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Abstract

This work presents an efficient quadrature rule for shell analysis fully integrated in CAD by means of Isogeometric Analysis
IGA). General CAD-models may consist of trimmed parts such as holes, intersections, cut-offs etc. Therefore, IGA should
e able to deal with these models in order to fulfil its promise of closing the gap between design and analysis. Trimming
perations violate the tensor-product structure of the used Non-Uniform Rational B-spline (NURBS) basis functions and of
ypical quadrature rules. Existing efficient patch-wise quadrature rules consider actual knot vectors and are determined in
D. They are extended to further dimensions by means of a tensor-product. Therefore, they are not directly applicable to
rimmed structures. The herein proposed method extends patch-wise quadrature rules to trimmed surfaces. Thereby, the number
f quadrature points can be significantly reduced. Geometrically linear and non-linear benchmarks of plane, plate and shell
tructures are investigated. The results are compared to a standard trimming procedure and a good performance is observed.

2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

When Isogeometric Analysis (IGA) was first presented in 2005, it promised to close the gap between design and
nalysis [1]. The classical Finite Element Method (FEM) adopts different functions in order to describe geometries
han the ones used in Computer Aided Design (CAD). This hinders a direct communication between design process
nd accompanying analysis. The key idea of IGA is therefore to directly employ the functions used in CAD as basis
unctions for the analysis. The most established functions in CAD as well as in IGA are Non-Uniform Rational
-Splines (NURBS) which enable a broad flexibility in modelling, e.g. they are able to exactly represent conic

ections, which include circles and ellipses [1].
The reduction of computational costs is of general interest in the context of numerical simulations. A good

verview over different methods to speed-up computations in IGA is given by [2]. Four approaches can be
istinguished:
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1. Collocation methods
2. Quadrature techniques employing sum factorization
3. Quadrature-free approaches
4. Reduced or specialized quadrature rules

Collocation methods do not solve the weak form of a PDE, but enforce its strong form at a set of locations (called
collocation points) [3]. Sum factorization reduces the computational cost by splitting up the tensor-product of the
basis functions and, thereby, computing the integral one direction after the other [4]. Quadrature-free approaches
completely abandon numerical integration by applying interpolation of the integrands and precomputed look-up
tables [2].

In this work, the focus is on specialized quadrature rules. A standard “p+1” Gauss rule is typically used in IGA
for the integration of stiffness matrices. NURBS normally inherit a high smoothness and span over multiple elements
(knot spans). Therefore, a standard Gauss rule uses more quadrature points than necessary because it does not
consider the higher inter-element smoothness. In the last decade, many specialized quadrature rules were developed
providing an optimal number of quadrature points by considering the actual parametrization of the patch. These
rules are often called patch-wise quadrature rules [5,6] or generalized Gaussian quadratures [7]. The first patch-
wise quadrature rule was presented by [8] and is called “half-point rule” referring to the fact that the number of
quadrature points is roughly equal to half the number of basis functions of the target space under consideration. The
rule is independent of the polynomial order. However, it does not consider the effects of the boundaries and of non-
uniform regularities. Auricchio et al. [9] proposed a robust, almost optimal rule considering boundary effects which
is however restricted to uniform knot vectors and regularities. Adam et al. [10] presented an algorithm which finds
local optimal quadrature points and, thus, is able to develop a patch-wise rule in a very stable element-wise manner.
Johannessen [11] focused on developing a rule for completely arbitrary knot spans and polynomial degrees. His
main contributions were the determining of good initial values and the development of a stable recursive algorithm.
A similar contribution – however considering uniform regularities – was published by [12] where quadrature points
for the most common spline space were explicitly documented. Calabrò et al. [13] proposed the so called Weighted
Quadrature. Hereby, the idea is that the test functions are incorporated in the weights. This rises the possibility
that the integrals are computed for one basis function after another instead of an element-wise computation. This
approach used in combination with other methods (e.g. fast formation and assembly) showed significant gains with
respect to the computational efficiency [14–16]. However, it makes typical FEM-like implementations for IGA
unusable because it abandons the element-wise assembly. Furthermore, this quadrature rule leads to not perfectly
symmetric matrices (e.g. stiffness or mass matrices). Thus, it imposes the necessity of non-symmetric solvers.
Selective and reduced patch-wise quadrature rules were presented by [10] in order to prevent volumetric locking.
Avoiding membrane locking in the context of thin shells by means of reduced patch-wise quadrature was studied
by [17]. Hokkanen et al. [18] pointed out certain problems of reduced patch-wise quadrature with still present
locking and with hourglassing in the context of more complex (real-world) shells. Hokkanen [19] compared different
patch-wise quadrature rules and showed the severe impact of these methods on the computational time. This holds
in particular for non-linear analyses where the computations at the single quadrature points are very often repeated.
Calabrò et al. [7] provide a good overview with further details about the developments of patch-wise quadrature
rules in IGA.

More complex CAD-models are often created by means of trimming operations, which facilitate a large variety
of geometries including for example structures with arbitrary intersections and voids. Therefore, it is important
to be able to deal with trimmed structures in IGA. In the present work, the focus lies on surface structures.
Most trimmed CAD surface models can be described by its Boundary Representation (B-Rep). Other geometric
representations such as Constructive Solid Geometries (CSG) are easily convertible to B-Rep models [20]. This
gave rise to the concept of the Isogeometric B-Rep Analysis (IBRA), which introduced a detailed framework for
simulations of trimmed models [5,21]. A good review about the different trimming techniques in the context of IGA
is provided by [22]. Trimming procedures in IGA can be distinguished in local and global approaches. The global
strategies fix the patch by re-parametrization or reconstruction. Thereby, the initial CAD-geometry is not maintained.
This contradicts the philosophy of integrating design and analysis by using the same model. Following [22],
three different local strategies can be distinguished: Local reconstruction, approximated trimming curve and exact
trimming curve. The first strategy locally reconstructs trimmed elements with single patches [23]. The second group

can be further distinguished in tailored integration rules and adaptive subdivision schemes. Tailored quadrature rules
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determine the quadrature points by solving a moment-fitting equation where the reference result stems from a line
integral [24]. In particular, an iterative point elimination procedure was developed in [24] in order to solve this
highly non-linear problem. This was applied to trimmed solids in [25]. Adaptive subdivision, such as the Finite
Cell Method, divides trimmed elements in a tree-like manner until a certain resolution [26]. The third group maps
quadrature points (mostly Gauss points) from an integration space to the parameter space of a trimmed element
considering the exact trimming curve [20,27–29].

