subsections were added and several

new aspects are highlighted, so that this chapter constitutes a substantial extension

over [66].

4.1 Introduction to the Expectation Maximization

Algorithm

The EM algorithm is a method to obtain parameter estimates, when some random

variables (or an arbitrary subset of these) cannot be observed directly and can be ap-

plied to any probabilistic model in general [67,68]. It does so by providing a framework

for iteratively approaching the ML solution with an often acceptable computational

effort even (and especially) when maximizing the LLF directly is infeasible. A typ-

ical use cases is e.g. the estimation of Gaussian mixture models’ parameters, where

the Baum-Welch algorithm is usually applied, which constitutes the EM solution to

this problem [69]. Another EM application is the parameter estimation of hidden

Markov model (HMM)s and as it was introduced in Section 2.2, the data transmis-

sion with CPM can be interpreted as such. Any HMM is specified by the following

parameters [70]:

• The number of states in the model is given as 𝑁𝑆′ = 𝑄 ·𝑀𝐿−1 in Section 2.2.2.

• The observations per state, which is the sampled and tilted received signal

𝑟′ [𝑛𝐾 : (𝑛+ 1)𝐾 − 1] in the according time slot.

• The hidden state transition probabilities P𝑆𝑛,𝑆𝑛+1
[𝑠, �̇�], which are sufficiently

defined by the CPM trellis. In case a transition is allowed, the corresponding

probability is equal to 1/𝑀 , since the data symbols 𝑎′
𝑛 are i.i.d., otherwise the

transition probability is zero. If a channel code is present in the system, its

information can also be incorporated as explained in Section 2.6.

• The observation probability distribution in a given state, which is related to
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4.1 Introduction to the Expectation Maximization Algorithm

the path metric in (2.51) by

p𝑟′|𝑆′
𝑛

[︁
𝑟′ [𝑛𝐾 : (𝑛+ 1)𝐾 − 1] |𝑠, �̂�

]︁
=
∑︁
�̇�

𝑓𝑀𝑛 (𝑠, �̇�) . (4.3)

It is noted, that the process 𝑟′ is denoted in distributions for the sake of readabil-

ity although only parts of the received vector 𝑟′ are subject to the distribution.

• The initial state probability distribution, which is given as the forward state

occupations of the first stage 𝑓𝐹0 (𝑠) and the backward state occupations 𝑓𝐵𝑁+1(�̇�)

(CZS in the CPM trellis) as specified in Section 2.5.2.

With the underlying model now outlined, the rest of this section gives a general

treatment of the EM algorithm (while having the objective in mind and using the

according notation). The basic steps of the EM algorithm are given as follows. The

bracketed superscript 𝑖 represents the iteration counter and starts with 𝑖 = 1:

1. An initial parameter vector 𝜆(1)
old is chosen. The selection of the initial parameter

set is discussed in detail in Section 4.4.

2. The expectation step (E-Step) is carried out, which generally comprises the

definition of the auxiliary function

𝒬(𝜆, 𝜆(𝑖)
old) =

∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′, 𝜆

(𝑖)
old

]︁
· log

(︁
p𝛾,𝑟′

[︁
𝛾, 𝑟′|𝜆

]︁)︁
. (4.4)

The auxiliary function states the expectation of the log likelihood (LL) of the

complete data (observed data 𝑟′ and the latent data 𝛾) with respect to the

posterior probabilities P𝛾|𝑟′

[︁
𝛾|𝑟′, 𝜆

(𝑖)
old

]︁
of the discrete, latent, random variable

𝛾. The logarithm and the density’s exponential can be reduced, which makes

the auxiliary function in many cases analytically tractable unlike to the LLF

itself (cf. (4.2)). In the E-Step, the posterior probabilities must be computed,

whereas the explicit computation of the auxiliary function is generally not nec-

essary. The expectation step for the channel parameter estimation is discussed

in Section 4.2.
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3. In the maximization step (M-Step), the parameter set �̂� is sought that maxi-

mizes the auxiliary function 𝒬(𝜆, 𝜆(𝑖)
old)

�̂�
(𝑖)
ML = argmax

𝜆
𝒬(𝜆, 𝜆(𝑖)

old) (4.5)

while leaving 𝜆(𝑖)
old fixed to its current value. This step is covered in Section 4.3

regarding the channel parameter estimation. While this M-Step will eventually

lead to the ML solution and is used in this thesis, an alternative M-Step shall

be given for the sake of completeness

�̂�
(𝑖)
MAP = argmax

𝜆
𝒬(𝜆, 𝜆(𝑖)

old) + log p𝜆(𝜆) . (4.6)

When suitable a priori information about the parameters are available, the

MAP estimate can be obtained by this slight modification of the M-Step with

no changes necessary in the E-Step [68]. As it was already discussed in the

beginning of Chapter 3, this thesis focuses on the ML solution and thus only

(4.5) is considered in the remainder with the subscript ML at the estimate �̂�
(𝑖)

being dropped.

4. It is checked whether a convergence criterion was reached. If so, the algorithm

is finished and the final estimate is given as

�̂� = �̂�
(𝑖)
. (4.7)

Possible convergence criteria are e.g. a sufficiently small difference between a

new and old estimate
⃒⃒⃒⃒
�̂�

(𝑖)
𝑘 − �̂�

(𝑖−1)
𝑘

⃒⃒⃒⃒
or reaching a fixed number of iterations

𝑁It. Below in this section, a further (more elegant) criterion is discussed and in

Section 5.2, the EM convergence is investigated for the considered transmission

system.

5. If no convergence was reached in Step 4, the parameter vector for the next

iteration 𝜆(𝑖+1)
old = �̂�

(𝑖)
is updated, 𝑖 is incremented and the algorithm returns to
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4.1 Introduction to the Expectation Maximization Algorithm

step 2.

It is proved e.g. in [69] by applying Jensen’s inequality on the concave nature of

the logarithmic function, that

log ℒ(�̂�(𝑖)) ≥ log ℒ(�̂�(𝑖)
old) +

[︂
𝒬
(︂
�̂�

(𝑖)
, 𝜆

(𝑖)
old

)︂
− 𝒬

(︁
𝜆

(𝑖)
old, 𝜆

(𝑖)
old

)︁]︂
(4.8)

≥ log ℒ(𝜆(𝑖)
old) . (4.9)

The term in square brackets is non-negative because of (4.5) and thus the second line

directly states, that a new estimate �̂� is a better than (or equal to) 𝜆old in the ML

sense. The term on the right hand side of (4.8) is called variational lower bound and

the difference between this bound and the LLF can be shown to be the Kullback-

Leibler divergence of the old and new estimates’ posterior PMF of the latent data (cf.

Appendix C.1)

KL
(︂

P
𝜆

(𝑖)
old

‖ P
�̂�

(𝑖)

)︂
=
∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′, 𝜆old

]︁
log

⎛⎝P𝛾|𝑟′

[︁
𝛾|𝑟′, 𝜆old

]︁
P𝛾|𝑟′

[︁
𝛾|𝑟′, �̂�

]︁
⎞⎠ (4.10)

=
[︂
log ℒ(�̂�(𝑖)) − log ℒ(𝜆(𝑖)

old)
]︂

−
[︂
𝒬
(︂
�̂�

(𝑖)
, 𝜆

(𝑖)
old

)︂
− 𝒬

(︁
𝜆

(𝑖)
old, 𝜆

(𝑖)
old

)︁]︂
.

(4.11)

The probabilities’ notations in the divergence are hereby shortened for the sake of

brevity. All terms in the second line are computable through (2.57) and (4.27). Since

the divergence expresses how similar the posterior distributions of two estimates are,

this metric is an elegant way to determine the progress of each EM iteration. In

Section 5.2, the divergence between the current and the (converged) ML estimate

KL
(︂

P
�̂�

(𝑖) ‖ P𝜆ML

)︂
is used to evaluate the convergence at different SNRs. In Fig. 4-1,

an exemplary, normalized CPO LLF ℒ(𝜃) of a binary, partial response, rectangular

CPM scheme is given. Furthermore the auxiliary functions of the first three EM

iterations are shown as well as the distance between two LLF peaks 𝑑(𝜃), which is

derived in Section 4.4.1.

Several noteworthy points are displayed in this figure:
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Figure 4-1: LLF ℒ(𝜃) of an ℎ = 1/3, 𝑀 = 2, 𝐿 = 3 rectangular CPM scheme. All shown curves are
normalized with respect to the maximum of ℒ(𝜃). Three iterations of auxiliary functions 𝒬(𝜃, 𝜃(𝑖)

old)
are shown. The start value of the EM algorithm is 𝜃0

old = 0 and the ML solution is 𝜃ML = 0.489.
Relevant variables of the second iteration are indicated by the dashed, horizontal lines. The distance
between the LLF’s local and global maximum is given by 𝑑(𝜃) (cf. Section 4.4.1). Furthermore, the
values of the Kullback-Leibler divergence (cf. (4.11)) and entropy (cf. (4.12)) are displayed by the
double-headed arrows.

• The LLF is periodic with the phase state width 𝜓 = 2𝜋/𝑄, which is in line with

the postulation in Section 2.5.2, that the carrier phase must only be locked in

any arbitrary phase state due to the rotational invariance. The periodicity is

only suggested though by the values ℒ(−𝜓/2) = ℒ(+𝜓/2) in this figure, but

would be obvious in a wider CPO range which was discarded for the sake of a

clear graph.

• Depending on the starting point (in case of Fig. 4-1, this is 𝜃(1)
old = 0), the EM

algorithm does not convergence to the global maximum of the LLF but to a

local one. This is a major problem in any kind of gradient ascent technique

such as EM and ways to overcome this will be discussed in Section 4.4.
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• The auxiliary functions have in general lower values than the LLF [68] and the

distance is given by the entropy of the pseudo symbols’ posterior distribution

(cf. Appendix C.2)

H(P
𝜆

(𝑖)
old

) = ℒ
(︁
𝜆

(𝑖)
old

)︁
− 𝒬(𝜆(𝑖)

old, 𝜆
(𝑖)
old) . (4.12)

The probability’s notation in the entropy’s argument is hereby shortened for

the sake of brevity. If the entropy is zero (i.e. the posterior probabilities are of

Dirac delta nature), the auxiliary function of the 𝑖’th iteration are tangential

to the LLF in 𝜆
(𝑖)
old.

• The auxiliary function have a strictly concave shape, which confirms the idea

of the EM algorithm, that it makes the maximization easier than directly for

the LLF.

• The distance 𝑑(𝜃) between the LLF’s local maxima is no coincidence and de-

pends on the waveform parameters as shown below in Section 4.4.1.

The next two sections cover the derivation of the EM algorithm for the channel

parameter estimation using the non-linear CPM. In [40, 41], this was done for the

subset CFO, CPO and TO (without providing explicit maximization steps) in general

linear modulation using a channel code to formulate the expectation step. Whereas

CPM can also be represented as a linear modulation through the pulse amplitude

modulation (PAM) decomposition [71, 72], the derivation of the EM estimator is

managed in the original form and thus this decomposition finds no application in this

thesis. The derivation benefits at some points from the formulation introduced in

(2.25), whereas the non-constant amplitude symbols introduced in the decomposition

would prove to be obstructive in this regard.
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4.2 Expectation Step for Burst Type CPM

For the sake of better readability, the iteration index (𝑖) is dropped in the remainder,

unless it is of direct relevance. As the auxiliary function and its maximization is the

core of this thesis, the derivation will be carried out in appropriate detail. Beginning

with the general formula of the auxiliary function in (4.4), the joint probability is

transformed by Bayes’ law into

p𝛾,𝑟′

[︁
𝛾, 𝑟′|𝜆

]︁
= p𝑟′|𝛾

[︁
𝑟′|𝛾, 𝜆

]︁
· P𝛾

[︁
𝛾|𝜆

]︁
. (4.13)

The probability density of a received sequence vector 𝑟′ can be split into the product of

each pseudo symbol’s density because of the independence of observations in Markov

chains

p𝑟′|𝛾

[︁
𝑟′|𝛾, 𝜆

]︁
=

𝑁−1∏︁
𝑛=0

p𝑟′|𝛾 [𝑟′ [𝑛𝐾 : (𝑛+ 1)𝐾 − 1] |𝛾𝑛, 𝜆] (4.14)

=
𝑁−1∏︁
𝑛=0

1
(𝜋�̂�2

𝑤′)𝐾
· exp

(︃
− 1
�̂�2
𝑤′

𝐾−1∑︁
𝑘=0

|𝑟′(𝑘𝑇0 + 𝑛𝑇 ) − 𝑐𝛾𝑛(𝑘𝑇0, 𝜆)|2
)︃

(4.15)

and the product operator’s argument strongly resembles the path metric expression in

(2.60). Both (2.60) and (4.15) assume i.i.d. noise samples. It is different in the missing

a priori scaling, taking the true value of 𝜆 instead of an estimate and utilizing (2.28)

for a lighter notation. The scaled, rotated and delayed pseudo symbols 𝑐𝛾𝑛(𝑘𝑇0, 𝜆) are

defined in (2.61). The sequence probability is independent from the channel parameter

vector and can be split up by applying Bayes’ law 𝑁 times and considering, that a

state probability in a Markov chain is only dependent on its direct predecessor

P𝛾

[︁
𝛾|𝜆

]︁
= P𝛾

[︁
𝛾
]︁

(4.16)

= P𝛾𝑁−1|𝛾𝑁−2 [𝛾𝑁−1|𝛾𝑁−2] · . . . · P𝛾1|𝛾0 [𝛾1|𝛾0] · P𝛾0 [𝛾0] (4.17)

= 1
𝑄

· 1
𝑀𝑁−𝐿 . (4.18)
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4.2 Expectation Step for Burst Type CPM

In the last line, the probability of 1
𝑄·𝑀 for the first pseudo symbol 𝛾0, 1/𝑀 for every

following trellis transition 𝛾1 to 𝛾𝑁−𝐿 and 1 for the terminating symbols 𝛾𝑁−𝐿+1 to

𝛾𝑁−1 were inserted. The result is basically of combinatoric nature being the inverse

of the number of all possible, (a priori) equally probable sequences. Collecting the

results from (4.13), (4.14) and (4.18) and inserting them in (4.4) gives

𝒬 (𝜆, 𝜆old) = 𝐶0 +
∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′, 𝜆old

]︁
×

𝑁−1∑︁
𝑛=0

log
(︁
p𝑟′|𝛾𝑛

[𝑟′ [𝑛𝐾 : (𝑛+ 1)𝐾 − 1] |𝛾𝑛, 𝜆]
)︁ (4.19)

in which the constant 𝐶0 = − log(𝑄) − (𝑁 − 𝐿) log(𝑀) was pulled out of the sum.

Next, the sum over all pseudo symbol sequences is rewritten as the sums over each

individual element and the order of the nested sums is rearranged

𝒬 (𝜆, 𝜆old) = 𝐶0 +
𝑁−1∑︁
𝑛=0

Γ−1∑︁
𝛾0=0

· · ·
Γ−1∑︁

𝛾𝑁−1=0
P𝛾|𝑟′

[︁
[𝛾0, . . . , 𝛾𝑁−1] |𝑟′, 𝜆old

]︁
×

log
(︁
p𝑟′|𝛾𝑛

[𝑟′ [𝑛𝐾 : (𝑛+ 1)𝐾 − 1] |𝛾𝑛, 𝜆]
)︁
.

(4.20)

By applying Bayes’ law once again and shifting the sum over 𝛾𝑛 and the only depen-

dent term to the front, a part of the above nested sum

Γ−1∑︁
𝛾0=0

· · ·
Γ−1∑︁

𝛾𝑁−1=0
P𝛾|𝑟′

[︁
[𝛾0, . . . , 𝛾𝑁−1] |𝑟′, 𝜆old

]︁

=
Γ−1∑︁
𝛾𝑛=0

P𝛾|𝑟′ [𝛾𝑛|𝑟′, 𝜆old] ×

Γ−1∑︁
𝛾0=0

· · ·
Γ−1∑︁

𝛾𝑛−1=0

Γ−1∑︁
𝛾𝑛+1=0

· · ·
Γ−1∑︁

𝛾𝑁−1=0
P𝛾|𝛾,𝑟′

[︁
[𝛾0, . . . , 𝛾𝑛−1, 𝛾𝑛+1, . . . , 𝛾𝑁−1] |𝛾𝑛, 𝑟′, 𝜆old

]︁
(4.21)

reduces greatly, since the sum of Γ𝑁−1 terms in the last line equals unity. This

step is probably the most crucial one, because besides the complexity reduction,

the necessary posterior probabilities P𝛾|𝑟′ [𝛾𝑛|𝑟′, 𝜆old] are direct results of the CPM
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detector (cf. (2.48)). The auxiliary function can now be expressed as

𝒬 (𝜆, 𝜆old) = 𝐶0 + 𝐶1 +
𝑁−1∑︁
𝑛=0

Γ−1∑︁
𝛾𝑛=0

P𝛾|𝑟′ [𝛾𝑛|𝑟′, 𝜆old] ×
(︃

− 1
�̂�2
𝑤′

𝐾−1∑︁
𝑘=0

|𝑟′(𝑘𝑇0 + 𝑛𝑇 ) − 𝑐𝛾𝑛(𝑘𝑇0, 𝜆)|2
)︃
,

(4.22)

where (4.15) was inserted and 𝐶1 = −𝑁𝐾 log(𝜋�̂�2
𝑤′). Further simplifications follow

from (A.2), so that

𝒬 (𝜆, 𝜆old) = 𝐶0 + 𝐶1 + 𝐶2 − 𝛼2𝐸S𝑁

�̂�0
+

𝑁−1∑︁
𝑛=0

Γ−1∑︁
𝛾𝑛=0

P𝛾|𝑟′ [𝛾𝑛|𝑟′, 𝜆old] · 2 𝑇0

�̂�0
Re

{︃
𝐾−1∑︁
𝑘=0

𝑟′(𝑘𝑇0 + 𝑛𝑇 ) · 𝑐*
𝛾𝑛

(𝑘𝑇0, 𝜆)
}︃

(4.23)

with 𝐶2 ·�̂�0 = −𝐸𝑟′ = −𝑇0
∑︀𝑁−1
𝑛=0

∑︀𝐾−1
𝑘=0 |𝑟′(𝑘𝑇0 + 𝑛𝑇 )|2 being the negative value of the

received signal’s energy. The pseudo symbols’ energy 𝑇0
∑︀𝐾−1
𝑘=0 |𝑐𝛾𝑛(𝑘𝑇0, 𝜆)|2 = 𝛼2𝐸S

is solely influenced by the FF. The estimate of the complex noise power density is

given by the relation �̂�2
𝑤′ = �̂�0𝑇

−1
0 and was previously obtained by (2.45).

The inner sum over 𝛾𝑛 can be drawn inside the real operator, so that an expected,

complex conjugated pseudo symbol (cf. (2.61)) can be expressed as

𝑐*
𝑛 (𝑘𝑇0, 𝜆) =

Γ−1∑︁
𝛾𝑛=0

P𝛾|𝑟′ [𝛾𝑛|𝑟′, 𝜆old] 𝑐*
𝛾𝑛

(𝑘𝑇0, 𝜆) , (4.24)

which in general does not retain the constant amplitude property of the CPM signal.

At this point, the scaled real operator’s argument 𝑇0
∑︀𝐾−1
𝑘=0 𝑟

′(𝑘𝑇0 + 𝑛𝑇 ) · 𝑐*
𝑛 (𝑘𝑇0, 𝜆)

can be interpreted as a zero lag CCF of the 𝑛’th received symbol and its expected

version (cf. (1.11)). To extend this interpretation, all expected pseudo symbols are

strung together and an expected reference signal based on the CPM detector’s soft

knowledge on the actual transmitted data symbols is defined

𝑐(𝑘𝑇0, 𝜆) =
𝑁−1∑︁
𝑛=0

𝑐𝑛(𝑘𝑇0 − 𝑛𝑇, 𝜆) (4.25)
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4.2 Expectation Step for Burst Type CPM

with the time indicator 0 ≤ 𝑘 ≤ 𝑁𝐾−1. The constants are combined in 𝐶Σ = ∑︀2
𝑖=0 𝐶𝑖

and eventually, the auxiliary function for the case of joint FF, CFO, CPO and TO

estimation (𝜆 = [𝛼, 𝜈, 𝜃, 𝜏 ]) in burst type CPM is expressed as

𝒬 (𝜆, 𝜆old) = 𝐶Σ − 𝛼2𝐸S𝑁

�̂�0
+ 2𝑇0

�̂�0
Re

{︃
𝑁𝐾−1∑︁
𝑘=0

𝑟′(𝑘𝑇0) · 𝑐*(𝑘𝑇0, 𝜆)
}︃

(4.26)

= 𝐶Σ − 𝛼2𝐸S𝑁

�̂�0
+ 2𝛼
�̂�0

Re
{︁
𝑒−𝑗𝜃 · 𝜒𝑟′,𝑐(𝜈, 𝜏)

}︁
(4.27)

with

𝜒𝑟′,𝑐(𝜈, 𝜏) = 𝑇0

𝑁𝐾−1∑︁
𝑘=0

𝑟′(𝑘𝑇0)𝑐*(𝑘𝑇0 − 𝜏) · 𝑒−𝑗2𝜋𝜈𝑘𝑇0 (4.28)

stating a zero lag correlation between the received and the expected reference signal.

Hereby 𝑐(𝑘𝑇0) is the non-adjusted (in contrast to (4.25)), strung together reference

signal. In radar terminology, this is called a cross ambiguity function (CAF) and this

terminology is picked up. The CAF is dependent on the CFO 𝜈 and the TO 𝜏 and

an exemplary realization is shown in Fig. 4-2. Its maximal value depends on the

energies of the two input signals and is

max𝜒𝑟′,𝑐(𝜈, 𝜏) =
√︁
𝐸𝑟′𝐸𝑐 = 𝑁𝐸S (4.29)

in the noise free case, if the posterior probabilities are correct. Because of its concave

shape, it can be maximized with appropriate effort with noting that this shape is only

present for fixed posterior probabilities as enforced by the EM algorithm.

Having brought the auxiliary function 𝒬 (𝜆, 𝜆old) to a manageable form, it is noted,

that the expectation step is principally associated with the posterior probabilities’

calculation only. In this case however, an altered version of (4.24) (cf. Section 4.3.1)

is beneficial to compute in order to enable efficient maximization steps in Section

4.3. Thus the expectation step is conceptually associated with it in addition to the

posterior probabilities’ computation. The auxiliary function 𝒬 (𝜆, 𝜆old) itself is not

necessary to be calculated in general and only used to formulate the maximization

step. However, it can be explicitly used to determine the Kullback-Leibler divergence
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Figure 4-2: Exemplary CAF surface plot of a 4/7-Q2RC signal at 10 log10 𝐸S/𝑁0 = 10 dB with the
true values of CFO and TO are zero.. The FF 𝛼 = 1 and CPO 𝜃 = 0 are fixed in this example.

in (4.11).

4.3 Maximization Step for Burst Type CPM

The M-Step (given in (4.5)) maximizes the auxiliary function 𝒬 (𝜆, 𝜆old) with regard

to 𝜆. Because of the auxiliary function’s final form in (4.27), this is not analytically

possible if the maximization shall be carried out in a joint way. Instead the problem is

split up in to three pieces that are mutually decoupled. It is noted, that the constant

𝐶Σ plays no part in the maximization procedure.

4.3.1 Maximization with Regard to CFO and TO

For (4.27) to have the maximal value, the term inside the real operator has to have

the largest value possible. Since the complex exponential function can rotate any

value of the CAF to be purely real, the CAF can be maximized with respect to its
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4.3 Maximization Step for Burst Type CPM

absolute value |𝜒𝑟′,𝑐(𝜈, 𝜏)|. The maximization of the CAF

[𝜈, 𝜏 ] = argmax
𝜈,𝜏

|𝜒𝑟′,𝑐(𝜈, 𝜏)| (4.30)

is an important problem in the field of radar signal processing and many publi-

cations cover efficient computation methods for specific signal shapes, e.g. [73, 74].

Waveform-independent methods are described in e.g. [75] whose suitability depends

on the required estimation range and resolution. The principal idea of maximizing

the CPM CAF for the considered CFO and TO estimation is outlined below with a

suggestion of an efficient implementation following in Section 4.5.2.

A true joint estimation requires a computation of the CAF’s grid points, which

shall be avoided due to the undesired computational effort. Instead a subsequent

estimation of both parameters is considered and the crucial question at hand is the

order in which it shall take place. As introduced in Section 3.3, the CFO and TO

entries in the MFIM are not coupled, which means that each parameter can be esti-

mated individually as long as the other is not too far off. The actual modified Fisher

information (MFI) values MFI(𝜈) and MFI(𝜏) are found in the respective diagonal

elements of the MFIM and tell which one’s estimation is more robust with regard to

the other parameter. The relation (elaborated in Appendix C.3)

𝑇−2MFI(𝜈) ≫ 𝑇 2MFI(𝜏) , (4.31)

of the normalized MFIs suggests estimating the CFO before the TO. While a slight

TO mismatch should not influence the joint LLF too much, the exact opposite is

expected to happen with a mismatched CFO due to its orders of magnitude larger

MFI. Based on (4.31), it can be assumed that the estimation of CFO and TO are

practically independent if carried out in the suggested order.

Since (4.28) is (irrespective of the scaling 𝑇0) the definition of the discrete Fourier

transform (DFT) of the received and reference signals’ product, the cross ambiguity’s

absolute value can be maximized with regard to the CFO by computing this DFT
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and determining the maximizing 𝜈

𝜈 = argmax
𝜈

|𝜒𝑟′,𝑐(𝜈, 𝜏old)| (4.32)

= argmax
𝜈

⃒⃒⃒⃒
⃒𝑇0

𝑁𝐾−1∑︁
𝑘=0

𝑟′(𝑘𝑇0)𝑐*(𝑘𝑇0 − 𝜏old) · 𝑒−𝑗2𝜋𝜈𝑘𝑇0

⃒⃒⃒⃒
⃒ (4.33)

with a possible estimation range of 𝜈 ∈
[︁
−0.5𝑇−1

0 ; +0.5𝑇−1
0

)︁
and a spectral resolution

of (𝑁𝑇 )−1. To allow for the partial maximization, the TO is set to a fixed value 𝜏old

stemming from the last EM iteration or the initialization. The next step of estimating

the TO can be realized by the computing the discrete CCF of the frequency corrected

receive signal and the reference

𝜏 = argmax
𝜏

|𝜒𝑟′,𝑐(𝜈, 𝜏)| (4.34)

= argmax
𝜏

⃒⃒⃒⃒
⃒𝑇0

𝑁𝐾−1∑︁
𝑘=0

𝑟′(𝑘𝑇0)𝑐*(𝑘𝑇0 − 𝜏) · 𝑒−𝑗2𝜋𝜈𝑘𝑇0

⃒⃒⃒⃒
⃒ (4.35)

whereas the principal TO range is 𝜏 ∈ (−𝑁𝑇 ; +𝑁𝑇 ) and the temporal resolution

equals 𝑇0. It is noted, that by splitting up the maximization step in (4.30) into

two parts and not strictly optimizing it jointly, the presented approach falls into the

framework of the expectation conditional maximization (ECM) algorithm [76]. It was

reasoned with (4.31), that the estimates are practically uncoupled if obtained in the

suggested order and thus the presented estimator will still be called EM further on.

The estimation results’ accuracies are limited by the resolution of their corre-

sponding operations. Unless the receiver’s system is highly oversampled, the theoret-

ical limits from Section 3.4 cannot be achieved and thus some form of interpolation

is required if reaching these limits is desired. This and an efficient implementation

suggestion will be covered in Section 4.5.2.
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4.3.2 Maximization with Regard to CPO

The maximization of the auxiliary function with respect to the CPO is decoupled

from the other parameters and can be realized by the closed form expression

𝜃0 = arg {𝜒𝑟′,𝑐(𝜈, 𝜏)} − 2𝜋𝜉𝜏 (4.36)

in which the angle of the CAF includes the phase offset due to the delayed tilting. The

estimate 𝜃0 exactly lets Re
{︁
𝑒−𝑗𝜃0 · 𝜒𝑟′,𝑐(𝜈, 𝜏)

}︁
= |𝜒𝑟′,𝑐(𝜈, 𝜏)|, which is necessary for

(4.27) to be maximal. Equation (4.36) computes an estimate of the fractional CPO

𝜃0 = 𝜃 mod 𝜓, which can be inserted in (2.61) instead of a 𝜃 without any consequences

on the system performance. The integer part 𝑧𝜓 of the CPO 𝜃 is inherently handled

by the trellis initialization as explained in Section 2.5.2.

In a practical implementation, the correction term 2𝜋𝜉𝜏 can be omitted in both

(4.36) and (2.61) since the CAF angle includes the influence of the delayed tilting.

However, this would lead to incorrect CPO estimates, which is avoided if the correc-

tion term remains included.

4.3.3 Maximization with Regard to FF

The help function 𝒬(𝜆, 𝜆old) is quadratic with regard to the FF 𝛼 and due to its

negative curvature it is maximized by setting the partial derivation to zero

𝜕𝒬(𝜆, 𝜆old)
𝜕𝛼

= −2𝛼𝑁𝐸S

�̂�0
+ 2
�̂�0

Re
{︁
𝑒−𝑗𝜃 · 𝜒𝑟′,𝑐(𝜈, 𝜏)

}︁ != 0 (4.37)

and isolating 𝛼. The FF estimate is thus obtained through

�̂� = |𝜒𝑟′,𝑐(𝜈, 𝜏)|
𝑁𝐸S

, (4.38)

where the previously obtained estimates are inserted.
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𝒬(𝜆, 𝜆(𝑖)
old)

𝑟′(𝑘𝑇0)P𝛾|𝑟′

[︁
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Figure 4-3: Block diagram of the EM algorithm showing the expectation step (highlighted by the
green box), the maximization step (highlighted by the red box) and the convergence check (high-
lighted by the blue box). The E-step consists of the calculation of the posterior trellis branch
probabilities P𝛾|𝑟′

[︁
𝛾𝑛|𝑟′, 𝜆

(𝑖)
old

]︁
(cf. (2.48)) and the creation of the expected reference signal’s com-

plex conjugate 𝑐*(𝑘𝑇0 −𝜏 (𝑖)
old). Equations (4.33), (4.35), (4.36), (4.38) and(4.39) comprise the M-step.

Eventually the maximization step according to (4.5) is completed by

�̂� =
[︁
�̂�, 𝜈, 𝜃0, 𝜏

]︁
. (4.39)

Figure 4-3 visualizes the complete EM algorithm outlined in the beginning of Section

4.1 for the considered channel parameter estimation.

4.3.4 Evaluation of a Maximization with Regard to the Noise

Power Density

The auxiliary function was among many other steps simplified by identifying constant

terms that thus are of no relevance in maximizing. In the constants 𝐶1 and 𝐶2, the

complex noise power density �̂�0 is included, which was estimated by (2.45) and was

not subject to optimization in the EM algorithm. But since the term appears in

𝒬 (𝜆, 𝜆old), the question arises whether it should be included. In order to do so, �̂�0 is

switched with 𝑁0 and 𝑁0,old, respectively in (4.27) and the adjusted auxiliary function

is as follows

𝒬 ([𝜆,𝑁0] , [𝜆old, 𝑁0,old]) = 𝐶0 −𝑁𝐾 log
(︂
𝜋
𝑁0

𝑇0

)︂
− 𝐸𝑟′ + 𝛼2𝐸S𝑁

𝑁0

+ 2𝛼
𝑁0

Re
{︁
𝑒−𝑗𝜃 · 𝜒𝑟′,𝑐(𝜈, 𝜏)

}︁
.

(4.40)
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After determining the corresponding partial derivative as

𝜕𝒬 ([𝜆,𝑁0] , [𝜆old, 𝑁0,old])
𝜕𝑁0

= −𝑁𝐾

𝑁0
+ 𝐸𝑟′ + 𝛼2𝐸S𝑁

𝑁2
0

− 2
𝛼Re

{︁
𝑒−𝑗𝜃 · 𝜒𝑟′,𝑐(𝜈, 𝜏)

}︁
𝑁2

0
,

(4.41)

it is set to zero and 𝑁0 is isolated to obtain the estimate

�̂�0 = 𝐸𝑟′ − 2�̂� |𝜒𝑟′,𝑐(𝜈, 𝜏)| + �̂�2𝑁𝐸S

𝑁𝐾
(4.42)

with all previous estimates considered. In order to verify this optimum constituting

a maximum, it is plugged into the second derivative

𝜕2𝒬 ([𝜆,𝑁0] , [𝜆old, 𝑁0,old])
𝜕2𝑁0

⃒⃒⃒⃒
⃒
𝑁0=�̂�0

= − (𝑁𝐾)3

(𝐸𝑟′ − 2�̂� |𝜒𝑟′,𝑐(𝜈, 𝜏)| + �̂�2𝑁𝐸S)2 (4.43)

and confirmed that its sign is negative.

The following case is considered to explain why (4.42) might not be a good method

to estimate the noise power density. A noise free (𝑁0 = 0) transmission with an

arbitrary channel parameter vector 𝜆 is assumed. As the CAF basically having the

structure of a CCF, the maximum value it can take is given by

max {𝜒𝑟′,𝑐(𝜈, 𝜏)} |𝑁0=0 =
√︁
𝐸𝑟′ ·𝑁𝐸S (4.44)

= 𝛼𝑁𝐸S , (4.45)

where the second line follows from the noise free received signal having exactly the

energy 𝛼2𝑁𝐸S. For (4.42) to give the estimate �̂�0 = 0, two conditions must be met.

First, the FF estimate �̂� must equal the true value and second, the maximum value

of (4.45) must be reached in (4.42). For the second condition to be met in a noise free

case, the CFO, CPO and TO estimates must equal the true values. Thus if �̂� ̸= 𝜆,

a noise power density greater than zero is estimated. While it might seem tolerable

to have deviations in the estimates for the moment being in an iterative procedure,

the important difference to consider here is, that the estimate �̂�0 has direct (and

impactful) deteriorating influence on the path metrics in (2.63). The estimation rule
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in (2.45) though is robust with regard to the above problems and delivers estimates

of sufficient accuracy.

4.4 Initialization of the Parameters

The EM algorithm falls under the gradient ascent methods and as such it will con-

verge to the next best (possibly local) maximum of its cost function (the LLF in the

EM case). It will not find any other (possibly global) maximum and therefore a nat-

ural uncertainty about the maximum’s quality will remain (cf. Fig. 4-1). To combat

this uncertainty, a simple approach would be to let the algorithm start at several

parameter points and let each instance converge. This way, the reached maxima can

be compared in terms of their cost function and the best candidate can be chosen. If

the starting points are dense enough, the chance of reaching the global maximum can

be increased. The application of the EM algorithm to the channel parameter estima-

tion suffers from the above elaborated problem and this section covers the selection

of a starting point grid such that its size is as small as possible with the constraint,

that reaching the global maximum of the LLF shall be guaranteed for at least one of

the starting points. For each LLF, the principal minimal distance (PMD) between

two adjacent maxima will be determined and the grid is then designed accordingly.

The obvious caveat about this approach is the naturally increased computational

complexity in contrast to only one starting point, which shall be covered in Section

4.5. In the case of CPO and TO estimation in CPM transmissions, [29] describes the

problem of wrong estimates using a PLL and proposes a similar approach of multiple

loop initializations to tackle it.

In general, if a transmitted pseudo symbol 𝑐𝑘(𝑘𝑇0) is received without channel

manipulations, the LLF ℒ(𝜆) is maximal for 𝜆 = [𝛼 = 1, 𝜈 = 0, 𝜃 = 0, 𝜏 = 0]. The

likelihood function will have further local maxima at some other 𝜆 if this channel

parameter vector constitutes a manipulation of 𝑐𝑘(𝑘𝑇0) such that a different pseudo

symbol 𝑐𝑙(𝑘𝑇0) is mimicked by this. The height difference of maxima in the LLF can

still be large and the global maximum is distinguishable, but since EM converges in
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any maximum, more than one starting point is required to explore all maxima and

find the ML solution.

Since only the phase is modulated in CPM, a manipulation in amplitude will never

mimic a different pseudo symbol and consequently no local maxima are expected in

the FF dimension of ℒ(𝜆). Still, also an FF grid point will be derived in the form of

a coarse feed forward estimate. While this is sufficient for the fading factor, coarse

estimators of CFO (e.g. [22,24]), CPO (e.g. [25] with the adaption to multilevel CPM

from [26]) and TO (e.g. [23]) are not suitable for finding starting points due to their

limited performance especially at lower SNRs and for more complex CPM parameters

as it was shown in [27, 28], where heuristically derived grids were used for the EM

initialization.

In this work, the grid spacing shall be optimized analytically by investigating the

scalar LLFs of the channel parameter vector’ elements. For the sake of analytical

tractability, a noise free transmission of CPM signals with rectangular frequency

pulses is assumed. The phase and frequency pulse in this case is given as (cf. Fig

2-2)

𝑞RE(𝑡) = 𝑡

2𝐿𝑇 (4.46)

𝑔RE(𝑡) = d𝑞RE(𝑡)
d𝑡 = 1

2𝐿𝑇 (4.47)

respecting the temporal restrictions 0 ≤ 𝑡 < 𝐿𝑇 of (2.4). The results of the following

discussion are approximately valid for noisy transmissions and or non-rectangular

pulse shapes in the sense, that a pseudo symbol 𝑐𝑙(𝑘𝑇0) is not exactly but only

approximately mimicked by a manipulated 𝑐𝑘(𝑘𝑇0). The according LLFs still show

local maxima at the points that were derived for the noise free, rectangular case. This

is indirectly confirmed by the simulations presented in Chapter 5.

Due to the rotational invariance (cf. Section 2.5.2), the phase state Ψ′
𝑛 itself does

not have any influence in the CPM detection and the CPO LLF is therefore periodic

with 𝜓 (cf. Fig. 4-1). Hence the actual phase state does not need to be considered

in the following contemplations about how CPO, CFO and TO can change the signal
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Figure 4-4: Exemplary phase trajectories of eight time invariant trellis branches of an arbitrary
phase state for a rectangular waveform with ℎ = 1/2, 𝑀 = 2, 𝐿 = 3, which corresponds to the
rectangular version of the 1/2-B3GA waveform from Table 5.1. The correlative states are from
bottom to top 𝐴′

𝑛 = [0, 0], 𝐴′
𝑛 = [0, 1], 𝐴′

𝑛 = [1, 0] and 𝐴′
𝑛 = [1, 1]. The PMD’s are in this case

𝑑(𝜃) = 𝜋/3, 𝑑(𝜈) = (6(𝑁 − 1)𝑇 )−1 and 𝑑(𝜏) = 𝑇/2 with their general formulas being derived in the
following subsections.

phase in such a way that a further maximum in the LLF arises. Figure 4-4 shows

the phase trajectories arg {𝑐𝛾𝑛(𝑡)} of every pseudo symbol 𝛾𝑛 irrespective of the phase

state Ψ′
𝑛 of an exemplary CPM scheme.

The starting phase of each trajectory (not to be confused with the phase state

Ψ′
𝑛) is given as

𝜑′
𝑛(𝑡 = 𝑛𝑇, 𝑎′) = 4𝜋ℎ

𝐿−1∑︁
𝑙=0

𝑎′
𝑛−𝑙𝑞RE(𝑙𝑇 ) (4.48)

= 2𝜋 ℎ
𝐿

𝐿−1∑︁
𝑙=1

𝑎′
𝑛−𝑙𝑙 (4.49)

and depends on the sum of the 𝐿−1 latest symbols, that are drawn from the discrete

symbol alphabet 𝒜′ (cf. (2.14)). This constitutes exactly the correlative state, which

is why it is called correlative phase value (CPV) henceforth. Their instantaneous

frequencies are calculated as the scaled time derivative of (2.15) in the time slot
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𝑑(𝜃)

(a) Rectangular waveform
with ℎ = 1/2, 𝑀 = 2 and

𝐿 = 3.

𝑑(𝜃)

(b) Rectangular waveform
with ℎ = 2/7, 𝑀 = 2 and

𝐿 = 4.

2𝜋 ℎ
𝐿

𝑑(
𝜃)

(c) Rectangular waveform
with ℎ = 4/7, 𝑀 = 4 and

𝐿 = 2.

Figure 4-5: CPVs of different rectangular waveforms. The three cases correspond to the rectangular
versions of the three waveforms given in Table 5.1. The red dot in Fig. 4-5b represents a phase
occupied by multiple CPVs. The red dashed arrow in Fig. 4-5c represents the second line in (4.57).

𝑛𝑇 ≤ 𝑡 < (𝑛+ 1)𝑇

𝑓i(𝑡) = 1
2𝜋 · d𝜑′

𝑛(𝑡, 𝑎′)
d𝑡 (4.50)

= ℎ

𝐿𝑇

𝐿−1∑︁
𝑙=0

𝑎′
𝑛−𝑙 , (4.51)

where (4.47) was inserted. The frequency is influenced by the sum of the 𝐿 latest

symbols. Several combinations can lead to the same CPV or instantaneous frequency.

4.4.1 CPO Grid Spacing

Referring to Fig. 4-4, several pairs of pseudo symbols sharing the same 𝑓i(𝑡) can be

identified (by their equal slope) and are thus confused when their phase difference is

overcome by an appropriate CPO. Due to the sum’s structure in (4.49), the minimal

distance of two CPV’s happens here e.g. when all memory symbols 𝑎′
𝑛−(𝐿−1), . . . 𝑎

′
𝑛−(2)

coincide and the symbol 𝑎′
𝑛−1 deviates minimally, i.e. by one and thus takes the value

2𝜋 ℎ
𝐿

. In Fig. 4-5, three cases (that correspond to the rectangular versions of Table

5.1’s waveforms) of the positions of the CPV are shown.

In the cases of Fig. 4-5a and 4-5b, 2𝜋 ℎ
𝐿

is also the PMD 𝑑(𝜃). In Fig. 4-5b,

two correlative states 𝐴′
𝑛 = [0, 1, 1] and 𝐴′

𝑛 = [1, 0, 0] cause the same initial pseudo
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symbol phase for 𝛾𝑛 = 3 and 𝛾𝑛 = 4, respectively. This has no influence on the CPO

estimation whatsoever, because their differentiation is handled by the CPM trellis as

it would be in the perfectly synchronized case. The equivalence of CPVs happens for

large enough 𝑀 and 𝐿, if the ratio 𝐿
ℎ

is an integer.

If this quotient is not an integer as in the case of Fig. 4-5c, PMDs smaller than

2𝜋 ℎ
𝐿

can occur if the CPVs exceed one revolution around the unit circle

4𝜋ℎ · 1
2(𝑀 − 1)

[︃
𝐿−1∑︁
𝑙=1

𝑙

𝐿

]︃
> 2𝜋 − 2𝜋 ℎ

𝐿
, (4.52)

𝐿
[︂
(𝑀 − 1)(𝐿− 1) − 2

ℎ

]︂
> 2 , (4.53)

where it is checked whether the largest CPV is closer to the zero angle (≡ 2𝜋) than

2𝜋 ℎ
𝐿

. If (4.53) is fulfilled, the PMD is the difference between the zero angle and the

CPV that lies closest to it. The corresponding pseudo symbol’s number 𝛾𝑛 is given

by

2𝜋 ℎ
𝐿

· 𝛾𝑛
!≈ 2𝜋 , (4.54)

𝛾𝑛 ≈ 𝐿

ℎ
, (4.55)

𝛾𝑛 =
⌊︂
𝐿

ℎ

⌉︂
(4.56)

using the side constraint of 𝛾𝑛 being an integer in the last line. The integer closest to

the ratio 𝐿/ℎ is logically its rounded value. Gathering the above results gives finally

the minimal phase distance at which local maxima in the CPO LLF can occur

𝑑(𝜃) =

⎧⎪⎪⎨⎪⎪⎩
2𝜋 ℎ

𝐿
if (4.58) is TRUE ,⃒⃒⃒

2𝜋
(︁
ℎ
𝐿

·
⌊︁
𝐿
ℎ

⌉︁
− 1

)︁⃒⃒⃒
otherwise ,

(4.57)

with
𝐿

ℎ
∈ Z OR 𝐿

[︂
(𝑀 − 1)(𝐿− 1) − 2

ℎ

]︂
≤ 2 . (4.58)

In Fig. 4-1 and 4-4, the PMD 𝑑(𝜃) is shown for the same exemplary waveform. It
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must be noted, that for exotic parameter choices the reduced PMD
⃒⃒⃒
2𝜋
(︁
ℎ
𝐿

·
⌊︁
𝐿
ℎ

⌉︁
− 1

)︁⃒⃒⃒
might not guarantee two symbols sharing the same frequency and thus the actual

𝑑(𝜃) would fall back to the value of 2𝜋 ℎ
𝐿

. For this to happen, not only (4.58) must be

false, but also a very low modulation index must be combined with very long pulses

and a high level symbol alphabet (cf. Fig. 4-5 for counter examples, where (4.57) is

valid). Such a parameter choice would arguably be rather exotic and at least because

of its enormous trellis complexity of little practical interest. Anyway, (4.57) can still

be used as lower bound in such a case. It is further noted, that for all waveforms

considered in this work (cf. Section 5.1.1), the derived PMD of (4.57) is valid. An

exemplary LLF demonstrating the phase PMD was shown in Fig. 4-1.

4.4.2 CFO Grid Spacing

Pseudo symbols sharing the same initial phase only differ in their instantaneous fre-

quency (cf. (4.51)) and thus could be easily confused by an appropriate frequency

offset. The necessary CFO for this to happen though is usually even larger than a

realistic CFO range (cf. (2.34)). Another effect of a frequency offset is an increasing

phase offset over time and the same contemplations as in the CPO case apply. The

minimal CFO that can create a side maximum in its LLF induces a phase offset 𝑑(𝜃)

in the last symbol of the burst, so that it would equal the first one besides a very

little mismatch in its instantaneous frequency. The PMD therefore calculates as

𝑑(𝜈) = 𝑑(𝜃)
2𝜋(𝑁 − 1)𝑇 . (4.59)

Even though all symbols in between have a mismatch in phase and frequency, this

still leads to a local maximum due to the falsely matching last symbol. In Fig. 4-4,

the PMD is depicted 𝑁 − 1-fold first to make it graphically appear and second to set

the initial thought in the beginning of this subsection in relation to it.
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4.4.3 TO Grid Spacing

For a TO to change one symbol into another to induce a side maximum in its LLF,

the two symbols must have the same 𝑓i(𝑡) as in the CPO case. As can be observed

in Fig. 4-4, the necessary TO decreases with increasing 𝑓i(𝑡). The largest 𝑓i(𝑡) that

two pseudo symbols have in common is given by

𝑓m = ℎ

𝐿𝑇

[︃
(𝑀 − 2) +

𝐿−1∑︁
𝑙=1

(𝑀 − 1)
]︃

(4.60)

= ℎ

𝐿𝑇
[𝐿(𝑀 − 1) − 1] , (4.61)

which occurs when the correlative state contains only 𝑀 − 1 but one 𝑀 − 2 data

symbols. The higher frequency of ℎ
𝑇

(𝑀 − 1) is occupied by only one pseudo symbol

(𝛾𝑛 = Γ − 1) which thus cannot be mistaken by a TO. Two symbols sharing 𝑓m

always (but not necessary exclusively) occur at the two greatest CPV (cf. (4.49)).

As introduced in Section 4.4.1, these two phases values have the distance 2𝜋 ℎ
𝐿

. The

PMD for a TO to induce a side maximum in its LLF is thus given by the ratio of two

adjacent CPV’s distance and the maximal mutual frequency

𝑑(𝜏) = 2𝜋ℎ/𝐿
2𝜋𝑓m

(4.62)

= 𝑇

𝐿(𝑀 − 1) − 1 . (4.63)

Similar to the CPO case, the validity of the derived PMD must be limited if (4.58)

is not valid. For the same kind of exotic parameter choice, it may not be guaranteed,

that the highest possible mutual frequency combined with above used phase distance

leads to the TO PMD or a lower frequency in combination with a reduced CPO PMD.

By the same reasoning as in the CPO subsection, this eventuality is discarded with

reference on the hardly existing practical relevance.
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4.4.4 FF Initialization

As mentioned above, no local maxima are expected in the FF LLF since a change in

the symbol amplitude does not lead to mimicking another valid symbol. In contrast

to the other parameters, the CCF in (2.63) is only scaled by the FF and not further

affected by it. This is why a different approach is chosen here and the FF grid

point is obtained by a coarse estimation in which it is approximately assumed, that

the transmit signal and the additive noise are orthogonal to each other. With the

knowledge of the noise variance from (2.45), the FF 𝛼 is estimated by

�̂� =

⎯⎸⎸⎷[︁ 𝑇0
𝑁𝐾

∑︀𝑁𝐾−1
𝑘=0 |𝑟′(𝑘𝑇0)|2

]︁
− 𝑇0�̂�2

𝑤′

𝐸S/𝐾
(4.64)

in which the nominator calculates the sample energy of the received signal’s transmit

component and the denominator expresses the energy of one transmitted sample.

The estimate �̂� is, under the assumed channel conditions, accurate enough for it to

be serving as a single starting value and thus the grid is simply given as

ℐ(𝛼) = �̂� . (4.65)

The consequences of the orthogonality assumption between the signal and the noise,

which is in general not true, leads to initial FF estimates that are generally too large.

The implications are discussed in Sections 5.4 and 5.5.

4.4.5 Grid For Joint Estimation

The above formulated grid spacings were derived for the case of single parameter

estimation. They resemble the heuristically determined spacings in [26, 27], where

CPO and CFO, respectively were estimated by means of the EM algorithm. In [28], a

joint, EM based estimation of CPO and TO was presented and the (again heuristically

derived) initialization grid has roughly half the grid spacings than above derived. This

is explained by the fact that both CPO and TO can lead to the same pseudo symbol
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confusion (still only strictly valid for rectangular pulse shapes)

𝑐𝑘(𝑡) = 𝑒𝑗𝑑(𝜃)𝑐𝑙(𝑡) (4.66)

= 𝑐𝑙(𝑡+ 𝑑(𝜏)) , 𝑛𝑇 − 𝑑(𝜏) ≤ 𝑡 < (𝑛+ 1)𝑇 − 𝑑(𝜏) (4.67)

= 𝑒𝑗(1−𝑥)𝑑(𝜃)𝑐𝑙(𝑡+ 𝑥𝑑(𝜏)) , 𝑛𝑇 − 𝑑(𝜏) ≤ 𝑡 < (𝑛+ 1)𝑇 − 𝑥𝑑(𝜏) , 0 ≤ 𝑥 ≤ 1 .