It would be favourable to apply the discussed patch-wise quadrature rules to trimmed structures to utilize the
ains of efficiency also in case of general CAD-models. The key problem is that these patch-wise quadrature rules
re constructed in 1D and that they are extended to further dimensions by a tensor-product. However, the tensor-
roduct structure is violated by trimming operations. In the present work, a method is proposed which enables the
se of patch-wise quadrature rules for trimmed surfaces. The presented approach is computationally more efficient
ompared to standard Gaussian quadrature by reducing the overall number of quadrature points. It is highlighted
hat the proposed method can be combined with any patch-wise quadrature rule which is based on element-wise
ssembly and any local trimming technique. In this work, the patch-wise quadrature rule of [11] is used because
f its applicability to arbitrary knot vectors and polynomial degrees as well as its numerical stability. This rule
as successfully applied in different structural simulations (e.g. [17,30]) Furthermore, a trimming technique which

onsiders the exact trimming curve is used following the procedure by [27] for the distinction of the trimming cases
nd applying the blending function method described in [29] for determining the quadrature points of the trimmed
lements. Marussig [31] presented an extension of the Weighted Quadrature to trimmed plane surfaces. Meßmer
t al. [25] proposed the application of patch-wise quadrature rules to trimmed solids where they grouped the knot
pans to untrimmed macro-elements for which they used more efficient patch-wise rules. In contrast to these two
orks, the focus is here on general trimmed surfaces (plates and shells) using element-wise assembly. Instead of
sing macro-elements, a transition zone is introduced which enables the use of a patch-wise rule determined for
he complete patch and which provides higher flexibility of the method with respect to arbitrary trimming curves.

The paper is organized as follows. In Section 2, the concept of B-splines and Non Uniform Rational B-
plines (NURBS) is presented and the subsequently used terminology is introduced. Section 3 describes numerical
uadrature in the context of IGA. Special focus is given to patch-wise quadrature rules and the integration of
rimmed elements in Sections 3.1 and 3.2, respectively. The proposed extension of the patch-wise rules to trimmed
urfaces is outlined in Section 4. In the subsequent Section 5, several numerical benchmarks are computed. Thereby,
he efficiency gains with respect to the reduction of quadrature points of the proposed method are demonstrated and
ts applicability to a range of different trimming problems is shown. The final Section 6 concludes the paper and
rovides an outlook to further research.

. NURBS basis functions

This section presents a short introduction to NURBS, which are most often used in IGA as basis functions.
more detailed description as well as algorithms for the most important geometric operations in the context of

-splines and NURBS can be found in [32]. NURBS are an extension of B-splines. A B-spline curve is defined as

C(ξ ) =

n∑
i=1

Ni,p(ξ )Pi (1)

here ξ is the curve parameter, Pi the i th control point, n the number of control points and Ni,p the B-spline basis
unction of polynomial degree p corresponding to control point i . B-splines are described by piecewise polynomial
egments of degree p. Thereby, adjacent segments are joined at the knots ξi . The knots form a non-decreasing
equence of parametric coordinates. They are collected in a knot vector Ξ :

Ξ = {ξ1, ξ2, . . . , ξm}, ξi ≤ ξi+1 (2)

where the size of the knot vector is m. The number of control points can be computed as

n = m − p − 1 (3)

The continuity of a B-spline at each knot is equal to C p−k where k is the knot multiplicity. Open knot vectors

are normally used, which means that the first and the last knot is repeated “p+1”-times. This yields as a practical
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consequence that the first and the last control point are interpolated and that the curve tangents at these points
have the same direction as the control polygon. Uniform continuity is defined as an open knot vector where all
inner knots have the same multiplicity k. The continuity at inner knots is called regularity r = p − k. Knots with

aximum regularity (k = 1) have a continuity of C p−1. Eq. (3) may be reformulated under the assumption of
niform continuity as

n = (p + 1)nele − (r + 1)(nele − 1) (4)

here nele denotes the number of non-zero knot spans, which is noted as element in IGA. B-splines satisfy all
roperties of a basis and span a solution space:

Sp
r = span{Ni,p,Ξ } (5)

B-splines can be extended to 2D in a tensor-product manner:

N p,q
i, j = Ni,p(ξ )M j,q (η) (6)

here M j,q is a B-spline defined in a second parametric direction η with polynomial degree q. NURBS are derived
rom B-splines as:

Ri,p(ξ ) =
Ni,p(ξ )wi∑n

i=1 Ni,p(ξ )wi
(7)

here wi is an additional weight corresponding to the i th control point. NURBS are extended to 2D by a weighted
ensor-product:

R p,q
i, j =

Ni,p(ξ )M j,q (η)wi, j∑n
i=1

∑m
j=1 Ni,p(ξ )M j,q (η)wi, j

(8)

f the control points in both directions are collected and sequentially numbered, the definition of a NURBS surface
eads:

S(ξ ) =

n∑
i=1

Ri (ξ )Pi (9)

here ξ = (ξ, η) are the parametric coordinates, Pi is the i th control point and n is now the total number of control
oints.

. Numerical quadrature in isogeometric analysis

The solution of the weak form of a mechanical problem in IGA requires the computation of integrals. A
imple FEM-inspired approach is to use Gaussian quadrature on each element [1]. This implies the assumption
hat the functions which are integrated can be treated as polynomials. Calabrò et al. state that the optimal order of
onvergence is maintained for NURBS basis functions when applying Gaussian quadrature (see [7] and references
herein). The order of the Gauss rule depends on the polynomial degree of the integrand. In the context of this
ork, we are focusing on static, structural computations. Therefore, the quadrature rule should be able to compute

tiffness matrices. A full Gaussian quadrature means that “p+1” quadrature points per element and direction are
sed to integrate stiffness terms, where p is the polynomial order of the basis functions.