(4.68)

Referring to Fig. 4-4, both the CPO 𝑑(𝜃) and the TO 𝑑(𝜏) or appropriate combina-

tions change 𝑐𝑙=5(𝑡) to 𝑐𝑘=6(𝑡). It is noted, that the TO produces an exact replica

only in the given time slot and a linear extension of the phase trajectory outside of

it. Accordingly, if a pseudo symbol is shifted to the right, the time slot is given as

𝑛𝑇 + 𝑥𝑑(𝜏) ≤ 𝑡 < (𝑛 + 1)𝑇 . In these cases, combinations of CPO and TO lead to

similar effects in which the causative offset cannot be reliably determined with the

grid spacing derived above. To account for this ambiguity, the CPO and TO grid

spacing for joint estimation is halved, which is expected to generate reliable results

similar to [28].

In Fig. 4-6, the CPO and TO grid points are added to the LLF contour and also

the LLF gradients (i.e. the direction in which the EM algorithm will converge) from

these points are shown. The two points marked by dashed lines would be the starting

points if the joint estimation would be treated as a scalar one. It can be seen that

the EM converges from both of them to local maxima and thus is not able to find

the ML solution. The eight points marked by solid lines indicate the adjusted grid

points as reasoned above. The ML solution is reached by at least one of them.

The number of grid points in the cases of CFO, CPO, TO is principally determined

as the parameter ranges’ (cf. (2.34), Section 4.4.1 and (2.36), respectively) quotient

with the corresponding minimal distances. The ranges are Δ(𝜆2 = 𝜈) = 0.042𝑇−1,

Δ(𝜆3 = 𝜃) = 𝜓, Δ(𝜆4 = 𝜏) = 𝑇 and thus the number of grid points is given as
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Figure 4-6: Contour plot of an exemplary LLF ℒ ([𝛼 = 1, 𝜈 = 0, 𝜃, 𝜏 ]) with fixed values for the FF
and CFO at 10 log10 𝐸S/𝑁0 = 10 dB. Its normalized values are written into the contours and the
colors indicate the height (ascending from blue to red). The waveform parameters are ℎ = 1/3,
𝑀 = 2, 𝐿 = 2 and 𝑔(𝑡) has a rectangular form. The true values for the CPO and TO are 𝜃 = 0 and
𝜏 = 7𝑇/16 with the LLF’s global maximum (marked by a red cross) lying in the direct vicinity to
that point. Two distinctive local maxima can be found at both bottom corners of the plot at around
(±𝜓/2,−3𝑇/8). The dashed circles indicate the CPO and TO starting point grid strictly according
to the LLF analysis in Sections 4.4.1 and 4.4.3. The adjusted grid suggested in the Section 4.4.5 is
marked by solid circles. This graph is taken from the author’s work in [66].

following

𝑁I(𝛼) = 1 , (4.69)

𝑁I(𝜈) =
⌈︃

Δ(𝜈)
𝑑(𝜈)

⌉︃
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⌈︁

0.042𝐿(𝑁−1)
ℎ

⌉︁
if (4.58) is TRUE ,⌈︂

0.042(𝑁−1)⃒⃒(︀
ℎ
𝐿

·
⌊︀

𝐿
ℎ

⌉︀
−1
)︀⃒⃒⌉︂ otherwise ,

(4.70)

𝑁I(𝜃) = 2
⌈︃

Δ(𝜃)
𝑑(𝜃)

⌉︃
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
⌈︁
𝐿
𝑃

⌉︁
if (4.58) is TRUE ,

2
⌈︂⃒⃒⃒
𝑃
𝐿

·
⌊︁
𝐿
ℎ

⌉︁
−𝑄

⃒⃒⃒−1
⌉︂

otherwise ,
(4.71)

𝑁I(𝜏) = 2
⌈︃

Δ(𝜏)
𝑑(𝜏)

⌉︃
= 2 (𝐿(𝑀 − 1) − 1) . (4.72)

The grids for CFO, CPO and TO are defined with points distributed uniformly in
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𝜆𝑖/Δ(𝜆𝑖)
−0.5 0 0.5

(a) Distribution grid for 𝑁I(𝜆𝑖) = 3

𝜆𝑖/Δ(𝜆𝑖)
−0.5 0 0.5

(b) Distribution grid for 𝑁I(𝜆𝑖) = 4

Figure 4-7: Distribution of grid points according to (4.73). One odd and one even number case is
displayed.

the respective estimation range Δ(𝜆𝑖), (2 ≤ 𝑖 ≤ 4)

ℐ(𝜆𝑖) =
{︃

±
(︃

Δ(𝜆𝑖)
2 − Δ(𝜆𝑖)

2𝑁I(𝜆𝑖)

)︃
,±

(︃
Δ(𝜆𝑖)

2 − 3Δ(𝜆𝑖)
2𝑁I(𝜆𝑖)

)︃
, . . .

}︃
(4.73)

with 𝜆𝑖 specifying the 𝑖’th element of the parameter vector 𝜆. Figure 4-7 displays such

a one-dimensional grid. By this choice, the possibility of a non-reachable maximum

is erased. The oscillator quality, discussed in Section 2.3.2 has a direct influence on

the cardinality of the CFO grid.

Eventually the complete four-dimensional initialization grid with a cardinality of

|ℐ(𝜆)| = 𝑁I(𝜆) = ∏︀4
𝑖=1 𝑁I(𝜆𝑖) is given by the Cartesian product of the individual

one-dimensional grids

ℐ(𝜆) = {ℐ(𝛼) × ℐ(𝜈) × ℐ(𝜃) × ℐ(𝜏)} . (4.74)

As emphasized in the beginning of this section, the contemplations above are

based on a rectangular pulse shape in a noise free channel. For different choices,

the effect of pseudo symbol confusion in the CPM detector is not exactly given, but

approximately. No adjustments to the grid were found to be necessary in these cases.

4.4.6 Grid Reduction Approaches

If the EM algorithm is carried out with each and every starting point from ℐ(𝜆) until

convergence, this will pose a large computational burden on the estimator. Section

4.5.1 will elaborate how this is avoided. But even if not every starting point must be
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processed until convergence, reducing the cardinality of ℐ(𝜆) will significantly reduce

the overall computational complexity of the algorithm (cf. Section 5.9). Generally,

this can be done by restricting the parameter ranges. If the external transmission

conditions are not to be changed, this could be done by using pilot symbols. In

contrast on relying solely on pilot sequences to obtain final estimates, the idea here

in general is to obtain a reduced set of starting points that are accurate enough to

guarantee the EM algorithm converging to the global maximum of the joint LLF.

For the following contemplations it is assumed, that the pilot symbols are pro-

cessed by an unbiased and CRVB efficient estimator, that produces normally dis-

tributed estimation error (EE)s with zero mean. This distribution’s variance is thus

given by

𝜎2
𝜆𝑖

= CRVB(𝜆𝑖|𝑎) (4.75)

with the CRVBs all given in Chapter 3. Now the confidence intervals of the distribu-

tion above can be used to assess the parameter range that a certain number of pilot

symbols is able to provide

ΔPilot(𝜆𝑖) = 2𝑛CI

√︁
CRVB(𝜆𝑖|𝑎) (4.76)

with 𝑛CI as the confidence interval level.

Figure 4-8 visualizes how the use of pilot symbols can reduce the parameter range

with a certainty of 99.7 %, i.e. 𝑛CI = 3 in bursts of length 𝑁 = 42. At the intersection

with the corresponding horizontal lines, a gain in form of less necessary grid points

is reached. It might seem counterintuitive, that so many pilot symbols are required

to reduce especially the CFO range, since a solid CFO estimation should be possible

from it. The reason for this is, that rare estimates outside the confidence interval do

not heavily influence the variance of such an estimator.

The actual gains from using pilots are clearly dependent on the waveform parame-

ters, since they influence both the number of necessary grid points and the estimation

performance. For the considered cases, pilots are most effective in reducing the num-

ber of CPO grid points and least so for the CFO. At the point, where all but one
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Figure 4-8: Reduction of the parameter range by pilot symbols according to (4.76) for CFO, CPO
and TO. The waveform parameters are ℎ = 2/7, 𝑀 = 2, 𝐿 = 4 and a pulse of Gaussian shape,
which corresponds to one of the simulation waveforms given in 5.1. The curves show the reduction
at 𝛼2𝐸S/𝑁0 = 10 and 𝑁 = 42 for the 3-𝜎𝜆

𝑖
confidence interval 99.7 %. The vertical axis shows

the ratio of reduced parameter range and the PMD and thus rounding up the curve values to the
nearest integer gives the number of necessary grid points (as exemplary indicated by black arrows).
Spending five pilot symbols would mean, that two and four grid points are necessary for the CPO
and TO estimation in the scalar case and twice as much in the vector case (cf. Section 4.4.5). This
setup has a grid cardinality of |ℐ(𝜆)| = 456 and by spending 𝑁P = 12 pilot symbols, the grid size
would reduce by a factor of 4.

grid point are eliminated by the pilot, the estimates themselves can probably be used

to correct the signal without further refinement of a DD method. Of course the in-

terval’s confidence can be chosen less tight and some estimates that are not the ML

solution can be accepted. At this point it is also noted, that independent from the

use of pilot symbols a less dense grid can be chosen anytime some wrong estimates

can be tolerated, which will result in an bit error floor. A possible scenario, where

an estimator induces error floor causes not too much of an impact, is when an outer

channel code is used that aggregates several bursts or in a fading environment. Fur-

thermore, the pilot symbols cannot only be used to reduce the number of grid points,

but can be directly incorporated in the EM algorithm due to their known posterior
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probabilities. However, in this work grid reduction measures are not taken. Over-

all the above provided assessment of the use of pilot symbols can come in handy in

system designing.

According to this contemplation and comparing the MSEEs of some NDA esti-

mators investigated in [26–28], it is concluded, that they provide a 3-𝜎𝜆𝑖
confidence

interval that at best comes close for simple parameter choices (e.g. binary, 𝑄 and 𝐿

not too large) but never undercut the parameter range Δ(𝜆𝑖). For that reason they

are discarded as candidates for providing a reduced set grid points. Furthermore they

are in general not robust to the other channel parameters, which will deteriorate their

performance compared to the scalar cases investigated in above references. The FF

estimator from (4.64) is robust in that regard, since it is energy based and thus not

affected by CFO, CPO and TO.

4.5 Implementation Aspects

4.5.1 Algorithmic Synchronization Description

This section will gather all previous results and insights and formulate an algorithm

whose goal it is to obtain the ML estimate of the channel parameter vector 𝜆. As a side

constraint, the computational complexity shall not be unnecessarily high. In Section

5.9, the complexity will be assessed quantitatively. In Algorithm 1, the procedure of

estimating �̂� is given. In the first loop (lines 1-3), for every grid point the respective

LL’s are computed by the forward algorithm of the CPM detector (cf. (2.57)). At

this point it seems intuitive, that the grid point with the highest LL is chosen as

starting point for the EM algorithm. Unfortunately, a grid point nearer to the true 𝜆

can have a lower LL than another point, e.g. when the other point lies in a high local

maximum as can be seen in Fig. 4-6. For this reason more than the most likely grid

point must be considered in the second loop (lines 5-19) where the EM is carried out.

The selection of starting points for the second loop happens in line 4, where the

computation of the LL does not need to be repeated as all necessary values were
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Algorithm 1 Calculation of the ML estimate �̂� by means of the EM algorithm.
Input: 𝑟′(𝑘𝑇0)
Output: �̂�

1: for all 𝜆𝑖 ∈ ℐ do
2: ℒ(𝜆𝑖) # Eq. (2.57)
3: end for
4: ℐreduced = ⋃︀

𝜏𝑘∈ℐ𝜏

argmax
𝜆

ℒ(𝜆 = [∙, ∙, ∙, 𝜏𝑘])
# Select best 𝜆 for
every 𝜏𝑘 of TO grid

5: for all 𝜆𝑖 ∈ ℐreduced do
6: 𝜆old = 𝜆𝑖
7: 𝑖𝑡 = 1
8: while 𝑖𝑡 ≤ 𝑁It + 1 do
9: if 𝑖𝑡 ≤ 𝑁It then

10: E-Step CPM: P𝛾|𝑟′ [𝛾𝑛|𝑟′, 𝜆old] # Eq. (2.48), (4.24)
11: else if 𝑖𝑡 == 𝑁IT + 1 then
12: E-Step SCCPM: P𝛾|𝑟′ [𝛾𝑛|𝑟′, 𝜆old] # Eq. (2.48), (4.24), Sec. 2.6
13: end if
14: M-Step: �̂�𝑖 = argmax

𝜆
𝒬(𝜆, 𝜆old) # Sec. 4.3

15: 𝜆old = �̂�𝑖
16: 𝑖𝑡 = 𝑖𝑡+ 1
17: end while
18: 𝑙𝑖 = ℒ(�̂�𝑖) # Eq. (2.57)
19: end for
20: �̂� = argmax

�̂�𝑖

𝑙𝑖

already computed. For every TO in ℐ𝜏 , the most likely CFO and CPO grid points are

chosen. In doing so, the starting points have the best possible TO estimate available

so far. As it was deduced in Section 4.3.1, it is crucial, that the auxiliary function

is optimized with regard to the CFO before determining the TO. This sequential

optimization is supported by the above described choice of starting points, so the

CFO estimation can be made based on an adequately estimated TO.

A further way to determine only one appropriate starting point would be to com-

pute the marginal LLFs

ℒ(𝜆𝑘) =
∑︁

𝜆𝑙,𝜆𝑚,𝜆𝑛

ℒ
(︁[︁
𝜆𝑘, 𝜆𝑙, 𝜆𝑚, 𝜆𝑛

]︁)︁
(4.77)

for which sample values are already available through lines 1-3. The obtained marginal
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LLFs are too inaccurate though and significantly more grid points’ LL values would

have to be computed and thus this approach is discarded.

The number of EM iterations carried out determines the accuracy of the end

result as well as the computational complexity, so a criterion to stop at some point

must be defined (cf. line 8). This can be e.g. the Kullback-Leibler divergence of the

posterior probabilities converges to zero or a fixed number of iteration 𝑁It is reached.

In general, a fixed number of iterations is advantageous with regard to a guaranteed

latency of the estimator. The suited number of 𝑁It = 2 will be determined in Section

5.2.

While it increases the computational complexity, the SC CPM setup decreases the

number of symbol errors if the detector already provides reasonably reliable symbol

estimates. EM as a decision directed estimator naturally gains from this and provides

better estimates. As a compromise, the SC CPM setup is only applied in a third and

last iteration, cf. lines 9 to 13. The effect of utilizing the channel code will also be

investigated in Section 5.2. The maximization step is followed by the preparation of

the new iteration. In line 20 the best estimate according to its LL is determined.

If the system’s code rate is equal to one, the method of estimating the channel

parameter vector will be called vector expectation maxmization (VEM). In this case

line 12 achieves the same result as line 10 because the (de)interleaver and the chan-

nel code in the SC CPM setup are just shuffling the LLRs, but not changing their

values. For code rates smaller than one, the estimation will be referred to as serially

concatenated vector expectation maximization (SCVEM).

4.5.2 Efficient Implementation

The most computationally complex parts in Algorithm 1 are the calculation of the

path metrics, the expectation and the maximization steps for which some details are

elaborated next.

91



4 Channel Parameter Estimation

Calculation of Path Metric

The evaluation of (2.63) to compute the path metrics is an intensive task, but can be

optimized. For easier comprehension, (2.63) is recalled and slightly reformulated

𝑓𝑀𝑛 (𝑠, �̇�) ∝ exp
(︃

2�̂�
�̂�2
𝑤′

Re
{︃
𝑒−𝑗(𝜃0+2𝜋𝜉𝜏)

𝐾−1∑︁
𝑘=0

𝑒−𝑗2𝜋𝜈(𝑘𝑇0+𝑛𝑇 )𝑟′(𝑘𝑇0 + 𝑛𝑇 ) · 𝑐*
𝛾𝑛

(𝑘𝑇0 − 𝜏)
}︃)︃

(4.78)

to assist the following contemplations.

First of all, the delay 𝜏 is applying to the reference pseudo symbols, so the resam-

pling operation on the already sampled received signal 𝑟′(𝑘𝑇0) is saved. Furthermore,

no potentially manipulated noise statistics due to resampling in the received signal

must be taken into account. The shifted references 𝑐*
𝛾𝑛

(𝑘𝑇0 − 𝜏) can be computed

offline and stored for every TO grid point and generally in the desired TO granularity

(cf. Section 4.5.2). The CFO compensation is better suited to be applied to the

received signal, where it is a one-time operation on each sample opposed to when

applying it to any possible pseudo symbol at any possible position 𝑛𝑇 . The term

respecting the pseudo symbols’ energy is dropped since it only must be considered in

last line of algorithm and thus is of no significant relevance with regard to complexity

contemplations. The result of the sum is just a complex number, so the phase rota-

tion of 𝜃0 + 2𝜋𝜉𝜏 is of negligible computational complexity. Every required CPO in

the grid can be applied to this particular complex number, i.e. the recomputation of

the sum is not necessary in these cases. The same applies for the phase states of the

CPM trellis, which are just phase shifts of the zero phase state Ψ′ = 0. After taking

the real part, the scaling due to the noise power and the FF is just one more real

multiplication.

MAP Detection and LL Computation

The path metrics are needed for carrying out the MAP detection and thus the infer-

ence of the posterior probabilities used in the E-Step (lines 10 and 12). The forward

part of it is used to obtain the LLs of each grid point (line 2) and the final decision on
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the ML estimate (line 18). Both rely on the trellis representation of the CPM signal

and profit from the efficient and accurate implementation presented in [77], where the

processing is shifted to the logarithmic domain. For the sake of simplicity, further

treatment is omitted here.

Expectation Step

The E-Step (line 10 as well as line 12) consists of two parts. First, the pseudo symbols’

posterior probabilities have to calculated, which is done by the BCJR algorithm and

second, the weighted reference symbols are calculated in (4.24). The time shifted

reference symbols 𝑐*(𝑘𝑇0 − 𝜏old) can be reused (if not stored offline anyway) in (4.33)

since the old estimate 𝜏old from the last iteration is applied here as well as for the

path metric calculation. In (4.35), again a realization of delayed reference symbols

are required whose preparation counts towards the E-Step for the conceptual reasons

mentioned in Section 4.2. For the sake of saving computational power, 𝑐*(𝑘𝑇0 − 𝜏old)

is reused once more. The resulting estimate hence must be treated as the difference

𝜏 − 𝜏old.

Maximization Step

Four maximization operations comprise the M-Step in line 14. While two (CPO and

FF) are closed form solutions and need no further consideration in terms of saving

computational power, the estimation for the CFO and TO in (4.32) and (4.34) are

basically grid searches and are subject to optimization. As mentioned in Section

4.3.1, the necessary operations are a DFT and a CCF, which can be both efficiently

implemented by the use of the fast Fourier transform (FFT). The accuracy of both

estimates (also given in that section) is lower bounded by the oversampling factor 𝐾

and in the case of CFO the number of channel symbols 𝑁 . Both can be improved if

the FFT operations are zero padded and thus the result’s resolution is improved by

ideal interpolation. This approach has the advantage over other techniques (such as

e.g. parabolic interpolation) because it does not introduce an interpolation bias [78].

The DFT and CCF are extensive grid searches, i.e. they give results in a much
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larger range than the parameter ranges (Δ(𝜈)𝑇 ≪ 𝐾 and Δ(𝜏)/𝑇 ≪ 2𝑁 for normal-

ized CFO and TO, respectively). Spectral zoom methods as e.g. [79, 80] can remedy

the introduced complexity when extensive grid searches need a high resolution. The

number of frequency (or time) bins determines the complexity and depends on the

desired estimation range and resolution. As for the range, it is sufficient to search in

the width of one LLF maximum, i.e. the PMDs 𝑑(𝜈) and 𝑑(𝜏), as other maxima can-

not be reached anyways due to getting stuck in local ones. In general, the resolution

shall ensure that the introduced quantization error does not have any negative effect

on the detector performance. In this work, the resolutions 𝜀−1(𝜈) and 𝜀−1(𝜏) shall be

set such that the quantization error is one order of magnitude smaller than the value

of the corresponding CRVBs ((3.19) and (3.21))

𝜀2(∙)
12

!= 0.1 · MCRVB(∙) . (4.79)

The bin spacing is therefore given as

𝜀(∙) =
√︃

6
5 · MCRVB(∙) (4.80)

and the number of required bins expresses as

𝑁B(∙) =
⌈︃
𝑑(∙)
𝜀(∙)

⌉︃
. (4.81)

The spacing 𝜀 is directly proportional to
√︁
𝐸S/𝑁0

−1
, i.e. in noisy channel conditions,

a high resolution (i.e. a low 𝜀) is unnecessary. The number of bins 𝑁B(∙) is even at

a high SNR only in the double-digit range. The actual set of bins ℬ(∙), that needs

to be computed are eventually defined as

ℬ(𝜈) =
{︃

±
(︃
𝑑(𝜈)

2 − 𝑑(𝜈)
2𝑁B(𝜈)

)︃
,±

(︃
𝑑(𝜈)

2 − 3𝑑(𝜈)
2𝑁B(𝜈)

)︃
, . . .

}︃
+ 𝜈old , (4.82)

ℬ(𝜏) =
{︃

±
(︃
𝑑(𝜏)

2 − 𝑑(𝜏)
2𝑁B(𝜏)

)︃
,±

(︃
𝑑(𝜏)

2 − 3𝑑(𝜏)
2𝑁B(𝜏)

)︃
, . . .

}︃
. (4.83)
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As explained in Section 4.5.2, the CFO estimate is searched around its actual value

(hence the offset 𝜈old) and for the TO only a delta is determined.

Due to the value of 𝑁B(∙), the Goertzel algorithm [80] is a good choice for an

efficient implementation of these two maximization steps. In the case of CFO, the

Goertzel algorithm calculates the required frequency bins of the DFT in (4.33). For

computing the TO, it shall act as a temporal zoom method, as suggested by [28], and

for that, the spectral representation of the CCF is computed as

𝑋𝑟′,𝑐 = FFT {𝑟′}ZP ⊙ FFT {�̄�}*
ZP (4.84)

with ⊙ denoting the element wise vector multiplication. It is hereby assumed, that

the FFTs are scaled such that the energies of the signal and its spectrum are equal.

The subscript ZP to the FFT indicates zero padding to ensure linearity (in contrast

to circularity) of the correlation and hence 𝑋𝑟′,𝑐 is of length 𝑁ZP. Computing an

inverse discrete Fourier transform (IDFT) of 𝑋 would give the time domain CAF and

can be realized by [81]

𝜒
𝑟′,𝑐

= 𝑗

{︃
1√
𝑁ZP

DFT
{︁
𝑗𝑋*

𝑟′,𝑐

}︁}︃*

. (4.85)

The scaling with the inverse square root of the signal’s length is to ensure energy

equivalence between frequency and time domain. While for the optimization of the

auxiliary function with regard to the CFO 𝜈 and the TO 𝜏 , only the position of the

maximum is relevant, the actual value is important for evaluating e.g. the Kullback-

Leibler divergence as discussed in Section 4.1. Instead of computing (4.85) completely,

once more the Goertzel algorithm can be used to evaluate the DFT at the desired

time bins. The operation 𝑗{∙}* is just a switching of real and imaginary part of the

respective complex numbers and thus of negligible computational effort.
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4.6 Key Points of the Chapter

• The EM algorithm was introduced and its relation to statistical measures such

as the Kullback-Leibler divergence and entropy was elaborated. Principal prop-

erties such as the iterative improvement of the estimate in the ML sense and

the problem of local maxima in the LLF were described.

• For the considered case of FF, CPO, CFO and TO estimation in CPM bursts,

the auxiliary function 𝒬 (𝜆, 𝜆old) was derived. The expectation step is comprised

by the computation of the posterior probabilities P𝛾|𝑟′ [𝛾𝑛|𝑟′, 𝜆old] realized by the

CPM MAP detector and the expected reference signal 𝑐*(𝑘𝑇0 − 𝜏old). For the

maximization step, efficient expressions were derived. In the coupled case of

CFO and TO, the estimations are based on some form of interpolation and a

suitable order was proposed, whereas FF and CPO are uncoupled from all other

parameters and are obtainable through closed form solutions.

• A closed form estimation expression of the complex noise power density 𝑁0 was

derived, but its investigation led to its discard.

• To counter EM’s inherent problem of convergence to the nearest maximum in

the LLF, which is possibly local, a grid of starting points ℐ (𝜆) was derived. The

grid shall be as sparse as possible but still provide at least one starting point

from which the global LLF maximum is reached. For this, the scalar LLFs of

CPO, CFO and TO were analyzed and the minimal distance between two peaks

in it were determined.

• For the arising computational burden of a large grid of starting points, a rule of

thumb based on the CRVB was introduced which describes quantitatively the

grid reduction possibilities by the use of pilot symbols.

• An algorithmic description in the form of pseudo code was introduced and

possible efficient realization methods for the most computationally complex

algorithm parts were suggested.
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Chapter 5

Evaluation of the Proposed

Estimation Algorithm

In this chapter, many aspects of the estimation approach defined in Algorithm 1 from

Section 4.5.1 are examined. The VEM’s convergence behavior and the effect of the

channel decoder’s deployment in the SCVEM setup are investigated in Section 5.2.

To recall, the VEM estimator does not take a channel code into account, i.e. the

code rate in such a system would be one, while the SCVEM setup utilizes the channel

code. Both EM based methods are compared to the pilot based estimator from

[38]. Despite its contrary nature (blind versus pilot based estimation), it constitutes

the best suited comparison for the methods proposed in this work. Its estimation

performance is reported to be optimal, whereas blind methods from the literature

fall short of providing estimates of appropriate quality as shown in [26–28]. Features

and restrictions of the pilot based method (from now on called vector pilot based

(VPB)) are described in Section 5.3. To lay the groundwork for the following section,

first the three considered waveforms are introduced in Section 5.1.1. To ensure a fair

comparison in Sections 5.4 to 5.8 between a blind and a pilot based estimator the

treatment of the efficiency penalty due to the pilot overhead must be resolved. Several

approaches are considered depending on the respective evaluation and discussed in

Section 5.1.2.

Significant parts of the Sections 5.3 to 5.7, 5.8.1 and 5.9 were published in [66],
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Pilot Symbols Code Symbols Termination 
Symbols

NP NC NCZS

N = NP + NC + NCZS

Figure 5-1: General symbol allocation in each burst. The sum of pilot, code and termination symbols
equals the burst length in symbols.

largely for different waveform and system parameters. The discussion of the results

is generally more detailed in this thesis.

5.1 Simulation Parameters

5.1.1 Parameters of the Considered Waveforms

In order to receive a comprehensive impression about the performance of the channel

parameter estimator of Chapter 4, several different CPM waveforms shall be subject

to examination. Table 5.1 lists the parameters for three different CPM waveforms.

The first part of the table includes a listing of the CPM specific parameters known

from Section 2.1.1: ℎ, 𝑀 , 𝐿 and 𝑔(𝑡). These are (in that order) the waveform’s

namesakes. Care has been taken to take a variety of sensible configurations into ac-

count, such as different modulation indices, binary and quaternary symbol alphabets,

different partial response frequency pulses with two different pulse types. Hereby,

1/2-B3GA constitutes a GMSK-like modulation, 2/7-B4GA represents a waveform

with a deeply coupled trellis and 4/7-Q2RC is a very efficient scheme in terms of

occupied bandwidth and Euclidean distance of its symbols [14]. Due to this variety,

the universal applicability of the presented estimator shall be emphasized. Figure 5-1

visualizes the symbol allocation in a burst.

The number of termination symbols depends on the pulse lengths 𝑁CZS = 𝐿− 1,

so it differs for each case. The number of available code symbols 𝑁C = 𝑁−𝑁CZS −𝑁S
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Table 5.1: Parameters of all simulated CPM waveform schemes. The burst duration and the two-sided signal bandwidth 2𝐵99% are relevant for the
channel assumptions in Sec. 2.3.1.

Waveform parameters 1/2-B3GA 2/7-B4GA 4/7-Q2RC

Modulation index ℎ 1/2 2/7 4/7
Modulation order 𝑀 2 (Binary) 2 (Binary) 4 (Quaternary)

Pulse length 𝐿 3 (Partial resp.) 4 (Partial resp.) 2 (Partial resp.)

Frequency pulse type 𝑔(𝑡)
GAussian

(𝐵GA𝑇 = 1/2)
GAussian

(𝐵GA𝑇 = 1/3)
Raised Cosine

Termination symbols 𝑁CZS = 𝐿− 1 2 3 1

Symbol rate 𝑇−1 42 kBaud
Sampling rate 𝑇−1

0 336 kHz
Oversampling factor 𝐾 = 𝑇/𝑇0 8

Burst duration 𝑇Burst = 𝑁𝑇 1 ms
Normalized frequency pulse energy 𝐺2(0)𝑇 0.1755 0.1421 0.1875

Normalized one-sided signal bandwidth 𝐵99 %𝑇 0.51 0.35 1.16
Physical signal bandwidth 2𝐵99 % 42.8 kHz 29.4 kHz 97.4 kHz

Modulation efficiency 𝜂M 0.98 bit Hz−1 s−1 1.43 bit Hz−1 s−1 0.86 bit Hz−1 s−1
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5 Evaluation of the Proposed Estimation Algorithm

is furthermore dependent on the number of pilot symbols 𝑁P, which is 0 in case of

the blind EM based methods. The number of binary code symbol 𝑛C = 𝑁C log2(𝑀)

and binary information symbols 𝑘C relate through the code rate 0 < 𝑅 = 𝑘C/𝑛C ≤ 1.

Physical properties are specified in the lower part with the symbol and sample

rate being fixed throughout every case despite the resulting different bandwidths for

the three waveforms. A fair comparison between the waveforms is not a primary goal,

but can still be ensured when desired by equalizing the spectral efficiencies, which

will be discussed in Section 5.1.2. The sampling interval 𝑇0 is chosen such that the

computer simulations meet the requirements of white noise in the receiver as outlined

in Section 2.4. The one-sided signal bandwidth 𝐵99 % depends on the first and second

table section, respectively and is together with the burst duration 𝑇Burst essential for

the channel characteristic contemplations in Section 2.3.1. The normalized frequency

pulse energy 𝐺2(0)𝑇 influences the performance in the TO estimation and analytical

expressions to calculate them are given in [17] and [65].

5.1.2 Setups for the Different Comparisons

• Behavior of EM based methods: In Section 5.2, solely the blind VEM and

SCVEM estimators are investigated and no effort to ensure a fair comparison

between blind and pilot based approaches is necessary. To keep it simple, a

frame length of 𝑁 = 32 is considered with uncoded transmission in the VEM

(𝑅VEM = 1) and coded transmission in the SCVEM case (𝑅SCVEM = 0.5). It

is noted, that since the VEM estimator does not utilize any channel decoder

information, the estimation performance is generally independent of the code

rate.

• Equal performance limits: For Sections 5.4 and 5.5, the number of transmitted

symbols per burst is again set to 𝑁 = 32. Since the pilot based (VPB) estimator

needs a pilot sequence length dividable by four and [38] proposes a length of

at least 32 symbols, this burst length seems to be a natural choice. The VEM

setups are again uncoded (𝑅VEM = 1), whereas the SCVEM setups are coded
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5.1 Simulation Parameters

(𝑅SCVEM = 0.5) with the number of information bits being rounded if necessary.

In case of the VPB estimator, the whole burst consists of pilot symbols (𝑁P =

𝑁) and it is noted, that its SE is therefore zero. This choice is reasoned with the

goal to compare the methods at the same theoretical performance limit for which

the same amount of symbols must be available to the respective estimator. The

focus in these sections lies solely on the estimation performance, so the SNR

is measured with regard to the available symbol energy 𝐸S regardless of the

information content of these symbols.

• Equal code rates: To measure the effective throughput in Section 5.6, both the

SCVEM and the VPB system shall benefit from a similar as possible code, so

the code rate is set for both cases to 𝑅SCVEM = 𝑅VPB = 0.5. Every burst

contains a total of 𝑁 = 42 symbols, for which 𝑁P = 12 symbols are spent

on the pilot in the VPB system. The burst length is now chosen according to

the system considerations summarized in Table 5.1 and the VPB pilot length

shall be a sensible trade off between estimation capabilities and information

content of the burst. The differences in spectral efficiency (the SCVEM system

transmits more information than the VPB) do not need to be compensated,

since they are integral to the effective throughput.

• Equal energy per binary information symbol: In Section 5.7 and 5.8, the number

of transmitted symbols per burst 𝑁 = 42 and pilot symbol for the VPB system

𝑁P = 12 are again chosen according to the reasoning of the last bullet point.

The SNR metric is now set to 𝐸b/𝑁0 instead of 𝐸S/𝑁0 as above, so a comparison

is fair in the sense of energy consumption per information. Due to different

modulations and and such different symbol alphabets, signal bandwidths and

termination constraints, the spectral efficiency will differ. To account for this,

first the modulation efficiency defined as

𝜂M = log2(𝑀)
2𝐵99 %𝑇

(5.1)
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5 Evaluation of the Proposed Estimation Algorithm

Table 5.2: System parameters for every waveform and estimator combination for uncoded transmis-
sion in Sections 5.7 and 5.8. The number of code and information are equal due to the fixed code
rate 𝑅VEM = 𝑅VPB = 1. For the VPB estimator, the number of pilot symbols is set to 𝑁P = 12.
The resulting SEs are given for each case.

𝑅 = 1
1/2-B3GA 2/7-B4GA 4/7-Q2RC

VEM VPB VEM VPB VEM VPB

𝑘C = 𝑛C 40 28 39 27 82 58
𝜂S in [bit s−1 Hz−1] 0.93 0.65 1.33 0.92 0.84 0.59

is introduced and given for each waveform in the last line of Table 5.1. It does

not depend on potential coding or termination sequences and gives a baseline

of the respective waveform’s efficiency. The spectral efficiency in each case

calculates as

𝜂S = 𝜂M · 𝑅 ·𝑁C

𝑁
(5.2)

and naturally becomes smaller the more pilot symbols are spent. For uncoded

transmission (𝑅VEM = 𝑅VPB = 1), Table 5.2 lists the different SEs. The relation

between the energies of one CPM symbol and one binary information symbol

is given by

𝐸S = 𝐸b · 2𝐵99 %𝑇 · 𝜂S (5.3)

= 𝐸b · log2(𝑀) · 𝑅 ·𝑁C

𝑁
. (5.4)

• Equal spectral efficiencies: By fixing 𝜂S = 𝜂0 = 0.5 bit, a fair comparison is

made possible throughout waveforms and estimation methods by transmitting

the same amount of information with the same amount of energy per time and

occupied bandwidth. The formula for the number of information bits in each

case is obtained by reordering (5.2) and respecting, that 𝑘C must be an integer

𝑘C =
⌊︃
𝜂0

𝜂M
·𝑁 · log2(𝑀)

⌉︃
(5.5)
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Table 5.3: System parameters for every waveform and estimator combination for the fixed SE value
𝜂S = 0.5 bit in Sections 5.7 and 5.8. The number of code and information bits and their corresponding
code rate are given. For the VPB estimator, the number of pilot symbols is set to 𝑁P = 12.

𝜂S = 0.5 bit
1/2-B3GA 2/7-B4GA 4/7-Q2RC

SCVEM VPB SCVEM VPB SCVEM VPB

𝑛C 40 28 39 27 82 58
𝑘C 21 15 49

𝑅 = 𝑘C/𝑛C 0.53 0.75 0.38 0.56 0.60 0.84

with log2(𝑀) = 𝑛C/𝑁C. Table 5.3 gives the according code parameters for

every waveform and estimator that are used in Sections 5.7 and 5.8.

Since the number of code and information symbols differs in each setup, a flexible

channel code is required, which is realized by shortened Polar codes [52, 56]. The

code is constructed with the Gaussian approximation method according to [82] and a

systematic encoding procedure is chosen [54]. The decoder from [55] is used in which

four internal iterations are carried out. To keep a unified block diagram the encoder

and decoder block in Fig. 2-1 and 2-8 can be regarded as scramblers that still work

according to the systematic Polar encoder rule even if no redundancy bits are added

in the uncoded case. In all simulations, that use the SF channel model from Section

2.3.2, an adjusted SNR metric 𝛼2𝐸S/𝑁0 (respectively 𝛼2𝐸b/𝑁0) is used, where the

symbol (respectively information bit) energy is scaled by the power decrease caused by

the FF 𝛼. By this, the fading effect is diminished and a more meaningful assessment

of the estimator performances is realized. It is noted, that several SNR definitions are

used in the next sections that are apparent in each context. The linguistic term SNR

will be used for every definition throughout these sections for the sake of readability.
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Figure 5-2: Kullback-Leibler divergence of posterior probabilities after the 𝑖’th EM iteration and the
ML posterior distribution for several SNR points over the number of iterations for the 1/2-B3GA
VEM system (𝑁 = 32). No use of potential channel decoder information was made.

5.2 Convergence Behavior and Influence of Chan-

nel Code

Section 4.1 gave an introduction on the progress that is made by each EM iteration

in terms of similarity of the CPM symbols’ posterior distribution compared to the

distribution given the ML solution �̂� of the channel parameter vector in Section 4.1. It

was expressed as the Kullback-Leibler divergence KL
(︂

P
�̂�

(𝑖) ‖ P𝜆ML

)︂
and it was stated,

that the EM algorithm has converged and can be terminated with the optimal result

when this divergence approaches zero. Figure 5-2 shows the quantity over the number

of iterations for several SNR points when no use is made of the channel code and the

corresponding decoder information.

For any SNR the divergence will eventually approach zero when the ML solution

is found. In the above case, even the curves corresponding to very low SNR fall to

about 10−17 (which is basically zero considering the floating point arithmetic and its

numerical noise) after several dozen EM iterations. At a higher SNR, the algorithm
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5.2 Convergence Behavior and Influence of Channel Code

converges faster with only about ten iterations.

Although the Kullback-Leibler divergence might be a very elegant metric to de-

scribe the progress in each iteration and the EM algorithm’s complete convergence,

its analysis is not directly helpful for determining a practical convergence threshold

for two reasons. First, it is left open whether a divergence of zero is necessary to

obtain reasonable estimates in the problem at hand. Second, the number of neces-

sary iterations in order to approach a zero divergence is highly SNR dependent, but

a fixed number for any operating point is usually desired in practical systems for a

predetermined latency. A more direct approach is displayed in Fig. 5-3 which shows

the ratio of the estimator’s MSEE to the corresponding theoretical limit over an SNR

range of 0 dB to 20 dB. It is recalled from (3.18) to (3.21) that the theoretical limits

are indirect proportional to the SNR, so a constant line in the plots represents a

decline both in the MSEE and MCRVB.

Figures 5-3a to 5-3d show the quotient before and after the first, after the second

and after the tenth EM iteration. Before the first iteration is carried out, the current

estimates are obtained by selecting the best grid value (cf. Section 4.4). The accu-

racy of these estimates does not increase with higher SNR values due to the fixed

grid resolution, which is observable in the exponential curves in Fig. 5-3a. The FF

estimate is not obtained by a grid evaluation but by the estimation rule (4.64) and its

MSEE is able to approach its lower bound at around 17 dB. After one execution of

E- and M-Step (Fig. 5-3b), the results already look promising with the FF MSEE be-

ing efficient over the complete displayed SNR range and all other estimates touching

their respective bound at 10 dB. While the CPO does not suffer from a degradation

afterwards, the slightly coupled parameters CFO and TO need one further iteration

to hold the bound even at high SNRs (Fig. 5-3c). Further iterations do not bring

any considerable improvement as Fig. 5-3d shows. For the results of this section, the

total number of EM iterations is set to 𝑁It = 2 (cf. Algorithm 1).

As introduced in Section 4.5.1, the SC CPM setup can be used to incorporate the

channel decoder information into the EM algorithm. This estimator setup is referred

to as SCVEM. In order to evaluate the effect of the channel decoder, the mutual
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(a) Normalized MSEEs before the first EM
iteration.
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(b) Normalized MSEEs after the first EM
iteration.
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(c) Normalized MSEEs after the second EM
iteration.
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(d) Normalized MSEEs after the tenth EM
iteration.

Figure 5-3: Normalized MSEEs of all channel parameters after the 𝑖’th EM iteration for the 1/2-
B3GA VEM system (𝑁 = 32).

information between the transmitted signal and the synchronized signal is measured

for the three cases of VEM, SCVEM and the Genie-aided (G-A) parameters estimates.

For this, the formula from [83] is used

I [𝐿A; 𝑣] = 1
2 ·

1∑︁
𝑣=0

∫︁ +∞

−∞
p𝐿|𝑣(𝜉|𝑣) · log2

2 · p𝐿|𝑣(𝜉|𝑣)
p𝐿|𝑣(𝜉|0) + p𝐿|𝑣(𝜉| + 1)𝑑𝜉 . (5.6)

The mutual information takes values between 0 ≤ I [𝐿A; 𝑣] ≤ 1 bit and is measured

by evaluations of the binary symbols’ LLR histograms. The process 𝐿A denotes the

random variable of the vector LA(𝑣) (LLRs fed into the channel decoder, cf. Section
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Figure 5-4: Mutual information I [𝐿A; 𝑣] of encoded bits and corresponding LLRs. The SCVEM,
VEM and G-A (�̂� = 𝜆, �̂�2

𝑤′ = 𝜎2
𝑤′) are compared for each of the three waveforms. The bursts length

is 𝑁 = 32.

2.6) and 𝑣 the random variable of encoded bits 𝑣 (cf. Fig. 2-1). Figure 5-4 shows

the mutual information for every waveform and the three above described parameter

estimation methods. It is noted, that the channel decoder information in the SCVEM

setup was only used to obtain better parameter estimates and not to improve the

detector performance by providing a priori information to it after the correction of the

channel influence. This is done in order to only assess the improvement in estimation

performance.

The displayed mutual information serves as a measurement of how reliable the

CPM symbols estimates produced by the CPM MAP detector are. For every case it

approaches its maximum 1 bit for high SNRs. In general, the information in the G-A

case is higher than in the SCVEM setup than in the VEM setup, which is an intuitive

result. It is expected, that every parameter estimate has become reliable when the

mutual information of the estimator curves approaches 1 bit. This is the case at

around 6 dB, 7 dB and 11 dB for the 1/2-B3GA, 4/7-Q2RC and 2/7-B4GA SCVEM
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5 Evaluation of the Proposed Estimation Algorithm

systems, respectively. This statement is also confirmed by the results presented in

Section 5.5. It can be observed that each curve approaches the G-A case a few

decibels earlier, so that it can be concluded that the SCVEM estimator is operating

very near to the optimum. In case of the uncoded VEM systems, the 1 bit mark is

approached about 0.5 dB to 1 dB later. At this point, it is mentioned, that a mutual

information very close to 1 bit can still entail significant error rates [83]. So contrary

to the above drawn conclusion, these systems will generally only be able to provide

reliable channel parameter estimates at higher SNRs. The explicit reasons for this

are outlined in Section 5.5.

5.3 Notes on the VBP Estimator

For the comparison with the VPB estimator, a few remarks must be made:

• FF estimation: Since [38] does not include a method for estimating the FF, the

following estimation rule is introduced for the VPB method (which proved to

be optimal in the simulations)

�̂� = |Λ1(𝜈)| + |Λ2(𝜈)|
𝑁P𝐸S

. (5.7)

To avoid confusion with this thesis’s notation, the functions 𝜆𝑖 from [38] were

capitalized to Λ𝑖. These two functions basically constitute a cross correlation

of the received signal and the known pilot sequence of two mutually exclusive

signal segments.

• CFO estimation: Due to the nature of the pilot in [38] being a preamble, the

estimated and corrected CFO introduces a phase offset at the beginning of the

data block, if the estimate is not exactly correct. So, depending on the system’s

noise power, a smaller or larger phase offset will definitely be present at the start

of the information block. To combat this effect, [38] suggests the use of a DD

phase and timing tracking loop and shows, that the residual CFO estimation

error has virtually no effect on error rates with this approach. In order to
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estimate the CFO in a symmetric observation window, the time reference in

the VPB system is set tot 𝑡0 = 𝑁P𝑇/2 (cf. Section 3.3). It is noted, that [38] is

able to estimate a CFO range of 𝜈𝑇 = [−0.5,+0.5] which would induce a high

computational complexity in the EM methods due to the need of many CFO

grid points. Though a range this large is arguably not of practical relevance

(cf. Section 2.3.2).

• TO estimation: Contrary to the statement in [38], that a timing offset in the

range of [−0.5𝑇,+0.5𝑇 ] (also cf. (2.36)) can be estimated by a closed form

expression, this is not necessarily the case for arbitrary CPM parameters, as

it is shown in Appendix D.1. The maximum TO that can theoretically be

estimated by the VPB method is

⃒⃒⃒⃒
𝜏max

𝑇

⃒⃒⃒⃒
= 1

2ℎ(𝑀 − 1) (5.8)

which can be lower than 0.5 for waveforms with high modulation indices and

orders. In practice, the range should be even lower because of noise influences

and the range [−0.75𝜏max,+0.75𝜏max] is set accordingly including headroom. It

is noted, that in [38], the simulated CPM parameters provide enough headroom

to be able to estimate the range in (2.36), which is probably the cause why

this problem was not addressed in this work. Figure 5-6 visualizes the effect

explained above and waiving the TO range reduction would lead to a useless

4/7-Q2RC VPB curve in Fig. 5-11. The VEM method is not limited with

regard to the TO range, but profits of the lower range by having potentially

less grid points and thus a lower computational complexity.

5.4 Mean Estimation Value

This section analyzes the MEV of the estimators in the SF channel of noteworthy

cases. Both VPB and SCVEM follow ML oriented approaches and thus should be

unbiased which is the case if the MEV asymptotically equals the true parameter, i.e.
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of SCVEM and VPB, respectively, in the SF channel for
the 4/7-Q2RC waveform (𝑁 = 32) at 10 log10

(︀
𝛼2𝐸S/𝑁0

)︀
= 15 dB compared to the bisector line

corresponding to an unbiased estimator. This graph is taken from the author’s work in [66].

E
[︁
𝜆𝑖
]︁

− 𝜆𝑖 = 0. The cases of the CPO 𝜃 and TO 𝜏 for the 4/7Q2RC waveform are

shown in Fig. 5-5 and 5-6.

The VPB estimator provides unbiased estimates over the whole CPO range 𝜃 ∈

[−𝜋,+𝜋) without any signs of unfavorable values. In case of the SCVEM estimator

it becomes clear, that the MEV is periodic with the phase state angle 𝜓. This means

that only the fine offset within a phase state is estimated and not the actual CPO

that occurred in the channel. For the reason outlined in Section 2.5.2, this is an

intended behavior and for that the SCVEM is still considered to provide unbiased

CPO estimates. It is noted, that both estimators are prone to handling CPO values in

the vicinity of their corresponding range edges in a wrong way, i.e. that −𝜋 is handled

as +𝜋 or −𝜓/2 is handled as +𝜓/2, respectively. This is completely unproblematic

in terms of synchronizing because of the equality 𝑒−𝑗𝜋 = 𝑒+𝑗𝜋 and CPM’s rotational

invariance, respectively. For the displaying of the results in this section, the estimates

were mapped in the correct interval to avoid meaningless ripples in the curves. The
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same applies to Figure 5-10 in Section 5.5.

The TO MEV of the SCVEM estimator matches perfectly with the angle bisector

line that indicates unbiasedness. The VPB estimator’s curve also gives (almost)

unbiased estimates within the range stated in (5.8). Through the magnifications Fig.

5-6, it can be observed, that the estimates are a little skewed towards zero. This effect

is very small though and no effects in error rates are expected by this. Outside of that

range, the estimates are shifted precisely by ±2𝜏max due to the estimator’s ambiguity

explained in Appendix D.1. It is emphasized that in contrast to the CPO case, this

cannot be considered as intentional behavior, since there lies no natural periodicity

or the like in time offsets. To avoid the resulting large deteriorations in estimation

performance, the TO range in these cases is limited as mentioned in Section 5.3.

An, at the first glance, odd behavior can be observed when comparing the expected

FF error of both EM methods. Figure 5-7 shows the errors over the SNR for the 4/7-

Q2RC waveform, where the behavior is most pronounced.

The VEM produces positively biased (i.e. estimated too large) FF estimates for
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low SNRs. The reason for this is twofold. First, the coarse estimator (4.64) is recalled,

which was reasoned to produce too large estimates. Second, the noise power estimator

(2.45) produces too low estimates at low SNRs which are then used in the initial FF

estimation in (4.64), which produces even larger estimates as a consequence. The

VEM cannot fully correct this, because the symbol estimates from the CPM detector

are not reliable enough. At around 6 dB, the estimator becomes unbiased. This

behavior is clearly visible in Fig. 5-7.

The SCVEM estimator principally suffers from the same behavior, since it is

identical to the VEM up to the second last EM iteration. The unreliable CPM

detector estimates are fed to the channel decoder in the last iteration, which produces

(even more) unreliable estimates on the binary information symbols (cf. Section 2.6).

This detrimental a priori information leads to even less reliable detector estimates

which are used to compute the reference symbols in (4.24). The resulting expected

reference signal is the input to the CAF in (4.28) which will be of lower power because

of the less matching reference. Eventually the CAF is used in (4.38) to obtain the FF
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estimate in the E-Step, which will be estimated too low consequently. This behavior

is visible in the SCVEM curve being set down from the VEM with estimates even

being negatively biased until the SNR becomes high enough to clear up this specific

FF estimator characteristic.

5.5 Mean Square Estimation Error

The CRVB discussed in Chapter 3 is arguably the most important benchmark for

unbiased estimators, to which the comparison candidates belong in general with the

exemptions discussed in last section. This section shows subsequently the MSEE over

the SNR of the VEM, SCVEM (𝑅SCVEM = 0.5) and VPB (𝑁P = 𝑁) estimators for

the four considered channel parameters FF 𝛼, CFO 𝜈, CPO 𝜃 and TO 𝜏 in Figs.