.1. Patch-wise quadrature

In contrast to the standard Gauss rule, patch-wise quadrature considers the higher regularity of the NURBS basis
unctions (they are defined over multiple elements). Therefore, these quadrature rules are more efficient in the sense
hat they need less quadrature points. These rules depend on the actual integrand which is considered in the weak
ormulation. In this work, the static analysis of plane (plane stress and plane strain) and Kirchhoff–Love shell models
s considered, which corresponds to the solution of partial differential equations of 2nd and 4th order, respectively. A
etailed description of the used shell element can be found in [33]. The basis functions are tensor-product functions
nd the involved integrals are sequential integrations of the parametric directions. Therefore, it is possible to derive
4
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Table 1
Target spaces for plane element and Kirchhoff–Love
shell element for the solution space Sp

r .

Element Target space

Plane S2p
r−1

Kirchhoff–Love shell S2p
r−2

quadrature rules in 1D and to extend them to more dimensions in a tensor-product manner. The weak form of a
2nd order differential equation involves terms such as∫

Ω

N ′

i (ξ )N ′

j (ξ )dΩ (10)

where Ω is the integration domain, and N ′

i and N ′

j are the first derivatives of the B-spline basis functions
corresponding to the i th and j th control point, respectively. The weak form of a 4th order differential equation
involves terms such as∫

Ω

N ′′

i (ξ )N ′′

j (ξ )dΩ (11)

where N ′′

i and N ′′

j are the second derivatives of the B-spline basis functions. The plane element requires first order
derivatives of the shape functions as indicated in Eq. (10) and the shell element requires second order derivatives
of the shape functions as indicated in Eq. (11). Even though this paper focuses on these two specific element
types in the context of static analysis, the general ideas are applicable to other problems described by 2nd and
4th order partial differential equations. Rational terms (e.g. arising from the determinant of the Jacobian or the
NURBS weights) are normally omitted in the derivation of quadrature rules in the context of IGA (see [8] for a
good reasoning).

The function space considering the actual integrand is called target space, i.e. considering Eqs. (10) and (11). The
target spaces of the plane and the Kirchhoff–Love element are listed in Table 1. The continuity of the target spaces
arises from the terms of highest order in the integrands given by a multiplication of two basis functions of degree
p (therefore, the continuity is 2p). The regularity of the target spaces is defined by the highest derivative involved
as indicated by Eqs. (10) and (11). The function space which is considered in order to develop a quadrature rule
is called an approximation space and does not necessarily coincide with the target space [10]. A quadrature rule
which takes the actual target space as approximation space is called full patch-wise quadrature rule. The standard
Gauss rule for example corresponds to an approximation space S2p

−1. The actual target spaces given in Table 1 are
subspaces of this space (S2p

r−1 ⊂ S2p
r−2 ⊂ S2p

−1 with r > 2). A function space is a subspace if they have a higher
regularity and/or a lower degree.

Patch-wise quadrature deals with the actual target spaces as listed in Table 1. A numerical quadrature rule is
considered exact if it fulfils

nquad∑
i

wi f (xi ) :=

∫
R

f (x)dx (12)

where f is the integrand, x the variable of the function f , nquad the number of quadrature points, wi the integration
weight of the i th quadrature point and xi the position of the i th quadrature point. The generic Eq. (12) contains
only a single variable x because patch-wise quadrature rules are normally derived with respect to an uni-variate
integral (1D). For a set of functions this equation can be rewritten in matrix notation as⎡⎢⎢⎢⎣

f1(x1) f1(x2) . . . f1(xnquad )
f2(x1) f2(x2) . . . f2(xnquad )

...
. . .

...

fn(x1) fn(x2) . . . fn(xnquad )

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w1
w2
...

wnquad

⎤⎥⎥⎥⎦ =

⎛⎜⎜⎜⎝
∫

f1(x)dx∫
f2(x)dx

...∫
fn(x)dx

⎞⎟⎟⎟⎠ (13)

where n denotes the number of functions in the considered function space and nquad denotes the number of
quadrature points. In the context of full patch-wise quadrature, the parameter n refers to the number of uni-variate
5
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Table 2
Asymptotic limit of the number of quadrature points per element per direction
for different polynomial degrees p of the solution space with respect to different
quadrature rules and element types considering maximum regularity. The numbers
in brackets give the reduction of points comparing the patch-wise and the Gaussian
quadrature rules.

p Gauss rule
Full patch-wise rules

Plane element KL shell element

1 2 not applicable not applicable
2 3 2 (0.67) not applicable
3 4 2.5 (0.63) 3 (0.75)
4 5 3 (0.60) 3.5 (0.70)
5 6 3.5 (0.58) 4 (0.67)

NURBS basis functions used for the discretization of the target space. The system of Eqs. (13) has 2nquad unknowns
weights and positions of the quadrature points) and n equations. Therefore, the minimum (optimal) number of

quadrature points in order to exactly integrate the function space is

nquad =

⌈n
2

⌉
(14)

here ⌈·⌉ is the nearest integer larger or equal to x . In this work, the patch-wise quadrature rule by [11] is used
o determine the positions and weights of the quadrature points in Eq. (13). However, the proposed method is not
estricted to this explicit quadrature rule. In order to derive an estimate for the number of quadrature points with
he patch-wise quadrature rule, Eq. (14) can be applied to the target spaces from Table 1 making use of Eq. (4) and
ssuming maximum regularity. Considering plane and Kirchhoff–Love (KL) shell elements, it yields

nquad,plane =
dim(S2p

r−1)
2

=
(p + 2)nele + p − 1

2
= O(

p + 2
2

nele) (15)

nquad,K L =
dim(S2p

r−2)
2

=
(p + 3)nele + p − 2

2
= O(

p + 3
2

nele) (16)

t should be noted that neither the patch-wise quadrature rule by [11] nor the present work are restricted to certain
egularities, but the assumption of maximum regularity is only made to derive the estimates in Eq. (15) and (16).
n particular, the possibility to deal with arbitrary regularities is important if the direct use of CAD-models is
esired [34]. It is observed that the number of quadrature points per element levels asymptotically with element
efinement. Table 2 shows these asymptotic numbers of quadrature points per element in 1D. The full patch-wise
ules reduce to Gauss rules in case of p = 1 and p = 2 for the plane and the Kirchhoff–Love element, respectively.
he Kirchhoff–Love element cannot be used with p = 1 because it requires at least C1 continuity. The reduction
f quadrature points compared to a Gauss rule levels asymptotically to 0.5 with increasing p. The Fig. 1 shows the

quadrature points exemplary for an open knot vector with eight elements and maximum regularity.
It is important to notice that a patch-wise quadrature rule partly overcomes the element-wise thinking typical for

FEM. The reason is that the quadrature points within one element do not longer integrate solely over the respective
knot span. In FEM, an element stiffness matrix is computed by an integration over the element. Whereas, the here
presented patch-wise quadrature rule abolishes the definition of the element bounds as integration bounds. Therefore,
it is no longer possible to solely compute the contribution of a single knot span to the stiffness matrix. This plays
an important role when the described patch-wise rule should be extended to the case of a trimmed surface. The
described behaviour can be observed by summing up the weights of the quadrature points lying within one element.
It is normally expected that this yields the element area because the Gauss points are mapped from the integration
space onto the element. However, this is not the case for patch-wise quadrature rules.

3.2. Quadrature of trimmed elements

The integration domain of an element i on a trimmed surface is defined by the intersection of the element area
Ωi with the valid domain Ω v , i.e. Sv

i := Ωi ∩ Ω v . Three different types of elements can be distinguished based on

the specification of their integration domains:

6
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s

Fig. 1. Quadrature points in 1D due to Gaussian (circles) and full patch-wise quadrature rules with respect to different polynomial degrees
hown for a knot vector Ξ = {0, . . . , 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, . . . , 1} of the solution space. The target spaces of a

plane (squares) and a Kirchhoff–Love shell (triangles) element are considered. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

• Active-untrimmed if Sv
i = Ωi

• Trimmed if 0 < Sv
i < Ωi

• Inactive if Sv
i = ∅

An example for this distinction is found in Fig. 4(a). In the present work, a local trimming technique which considers
parametric trimming curves is used. The blending function method is used to map Gauss quadrature points onto
trimmed elements [29]. However, arbitrary local trimming techniques can be applied within the here proposed
method of patch-wise quadrature of trimmed surfaces. The idea of the blending function method is a map from an
integration space to a parametric space applying a linear blending function, whereby any of the four sides of the
parametric element can be curved. Detailed formulas of the method can be found in [35]. The number of quadrature
points, which are mapped, is determined by the “p + 1”-rule considering the highest occurring polynomial degree
of the trimming curve and the surface basis functions as it is suggested by [20]. Fig. 2 shows the mapping of a
trimmed element between the integration, the parametric and the physical space. In this case, the third edge is curved.
However, the method is also able to deal with three-sided elements. Trimmed elements with more edges have to be
subdivided into quadrilaterals or triangles. This is also the case for other local trimming techniques [20,22,27–29].
In general, the subdivision leads to an increased number of quadrature points in trimmed elements. For further
details about the here used trimming procedure, the reader is referred to [27,28].

4. Patch-wise quadrature of trimmed surfaces

In this section, we present the extension of the patch-wise quadrature rule outlined in Section 3.1 to trimmed
surfaces. The basic concept of our method is explained in Section 4.1. Afterwards, the gain with respect to the
computational efficiency, which is the main motivation for enhanced quadrature rules, is discussed in Section 4.2.
The following explanations are visualized by the well-known example of an infinite plate with a circular hole [1].
The same example is later used for some numerical tests. The problem description is given in Fig. 3. All explanatory
figures are based on a 8 × 8 mesh and polynomial degrees p = q = 2.

4.1. Concept

Fig. 4(a) shows the distinction in active-untrimmed, trimmed and inactive elements as described in Section 3.2.
The basis functions can be also distinguished in the same groups based on the path of the trimming curve as
illustrated in Fig. 4(b). Trimmed basis functions mean functions which span into trimmed elements and, therefore,
are cut. On the other hand, untrimmed basis functions indicate functions which do not span into any trimmed

element and, therefore, are not cut. The key idea is now to integrate the trimmed functions differently than the

7
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Fig. 2. Mapping of a trimmed element between the integration, the parametric and the physical space (from left to right).

Fig. 3. Setup of the infinite plate with circular hole.

untrimmed ones. The patch-wise quadrature rule is still applicable to the latter. On the other hand, the trimmed
basis functions can be integrated by a specialized quadrature rule for trimmed elements as described in Section 3.2.
Since the patch-wise quadrature rule does not integrate element-wise as outlined in Section 3.1, special care is
required in the transition zone where untrimmed as well as trimmed basis functions occur in the same element (see
Fig. 4(c)). The elements are distinguished in four groups as visualized in Fig. 4(d) (abbreviations for the groups
are provided in brackets) and the applied quadrature rules are determined as:

• Inactive (ia) H⇒ not integrated
• Trimmed (t) H⇒ mapped Gaussian quadrature rule (see Section 3.2)
• Transition (tra) H⇒ mixed integration (see below)
• Patch-wise (pw) H⇒ patch-wise quadrature rule (see Section 3.1)

The distinction is similar to the one made in the general trimming case (compare Section 3.2). However, the
active-untrimmed domain is further subdivided in a patch-wise and a transition domain. The inactive elements are

ot integrated at all because they lie in the invisible part of the patch. The trimmed elements are integrated by
eans of a mapped Gauss rule. We want to highlight that our proposed method is independent of the method used

or the integration of the trimmed elements and that any other quadrature rule could be applied equally well in our

ethod. The patch-wise elements are integrated by a patch-wise quadrature rule derived for the untrimmed patch.