5-8 to 5-11, respectively. By only transmitting pilot symbols in the VPB system,

the candidates can be compared to the same theoretical limits. It is noted, that

this results in a spectral efficiency of zero for the VPB system though. Splitting the

available symbols into pilot and data, this estimator would still perform optimal, but

at a higher (i.e. worse) MSEE level. Several blind feedforward estimators were

compared to the VEM method in [26–28] and were found to provide an inferior

performance. For the sake of the following plots’ clarity, these additional curves

are left out and it is referred to these references.

All candidates produce efficient FF estimates in the most relevant mid and high

SNR regions and thus are all suited for estimation. This is because of the robust (with

regard to the CPM detector’s symbol estimates) estimation rule in the maximization

step. Two observation can be made that are valid for all waveforms but are most

prominent in the more complex 4/7-Q2RC case. First, the VPB estimates’ MSEE

bends up a bit at high SNRs which is due to the simplifying design assumptions

in [38] that introduce systematic errors in the estimation of every channel parameter.

These are relatively small (so that the effect is only visible in the high SNR region)

and are thus not expected to have any considerable impact on bit or frame error

rates, which is confirmed by the error rate simulations in Section 5.7. In contrast,
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mators in the SF channel for three waveforms (𝑁 = 32) compared to the theoretical limit.

this does not happen for the EM based methods, since no simplifications were made

in the algorithms derivation and the interpolations were computed optimally (cf.

Section 4.5.2). For the second observation, Fig. 5-7 is recalled where the expected

estimation errors for VEM and SCVEM are shown. Small positive biases (≤ 5 · 10−2)

seem to have a positive influence on the MSEE. This case occurs for VEM between

2.5 dB and 6.0 dB and for SCVEM between 0.5 dB and 1.6 dB. These are roughly

the ranges, where the estimates’ MSEE lies under the CRVB, which is possible for

biased estimators. Larger or negative biases causes a clear deterioration in terms of

MSEE. Why small positive biases are advantageous is explained with the underlying

Rayleigh distribution of the FF, which produces large realizations at a low probability.

By shifting the estimates moderately towards this distribution’s tail does seemingly

decrease the MSEE.

Figure 5-9 shows the normalized frequency MSEE. Even the VPB estimator is

not able to produce reliable results at extremely low SNRs, which originates from a

natural uncertainty regarding the LLF’s global maximum even when a pilot sequence
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estimators in the SF channel for three waveforms (𝑁 = 32) compared to the theoretical limit.

is used. While the estimates are reliably from fairly low SNRs on, the EM estimates

are so only from the point on when the CPM detector produces reliable symbol

estimates. This behavior is rather typical for DD methods and is not a problem in

general, since accurate estimates become available when the error rate of the system

falls and thus its overall performance is of use. This reasoning is also valid for the

CPO and TO cases. The gap between the SCVEM and VEM curves is intuitively

explained by the better detector performance when a priori information in form of

the channel decoder output is fed back to the detector. Especially in the case of

4/7-Q2RC, the estimation performance seems to gain from the decoder deployment.

The reason for this will become apparent in a moment.

In the case of CPO, the MSEEs are given with respect to 𝜃 for the VPB method

and to 𝜃0 for the EM based estimators. The insights derived from this plot are similar

to the CFO case and do not need restating.

In [14], it is reported, that CPM configurations with large index denominator 𝑄

are hard to synchronize in phase because of the similar phase states. Is is noted, that
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waveforms (𝑁 = 32) compared to the theoretical limit.

the proposed estimator does not suffer from this as it provides reliable estimates even

for 𝑄 = 7.

Due to the TO CRVB being dependent on the waveform parameters as well as on

the actual transmitted symbol sequence, Fig. 5-11 looks more crowded than the plots

before. In [64], an optimal pilot sequence 𝑎opt was derived, which is also used here

with the respective bounds denoted accordingly. The other parameters’ estimation is

independent on the transmitted sequence with the bounds of a random sequence 𝑎 and

the optimized sequence 𝑎opt being equal. The insights though stay the same with the

VPB curves bending up at high SNRs and the VEM and SCVEM curves approaching

the CRVB as soon as the CPM detector is able to provide reliable estimates. One

exemption constitutes the VEM estimator in case of the 4/7-Q2RC waveform, which

suffers from high MSEEs even at high SNRs. This stems from TOs near to 𝜏 = ±𝑇/2

being estimated as 𝜏 = ∓𝑇/2 occurring with a probability of about 10−4. The signal

is basically locked in the correct symbol clock, but with an offset of ±1 symbol. This
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estimators in the SF channel for three waveforms (𝑁 = 32) compared to the theoretical limits. Each
waveform has its own CRVB depending its waveform parameters and furthermore the optimized
pilot sequence from [38] 𝑎opt gives a lower bound than a random sequence (denoted here by 𝑎).

problem was also reported in [28] and resolved by utilizing the syndrome of the burst’s

code word. In this work, this is inherently covered by the SCVEM estimator, which

utilizes the soft information of the channel decoder. For soft (i.e. large 𝐿) phase

pulses, the TO estimation is expected to be hard due to similar phase trajectories

to other non-delayed symbol sequences. This is reflected in the higher theoretical

bound for e.g. 2/7-B4GA in Fig. 5-11, but the proposed estimator shows no general

weaknesses with regard to such pulses.

Lastly, it is referred back to Fig. 5-4 in Section 5.2. The information of the

VEM synchronized signal has a distance of about 0.5 dB to 1 dB to the SCVEM case.

This distance is observable in Figs. 5-9 to 5-11 only for the 2/7-B4GA waveform. In

the 1/2-B3GA and especially 4/7-Q2RC case, the TO estimates profit greatly from

the decoder information for the reason stated above. As stated in Chapter 3, the

joint estimation of all parameters is principally mutually decoupled by the use of a

symmetric observation window. This implies, that each parameter can be estimated
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correctly even if the others are faulty estimated, though this only true for small

estimation errors. In consequence, the VEM system’s inadequate TO estimates lead

to considerable performance degradations in the CPO and for the case of 4/7-Q2RC

even the CFO case.

The results presented in this section shall show what is generally feasible with

the considered estimators. If a system’s operating point is e.g. at a rather low SNR

point, computational effort could potentially be saved, if the CRVB at a high SNR

point does not need to be reached.

5.6 Effective Throughput

The effective throughput is defined as the number of binary information symbols

that are transmitted in a correctly decoded burst. Moreover, it is normalized by the

occupied bandwidth and the burst duration, which gives the formal definition

𝒯eff = (1 − ℰFrame) · 𝑘C

2𝐵99 %𝑇Burst
(5.9)

= (1 − ℰFrame) · 𝜂S . (5.10)

with the second line following from 𝑇Burst = 𝑁𝑇 , 𝑘C = log2(𝑀) · 𝑅 · 𝑁C, (5.1) and

(5.2). The probability of the event of a wrongly decoded frame ℰFrame is obtained as

the frame error rate (FER) through Monte-Carlo simulations. An upper bound for

the throughput can be obtained by applying Shannon’s sphere packing bound [84]

to the equation above. This bound constitutes the performance in terms of frame

errors of an optimal spherical code for a continuous input channel, which itself is a

lower bound to the frame error rate (FER). Figure 5-12 shows the normalized effective

throughput 𝒯eff for both waveforms and estimation systems for the fixed code rate

of 𝑅VEM = 𝑅VPB = 0.5 as stated in Section 5.1.2 and the respective upper bounds

obtained through the sphere packing bound.

All throughput curves approach their spectral efficiency according to (5.10) as

an asymptote at high SNRs, i.e. when the FER approaches zero. The VPB has
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Figure 5-12: Normalized effective Throughput 𝒯eff with code rates being fixed to 𝑅SCVEM = 𝑅VPB =
0.5 over 𝛼2𝐸b/𝑁0 in the SF channel for the three waveforms (𝑁 = 42). The throughput, when the
sphere packing bound is applied, upper bounds the performance. The respective corresponding
sphere bound curve can be deducted by the asymptotic values.

generally a lower probability of a wrongly decoded frame throughout all SNR regions

because of their known pilot structure compared to the EM setups. Though it can

only convert this advantage into a slightly higher throughput for very low SNRs and

thus its practical relevance is limited. The asymptotes, i.e. the spectral efficiencies

of the systems are as expected found to be significantly higher in the SCVEM cases.

Comparing the curves to their respective upper bound, it can be observed, that the

VPB performs at about 1 dB closer to the theoretic limit for 2/7-B4GA and 4/7-

Q2RC whereas both variants show the same gap to the limit in 1/2-B3GA. From this

can be derived, that especially for the last waveform, the SCVEM seems to work very

well.

119



5 Evaluation of the Proposed Estimation Algorithm

0 2 4 6 8 10 12 14 1610−5

10−4

10−3

10−2

10−1

10 log10 (𝛼2𝐸b/𝑁0) in [dB]

U
nc

od
ed

B
ER

4/7-Q2RC G-A
4/7-Q2RC VEM
4/7-Q2RC VPB
1/2-B3GA G-A
1/2-B3GA VEM
1/2-B3GA VPB
2/7-B4GA G-A
2/7-B4GA VEM
2/7-B4GA VPB

Figure 5-13: Uncoded bit error rate (BER) of the G-A (�̂� = 𝜆, �̂�2
𝑤′ = 𝜎2

𝑤′), VEM and VPB systems
over 𝛼2𝐸b/𝑁0 in the SF channel for the three waveforms (𝑁 = 42).

5.7 Error Rates

This section highlights the error rate performance of the different systems and com-

pares them to the G-A, perfectly synchronized system (basically a transmission over

the AWGN channel). The two application cases of short bursts are taken up from

the introduction. First, the FH system with short hopping times which is typical for

e.g. tactical networks. It is assumed, that such a system will deploy an outer channel

code aggregating multiple bursts instead of encoding each burst individually due to

the better error correction capabilities of longer codes. For this case, Fig. 5-13 shows

the bit error rate of uncoded (𝑅 = 1) systems. It is noted, that without the CPM

trellis termination method introduced in Section 2.5.2, the systems would suffer from

a considerable error floor for this metric [49].

For the binary waveforms, the VEM performs near (gap smaller than 1 dB) the

G-A system. The BER curve of the quaternary waveform suffers from an error floor

at about 5 · 10−4, which can be traced back to the wrong TO estimates discussed in
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Section 5.5. The VPB system naturally suffers from spending 𝑁P = 12 pilot symbols

by introducing an SNR gap of 10 log10(𝑁/(𝑁 −𝑁P)) = 1.5 dB. The difference to the

total gap to the G-A system of around 2 dB stems from inaccuracies of the channel

parameter estimates. Probably for this reason, [38] proposes the use of 32 or even 64

pilot symbols. Due to the total burst length of 𝑁 = 42 symbols, such a high amount

of pilot symbols is not justifiable and hence the more balanced number of 𝑁P = 12

was selected.

The second application of short bursts discussed in the introduction is the use

in sensor networks. Usually only little data shall be transmitted sporadically, which

practically excludes the use of an outer channel code due to latency constraints and

thus this application is considered to encode each burst individually. Since corrupt

bursts have to be retransmitted in such a scenario and thus the BER is of less rel-

evance, Figure 5-14 shows the coded FER for the G-A, SCVEM and VPB systems.

To ensure a fair comparison in this case, each setup shall have the same spectral

efficiency 𝜂S = 𝜂0 = 0.5 bit, i.e. convey the same amount of data 𝑘C in the same time

and occupied bandwidth and furthermore spend the same energy on the transmission.

The according coding parameters can be read from Table 5.3.

The SCVEM setup performs very close to the G-A case using the 1/2-B3GA

waveform, which was already predicted analyzing the throughput in the last section,

while the gap widens for 4/7-Q2RC (1 dB) and 2/7-B4GA (2 dB). In either case, the

VPB receiver performs about 1.5 dB worse than the SCVEM contender, which is due

to the inferior estimation capabilities of only being able to use 12 pilot symbols and

the higher code rate to compensate for the pilot-induced loss of spectral efficiency.

For the sake of completeness, it is mentioned, that no kind of synchronization leads

to a FER of practically 100 % regardless of the SNR and waveform.
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Figure 5-14: Coded FER of the G-A (�̂� = 𝜆, �̂�2
𝑤′ = 𝜎2

𝑤′), VEM and VPB systems over 𝛼2𝐸b/𝑁0 in
the SF channel for the three waveforms (𝑁 = 42). The channel code equalizes each system’s SE by
applying an according code rate.

5.8 Practical Assessments

5.8.1 Simulation in Fast Fading Channels

This section investigates the application of the proposed channel parameter estimator

when not using the simplified, derived SF channel model from Section 2.3.2. Instead,

time variant and frequency selective channels from [46] are simulated.

First, a tactical network scenario is considered in the hilly profile [46] where the

maximum Doppler spread of 𝐵Dop = 160 Hz is considered, i.e. a normalized maximum

Doppler shift of 𝑓Dop, max · 𝑇 = 0.002. As introduced in Chapter 1, the transmission

in this case is uncoded. Figure 5-15 shows the respective error rates of the unsyn-

chronized (denoted as UNS in the plots) and VEM receivers. The SNR definition

in this section does not include the scaling factor 𝛼2 as before to reflect the fading

characteristics of the channel. A receiver with G-A perfect channel state information

(CSI) using it in a non-adaptive minimum mean square error (MMSE) equalizer [11]
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Figure 5-15: Uncoded BER in the Hilly environment [46] with 𝑓Dop, max = 80 Hz. The SCVEM
estimator is compared to the unsynchronized and G-A case for all three waveforms and 𝑁 = 42.
The arrows imply the effect of an SNR penalty due to the deployment of pilot symbols at the two
discussed target error rates.

serves as a comparison candidate. For the sake of simplicity, an adaptive approach

was discarded. Though the deployed equalizer serves nonetheless as a suitable bound

for the also non-adaptive VEM estimator.

Two operating points are considered in the following that both have application

in tactical networks. First, the mixed excitation linear prediction (MELP) vocoder

[85] is considered for an audio transmission, for which numerous extension for an

increased robustness against transmission errors exist. In [86], such an extension

is presented that produces an intelligible speech output even at uncoded BERs of

around 15 %. All three unsynchronized systems do not (or do barely) even achieve

this target error rate at high SNRs but reaching an error floor before. This fact

makes clear the absolute need of some kind of synchronization or respectively, a

channel equalizer. The VEM receivers show an SNR gap of around 1.7 dB to 3.0 dB

at the target error rate given by [86]. The second operating point stems from an outer

channel code’s deployment including larger interleavers which creates diversity in the
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channel. Assuming an aggregation of several bursts (or parts of, for that matter) to

obtain an outer code word of length 511 binary symbols, a (𝑛C = 511, 𝑘C = 268) Bose

Chaudhuri Hocquenghem (BCH) code can be applied to achieve a SE comparable to

the average in Table 5.3. This code thereby has a code rate 𝑅 = 0.52 and an error

correction capability of 29 symbols [87]. If the uncoded transmission does not exceed

an error rate of 29/511 = 0.057 on average, an outer error rate of zero is theoretically

feasible. It is emphasized, that this is a very rough approach to obtain this target error

rate, but the principal performance which the receivers have to provide in this setup

should have been made plausible. As can be seen in Fig. 5-15, the VEM systems’

gap increases to around 4 dB for all waveforms. At this point it is recalled, that G-A

systems do not spend any pilot symbols to obtain their CSI. The use of pilots would

lead to an SNR penalty of 10 log10

(︁
𝑁−𝑁CZS

𝑁−𝑁P−𝑁CZS

)︁
respecting the termination symbols

with no information. For the sake of simplicity, 𝑁CZS = 2 symbols are considered for

termination, which is the average of the three waveforms and 𝑁P = 12 pilot symbols

are deployed as in Section 5.7. The then resulting penalty of 1.55 dB is given in Fig.

5-15 at the first target error rate as an arrow to imply the effect. The gap at the

second operating point corresponds to 𝑁P = 24. Since perfect CSI is only obtained

by 𝑁P → ∞, the performance with only a finite number of pilot symbols would surely

be worse than the G-A case, too. The decreased effective throughput remains ignored

in this consideration.

The second application discussed in Chapter 1 is the burst communication in

sensor networks. Here sporadic transmissions of little data are paused for much

longer than in the tactical networks considered above. As in Section 5.7, the coded

FER is used as a metric for this scenario and shown in Fig. 5-16. The environment

is assumed to have a more urban character than for the tactical networks and the

respective transceivers to be immobile (𝑓Dop, max · 𝑇 = 0).

The gap between the SCVEM and the G-A receiver widens similarly as in Fig.

5-15 and an error floor is reached surely long before the transmission is arguably

considered as reliable in typical communication scenarios. Though sensor networks

with sparse data transmission usually do not have hard latency constraints, as they
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Figure 5-16: Coded FER in the Urban environment [46] with 𝑓Dop, max = 0 Hz. The SCVEM
estimator is compared to the unsynchronized and G-A case for all three waveforms and 𝑁 = 42.
The target FER of 0.65 is taken from [88] and is optimal in terms of transmission energy in networks
without latency constraints.

can retransmit a faulty frame without causing further delays in the system (given that

a faulty frame can be recognized and that information can be made available to the

transmitter). This fact can be used to use retransmissions to diversify the channel, as

transmitting twice suffering from a FER of 0.1 is equal to one transmission suffering

from a FER of 0.01 in terms of reliability. If the second case requires at least 3 dB

more power than the first one, a gain is present by this approach. In [88], this topic

was investigated and an optimal operating point of an FER of 0.65 was derived for

sensor networks in Rayleigh fading channels. Considering this target FER in Fig.

5-16, the SCVEM performs equally well as the G-A for the 1/2-B3GA and 4/7-Q2RC

waveforms and 1 dB worse for 2/7-B4GA. While for the quaternary configuration,

the unsynchronized receiver can even be regarded as suited, the other two waveforms

suffer from gaps up to 10 dB.

The simplifying assumptions that led to the SF channel model in Section 2.3.2

were not entirely justified as this section showed by providing error rates using the
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Figure 5-17: Schematic of SDR transmission. The CPM baseband samples were generated on a
computer and passed over an Ethernet connection to a USRP™ N210 [47]. The analog signal
was transmitted by cable to a second SDR of the same model and the baseband samples were again
passed over Ethernet to a computer, where they were processed. The signal processing and hardware
connection were realized in Matlab© [89] under the use of the respective hardware support package.
The SDR configurations are listed in Table 5.4.

parameters discussed in Section 2.3 directly in an simulation. By providing real-

istic operating points in terms of target error rates, the EM based systems could

be reasoned to be sufficiently well performing compared to a G-A system with (in

the tactical network scenario) and even without (sensor network scenario) consider-

ing the fact, that pilot symbols are usually deployed in practice to perform channel

estimation.

5.8.2 Measurements in Hardware Setup

The objective of this section is to show that no potential hardware impairments were

withheld when modeling the channel in Section 2.3.2. This shall be done indirectly

by comparing the simulation with a cable bound connection of two SDRs. The SDR

setup is sketched in Fig. 5-17.

The baseband signal sample generation is done on a first Matlab© instance and

then passed over Ethernet to the first SDR. The analog passband signal is transmitted

by a cable connection to a second SDR and after downmixing and sampling, the

respective samples are passed back to the same computer and processed in a second

Matlab© instance. Both SDRs were connected through an Ethernet switch to the

computer. The SDR properties and configurations are given in Table 5.4.

Unfortunately, the available front ends did not both offer a carrier frequency in
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Table 5.4: SDR properties and configurations for the transmitter and receiver hardware.

Transmitter Receiver
Model name USRP™ N210 USRP™ N210

Front end module CBX SBX/CBX
Carrier frequency range 1.18 GHz to 6.02 GHz 380 MHz to 4.42 GHz

Carrier frequency 2.45 GHz
Baseband sampling rate 337.8 kHz

the VHF/UHF band and thus it had to opted for a higher value. The selected

carrier frequency of 2.45 GHz lies in the industrial, scientific and medical (ISM) band

and the results are not expected to have limited meaning because of this choice.

Due to restrictions in the SDRs’ master clock rate (fixed to 100 MHz) and valid

interpolation/decimation factors, the possible baseband sampling rate values are of

discrete nature. The nearest possible rate was chosen to 336 kHz (cf. sampling rate

in Table 5.1) by setting the interpolation/decimation factors to 296.

Figure 5-18 shows the uncoded BER of the VEM receiver in the cable connection

setup compared to the computer simulated performance which serves as reference in

this case. Only the waveform configuration of 1/2-B3GA is considered because of the

lack of further insights in the other waveforms’ cases. The power metric in this figure

is chosen as the SNR with the definition

SNR = 𝑃S

𝑃N
(5.11)

= 𝑇0/(𝑁𝑇 )∑︀𝑁𝐾−1
𝑘=0 |𝑠(𝑘𝑇0)|2

𝑇0/(𝑁𝑇 )∑︀𝑁𝐾−1
𝑘=0 |𝑤(𝑘𝑇0)|2

(5.12)

=
𝑁𝐾−1∑︁
𝑘=0

|𝑠(𝑘𝑇0)|2
|𝑤(𝑘𝑇0)|2

. (5.13)

The white noise signal is added in the second Matlab© instance with the desired

power. In order to evaluate the hardware effects, the bit error rate is compared to
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Figure 5-18: Uncoded BER in a cable connection setup with SDRs.

the simulated VEM receiver. The SNR in this case is obtained by the relation

SNR = 𝐸S𝑇0

𝑁0𝑇
. (5.14)

The achieved error rates in both cases are virtually indistinguishable until an SNR of

about 2 dB, which indirectly confirms the assumptions of (quasi) constant CFO, CPO

and sample clock over the course of 𝑇Burst = 1 ms. Beyond that SNR, the hardware

setup shows a slight degradation compared to the simulation. This is traced back to

slight IQ imbalances that were observed in the hardware.

It is noted, that the receiver processing is not done in real time. It is emphasized

in the following what this section shall show and what it does not claim. The goal was

to verify, that no hardware behavior significantly deteriorates the software receiver’s

performance and all hardware aspects were correctly assumed in Section 2.3.2. Neither

potential real time processing capabilities was to be proved, nor a complete radio

channel including transceiver hardware was to be assessed. Both points were beyond

the scope of this thesis due to the eventually non-feasible implementation effort in a
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limited time frame.

5.9 Analysis of Computational Complexity

An important aspect assessing practical relevance of an estimator is its computational

complexity. The setup from Section 5.5 is considered, where both the SCVEM and

VPB offer comparable estimation accuracy over a wide SNR range. This section

will point out the main drivers of complexity in the SCVEM receiver (and link it to

Algorithm 1) as well as compare it with its contender VPB. For the sake of simplicity,

only a subset of the complete receiver that is dominant with respect to the complexity

is considered and furthermore, each operation (real additions, real multiplications,

exponential function etc.) is treated equally. These inaccuracies are accepted to

allow for a simple and still informative comparison of synchronization complexity.

The absolute number depends on several parameters which were mainly introduced

in Sections 4.4.5 and 4.5.2 and are listed in Table 5.5. The SNR operating points are

determined as the point where the SCVEM estimator has reached each parameter’s

CRVB for the respective waveform (cf. Figs. 5-8 to 5-11). In other words, this is the

SNR at which the CPM detector is able to produce reliable symbol estimates. For

the the basic system parameters, Table 5.1 is recalled.

Calculation of likelihoods in line 2, Algorithm 1: For the calculation of |ℐ(𝜆)|

likelihoods, the according path metrics of every grid point must be computed (cf.

Section 4.5.2 for the necessary steps), which amounts to

𝒞ℒ, 1 =𝑁𝑀𝐿
[︁
𝑁I(𝜏)𝑁I(𝜈) · (8𝐾 − 2) +𝑁I(𝜆) · 3 +𝑄𝑁I(𝜆) · 2

]︁
+𝑁I(𝜆)𝑁𝑄𝑀𝐿−1 · (2𝑀 − 1) .

(5.15)

The first three addends represent the grid points’ path metric computation that is

comprised by the multiplication of 𝑟′(𝑘𝑇0 + 𝑛𝑇 ) · 𝑐*
𝛾𝑛

(𝑘𝑇0 − 𝜏) and the product’s

summation, the metrics’ rotations to include every phase state and CPO combination,

the multiplication with the constant quotient 2�̂�/�̂�2
𝑤′ and the exponential in (4.78),

respectively. The multiplication with a priori information is ignored since none is
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Table 5.5: Relevant parameters for computational complexity. 𝑁I(𝜏) for 4/7-Q2RC is determined
according to the decreased range explained in (5.8)

1/2-B3GA 2/7-B4GA 4/7-Q2RC
𝑁I(𝜈) 8 19 5
𝑁I(𝜃) 6 4 2
𝑁I(𝜏) 4 6 4
𝑁I(𝜆) 192 456 40

10 log10 (𝛼2𝐸S/𝑁0) 9 dB 10 dB 8 dB
𝑁B(𝜈) 7 4 10
𝑁B(𝜏) 14 6 13
𝑁ZP 512 512 512
𝑛MC 32 32 64

available yet. The execution of BCJR’s forward part, which computes the likelihood

according to (2.57) is considered in the last term. The complexity 𝒞ℒ, 2 of line 18 is

derived similarly.