8



M. Loibl, L. Leonetti, A. Reali et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116279

w

Fig. 4. Concept of the proposed method for the patch-wise quadrature of trimmed surfaces illustrated by the example of the infinite plate

ith a circular hole. The mesh consists of 8 × 8 elements and the polynomial degrees are p = q = 2. The trimming curve is illustrated by
a red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The transition elements require special care. They define elements where trimmed as well as untrimmed basis
functions occur. The trimmed basis function can also have support in active-untrimmed elements (see for example
basis function 27 in Fig. 4(c)). The size of the transition zone depends on the support of the trimmed basis functions
and, therefore, on the degree p since each basis function spans across “p + 1” elements. Transition elements are
partly integrated by patch-wise quadrature points and partly by standard Gaussian quadrature points. Therefore,
the term mixed integration is used for these elements. The different contributions in the transition elements are
integrated as follows:
9
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e

Fig. 5. Resulting quadrature points for the example of the infinite plate with circular hole given in Fig. 3 with p = q = 2 and 8 × 8
lements. Stars in dark blue = patch-wise quadrature points, plus signs in red = Gauss points in transition elements, crosses in green =

mapped Gauss points in trimmed elements.

• Untrimmed test and untrimmed trial function H⇒ patch-wise quadrature rule (see Section 3.1)
• Untrimmed test and trimmed trial function (or inversely) H⇒ Gauss rule (see Section 3)
• Trimmed test and trimmed trial function H⇒ Gauss rule (see Section 3)

The combined entries only appear in the transition zone. One should be aware that it is not possible to integrate
the combined entries with the patch-wise quadrature rule because this rule is incapable of integrating contributions
within element bounds. It is highlighted that the transition zone is unavoidable in order to link the patch-wise
quadrature with trimmed elements. It is clear that the transition elements require more computational effort than
the other elements. The integrals, which should be computed, have the form of Eq. (10) or (11). Thus, it is in
general possible to select a different quadrature rule for each of the integrals belonging to single stiffness matrix
entries.

4.2. Efficiency considerations

A reduction of quadrature points due to the use of the presented method is beneficial with respect to the
computational cost. The setup of the patch-wise quadrature rule and the extra considerations due to the proposed
method increase the effort in the preprocessing. However, this preprocessing time is relatively low in comparison
to the total computational time. This is even more valid when the computations at the single quadrature points are
often repeated — such as in dynamic as well as in non-linear analysis. An easy and well comparable possibility of
assessing the improvement of efficiency is to count the number, and such the reduction, of the quadrature points. The
patch-wise as well as the Gauss quadrature points are counted in the transition elements whenever a total number
of quadrature points is provided hereafter. A more involved implementation would possibly enable that only the
necessary contributions to the element stiffness matrix are computed. Nevertheless, this approach of counting can
be understood as upper bound for the efficiency assessment. Fig. 5 exemplarily illustrates all the quadrature points
involved in our proposed method for the discussed example. The expenses are clearly increased in all transition

elements compared to a pure Gauss quadrature (see Fig. 5).

10
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Coarse meshes may result in an even increased number of points compared to a standard Gauss integration under
ertain circumstances. This depends on the number of patch-wise compared to transition elements. The method

proposed by [25] and the Discontinuous Weighted Quadrature proposed by [31] are able to directly reduce the
number of quadrature points also for coarse meshes — this does not hold for the Hybrid Gauss Approach presented
in [31]. However, they seem to require a comparable number of quadrature points for finer meshes, which are needed
for accurate results. For the proposed method, it can be estimated in advance whether an application reduces the
number of quadrature points for a specific trimmed patch. If a Gauss rule is used, the number of quadrature points
is:

ngauss = (p + 1) · (q + 1) · nele (17)

f the patch-wise quadrature rule is applied in case of the plane element, the number of integration points can be
stimated applying Eq. (15) as:

n pw−tr imm,plane = (p + 1) · (q + 1) · (nele,t + nele,tra) + ((p + 2) · (q + 2))/4 · (nele,pw + nele,tra) (18)

here the term pw − tr imm in the index indicates the proposed method, nele,t is the number of trimmed elements,
nele,tra is the number of transition elements and nele,pw is the number of patch-wise elements. If the patch-wise
quadrature rule is applied in case of the Kirchhoff–Love shell element, the number of quadrature points can be
estimated applying Eqs. (16) as:

n pw−tr imm,K L = (p + 1) · (q + 1) · (nele,t + nele,tra) + ((p + 3) · (q + 3))/4 · (nele,pw + nele,tra) (19)

qs. (18) and (19) consider in the first term that trimmed and transition elements contain “p+1” Gauss points per
irection and in the second term that the patch-wise and the transition elements contain patch-wise quadrature
oints. These equations are only approximate and assume maximum regularity (see Section 3.1). Considering
qs. (17)–(19), the proposed method should be only used, if the following condition is fulfilled:

n pw−tr imm < ngauss (20)

here n pw−tr imm is either obtained by Eq. (18) or (19) in case of plane or KL shell elements, respectively. The same
uadrature rule for trimmed elements in case of standard Gauss and the proposed patch-wise quadrature is used.
herefore, trimmed elements can be excluded from Eq. (20) which leads to a comparison of the ratio of transition
nd patch-wise elements:

nele,tra

nele,pw

< c (21)

here c is a constant depending on the applied element formulation. In case of the plane element, c is defined as:

c =
4 · (p + 1) · (q + 1) − (p + 2) · (q + 2)

(p + 2) · (q + 2)
(22)

n case of the KL shell element, c is defined as:

c =
4 · (p + 1) · (q + 1) − (p + 3) · (q + 3)

(p + 3) · (q + 3)
(23)

It is highlighted that there is always a clear reduction of quadrature points with the proposed method with further
efinement as demonstrated in the following numerical examples.