E-Step in line 10, Algorithm 1: The computation of the posterior probabilities for

multiple coarse estimates and iterations is done by the execution of the CPM detector

(including the calculation of the path metrics for 𝜆old) and takes

𝒞E, 1 = 𝑁I(𝜏)𝑁It𝑁
[︁
𝑄𝑀𝐿−1 · (6𝑀 − 2) +𝑀𝐿 (8𝐾 − 2 + 3(𝑄− 1) + 2𝑄)

]︁
(5.16)

operations. The complexity evaluation of (4.24) is ignored, since most of the posterior

probabilities are zero or very close to zero and thus its overall complexity is negligible.

E-Step in line 12: To include the channel decoder in the SC CPM setup, two

executions of the CPM detector (the path metrics must only be calculated once,

because the appliance of the decoder information is just an additional multiplication)

and one of the decoder are necessary. Summarized, this line is responsible for

𝒞E, 2 = 𝑁I(𝜏)𝑁
[︁
2𝑄𝑀𝐿−1 · (6𝑀 − 2) +𝑀𝐿 (8𝐾 − 2 + 3(𝑄− 1) + 3𝑄)

]︁
+𝑁I(𝜏) (40 log2(𝑛MC) · 𝑛MC)

(5.17)
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operations (cf. [55] for the complexity on the decoder). 𝑛MC = 2⌈log2(𝑛C)⌉ is the

length in bits for the mother Polar code, that is shortened in the process of providing

flexible code rates. It is noted, that of course the specific decoder complexity is solely

dependent on the respective choice.

M-Step in line 14, Algorithm 1: In the maximization step, only the optimizations

with regard to CFO and TO are considered, since the other parameters are estimated

with simple closed form expressions. As suggested in Section 4.5.2, the Goertzel

algorithm is used to evaluate the CAF at 𝑁B(𝜈) CFO and 𝑁B(𝜏) TO values (cf.

(4.81)). The number of operations for the computation of one bin by this algorithm

can be deducted from [80] and amounts to 3𝑁𝐾+4 for the case at hand. The required

resolution is determined by the SNR (through the respective CRVB), which is given

in Table 5.5. In the CFO case, the optimization amounts to

𝒞M, 1 = 6𝑁𝐾 +𝑁B(𝜈) · (3𝑁𝐾 + 4) (5.18)

operations with the first term accounting for the multiplication of 𝑟′(𝑘𝑇0) and 𝑐*(𝑘𝑇0−

𝜏old) (cf. (4.33)) and the second for the Goertzel executions. It is noted, that the

scaling with 𝑇0 in (4.33) does not need to be carried out (and thus 2𝑁𝐾 multiplica-

tions were saved) as long as this factor is instead considered in the FF optimization in

(4.38), where it is just one scalar multiplication. To compute a partially interpolated

CAF, the method described in Section 4.5.2 is carried out. First, the received and

the reference signal are each transformed by means of an FFT. Hereby both signals

are zero padded to ensure a linear (in contrast to circular) correlation and to utilize a

radix-2 FFT implementation. While [28] computes a spectrally zero padded inverse

FFT of this product, this thesis again suggests the Goertzel algorithm to compute

the few necessary time bins, which takes in total

𝒞M, 2 = 2 (4𝑁ZP log2(𝑁ZP) − 6𝑁ZP + 8) + 6𝑁ZP +𝑁B(𝜏) · (3𝑁ZP + 4) (5.19)

operations. 𝑁ZP describes the properly zero padded length in samples and is given in

Table 5.5. The first addend represents the two necessary complex input FFTs with
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the complexity taken from [90], the second the sample wise multiplication of the two

spectral signals and the last addend the Goertzel algorithm.

The deployment of the Goertzel algorithm in the CFO estimation is (depending on

the waveform) 10.1 to 25.2 times less complex than an FFT that provides the required

resolution through zero padding and enables a radix-2 implementation, whereas the

cost saving factor in the TO case ranges from 3.8 to 18.6. While there are enough

highly efficient parallelized FFT implementations, only the computation of the bins

can be parallelized, but not so the Goertzel algorithm itself. The cost savings make

its consideration worth though.

VPB method: The main complexity part in the VPB estimation is comprised by

two zero padded FFTs of signal products ((22) and (23) in [38]) that takes

𝒞VPB = 2 · (6𝑁P𝐾𝐾f + 4𝑁P𝐾𝐾f log2(𝑁P𝐾𝐾f) − 6𝑁P𝐾𝐾f + 8) (5.20)

operations. The interpolation factor was chosen as 𝐾f = 4 in contrast to [38] suggest-

ing the factor two being enough. It was found, that at higher SNR values (considered

in this thesis, though not considered in [38]) this factor was necessary for more satis-

fying results.

Table 5.6 lists the number of operations per frame (considering the SF model in

the MSEE simulation’s section) for every crucial part of the VEM estimator and sets

that metric in relation to a the G-A synchronized system, i.e. a coherent CPM detec-

tor with subsequent channel decoder in an AWGN channel and the VPB estimator.

Relevant parameters can be gathered from Tables 5.1 and 5.5.

It is obvious that the gross share of complexity falls in the calculation of likelihoods

for the coarse estimation. Any way to shrink the parameter ranges would be helpful

to reduce that part, e.g. by inserting few pilot symbols as discussed in Section 4.4.6.

Choosing 𝑁P = 12, the grid cardinality is reduced to 110 and the total complexity

would be 2.7 times less than in Table 5.6 for the 2/7-B4GA case. Investing in better

oscillator hardware, e.g. at a quality of 0.1 ppm would be another way to reduce

the number of grid points by decreasing the CFO range. Furthermore, typical trellis
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Table 5.6: Listing of complexities in terms of number of operations per burst (𝑇Burst = 1 ms). 𝒞VEM
constitutes the sum of the parts above it. Several relations in the bottom in order shall give a rough
intuition about the practical application.

1/2-B3GA 2/7-B4GA 4/7-Q2RC
𝒞ℒ, 1 999, 424 13, 541, 376 1, 541, 120
𝒞E, 1 161, 792 792, 576 542, 720
𝒞E, 2 118, 784 563, 712 425, 984
𝒞M, 1 6, 940 4, 624 9, 256
𝒞M, 2 55, 368 43, 048 53, 828
𝒞ℒ, 2 73, 728 321, 024 217, 600

𝒞VEM 1, 416, 036 15, 266, 360 2, 790, 508

𝒞VEM/𝒞VPB 17.3 186 34.1
𝒞VEM/𝒞G-A 53.2 211 33.5

𝒞FPGA/𝒞VEM 5.2 0.49 2.7

reductions and efficient logarithmic implementations of the BCJR to decrease the

number of operations were not considered in this work. Anyway, the coarse estimation

and also the 𝑁I(𝜏) EM instances are perfectly suited to be parallelized.

Clearly the VPB complexity is magnitudes smaller than SCVEM’s. Though in

the quantitative comparison, it is ignored to the benefit of the VPB that a phase and

timing tracking loop has to be carried out in the following detector, whereas a simple

coherent detector can be deployed in the SCVEM case. The fact, that the spectral

efficiency of the blind system is always higher than that of the pilot based can also

be considered as a soft factor favoring the EM based approach.

The last line in Table 5.6 normalizes the potential computational power of an

exemplary, bottom end field programmable array (FPGA) Xilinx Spartan-7 XC7S6

operating at 741 MHz and incorporating ten digital signal processing (DSP) units

(i.e. 𝒞FPGA = 7.41 · 106 potential operations per 𝑇Burst) by the number of operations

required by the estimator. Whereas in the 1/2-B3GA and 4/7-Q2RC case, multiple

instances of the SCVEM can potentially be processed on the same chip, this is not
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possible for the 2/7-B4GA waveform without any grid reduction. It is noted though,

that in case of tactical radios, more capable hardware would probably be used.

The actual computational power that needs to be spent on the parameter estima-

tion is always dependent on the desired operating point of the system. A system that

shall provide a bit error rate of 6·10−2 (cf. Fig. 5-15) surely poses higher requirements

at the estimates’ quality than the discussed sensor network that is intended to work

at a frame error rate of 0.65 (cf. Fig 5-16) and consequently needs to spend more

computational resources on the estimation.

5.10 Key Points of the Chapter

• Multiple simulations have been carried out for this thesis, which were presented

in this chapter. The results shall provide a comprehensive analysis of the chan-

nel parameter estimator described in the last chapter.

• The convergence behavior of the VEM estimator was investigated by considering

the Kullback-Leibler divergence between the posterior distribution of the data

symbols given the ML estimate �̂�ML and the distribution after each iteration.

It was shown, that a complete convergence is only achieved after dozens of

iterations and the question arose whether this is necessary or less accurate

results will do just as well.

• It was answered by showing the progress of each iteration in terms of the MSEE

normalized by the respective CRVB. After two iterations no more considerable

gains in accuracy can be expected and hence this number was adopted for

Algorithm 1.

• The effect of one additional iteration under the use of the SC CPM setup was

investigated by computing the mutual information between the transmitted and

the received, synchronized signal and compared to the cases of not using that

setup in the additional iteration and the G-A received signal. The information
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value of the G-A case was reached considerably earlier by the SCVEM and thus

a positive effect in terms of MSEE and error rates could be expected.

• The MEV was examined in some cases to give some insights about the effect of

CPM’s rotational invariance and a weak point of the pilot-based estimator VPB.

Furthermore the expected error in the FF estimation of VEM and SCVEM was

investigated and conclusions were drawn originating on the characteristics of

the noise power and initial FF estimation as well as on the FF optimization

rule in the M-Step.

• The MSEEs of the VEM, SCVEM and the VPB estimator were benchmarked

against their respective theoretical limits, namely the CRVBs. The EM based

methods approach the CRVB once the SNR is high enough for the (SC) CPM

detector to provide reliable symbol estimates as expected for a DD technique,

whereas the VPB gives appropriate estimates across the total considered SNR

range. The earlier anticipated advantages of the SCVEM over the VEM setup

were confirmed.

• The inherent advantage of the SCVEM over the VPB method was emphasized

by displaying the effective throughputs. Although VPB performs closer to the

theoretical optimum given by the respective sphere packing bounds, only at

arguably irrelevant low SNRs could it provide higher throughputs than the

SCVEM receiver. By not needing to apply pilot symbols, the throughput tops

at a substantially higher level in that case.

• The investigation of error rates confirmed the above results of the EM based

estimators being able to provide rates closer to the G-A receiver than the VPB

method due to a sufficient estimation performance paired with a higher SE.

• The assumptions made on the channel characteristics made in Section 2.3.2

were evaluated by simulating error rates in an appropriate fast fading multi

path environment and were found to be too optimistic. By setting realistic
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performance goals, the EM based receivers were shown to provide sufficiently

accurate results though.

• By setting up a cable connection between two SDRs, hardware effects were

evaluated and the respective assumptions made in Section 2.3.2 were verified.

• The SCVEM computational complexity was evaluated quantitatively and com-

pared to the VPB and G-A cases. Furthermore, a rough assessment on the real

time capabilities of the SCVEM receiver was carried out with the bottom line,

that though being much more complex than the pilot based approach, it can

easily be executed on even very low-end hardware in many cases.
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Chapter 6

Conclusion

6.1 Summary

In burst type CPM transmissions, as occurring in sensor networks or frequency hop-

ping systems, the channel parameters need to be acquired over and over gain. Track-

ing of those is often not feasible in these setups due to a potentially large temporal

(sensor networks) or spectral (frequency hopping networks) or both (multi user fre-

quency hopping networks) separation of the transmission bursts. Non-data-aided,

feedforward estimation methods from the literature are not suitable to their inferior

performance due to the lack of a statistically reliable signal snippet, whereas phase-

locked-loop solutions are by design not suited to the recurring parameter acquisition.

Pilot-based estimators can work well, but share the disadvantages of a decreased

spectral efficiency and furthermore are prone to intentional interference due to their

potentially same and known recurring symbol sequence.

The goal of this thesis was to provide a non-pilot estimator for the above sce-

narios. First, potential channel conditions were investigated and a static (over the

course of one burst) and flat fading channel model was motivated. In this model, the

channel parameters fading factor, carrier frequency and phase offset as well as the

timing offset have to estimated and corrected for that matter. The expectation max-

imization framework was harnessed to derive an algorithm that fulfills this task in an

iterative fashion by converging to the joint ML solution. While the FF and CPO can
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be estimated by closed form expressions, the CFO and TO are virtually jointly es-

timated through two subsequent one-dimensional grid searches, whose optimal order

was deduced from the parameters’ Fisher information. The typical gradient ascent

algorithm’s problem of converging into a local maximum of its cost function (in this

case local maxima of the LLF) was countered by an initial grid covering the joint

LLF, whose most promising nodes served as starting values for the EM algorithm.

The grid size was analytically optimized by analyzing the scalar LLF of the respective

channel parameters and determining a principal distance between maxima. Efficient

implementation suggestions were given for the crucial (in terms of computational

complexity) steps were given.

The proposed algorithm was analyzed in its convergence behavior by evaluating

metrics such as the Kullback-Leibler divergence and the mutual information to find a

suitable EM iteration count to terminate the algorithm. The estimator performance

was compared in terms of the MSEE to the theoretical optimum, namely the CRVB.

The generally infeasible derivation of this true (i.e. as tight as possible) bound was

done by determining the easier to calculate MCRVB and subsequently showing for

all four parameters, that these two coincide. It was thus shown, that the proposed

estimator SCVEM reaches this bound for every case and is thus an efficient estimator.

Examining the metrics effective throughput, bit and frame error rates, it was shown,

that the SCVEM performs better than a state of the art pilot based CPM burst

estimator across all considered scenarios. This advantage can be attributed to the

higher spectral efficiency of the SCVEM systems paired with the appropriate estima-

tion performance. The main drawback of the proposed method is its computational

complexity which was analyzed quantitatively and it could be reasoned, that a real

time application of such a system is easily feasible with in most cases no limitations

whatsoever.

External requirements, such as shorter and flexible hop times [1] are easily im-

plemented with the proposed estimation algorithm and would arguably pose further

problems to pilot based approaches. Also time variant channels can be incorporated

in the VEM framework by splitting up bursts as far as necessary to again rightfully as-
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sume constant nature of the parameters over the course of one subburst. In the latter

case, subsequent subburst channel conditions do not need to be assumed independent

to each other.

6.2 Possible Future Work

• The proposed algorithm can be extended to also include multi-ℎ CPM config-

urations, which promise better performance through higher Euclidean symbol

distances [91]. A typical point of criticism is the difficult CPO synchronization,

for which the proposed SCVEM seems to a promising solution to.

• As was indicated in simulations, the proposed method is competitive in even

fast fading and frequency-selective environments, although it was not designed

for such scenarios. Further performance improvements can be expected, if

multi-tap channels are considered in the algorithm design process. Current

research [92] adopts the EM framework to tackle the problem with promising

results, though only for less restrictive conditions than considered in simula-

tions mentioned above (time invariant channel, dominant line of sight (LOS)

component, only GMSK modulation, longer bursts). For similar, less restrictive

conditions, solutions were already proposed, e.g. in [93–99]. However, for the

use cases introduced in Chapter 1, the literature leaves a gap for a blind channel

estimation method and the EM algorithm seems like a promising approach.

• A substantial problem of the proposed method (and for that matter also for

[92]) is the computational burden in the receiver despite the implementation

suggestions. Standard approaches to reduce the detector complexity [100, 101]

are promising, but their impact on the estimation performance needs to be

investigated. Furthermore, machine learning techniques such as the genetic

algorithm [102] can be imagined to ease up the evaluation of the complete grid

of initialization points.
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Appendix A

Calculation from Chapter 2

A.1 Derivation of Noise Estimation

The presented noise estimation (cf. (2.45)) in a constant amplitude waveform relies

on a flat fading channel and the received signal amplitude’s variation is utilized for

which additive noise must be the sole cause. Letting 𝑎 and 𝑏 represent the real and

imaginary part of the received signal 𝑟′ = 𝑎+ 𝑗𝑏, the variance of the squared absolute

value writes as

Var[|𝑎+ 𝑗𝑏|2] = Var[𝑎2 + 𝑏2]

= Var[𝑎2] + Var[𝑏2] + 2Cov[𝑎𝑏]

= E[𝑎]2 Var[𝑏] + E[𝑏]2 Var[𝑎] + Var[𝑎] Var[𝑏]

= Var[𝑎] Var[𝑏] = 𝜎4
𝑤′

4 .

(A.1)

General variance properties have been used and Var [𝑎] = Var [𝑏] = 𝜎2
𝑤′/2, E[𝑎] =

E[𝑏] = 0 and Cov[𝑎𝑏] = 0 are given by (2.41)-(2.44). By eventually doubling the end

result’s square root, the variance of 𝑤′ is given as in (2.45).
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A Calculation from Chapter 2

A.2 Transformation of Complex Difference’s Ab-

solute Value

Two complex number 𝑧1 = 𝑎+ 𝑗𝑏 and 𝑧2 = 𝑐+ 𝑗𝑑 are given.

|𝑧1 − 𝑧2|2 = |𝑎+ 𝑗𝑏− (𝑐+ 𝑗𝑑)|2

= [(𝑎− 𝑐) + 𝑗(𝑏− 𝑑)] · [(𝑎− 𝑐) − 𝑗(𝑏− 𝑑)]

= 𝑎2 − 2𝑎𝑐+ 𝑐2 + 𝑏2 − 2𝑏𝑑+ 𝑑2

= |𝑎+ 𝑗𝑏|2 + |𝑐+ 𝑗𝑑|2 − 2 Re {(𝑎+ 𝑗𝑏)(𝑐+ 𝑗𝑑)*} .

(A.2)

142



Appendix B

Calculations from Chapter 3

B.1 Derivation of MFIM for CPM Bursts

The MFIM is calculated based on (3.15), which describes the tilted and sampled

received signal. To facilitate the calculations, they are carried our in the continuous

time domain, as this is equivalent according to [17, 2.3]. Equation (3.14) is recalled

and adjusted to hold the continuous received signal (cf. (1.5))

[𝐼̃︀𝑀(𝜆)]𝑘,𝑙 = 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝑎

[︃
Re

{︃
𝜕𝑟(𝑡, 𝑎, 𝜆)

𝜕𝜆𝑘
· 𝜕𝑟

*(𝑡, 𝑎, 𝜆)
𝜕𝜆𝑙

}︃]︃
d𝑡 . (B.1)

Because of the MFIM’s symmetry ([𝐼̃︀𝑀(𝜆)]𝑘,𝑙 = [𝐼̃︀𝑀(𝜆)]𝑙,𝑘), not all entries have be

calculated individually. As a first step, the four partial derivatives with regard to

channel parameters are calculated for both the received signal and its complex con-
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jugate with the time reference set to 𝑡0 = 𝑁𝑇/2

𝜕𝑟(𝑡, 𝑎, 𝜆)
𝜕𝛼

= 1
𝛼

· 𝑟(𝑡, 𝑎, 𝜆) (B.2)

𝜕𝑟*(𝑡, 𝑎, 𝜆)
𝜕𝛼

= 1
𝛼

· 𝑟*(𝑡, 𝑎, 𝜆) (B.3)

𝜕𝑟(𝑡, 𝑎, 𝜆)
𝜕𝜈

= 𝑗2𝜋(𝑡−𝑁𝑇/2) · 𝑟(𝑡, 𝑎, 𝜆) (B.4)

𝜕𝑟*(𝑡, 𝑎, 𝜆)
𝜕𝜈

= −𝑗2𝜋(𝑡−𝑁𝑇/2) · 𝑟*(𝑡, 𝑎, 𝜆) (B.5)

𝜕𝑟(𝑡, 𝑎, 𝜆)
𝜕𝜃

= 𝑗 · 𝑟(𝑡, 𝑎, 𝜆) (B.6)

𝜕𝑟*(𝑡, 𝑎, 𝜆)
𝜕𝜃

= −𝑗 · 𝑟*(𝑡, 𝑎, 𝜆) (B.7)

𝜕𝑟(𝑡, 𝑎, 𝜆)
𝜕𝜏

=
⎡⎣−𝑗

⎛⎝2𝜋ℎ
𝑁−1∑︁

𝑛=−(𝐿−1)
𝑎𝑛𝑔(𝑡− 𝜏 − 𝑛𝑇 ) − 𝛽𝜋ℎ

𝑀 − 1
𝑇

⎞⎠⎤⎦ · 𝑟(𝑡, 𝑎, 𝜆) (B.8)

𝜕𝑟*(𝑡, 𝑎, 𝜆)
𝜕𝜏

=
⎡⎣+𝑗

⎛⎝2𝜋ℎ
𝑁−1∑︁

𝑛=−(𝐿−1)
𝑎𝑛𝑔(𝑡− 𝜏 − 𝑛𝑇 ) − 𝛽𝜋ℎ

𝑀 − 1
𝑇

⎞⎠⎤⎦ · 𝑟*(𝑡, 𝑎, 𝜆) .

(B.9)

The frequency pulse (𝑔(𝑡) = d𝑝(𝑡)
d𝑡 is the phase pulse derivative. By using 𝑟(𝑡, 𝑎, 𝜆) ·

𝑟*(𝑡, 𝑎, 𝜆) = 𝛼2𝐸S
𝑇

and considering the MFIMs symmetry, the expectations in (B.1)

of all relevant and non-zero entries are calculated. The short notation E𝜆𝑘,𝜆𝑙 =

E𝑎

[︁
Re

{︁
𝜕𝑟(𝑡,𝑎,𝜆)
𝜕𝜆𝑘

· 𝜕𝑟
*(𝑡,𝑎,𝜆)
𝜕𝜆𝑙

}︁]︁
is used

E𝛼,𝛼 = 𝐸S

𝑇
(B.10)

E𝜈,𝜈 = 4𝜋2(𝑡−𝑁𝑇/2)2 · 𝛼2𝐸S

𝑇
(B.11)

E𝜈,𝜃 = 2𝜋(𝑡−𝑁𝑇/2) · 𝛼2𝐸S

𝑇
(B.12)

E𝜈,𝜏 = −2𝛽𝜋2ℎ
𝑀 − 1
𝑇

(𝑡−𝑁𝑇/2) · 𝛼2𝐸S

𝑇
(B.13)

E𝜃,𝜃 = 𝛼2𝐸S

𝑇
(B.14)

E𝜃,𝜏 = −𝛽𝜋ℎ𝑀 − 1
𝑇

· 𝛼2𝐸S

𝑇
(B.15)

E𝜏,𝜏 = E

⎡⎢⎣
⎛⎝2𝜋ℎ

𝑁−1∑︁
𝑛=−(𝐿−1)

𝑎𝑛𝑔(𝑡− 𝜏 − 𝑛𝑇 ) + 𝛽𝜋ℎ
𝑀 − 1
𝑇

⎞⎠2

· 𝛼2𝐸S

𝑇

⎤⎥⎦ (B.16)

144



B.1 Derivation of MFIM for CPM Bursts

In (B.13) and (B.15), the property E[𝑎𝑛] = 0 was used. The final step is to integrate

and scale the expectations

[︁
𝐼̃︀𝑀(𝜆)

]︁
1,1

= 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝛼,𝛼 d𝑡 = 2𝑁 · 𝐸S

𝑁0
(B.17)

[︁
𝐼̃︀𝑀(𝜆)

]︁
2,2

= 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝜈,𝜈 d𝑡 = 8

3𝜋
2𝑁 ·

(︂1
4𝑁

2𝑇 2 + 3𝜏 2
)︂

· 𝛼
2𝐸S

𝑁0
(B.18)

[︁
𝐼̃︀𝑀(𝜆)

]︁
2,3

= 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝜈,𝜃 d𝑡 = 4𝜋𝑁𝜏 · 𝛼

2𝐸S

𝑁0
(B.19)

[︁
𝐼̃︀𝑀(𝜆)

]︁
2,4

= 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝜈,𝜏 d𝑡 = −4𝛽𝜋2ℎ𝑁

𝑀 − 1
𝑇

𝜏 · 𝛼
2𝐸S

𝑁0
(B.20)

[︁
𝐼̃︀𝑀(𝜆)

]︁
3,3

= 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝜃,𝜃 d𝑡 = 2𝑁 · 𝛼

2𝐸S

𝑁0
(B.21)

[︁
𝐼̃︀𝑀(𝜆)

]︁
3,4

= 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝜃,𝜏 d𝑡 = −2𝛽𝜋ℎ𝑁𝑀 − 1

𝑇
· 𝛼

2𝐸S

𝑁0
, (B.22)

whereas the element [𝐼̃︀𝑀(𝜆)]4,4 needs to be given special attention

2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝜏,𝜏 d𝑡 = 2

𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E

⎡⎣(2𝜋ℎ
𝑁−1∑︁

𝑛=−(𝐿−1)
𝑎𝑛𝑔(𝑡− 𝜏 − 𝑛𝑇 ))2

⎤⎦
− 2E

⎡⎣2𝜋ℎ
𝑁−1∑︁

𝑛=−(𝐿−1)
𝑎𝑛𝑔(𝑡− 𝜏 − 𝑛𝑇 )

⎤⎦
+
(︂
𝛽𝜋ℎ

𝑀 − 1
𝑇

)︂2
d𝑡 · 𝛼

2𝐸S

𝑇
.

(B.23)

The expectations E[𝑎𝑘] = 0 and E[𝑎𝑘𝑎𝑙] = (𝑀2 − 1)/3 if 𝑘 = 𝑙 and zero otherwise are

used in the next step as well as 𝐺2(𝑓) =
∫︀+∞

−∞ 𝑔2(𝑡) · 𝑒−𝑗2𝜋𝑓𝑡 d𝑡. Furthermore the sum

is extended to infinity without affecting the result because of the integral’s temporal
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B Calculations from Chapter 3

limits.