. Numerical results

In this section, multiple numerical examples are investigated in order to assess the proposed method (denoted
n this section as pw-trimm). The infinite plate with a circular hole, which was already used in Section 4 for the
xplanation of the method, is discussed as a first example. This problem is a plane strain model. The following two
xamples in Sections 5.2 and 5.3 are plate problems. Subsequently, the method is tested for a shell benchmark in
ection 5.4. The application of the method in the industrial context is demonstrated by the last example of a tube
onnection. A Kirchhoff–Love shell element formulation, which was firstly introduced by [33], is used for the plate
s well as the shell examples. It is highlighted that the proposed method is independent of the element formulation,

ut the patch-wise quadrature rule itself has to consider it as discussed in Section 3.1. All models are computed

11
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Fig. 6. Convergence plot of the relative error of the elastic energy for the infinite plate with circular hole. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

with linear elastic materials. Geometrically linear as well as non-linear computations are performed. An efficient
quadrature rule is especially interesting for non-linear analyses where computations at the quadrature points are
iteratively repeated many times. A diagonal scaling preconditioner is employed in order to avoid ill-conditioning
of the system of equations, which might occur due to very small trimmed elements. A detailed description of
this preconditioner is provided by [36]. The results with the new method (pw-trimm) are compared to results
obtained from a standard trimming procedure which is denoted as trimm in this section. In addition to the results
reported in the following sections, single displacements are documented as reference in Appendix A to facilitate
the reproducibility of the examples.

5.1. Infinite plate with circular hole

The setup of the infinite plate with a circular hole is illustrated in Fig. 3. Slightly different setups are found in
the literature with respect to the actual loading and the Young’s modulus [1,36,37]. All computations are performed
on the depicted trimmed geometry. Only a quarter of the infinite plate is modelled by making use of the symmetry
and applying the exact traction at the left and upper boundaries as Neumann conditions:

σrr (r, θ) =
Tx

2

(
1 −

R2

r2

)
+

Tx

2

(
1 − 4

R2

r2 + 3
R4

r4

)
cos(2θ ) (24)

σθθ (r, θ) =
Tx

2

(
1 +

R2

r2

)
−

Tx

2

(
1 + 3

R4

r4

)
cos(2θ ) (25)

σrθ (r, θ) = −
Tx

2

(
1 + 2

R2

r2 − 3
R4

r4

)
sin(2θ ) (26)

where the parameters are illustrated in Fig. 3.
A convergence study of the relative error of the elastic energy, error = |W − Wre f |/Wre f , is performed. The

elastic energy is computed as W =
1
2

∫
Ω (σ : ϵ)dΩ . The analytical reference solution is Wre f = 7.69365373.

Basis functions with different polynomial degrees from p = 2 to p = 5 are studied. The convergence curves are
llustrated in Fig. 6. The results from trimm and pw-trimm exactly match. The highest relative difference is around
0−14 which can be seen as a purely numerical round-off error. Optimal convergence rates for all polynomial degrees
re observed.

The reduction of quadrature points by means of the proposed method is illustrated in Fig. 7. In case of polynomial
egrees up to 4, a reduction is already observed with the second mesh with 8 × 8 elements. In case of a degree
12
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Fig. 7. Ratio of the number of quadrature points of the patch-wise quadrature nquad,pw versus the Gaussian quadrature nquad,gauss for the
nfinite plate with circular hole. The theoretical limits of this ratio are provided as dashed lines. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Comparison of element distinctions in the proposed method for the polynomial degrees p = 3 and p = 5 indicated by colours and
abbreviations. pw in dark blue = patch-wise, tra in gold = transition, t in green = trimmed, ia in light blue = inactive. Trimming curve
in red.

p = 5, a reduction is achieved with the third mesh with 12 × 12 elements. The models with higher polynomial
degrees show less gains for coarse meshes but higher reduction for fine meshes. Basis functions with a higher
degree have support over more elements resulting in more transition elements as illustrated in Fig. 8. On the other
hand, patch-wise rules are more effective for higher degrees. This means that the reduced number of integration
points in the patch-wise elements compensates at a certain point for the higher number of transition elements.
Furthermore, the theoretical limits which could be obtained by infinitely fine meshes are illustrated in Fig. 7.
These limits are obtained from the 1D-limits documented in Table 2. They illustrate that the proposed method
asymptotically approaches the ideal number of quadrature points due to a patch-wise quadrature rule.

Fig. 9 shows the percentage distribution of the elements in the distinguished groups (namely patch-wise,

ransition, trimmed, inactive) for p = 2. In contrast to the previous figures, finer meshes are additionally depicted

13



M. Loibl, L. Leonetti, A. Reali et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116279

c
t
a
q
d
t
c

5

h

A

Fig. 9. Percentage of elements in a distinguished group (see Section 4.1) with respect to the total number of elements for the infinite plate
with circular hole with p = 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

to reveal the asymptotic behaviour. It is observed that the percentage of patch-wise elements clearly dominates
for refined meshes. The proportion of transition and trimmed continuously decreases and almost vanishes. The
percentage of inactive elements with 4.50% for the finest depicted mesh asymptotically reaches the proportion of
the hole with respect to the complete area which is 4.91%.

5.2. Plate with circular hole

The setup of the plate with a circular hole is illustrated in Fig. 10. The geometry is in principle the same as
in Section 5.1, but modelled as complete plate without considering symmetry conditions. The plate has Navier
supports (supports in z-direction) at all edges. A convergence study of the elastic energy is performed studying
different polynomial degrees from p = 3 to p = 5. The convergence curves are reported in Fig. 11. The results
from trimm and pw-trimm again match exactly. The highest absolute difference is around 10−10. The result of the
elastic energy converges with a precision of eight valid digits to a value of W = 1.4079595 for the illustrated
meshes.

The reduction of quadrature points by means of the proposed method is illustrated in Fig. 12. A reduction is
observed for all degrees with the fourth mesh with 32 × 32 elements (for p = 3 already with the third mesh). For
oarse meshes, the proposed method actually requires more quadrature points than Gaussian quadrature because
he transition elements, which have a higher number of points, dominate. It is reminded that Eq. (20) provides
n a-priori check of the expectable efficiency of the patch-wise rule. Furthermore, the counting of the number of
uadrature points in the transition elements can be seen as a conservative estimate with respect to the efficiency as
escribed in Section 4.2. Nevertheless, it becomes clear, especially in comparison to the results from Fig. 7, that
he efficiency gains due to the proposed method highly depend on the considered geometry. A reduction of points
an be always expected for finer meshes.