2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝜏,𝜏 d𝑡 = 2

𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
4𝜋2ℎ2𝑀

2 − 1
3

∑︁
𝑛

𝑔2(𝑡− 𝜏 − 𝑛𝑇 )

+
(︂
𝛽𝜋ℎ

𝑀 − 1
𝑇

)︂2
d𝑡 · 𝛼

2𝐸S

𝑇

(B.24)

= 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
4𝜋2ℎ2𝑀

2 − 1
3𝑇

∑︁
𝑛

𝐺2

(︂
𝑛

𝑇

)︂
· 𝑒𝑗2𝜋𝑛(𝑡−𝜏)/𝑇

+
(︂
𝛽𝜋ℎ

𝑀 − 1
𝑇

)︂2
d𝑡 · 𝛼

2𝐸S

𝑇

(B.25)

= 2
𝑁0

(︃
4𝜋2ℎ2𝑀

2 − 1
3𝑇

∑︁
𝑛

𝐺2

(︂
𝑛

𝑇

)︂
·
[︃

𝑇

𝑗2𝜋𝑛𝑒
𝑗2𝜋𝑛𝑁 − 1

]︃

+𝑁𝑇
(︂
𝛽𝜋ℎ

𝑀 − 1
𝑇

)︂2)︃
· 𝛼

2𝐸S

𝑇

. (B.26)

Having in mind, that 𝑛 is an integer, the term in square brackets is zero for 𝑛 ̸= 0

and (by applying the rule of L’Hospital) 𝑁𝑇 for 𝑛 = 0. After some modifications the

MFIM element writes as

[𝐼̃︀𝑀(𝜆)]4,4 = 2
𝑁0

∫︁ 𝑁𝑇+𝜏

𝜏
E𝜏,𝜏 d𝑡 = 2𝛼2𝐸S

𝑁0
𝑁𝜋2ℎ2

(︃
4𝐺2(0)𝑇 𝑀

2 − 1
3𝑇 2 + 𝛽

(𝑀 − 1)2

𝑇 2

)︃
(B.27)

B.2 Ratio of PEN and MCRB for the CPO

The TO is uniformly distributed in the interval [−0.5𝑇 ; 0.5𝑇 ] and thus its variance is

E[𝜏 2] = 𝑇 2/12. The ratio of the averaged TO penalty and scalar bound is then given

as

PEN(𝜃)
MCRB(𝜃) =

(︃
6 E[𝜏 2]
𝑁3𝑇 2 · 1

𝛼2𝐸S𝑁0

)︃
/
(︂ 1

2𝑁 · 1
𝛼2𝐸S𝑁0

)︂
= 1
𝑁2

(B.28)
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B.3 Derivation of the true FF CRB

B.3 Derivation of the true FF CRB

Inserting (3.2) into (3.6) and taking the definition of (3.10) gives the scalar FF bound

CRB(𝛼) =
⎛⎝−E𝑎,𝑟

⎡⎣𝜕2 log
(︁∑︀

𝑎 p𝑟|𝛾

[︁
𝑟|𝛼, 𝛾

]︁
· P𝛾

[︁
𝛾
]︁)︁

𝜕2𝛼

⎤⎦⎞⎠ . (B.29)

By assuming a known sequence 𝑎 at the receiver, the bound simplifies to [58, 4.2.3]

CRB(𝛼|𝑎) = 𝑁0

2 ·

⎡⎣∫︁ 𝑁𝑇+𝜏

𝜏

⃒⃒⃒⃒
⃒𝜕𝑟(𝑡, 𝑎, 𝛼)

𝜕𝛼

⃒⃒⃒⃒
⃒
2

d𝑡
⎤⎦−1

. (B.30)

Inserting (3.15) for 𝑟(𝑡, 𝑎, 𝛼) gives

CRB(𝛼|𝑎) = 𝑁0

2 ·

⎡⎣∫︁ 𝑁𝑇+𝜏

𝜏

⃒⃒⃒⃒
⃒𝑟(𝑡, 𝑎, 𝛼)

𝛼

⃒⃒⃒⃒
⃒
2

d𝑡
⎤⎦−1

= 𝑁0

2 · 1
𝑁𝑇𝐸S/𝑇

= 1
2𝑁 · 1

𝐸S/𝑁0
.

(B.31)
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Appendix C

Calculations from Chapter 4

C.1 Verification of Kullback-Leibler Divergence

The definitions of the LLF and 𝒬 function from (3.1) and (4.4) are inserted into

(4.11) and by using logarithm rules, Bayes’ law and respecting the independence of

the LLFs from the pseudo symbol sequence, the equality to (4.10) is shown.

[︁
log ℒ(�̂�) − log ℒ(�̂�old)

]︁
−
[︁
𝒬
(︁
�̂�, 𝜆old

)︁
− 𝒬 (𝜆old, 𝜆old)

]︁
(C.1)

= log
(︁
p𝑟′

[︁
𝑟′(𝑘𝑇0)|�̂�

]︁)︁
− log (p𝑟′ [𝑟′(𝑘𝑇0)|𝜆old])

−

⎡⎣∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
· log

(︁
p𝛾,𝑟′

[︁
𝛾, 𝑟′(𝑘𝑇0)|�̂�

]︁)︁

−
∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
· log

(︁
p𝛾,𝑟′

[︁
𝛾, 𝑟′(𝑘𝑇0)|𝜆old

]︁)︁⎤⎦
(C.2)

= log
⎛⎝ p𝑟′

[︁
𝑟′(𝑘𝑇0)|�̂�

]︁
p𝑟′ [𝑟′(𝑘𝑇0)|𝜆old]

⎞⎠
−

⎛⎝∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
×

⎡⎣log
⎛⎝ P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), �̂�

]︁
P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
⎞⎠+ log

⎛⎝ p𝑟′

[︁
𝑟′(𝑘𝑇0|�̂�)

]︁
p𝑟′ [𝑟′(𝑘𝑇0|𝜆old)]

⎞⎠⎤⎦⎞⎠
(C.3)

=
∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
· log

⎛⎝P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), �̂�

]︁
⎞⎠ (C.4)
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The iteration index (𝑖) was ignored above.

C.2 Verification of Entropy

Starting from the claim made in (4.12) and ignoring the iteration specifier

ℒ (𝜆old) − 𝒬(𝜆old, 𝜆old) (C.5)

= log (p𝑟′ [𝑟′(𝑘𝑇0)|𝜆old]) −
∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
· log

(︁
p𝛾,𝑟′

[︁
𝛾, 𝑟′(𝑘𝑇0)|𝜆old

]︁)︁
(C.6)

= −
∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
· log

⎛⎝p𝛾,𝑟′

[︁
𝛾, 𝑟′(𝑘𝑇0)|𝜆old

]︁
p𝑟′ [𝑟′(𝑘𝑇0)|𝜆old]

⎞⎠ (C.7)

= −
∑︁
𝛾

P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁
· log

(︁
P𝛾|𝑟′

[︁
𝛾|𝑟′(𝑘𝑇0), 𝜆old

]︁)︁
(C.8)

= 𝐻
(︁
P𝜆old

)︁
(C.9)

one arrives at the entropy of the CPM symbols’ posterior distribution after a few

steps.

C.3 Relation of CFO and TO’s MFIs

According to [60] the modified Fisher information (MFI) in this case is computed as

follows

[𝐼̃︀M(𝜆)]𝑖𝑗 = E𝑎

[︃
𝑇S

𝛼2𝑁0
Re

{︃
𝜕𝑟*(𝑡, 𝑎, 𝜆)

𝜕𝜆𝑖
· 𝜕𝑟(𝑡, 𝑎, 𝜆)

𝜕𝜆𝑗

}︃]︃
. (C.10)

To obtain the MFI of the CFO and TO, the partial derivatives are chosen to 𝜆𝑖 =

𝜆𝑗 = 𝜈 and 𝜆𝑖 = 𝜆𝑗 = 𝜏 , respectively. Eventually the normalized MFIs are computed

to

𝑇−2MFI(𝜈) = 2
3𝜋

2𝑁
𝐸S

𝑁0
·
(︁
𝑁2 + 1

)︁
, (C.11)

𝑇 2MFI(𝜏) = 2
3𝜋

2𝑁
𝐸S

𝑁0
·
(︁
4ℎ2𝐺2(0)𝑇

)︁ (︁
𝑀2 − 1

)︁
(C.12)
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C.3 Relation of CFO and TO’s MFIs

and by inserting exemplary parameters of the 1/3-B2REC waveform with 𝐺2(0)𝑇 =

0.125, (4.31) becomes obvious.
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Appendix D

Calculations from Chapter 5

D.1 TO Restrictions in the VPB Estimator

The formula of calculating the timing offset on a symbol basis in [38] is given by

𝜀 = arg {𝜆1(𝜈)𝜆*
2(𝜈)}

2(𝑀 − 1)𝜋ℎ (D.1)

with 𝜀 = 𝜏/𝑇 relating to this work’s TO definition as stated. Naturally the angle of

a complex number is unambiguous only as long as it is in the range [−𝜋,+𝜋). This

gives a maximum unambiguous estimation range of

𝜀 ∈
[︃
− 1

2(𝑀 − 1)ℎ,+
1

2(𝑀 − 1)ℎ

)︃
, (D.2)

which is stated in (5.8).
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List of Acronyms

List of Acronyms

ACRB asymptotic Cramér-Rao bound.

AWGN additive white Gaussian noise.

BCH Bose Chaudhuri Hocquenghem.

BCJR Bahl-Cock-Jelinek-Raviv.

BER bit error rate.

CAF cross ambiguity function.

CCF cross correlation function.

CFO carrier frequency offset.

CPM continuous phase modulation.

CPO carrier phase offset.

CPV correlative phase value.

CRB Cramér-Rao bound.

CRVB Cramér-Rao vector bound.

CSI channel state information.

CZS correlative zero state.

DA data aided.

DD decision directed.

DFT discrete Fourier transform.

DSP digital signal processing.

ECM expectation conditional maximiza-

tion.

EE estimation error.

EM expectation maximization.

EPM electronic protection measure.

FER frame error rate.

FF fading factor.

FFT fast Fourier transform.

FH frequency hopping.

FI Fisher information.

FIM Fisher information matrix.

FPGA field programmable array.

G-A Genie-aided.

GA Gaussian.

GMSK Gaussian minimum shift keying.

HMM hidden Markov model.

i.i.d. independent and identically dis-

tributed.

IDFT inverse discrete Fourier transform.

ISI intersymbol interference.

ISM industrial, scientific and medical.

LL log likelihood.
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List of Acronyms

LLF log likelihood function.

LLR log likelihood ratios.

LOS line of sight.

MAP maximum a posteriori.

MCRB modified Cramér-Rao bound.

MCRVB modified Cramér-Rao vector

bound.

MELP mixed excitation linear predic-

tion.

MEV mean estimation value.

MFI modified Fisher information.

MFIM modified Fisher information ma-

trix.

ML maximum likelihood.

MMSE minimum mean square error.

MSEE mean square estimation error.

MSK minimum shift keying.

NDA non-data aided.

PAM pulse amplitude modulation.

PDF probability density function.

PLL phase locked loop.

PMD principal minimal distance.

PMF probability mass function.

PSD power spectral density.

RC raised cosine.

REC rectangular.

SC serially concatenated.

SCAN successive cancellation.

SCVEM serially concatenated vector ex-

pectation maximization.

SDR software defined radio.

SE spectral efficiency.

SF static (frequency) flat.

SISO soft-input-soft-output.

SNR signal-to-noise power ratio.

TDMA time division multiple access.

TO timing offset.

UHF ultra high frequency.

VEM vector expectation maxmization.

VHF very high frequency.

VPB vector pilot based.
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List of Symbols

This section lists the symbols used in this thesis. They are sorted alphabetically with

all Greek letter symbols in the back of the list.

�̃�, 𝑎 ,𝑎′ Vector of non-burst, burst and tilted burst data symbols in a CPM

burst, respectively.

𝒜, 𝒜′ Regular (bipolar) and tilted (unipolar) symbol alphabet, respectively.

𝐴𝑛, 𝐴′
𝑛 𝑛’th correlative state in the regular and tilted CPM trellis, respec-

tively.

𝐵0 One-sided receive filter bandwidth.

𝐵99 % One-sided bandwidth, that contains 99 % of the (one-sided) signal

energy.

𝐵coh Coherence bandwidth of the channel.

𝐵Dop Doppler spread of the channel.

𝐵GA Bandwidth of Gaussian (GA) pulse.

ℬ(𝜈), ℬ(𝜏) Sets of desired interpolation points in frequency and timing estima-

tion.

𝑐0 Speed of light (299 792 458 m s−1).

𝑐𝛾𝑛(𝑡),

𝑐𝛾𝑛(𝑘𝑇0)

Signal corresponding to branch 𝛾𝑛 in the 𝑛’th trellis stage and its

sampled version.
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D List of Symbols

𝑐𝛾𝑛(𝑘𝑇0, �̂�) Sampled, scaled, rotated and delayed signal corresponding to branch

𝛾𝑛.

𝒞 Number of arithmetic operations.

𝑑(𝜈), 𝑑(𝜃),

𝑑(𝜏)

Principal minimal distances (PMDs) of frequency, phase and timing

in the respective log likelihood functions (LLFs).

𝐷99 % Delay spread of the channel in 99 % of the measurement time.

𝐸S, 𝐸b Energy of one CPM symbol and of one binary information symbol.

𝐸𝑟′ , 𝐸𝑐 Energy of the received (and tilted) signal and of the expected reference

signal.

ℰFrame Probability of the event of a wrongly decoded frame.

𝑓 Frequency variable.

𝑓𝑐 Carrier frequency.

𝑓𝐷,max Maximum Doppler shift.

𝑓𝑖(𝑡) Instantaneous frequency.

𝑓𝑚 Largest, mutual instantaneous frequency.

𝑓𝐹𝑛 (𝑠), 𝑓𝐵𝑛 (�̇�) Forward and backward state occupations used in the BCJR algorithm.

𝑓𝑀𝑛 (𝑠, �̇�) Path metric used in the BCJR algorithm.

𝑓Osc, max Maximum oscillator offset.

𝑔(𝑡) Frequency pulse function.

𝐺2(0) Frequency pulse energy.

ℎ Modulation index.

𝐻R(𝑓) Transfer function of receive filter.

𝐼̃︀(𝜆), 𝐼̃︀𝑀(𝜆) Fisher information matrix (FIM) and modified Fisher information ma-

trix (MFIM) of the channel parameter vector 𝜆.
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ℐ(𝜆𝑖) Initialization grid for the expectation maximization (EM) algorithm

for the channel parameter 𝜆𝑖.

𝐾 Oversampling factor.

𝑘C Number of information bits in binary code word.

𝐿 Length of frequency pulse 𝑔(𝑡).

ℒ(𝜆) Likelihood function of 𝜆.

𝑚(Ψ′
𝑛, 𝐴

′
𝑛, 𝑎

′
𝑛) Mapping function to trellis branch number 𝛾𝑛.

𝑚𝛾𝑛

(︁
𝑆 ′
𝑛, 𝑆

′
𝑛+1

)︁
Mapping from two connected states to the trellis branch 𝛾𝑛.

𝑚𝑎′
𝑙
(𝛾𝑛) Mapping to the unipolar symbols [𝑎′

𝑛−(𝐿−1), . . . , 𝑎
′
𝑛].

𝑚Ψ′(𝛾𝑛) Mapping to phase state Ψ′
𝑛.

𝑀 Modulation order.

𝑛C Number of code bits in binary code word.

𝑛CI Level of confidence interval in normal distribution, e.g. 𝑛CI specifies

the 3 − 𝜎 confidence interval.

𝑛MC Size of mother code.

𝑁 Length of burst in symbols.

𝑁0, 𝑁0, 𝑁0,old Complex noise power spectral density, its estimate and a trial value.

𝑁B(𝜈), 𝑁B(𝜏) Number of bins in the sets ℬ of desired frequency and timing interpo-

lation points.

𝑁C Number of code symbols in one burst.

𝑁I(𝜆𝑖) Number of grid points in ℐ(𝜆𝑖).

𝑁It Number of iterations in the expectation maximization (EM) algo-

rithm.

𝑁P, 𝑁CZS Number of pilot and termination symbols in one burst.

V



D List of Symbols

𝑁𝑆′ , 𝑁Ψ′ , 𝑁𝐴′ Number of states, phase states and correlative states in the tilted CPM

trellis.

𝑁ZP Number of samples in a properly zero padded signal.

𝑃 Nominator of modulation index.

𝑃N Noise power.

𝑃S Signal power.

𝒫(𝑠) Set of all predecessors to state 𝑠.

𝑞(𝑡) Phase pulse function.

𝑄 Denominator of modulation index.

𝒬(𝜆, 𝜆(𝑖)
old) Auxiliary function that is used in the expectation maximization (EM)

algorithm.

𝑟(𝑡), 𝑟′(𝑡) Received burst CPM signal in the lowpass domain and its tilted version

(depending on 𝛽).

𝑟′(𝑘𝑇0), 𝑟′ Sampled, tilted, received burst CPM signal in the lowpass domain and

its vectorization.

𝑅 Code rate 𝑘C/𝑛C.

𝑠(𝑡), 𝑠′(𝑡) Transmitted burst CPM signal in the lowpass domain (depending on

𝛽).

𝑠BP(𝑡), 𝑠LP(𝑡) Transmitted continuous non-burst CPM signal in the bandpass and

lowpass domain.

𝑆𝑛, 𝑆 ′
𝑛 𝑛’th state in the trellis and 𝑛’th state in the tilted trellis.

𝑆𝑠𝑠(𝑓) Power spectral density (PSD) of the signal 𝑠(𝑡).

𝒮(𝑠) Set of all successors to state 𝑠.

𝑡 Time variable.
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𝑡0 time reference of the receiver system.

𝑇 , 𝑇−1 Duration of one CPM symbol and symbol rate.

𝑇0 Sample clock.

𝑇Burst Burst duration.

𝑇coh Coherence time of the channel.

𝒯eff Effective Throughput.

𝑢, �̂� Vector of information bits and its estimate.

𝑣, 𝑣I Vector of encoded bits and its interleaved version.

𝑣max Maximum velocity.

𝑤(𝑡), 𝑤′(𝑡) Time continuous, white noise and its tilted version.

𝑤′(𝑘𝑇0) Sampled and tilted white noise.

𝛼, �̂� Fading factor (FF) and its estimate.

𝛽 𝛽 = 1 for transmitter tilting and 𝛽 = 0 for receiver tilting.

𝛾𝑛 CPM trellis edge specifier in the 𝑛’th trellis stage.

Γ Number of edges in the CPM trellis per stage.

Δ(𝜆𝑖) Parameter ranges, as in which values can a channel parameter take.

𝜀(𝜈), 𝜀(𝜏) Inverse of the desired resolutions of interpolations in frequency and

timing estimation.

𝜂M, 𝜂S Modulation and spectral efficiency.

𝜃, 𝜃, 𝜃0, 𝜃0 Carrier phase offset (CPO) and its estimate as well as the reduced

versions (𝜃0 = 𝜃 mod 𝜓).

𝜅 Scaling factor for Rayleigh distribution.

𝜆, �̂�, 𝜆old Channel parameter vector, its estimate and an old trial value.
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D List of Symbols

𝜈, 𝜈 Carrier frequency offset (CFO) and its estimate.

𝜉 Phase tilt to make the CPM trellis time invariant.

𝜎2
𝑤′ , 𝜎2

𝑤′ Variance of complex noise process 𝑤′ and its estimate.

𝜏 , 𝜏 , 𝜏old, 𝜏max Timing offset (TO), its estimate and a trial value. 𝜏max is the maxi-

mum value that the timing estimator in [38] can handle.

𝜑(𝑡, �̃�),

𝜑(𝑡, 𝑎),

𝜑′(𝑡, 𝑎′)

Phase function of the continuous (non-burst) CPM signal, phase func-

tion of the burst CPM signal and phase function of the tilted burst

CPM signal, respectively.

𝜑0,1 Arbitrary initial phase in the phase function.

𝜒𝑟′,𝑐(𝜈, 𝜏) Cross ambiguity function.

𝜓 Radiant value of a phase state.

Ψ𝑛 ,Ψ′
𝑛 𝑛’th phase state of the regular and tilted CPM trellis, respectively.

VIII



LIST OF FIGURES

List of Figures

1-1 Two burst transmission scenarios. . . . . . . . . . . . . . . . . . . . . 2

1-2 General burst structure. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2-1 Block diagram of the complete transmission system. . . . . . . . . . . 16

2-2 Frequency and phase pulses 𝑔(𝑡) and 𝑞(𝑡). . . . . . . . . . . . . . . . 18

2-3 Block diagram of the CPM modulator. . . . . . . . . . . . . . . . . . 20

2-4 Block diagram of the CPM tilting. . . . . . . . . . . . . . . . . . . . 22

2-5 Exemplary trellis for a ℎ = 1/3, 𝑀 = 2, 𝐿 = 2 waveform. . . . . . . . 24

2-6 Block diagram of the channel. . . . . . . . . . . . . . . . . . . . . . . 29

2-7 Visualization of the trellis initialization. . . . . . . . . . . . . . . . . 39

2-8 Block diagram of the SC CPM channel decoder. . . . . . . . . . . . . 40

3-1 ML channel parameter estimation problem in a general framework. . 44

3-2 Relations between different lower bounds. . . . . . . . . . . . . . . . 57

4-1 LLF of a binary, partial response, rectangular CPM scheme. . . . . . 64

4-2 Exemplary CAF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4-3 Block diagram of the EM algorithm. . . . . . . . . . . . . . . . . . . 74

4-4 Exemplary phase trajectories of eight time invariant trellis branches. 78

4-5 CPVs of different rectangular waveforms. . . . . . . . . . . . . . . . . 79

4-6 Exemplary LLF of CPO and TO with starting points. . . . . . . . . . 85

4-7 Distribution of grid points. . . . . . . . . . . . . . . . . . . . . . . . . 86

4-8 Reduction of the parameter range by pilot symbols. . . . . . . . . . . 88

IX



LIST OF FIGURES

5-1 General symbol allocation in each burst. . . . . . . . . . . . . . . . . 98

5-2 Kullback-Leibler divergence of each EM iteration and ML solution. . 104

5-3 Normalized MSEEs after the 𝑖’th EM iteration. . . . . . . . . . . . . 106

5-4 Mutual information of encoded bits and corresponding LLRs. . . . . 107

5-5 CPO MEVs of SCVEM and VPB estimators. . . . . . . . . . . . . . 110

5-6 TO MEVs of SCVEM and VPB estimators. . . . . . . . . . . . . . . 111

5-7 Expected FF errors for VEM and SCVEM estimators. . . . . . . . . 112

5-8 Normalized FF MSEEs of VEM, SCVEM and VPB estimators. . . . 114

5-9 Normalized CFO MSEEs of VEM, SCVEM and VPB estimators. . . 115

5-10 Normalized CPO MSEEs of VEM, SCVEM and VPB estimators. . . 116

5-11 Normalized TO MSEEs of VEM, SCVEM and VPB estimators. . . . 117

5-12 Effective Throughput compared to the theoretical maximum. . . . . . 119

5-13 Uncoded BER in the SF channel. . . . . . . . . . . . . . . . . . . . . 120

5-14 Coded FER in the SF channel. . . . . . . . . . . . . . . . . . . . . . 122

5-15 Uncoded BER in the Hilly environment with 𝑓Dop, max = 80 Hz. . . . . 123

5-16 Coded FER in the Urban environment with 𝑓Dop, max = 0 Hz. . . . . . 125

5-17 Schematic of SDR transmission. . . . . . . . . . . . . . . . . . . . . . 126

5-18 Uncoded BER in a cable connection setup with SDRs. . . . . . . . . 128

X



LIST OF TABLES

List of Tables

2.1 Doppler spreads and coherence times for several scenarios. . . . . . . 27

2.2 Delay spreads and coherence bandwidths of several environments. . . 27

5.1 Parameters of all simulated CPM waveform schemes. . . . . . . . . . 99

5.2 System parameters for uncoded transmission. . . . . . . . . . . . . . 102

5.3 System parameters for a fixed SE. . . . . . . . . . . . . . . . . . . . . 103

5.4 SDR properties and configurations. . . . . . . . . . . . . . . . . . . . 127

5.5 Relevant parameters for computational complexity. . . . . . . . . . . 130

5.6 Listing of number of operations per burst. . . . . . . . . . . . . . . . 133

XI



LIST OF TABLES

XII



BIBLIOGRAPHY

Bibliography

[1] A. Hansson, J. Nilsson, and K. Wiklundh, “Performance Analysis of Frequency-
Hopping Ad Hoc Networks With Random Dwell-Time Under Follower Jam-
ming,” in MILCOM 2015-2015 IEEE Military Communications Conference,
pp. 848–853, IEEE, 2015.

[2] A. Valyrakis, E. E. Tsakonas, N. D. Sidiropoulos, and A. Swami, “Stochastic
Modeling and Particle Filtering Algorithms for Tracking a Frequency-Hopped
Signal,” IEEE Transactions on Signal Processing, vol. 57, no. 8, pp. 3108–3118,
2009.

[3] C. Brown and P. Vigneron, “Spectrally Efficient CPM Waveforms for Narrow-
band Tactical Communications in Frequency Hopped Networks,” in MILCOM
2006, pp. 1–6, IEEE Computer Society, 2006.

[4] D. J. Torrieri, “Fundamental Limitations on Repeater Jamming of Frequency-
Hopping Communications,” IEEE Journal on Selected areas in Communica-
tions, vol. 7, no. 4, pp. 569–575, 1989.

[5] B. SIG, “Bluetooth Core Specification Version 5.3, 2021.”

[6] NATO, “Ratification Draft STANAGs 5630-5633, Narrowband Waveform,”
tech. rep., NATO, 2015.

[7] E. Casini, M. Street, P. Vigneron, and R. Barfoot, “SDR-Ready Standardized
Waveforms for Tactical VHF and UHF Communications for NATO,” tech. rep.,
NATO C3 AGENCY THE HAGUE (NETHERLANDS), 2010.

[8] C. Enz, N. Scolari, and U. Yodprasit, “Ultra Low-Power Radio Design for Wire-
less Sensor Networks,” in 2005 IEEE International Wkshp on Radio-Frequency
Integration Technology: Integrated Circuits for Wideband Comm & Wireless
Sensor Networks, pp. 1–17, IEEE, 2005.

[9] C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic,
P. Popovski, and A. Dekorsy, “Massive Machine-Type Communications in 5G:
Physical and MAC-Layer Solutions,” IEEE Communications Magazine, vol. 54,
no. 9, pp. 59–65, 2016.

XIII



BIBLIOGRAPHY

[10] A. G. Perotti, M. N. Khormuji, and B. M. Popović, “Simultaneous Wireless In-
formation and Power Transfer by Continuous-Phase Modulation,” IEEE Com-
munications Letters, vol. 24, no. 6, pp. 1294–1298, 2020.

[11] J. Proakis and M. Salehi, Digital Communications. McGraw-Hill., 2008.

[12] R. C. Daniels and R. W. Heath, “60 GHz Wireless Communications: Emerg-
ing Requirements and Design Recommendations,” IEEE Vehicular technology
magazine, vol. 2, no. 3, pp. 41–50, 2007.

[13] M. K. Simon, Bandwidth-Ffficient Digital Modulation With Application to Deep
Space Communications. John Wiley & Sons, 2005.

[14] J. Huber, “Trelliscodierung,” Springer, 1992.

[15] T. Svensson and T. Eriksson, “On Power Amplifier Efficiency With Modulated
Signals,” in 2010 IEEE 71st Vehicular Technology Conference, pp. 1–5, IEEE,
2010.

[16] F. J. Ortega-Gonzalez, “High Power Wideband Class-E Power Amplifier,” IEEE
Microwave and Wireless Components Letters, vol. 20, no. 10, pp. 569–571, 2010.

[17] U. Mengali, Synchronization Techniques for Digital Receivers. Springer Science
& Business Media, 2013.

[18] R. Mehlan, Y.-E. Chen, and H. Meyr, “A Fully Digital Feedforward MSK
Demodulator with Joint Frequency Offset and Symbol Timing Estimation
for Burst Mode Mobile Radio,” IEEE Transactions on Vehicular Technology,
vol. 42, no. 4, pp. 434–443, 1993.

[19] M. Morelli and U. Mengali, “Feedforward Carrier Frequency Estimation with
MSK-Type Signals,” IEEE Communications Letters, vol. 2, no. 8, pp. 235–237,
1998.

[20] M. Morelli and G. M. Vitetta, “Joint Phase and Timing Synchronization Algo-
rithms for MSK-Type Signals,” in 1999 IEEE Communications Theory Mini-
Conference (Cat. No. 99EX352), pp. 146–150, IEEE, 1999.

[21] A. D’andrea, A. Ginesi, and U. Mengali, “Frequency Detectors for CPM
Signals,” IEEE Transactions on Communications, vol. 43, no. 2/3/4,
pp. 1828–1837, 1995.

[22] A. D’andrea, A. Ginesi, and U. Mengali, “Digital Carrier Frequency Estimation
for Multilevel CPM Signals,” in Proceedings IEEE International Conference on
Communications ICC’95, vol. 2, pp. 1041–1045, IEEE, 1995.

[23] A. N. D’Andrea, U. Mengali, and M. Morelli, “Symbol Timing Estimation with
CPM Modulation,” IEEE Transactions on Communications, vol. 44, no. 10,
pp. 1362–1372, 1996.

XIV



BIBLIOGRAPHY

[24] P. Bianchi, P. Loubaton, and F. Sirven, “On the Blind Estimation of the Pa-
rameters of Continuous Phase Modulated Signals,” IEEE Journal on Selected
Areas in Communications, vol. 23, no. 5, pp. 944–962, 2005.

[25] A. D’Amico, A. N. D’Andrea, and U. Mengali, “Feedforward Synchronization
Schemes for MSK-Type Signals,” European Transactions on Telecommunica-
tions, vol. 10, no. 6, pp. 597–607, 1999.

[26] A. Lang and B. Lankl, “Carrier Phase Synchronization in Burst-Type CPM by
Means of Expectation Maximization,” in 2019 IEEE 90th Vehicular Technology
Conference (VTC2019-Fall), pp. 1–7, IEEE, 2019.

[27] A. Lang and B. Lankl, “Carrier Frequency Offset Estimation in Burst-Type
CPM via the EM Algorithm,” in 2020 IEEE 91st Vehicular Technology Con-
ference (VTC2020-Spring), pp. 1–6, IEEE, 2020.

[28] A. Lang and B. Lankl, “Blind Joint Timing and Carrier Phase Estimation
in Burst-Type CPM,” in 2021 IEEE 94th Vehicular Technology Conference
(VTC2021-Fall), pp. 1–6, IEEE, 2021.

[29] J. Huber and W. Liu, “Data-Aided Synchronization of Coherent CPM-
Receivers,” IEEE Transactions on Communications, vol. 40, no. 1, pp. 178–189,
1992.

[30] H. Abeida, J.-M. Brossier, L. Ros, and J. Vila-Valls, “An EM Algorithm for
Path Delay and Complex Gain Estimation of Slowly Varying Fading Channel
for CPM Signals,” in GLOBECOM 2009-2009 IEEE Global Telecommunications
Conference, pp. 1–6, IEEE, 2009.

[31] Q. Zhao and G. Stuber, “Joint Time and Phase Recovery for CPM and its
Asymptotic Behavior,” in GLOBECOM’05 IEEE Global Telecommunications
Conference, 2005, vol. 4, pp. 5–pp, IEEE, 2005.

[32] Q. Zhao and G. L. Stuber, “Robust Time and Phase Synchronization for Con-
tinuous Phase Modulation,” IEEE Transactions on Communications, vol. 54,
no. 10, pp. 1857–1869, 2006.

[33] N. Hajiabdolrahim, S. R. Aghdam, and T. Eriksson, “An Extended Kalman
Filter Framework for Joint Phase Noise, CFO and Sampling Time Error Es-
timation,” in 2020 IEEE 31st Annual International Symposium on Personal,
Indoor and Mobile Radio Communications, pp. 1–6, IEEE, 2020.

[34] Q. Zhao, H. Kim, and G. Stuber, “Adaptive Iterative Phase Synchronization
for Serially Concatenated Continuous Phase Modulation,” in IEEE Military
Communications Conference, 2003. MILCOM 2003., vol. 1, pp. 78–83, IEEE,
2003.

XV



BIBLIOGRAPHY

[35] Q. Zhao, H. Kim, and G. Stuber, “Innovations-Based MAP Estimation with
Application to Phase Synchronization for Serially Concatenated CPM,” IEEE
Transactions on Wireless Communications, vol. 5, no. 5, pp. 1033–1043, 2006.

[36] Q. Zhao and G. L. Stuber, “Turbo Synchronization for Serially Concatenated
CPM,” in 2006 IEEE International Conference on Communications, vol. 7,
pp. 2976–2980, IEEE, 2006.

[37] X. Zhou, R. Xue, D. Zhao, and F. Fang, “Soft Timing Synchronization Al-
gorithm for CPM Signals,” in 2013 IEEE International Conference on Green
Computing and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing, pp. 1381–1385, IEEE, 2013.

[38] E. Hosseini and E. Perrins, “Timing, Carrier, and Frame Synchronization of
Burst-Mode CPM,” IEEE Transactions on Communications, vol. 61, no. 12,
pp. 5125–5138, 2013.

[39] C. Brown and P. Vigneron, “Coarse and Fine Timing Sychronisation for Partial
Response CPM in a Frequency Hopped Tactical Network,” in MILCOM 2007-
IEEE Military Communications Conference, pp. 1–7, IEEE, 2007.

[40] N. Noels, C. Herzet, A. Dejonghe, V. Lottici, H. Steendam, M. Moeneclaey,
M. Luise, and L. Vandendorpe, “Turbo Synchronization: An EM Algorithm
Interpretation,” in Communications, 2003. ICC’03. IEEE International Con-
ference on, vol. 4, pp. 2933–2937, IEEE, 2003.

[41] N. Noels, V. Lottici, A. Dejonghe, H. Steendam, M. Moeneclaey, M. Luise,
and L. Vandendorpe, “A Theoretical Framework for Soft-Information-Based
Synchronization in Iterative (Turbo) Receivers,” EURASIP Journal on Wireless
Communications and Networking, vol. 2005, no. 2, p. 576206, 2005.

[42] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes. 1,” in Proceedings of ICC’93-
IEEE International Conference on Communications, vol. 2, pp. 1064–1070,
IEEE, 1993.

[43] K.-D. Kammeyer, Nachrichtenübertragung. Springer-Verlag, 2013.

[44] P. Moqvist and T. M. Aulin, “Serially Concatenated Continuous Phase Modula-
tion with Iterative Decoding,” IEEE Transactions on Communications, vol. 49,
no. 11, pp. 1901–1915, 2001.

[45] A. Lang and B. Lankl, “Tail-Biting in Optimal CPM Detectors,” Electronics
Letters, vol. 56, no. 3, pp. 141–144, 2019.

[46] J. Fischer, Physical layer link modeling for mobile ad-hoc networks (MANET).
Fraunhofer Verlag, 2016.

[47] Ettus Research, USRP™ N200/N210 NETWORKED SERIES, 2012.

XVI



BIBLIOGRAPHY

[48] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes
for Minimizing Symbol Error Rate (corresp.),” IEEE Transactions on Informa-
tion Theory, vol. 20, no. 2, pp. 284–287, 1974.

[49] A. Lang and B. Lankl, “A Comprehensive Study of CPM Trellis Initialization
Methods,” in MILCOM 2022 - 2022 IEEE Military Communications Conference
(MILCOM), pp. 78–83, IEEE, 2022.

[50] P. Moqvist and T. Aulin, “Trellis Termination in CPM,” Electronics Letters,
vol. 36, no. 23, pp. 1940–1941, 2000.

[51] V. Dantona, C. Hofmann, S. Lattrell, and B. Lankl, “Spectrally Efficient Mul-
tilevel CPM Waveforms for VHF Narrowband Communications,” in SCC 2015;
10th International ITG Conference on Systems, Communications and Coding;
Proceedings of, pp. 1–6, VDE, 2015.

[52] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[53] A. Lang and B. Lankl, “Very Short Channel Codes for Burst-Type Trans-
missions,” in MILCOM 2018-2018 IEEE Military Communications Conference
(MILCOM), pp. 1–9, IEEE, 2018.

[54] E. Arikan, “Systematic Polar Coding,” IEEE Communications Letters, vol. 15,
no. 8, pp. 860–862, 2011.

[55] U. U. Fayyaz and J. R. Barry, “Low-Complexity Soft-Output Decoding of Polar
Codes,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 5,
pp. 958–966, 2014.

[56] V. Bioglio, F. Gabry, and I. Land, “Low-Complexity Puncturing and Shorten-
ing of Polar Codes,” in 2017 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), pp. 1–6, IEEE, 2017.

[57] R. M. Pyndiah, “Near-Optimum Decoding of Product Codes: Block Turbo
Codes,” IEEE Transactions on Communications, vol. 46, no. 8, pp. 1003–1010,
1998.

[58] H. L. Van Trees, “Detection Estimation and Modulation Theory,” Ser. Detec-
tion, Estimation, and Modulation Theory, no. 1, 1968.

[59] A. N. D’Andrea, U. Mengali, and R. Reggiannini, “The Modified Cramer-Rao
Bound and Its Application to Synchronization Problems,” IEEE Transactions
on Communications, vol. 42, no. 234, pp. 1391–1399, 1994.

[60] F. Gini, R. Reggiannini, and U. Mengali, “The Modified Cramer-Rao Bound in
Vector Parameter Estimation,” IEEE Transactions on Communications, vol. 46,
no. 1, pp. 52–60, 1998.

XVII



BIBLIOGRAPHY

[61] A. Pollok and R. McKilliam, “Modified Cramér-Rao Bounds for Continuous-
Phase Modulated Signals,” IEEE Transactions on Communications, vol. 62,
no. 5, pp. 1681–1690, 2014.

[62] M. Moeneclaey, “On the true and the modified Cramer-Rao bounds for the
estimation of a scalar parameter in the presence of nuisance parameters,” IEEE
Transactions on Communications, vol. 46, no. 11, pp. 1536–1544, 1998.

[63] T. Alberty, “Frequency Domain Interpretation of the Cramer-Rao Bound for
Carrier and Clock Synchronization,” IEEE Transactions on Communications,
vol. 43, no. 2/3/4, pp. 1185–1191, 1995.

[64] E. Hosseini and E. Perrins, “The Cramer-Rao Bound for Training Sequence
Design for Burst-Mode CPM,” IEEE Transactions on Communications, vol. 61,
no. 6, pp. 2396–2407, 2013.

[65] T. Alberty, Zur Empfängersynchronisation bei der digitalen Nachrichtenüber-
tragung. N/A, 1996.

[66] A. Lang and B. Lankl, “Blind Vector Parameter Estimation for Burst Type
CPM Transmissions,” IEEE Open Journal of Vehicular Technology, vol. 4,
pp. 162–180, 2022.

[67] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from In-
complete Data via the EM Algorithm,” Journal of the Royal Statistical Society:
Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[68] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin-Heidelberg:
Springer New York, 2016.

[69] M. R. Gupta, Y. Chen, et al., “Theory and Use of the EM Algorithm,” Foun-
dations and Trends® in Signal Processing, vol. 4, no. 3, pp. 223–296, 2011.

[70] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,
1989.

[71] P. Laurent, “Exact and Approximate Construction of Digital Phase Modula-
tions by Superposition of Amplitude Modulated Pulses (AMP),” IEEE trans-
actions on communications, vol. 34, no. 2, pp. 150–160, 1986.

[72] U. Mengali and M. Morelli, “Decomposition of M-ary CPM Signals Into
PAM Waveforms,” IEEE Transactions on Information Theory, vol. 41, no. 5,
pp. 1265–1275, 1995.

[73] S. B. Rasool and M. R. Bell, “Efficient Pulse-Doppler Processing and Ambi-
guity Functions of Nonuniform Coherent Pulse Trains,” in 2010 IEEE Radar
Conference, pp. 1150–1155, IEEE, 2010.

XVIII



BIBLIOGRAPHY

[74] Z. Gao, R. Tao, Y. Ma, and T. Shao, “DVB-T Signal Cross-Ambiguity Functions
Improvement for Passive Radar,” in 2006 CIE International Conference on
Radar, pp. 1–4, IEEE, 2006.

[75] S. Stein, “Algorithms for ambiguity function processing,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 29, no. 3, pp. 588–599, 1981.

[76] X.-L. Meng and D. B. Rubin, “Maximum Likelihood Estimation via the ECM
Algorithm: A General Framework,” Biometrika, vol. 80, no. 2, pp. 267–278,
1993.

[77] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in Pro-
ceedings IEEE International Conference on Communications ICC’95, vol. 2,
pp. 1009–1013, IEEE, 1995.

[78] L. Svilainis, “Review on Time Delay Estimate Subsample Interpolation in Fre-
quency Domain,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency control, vol. 66, no. 11, pp. 1691–1698, 2019.

[79] G. D. Martin, “Chirp Z-Transform Spectral Zoom Optimization with MAT-
LAB,” Sandia National Laboratories Report SAND2005-7084, 2005.

[80] G. Goertzel et al., “An algorithm for the evaluation of finite trigonometric
series,” The American Mathematical Monthly, vol. 65, no. 1, pp. 34–35, 1958.

[81] P. Duhamel, B. Piron, and J. M. Etcheto, “On Computing the Inverse DFT,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 2,
pp. 285–286, 1988.

[82] H. Vangala, E. Viterbo, and Y. Hong, “A Comparative Study of Polar Code
Constructions for the AWGN Channel,” arXiv preprint arXiv:1501.02473, 2015.

[83] S. Ten Brink, “Convergence Behavior of Iteratively Decoded Parallel Con-
catenated Codes,” IEEE Transactions on Communications, vol. 49, no. 10,
pp. 1727–1737, 2001.

[84] S. Dolinar, D. Divsalar, and F. Pollara, “Code Performance as a Function of
Block Size,” TMO progress report, vol. 42, no. 133, 1998.

[85] L. M. Supplee, R. P. Cohn, J. S. Collura, and A. V. McCree, “MELP: The
New Federal Standard at 2400 bps,” in 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 2, pp. 1591–1594, IEEE, 1997.

[86] D. J. Rahikka, J. S. Collura, T. E. Fuja, and T. Fazel, “US Federal Standard
MELP Vocoder Tactical Performance Enhancement via MAP Error Correc-
tion,” in MILCOM 1999. IEEE Military Communications. Conference Proceed-
ings (Cat. No. 99CH36341), vol. 2, pp. 1458–1462, IEEE, 1999.

XIX



BIBLIOGRAPHY

[87] S. Lin and D. J. Costello, Error Control Coding, vol. 2. Prentice Hall New York,
2001.

[88] J. Xu, H. Shi, and J. Wang, “Analysis of Frame Length and Frame Error Rate
for the Lowest Energy Dissipation in Wireless Sensor Networks,” in 2008 4th
International Conference on Wireless Communications, Networking and Mobile
Computing, pp. 1–4, IEEE, 2008.

[89] MATLAB, version 9.13.0.2105380 (R2022b) Update 2. Natick, Massachusetts:
The MathWorks Inc., 2022.

[90] L. G. Baltar, F. Schaich, M. Renfors, and J. A. Nossek, “Computational Com-
plexity Analysis of Advanced Physical Layers Based on Multicarrier Modula-
tion,” in 2011 Future Network & Mobile Summit, pp. 1–8, IEEE, 2011.

[91] J. Anderson and D. Taylor, “A Bandwidth-Efficient Class of Signal-Space
Codes,” IEEE Transactions on Information Theory, vol. 24, no. 6, pp. 703–712,
1978.

[92] Z. Pan, C. Xie, H. Wang, Y. Wei, and D. Guo, “Blind Turbo Equalization of
Short CPM Bursts for UAV-Aided Internet of Things,” Sensors, vol. 22, no. 17,
p. 6508, 2022.

[93] G. K. Kaleh and R. Vallet, “Joint Parameter Estimation and Symbol Detection
for Linear or Nonlinear Unknown Channels,” IEEE Transactions on Commu-
nications, vol. 42, no. 7, pp. 2406–2413, 1994.

[94] C. Brutel, J. Boutros, and P. Mege, “Iterative Joint Channel Estimation and
Detection of Coded CPM,” in 2000 International Zurich Seminar on Broadband
Communications. Accessing, Transmission, Networking. Proceedings (Cat. No.
00TH8475), pp. 287–292, IEEE, 2000.

[95] K.-D. Kammeyer, V. Kuhn, and T. Petermann, “Blind and Nonblind Turbo
Estimation for Fast Fading GSM Channels,” IEEE Journal on Selected Areas
in Communications, vol. 19, no. 9, pp. 1718–1728, 2001.

[96] L. M. Zeger and H. Kobayashi, “A Simplified EM Algorithm for Detection of
CPM Signals In A Fading Multipath Channel,” Wireless Networks, vol. 8, no. 6,
pp. 649–658, 2002.

[97] H. Nguyen and B. C. Levy, “Blind ML Detection of CPM Signals via he EMV
Algorithm,” in 2002 IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 3, pp. III–2457, IEEE, 2002.

[98] H. Nguyen and B. C. Levy, “Blind and semi-Blind Equalization of CPM Signals
with the EMV Algorithm,” IEEE Transactions on Signal Processing, vol. 51,
no. 10, pp. 2650–2664, 2003.

XX



BIBLIOGRAPHY

[99] M. El Chamaa and B. Lankl, “Noncoherent Symbol Detection of Short CPM
Bursts in Frequency-Selective Fading Channels,” IEEE Transactions on Wire-
less Communications, vol. 19, no. 2, pp. 771–782, 2019.

[100] G. Colavolpe and R. Raheli, “Reduced-Complexity Detection and Phase Syn-
chronization of CPM Signals,” IEEE Transactions on Communications, vol. 45,
no. 9, pp. 1070–1079, 1997.

[101] A. Barbieri and G. Colavolpe, “Simplified Soft-Output Detection of CPM Sig-
nals Over Coherent and Phase Noise Channels,” IEEE Transactions on Wireless
Communications, vol. 6, no. 7, pp. 2486–2496, 2007.

[102] M. Mitchell, An Introduction to Genetic Algorithms. MIT press, 1998.

XXI


	 Abstract
	 Kurzfassung
	 Acknowledgments
	1 Introduction
	1.1 Motivation and Background
	1.2 Related Work in Synchronization
	1.2.1 Non-Data Aided
	1.2.2 Decision Directed
	1.2.3 Data Aided

	1.3 Thesis Organization
	1.4 Contributions
	1.5 Notation Conventions

	2 System Overview
	2.1 Continuous Phase Modulation
	2.1.1 Bandpass Definition of Continuous CPM Signal
	2.1.2 Equivalent Lowpass Representation of the Burst-Type CPM Signal

	2.2 Trellis Representation of the CPM Signal
	2.2.1 Phase Tilting of the CPM Signal
	2.2.2 Time Invariant CPM Trellis

	2.3 Radio Channel for Burst Transmissions in the VHF/UHF Band
	2.3.1 Contemplations on the Channel Characteristics
	2.3.2 System Modeling of the Channel

	2.4 Front End
	2.5 Soft-Input-Soft-Output CPM Detector
	2.5.1 MAP Detector for a Trellis Coded CPM Signal
	2.5.2 Initialization of the State Occupation Variables

	2.6 Channel Coding
	2.7 Key Points of the Chapter

	3 Theoretical Treatment of Maximum Likelihood Parameter Estimation
	3.1 Classification of the Estimator
	3.2 The Theoretic Performance Limit of Joint and Unbiased Estimators
	3.3 The Modified Fisher Information Matrix
	3.4 The Modified Cramér-Rao Vector Bound
	3.4.1 Comparison of the MCRVB with Its Scalar Version
	3.4.2 Comparison of the MCRVB with True Bounds

	3.5 Key Points of the Chapter

	4 Channel Parameter Estimation
	4.1 Introduction to the Expectation Maximization Algorithm
	4.2 Expectation Step for Burst Type CPM
	4.3 Maximization Step for Burst Type CPM
	4.3.1 Maximization with Regard to CFO and TO
	4.3.2 Maximization with Regard to CPO
	4.3.3 Maximization with Regard to FF
	4.3.4 Evaluation of a Maximization with Regard to the Noise Power Density

	4.4 Initialization of the Parameters
	4.4.1 CPO Grid Spacing
	4.4.2 CFO Grid Spacing
	4.4.3 TO Grid Spacing
	4.4.4 FF Initialization
	4.4.5 Grid For Joint Estimation
	4.4.6 Grid Reduction Approaches

	4.5 Implementation Aspects
	4.5.1 Algorithmic Synchronization Description
	4.5.2 Efficient Implementation

	4.6 Key Points of the Chapter

	5 Evaluation of the Proposed Estimation Algorithm
	5.1 Simulation Parameters
	5.1.1 Parameters of the Considered Waveforms
	5.1.2 Setups for the Different Comparisons

	5.2 Convergence Behavior and Influence of Channel Code
	5.3 Notes on the VBP Estimator
	5.4 Mean Estimation Value
	5.5 Mean Square Estimation Error
	5.6 Effective Throughput
	5.7 Error Rates
	5.8 Practical Assessments
	5.8.1 Simulation in Fast Fading Channels
	5.8.2 Measurements in Hardware Setup

	5.9 Analysis of Computational Complexity
	5.10 Key Points of the Chapter

	6 Conclusion
	6.1 Summary
	6.2 Possible Future Work

	A Calculation from Chapter 2
	A.1 Derivation of Noise Estimation
	A.2 Transformation of Complex Difference's Absolute Value

	B Calculations from Chapter 3
	B.1 Derivation of MFIM for CPM Bursts
	B.2 Ratio of PEN and MCRB for the CPO
	B.3 Derivation of the true FF CRB

	C Calculations from Chapter 4
	C.1 Verification of Kullback-Leibler Divergence
	C.2 Verification of Entropy
	C.3 Relation of CFO and TO's MFIs

	D Calculations from Chapter 5
	D.1 TO Restrictions in the VPB Estimator

	 List of Acronyms
	 List of Symbols
	 List of Figures
	 List of Tables
	 References