.3. Punched plate

The following example of a punched plate investigates the performance of the presented method for multiple
oles with more complex shapes. The setup is illustrated in Fig. 13. The plate has Navier supports (supports in

z-direction) at all edges. The exact NURBS description of the three trimming curves is provided in Appendix B.

convergence study of the elastic energy is performed and the results are illustrated in Fig. 14. Spurious coupling

14
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Fig. 10. Setup of the plate with circular hole.

Fig. 11. Convergence plot of the elastic energy for the plate with circular hole. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

occurs for too coarse meshes due to basis functions spanning across the holes [38]. This effect depends on the mesh
size as well as on the size and position of the features (holes). The infinite plate with hole presented in Section 5.1
for example does not suffer by this problem because its hole is positioned at the boundary. A recommendable
solution to alleviate this shortcoming would be local refinement as discussed in [37,38]. The results from trimm
and pw-trimm again match exactly. The highest absolute difference is around 2 · 10−10. The result of the elastic
energy converges with a precision of four valid digits to a value of W = 0.5112 for the illustrated meshes.

The reduction of quadrature points by means of the proposed method is illustrated in Fig. 15. A reduction is
observed for degrees p = 3 and p = 4 with the second mesh with 32 × 32 elements (for p = 5 with the third

mesh).
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Fig. 12. Ratio of the number of quadrature points of the patch-wise quadrature nquad,pw versus the Gaussian quadrature nquad,gauss for the
late with circular hole. The theoretical limits of this ratio are provided as dashed lines. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

Fig. 13. Setup of the punched plate. Description of trimming curves in the parametric space: red curve = trimming curve, black circles =

control point, black cross = start and end point of curve, blue cross = knot. NURBS description of the trimming curves in Appendix B.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5.4. Geometrically linear scordelis-lo roof with elliptic hole in the centre

The setup of the Scordelis-Lo roof with an elliptic hole in the centre is illustrated in Fig. 16. This shell model
was initially proposed by [37]. A geometrically linear analysis is performed. A convergence study of the elastic
energy is carried out and is illustrated in Fig. 17. The result of the elastic energy converges with a precision of
seven valid digits to a value of W = 5832.471 for the illustrated meshes. In contrast to the previous examples, a
larger difference of the results from the standard trimming and the new patch-wise trimming procedure is observed

which still reduces with mesh refinement. It is actually expected in this context that the results differ when using
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Fig. 14. Convergence plot of the elastic energy for the punched plate. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 15. Ratio of the number of quadrature points of the patch-wise quadrature nquad,pw versus the Gaussian quadrature nquad,gauss for the
unched plate. The theoretical limits of this ratio are provided as dashed lines. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

wo different quadrature rules because both methods do not perfectly solve the considered integrals. This is in
articular true for shells, like in this example, where the basis functions are really rational splines and the Jacobian is
efinitely non-constant. The trimm results are more accurate especially for coarse meshes because they use a higher
umber of quadrature points which is beneficial for resolving the mentioned rational terms of the integrands. This
nteresting effect was not considered in literature so far. Even though, Hokkanen [18] also documented shortcomings
f existing reduced patch-wise quadrature rules in the context of complex (real-world) shell applications. Therefore,
comparison of Gaussian and patch-wise quadrature in the context of highly curved shells is an interesting topic for
17
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Fig. 16. Setup of the Scordelis-Lo roof with elliptic hole.

Fig. 17. Convergence plot of the elastic energy for the Scordelis-Lo roof with elliptic hole. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

future work. The reduction of quadrature points for this example is identical to the one for the plate with circular
hole illustrated in Fig. 12 because the trimming patterns defined in the parametric space are identical (compare
Figs. 10 and 16).

5.5. Geometrically non-linear scordelis-lo roof with elliptic hole

The model is the same as in the previous Section 5.4, but a geometrically non-linear analysis is now performed.
he load is increased to qz = 900. Fig. 18 shows the load–displacement curve. NURBS basis functions with a
egree of p = q = 3 are used. The proposed method is again compared with a standard trimming procedure.
he results obtained by both methods perfectly match. The efficiency of this non-linear analysis profits from the
eduction of the quadrature points as shown in Fig. 12 — in particular due to the fine meshes required for complex
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Fig. 18. Load–displacement curve with load factor λ and the displacement uz,A in z-direction at point A for the geometrically non-linear
computed Scordelis-Lo roof with elliptic hole. The polynomial degree is p = q = 3 and 64 × 64 elements are used.

buckling patterns. Fig. 19 shows the deformation plots at different load steps and underlines the highly non-linear
behaviour of the model.

5.6. Geometrically linear intersecting tubes

This example demonstrates the abilities and advantages of the proposed method in the case of complex CAD
geometries. The intersection of two cylindrical tubes connected by a fillet is investigated. The model was recently
presented in [39] and is created in the CAD program Rhinoceros 7 [40]. For the simulation, the geometry, which
was saved in the step format, is imported in Matlab [41] by the open-source toolbox [42]. Fig. 20 illustrates the
geometry of the tubes.

Patch 1, which is the larger cylinder (radius 10), is trimmed by a cylinder of radius 7 as indicated by the dot–
dashed construction line. The resulting trimming curve is illustrated in red colour. Patch 2, which is the smaller
cylinder (radius 4), is constructed by trimming a cylinder of height 37 with a x–y-plane in the height of the solid
black line (resulting height is 22). Obviously, it could have been constructed without trimming since the resulting
geometry is a cylinder again. Indeed, this is a good example where the principles of analysis-aware-modelling
were not considered by the designer. However, it underlines the use of making patch-wise integration available for
trimmed surfaces because trimming may be used even when it is not necessarily required when creating a certain
geometry. The tubes are connected by a fillet, which is the untrimmed patch 3. Further geometrical details can be
found in [39]. The polynomial degree used for all patches is p = q = 4. Patch 1 is refined with 40 × 62, patch 2
with 32 × 40 and patch 3 with 28 × 19 elements. Patch 2, which is trimmed as described above, actually contains
only 32 × 32 active elements. Patch 1 and 3 are coupled along the red trimming curve, and patch 2 and 3 are
coupled along the black trimming curve. Symmetry conditions are applied to all free edges, whereby the normals
of the symmetry planes are the tangents of the shell at the respective edges. The coupling and symmetry conditions
are applied by a penalty approach as presented in [39] and [43]. The shell thickness is t = 0.2. A linear elastic
material with Young’s modulus E = 3 · 106 and Poisson’s ratio ν = 0.3 is considered.

All patches are loaded by an internal pressure of 1. Fig. 21 illustrates the deformation of the tubes. The
isplacement in z-direction at point A, which is depicted in Fig. 20, is equal to uz,A = 1.484 · 10−3. The result is
lmost identical for the standard trimming and the new patch-wise approach with a relative difference of 2.12 ·10−7.

This result is in good agreement with the reference displacement uz,A = 1.477·10−3 by [39] which is also computed

with an isogeometric Kirchhoff–Love shell.
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Fig. 19. Deformed Scordelis-Lo roof with elliptic hole illustrated in different load steps computed with
√

nele = 32 and p = 3. These results
can be identically obtained by standard Gaussian and patch-wise quadrature. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Number of quadrature points for the example of the intersecting tubes.

Total structure Patch 1 Patch 2 Patch 3

nquad,gauss 92500 60000 19200 13300
nquad,pw 54619 34734 13153 6732
nquad,pw/nquad,gauss 0.590 0.579 0.685 0.506

The number of quadrature points can be reduced by approximately 60% in this example. This underlines the
igh potential of speed-up for real-world problems by optimized quadrature rules. Table 3 shows the number of
uadrature points separately for all patches. Patch 3 contributes as expected the highest reduction of points with 51%,
ecause it is an untrimmed patch and, therefore, the patch-wise integration rule shows its full potential. However,
he number of points is also significantly decreased in patch 3 with 58%. The number of points in patch 2 could

ctually be reduced further if analysis-aware-modelling would be considered as discussed above.
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Fig. 20. Setup of intersecting tubes. The black and the red curve are trimming curves and also indicate the coupling lines between the
atches. Symmetry conditions are applied along the blue curves. The dot–dashed line is a construction line used for the trimming of patch
. The points A and B are used for the evaluation of results. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)

.7. Geometrically non-linear intersecting tubes

In this Subsection, the same model as in the previous Section 5.6 is considered but a geometrically non-linear
nalysis is now performed. The symmetry condition along the upper edge of patch 2 is now removed and instead
displacement in y-direction is imposed at this edge (see Fig. 20). The internal pressure applied in Section 5.6 is

emoved. A point support in z-direction at point A is introduced in order to prohibit rigid body movements. Fig. 22
hows the resulting load–displacement curve for the force and displacement in y-direction at point B which is again

in good agreement with the result from [39] (see Fig. 20 for the position of point B).

6. Conclusion and outlook

Patch-wise quadrature rules significantly reduce the number of quadrature points in the context of IGA. These
methods are based on a tensor-product structure. Therefore, they are not directly applicable to trimmed structures
which inherently violate the tensor-product. This publication presents the extension of patch-wise quadrature rules
to trimmed surfaces. The key idea is that the elements are grouped in inactive, trimmed, transition and patch-wise
elements, and that each group is integrated differently. In particular, the basis functions in the transition elements
are integrated in a mixed manner which enables a crossover from patch-wise to Gaussian quadrature points. The
proposed method constructs the quadrature rule in a straightforward and unambiguous manner.

The method is successfully applied to plate in membrane and bending action, and shell problems. Geometrically
linear and non-linear benchmarks are investigated. The possibility of a significant reduction of quadrature points
is observed. In particular, a reduction of more than 50% is noted in the example of the infinite plate with circular
hole and a reduction of approximately 60% is observed in the more practical example of the intersecting tubes. The
results from the proposed method match well the results obtained from a standard trimming procedure underlying

that the integration is performed equally good.

21



M. Loibl, L. Leonetti, A. Reali et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116279

s
p
n
t
f
a
p
b
t

Fig. 21. Deformed intersecting tubes under internal pressure on all patches. The undeformed geometry is illustrated as transparent grey mesh
grid for reference. The depicted deformation is scaled by 1000. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Future work will concentrate on comparing studies of the different patch-wise quadrature rules. Special focus
hould be their performance with respect to integrands with rational terms. Existing research mostly investigates
lane or solid problems with undistorted meshes, and neglects the quadrature errors arising from models with
on-constant Jacobians due to distorted meshes or shell curvatures. Furthermore, an extension to local refinement
echniques might be interesting because they are an efficient tool to locally resolve problems as fine as needed
or a desired accuracy. Thereby, locally refined regions could be treated in a similar manner as trimmed parts. In
ddition, the varying number of quadrature points per element could lead to an unbalanced loading of the workers in
arallelized code if an element-wise assembly is used. Possibilities in the assembly to alleviate this problem should
e investigated such as direct iteration over quadrature points or splitting of mixed integrated elements which have
he highest number of quadrature points. At last, finding a set of optimized quadrature points for the transition zone

instead of a mixed integration would be a promising improvement for the proposed method and would lead to an
optimal quadrature rule for trimmed structures.
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Fig. 22. Load–displacement curve of the geometrically non-linear intersecting tubes. The result indicated with “Proserpio et al. (2022)” is
xtracted from [39].

Table A.4
Displacement results for different examples.

Example Displacement Value

Section 5.2 uz,A −0.015113667
Section 5.3 uz,mid −0.002401
Section 5.4 uz,A −0.3610789
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Appendix A. Displacement results for different examples

For the examples discussed in Sections 5.2–5.4, displacement results are reported in Table A.4. The noted
alues are the converged values for the meshes depicted in the respective sections. Since Isogeometric Analysis
s a displacement-based method, these results may facilitate faster reproducibility of the considered examples. For
he examples from Sections 5.2 and 5.4, the displacements are evaluated at a point A where this point is depicted
n Figs. 10 and 16, respectively. For the example from Section 5.3, the displacement is evaluated at the centre of
he plate.
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Appendix B. Geometric description of punched plate

Here, the description of the NURBS trimming curves of the punched plate from Section 5.3 is provided. The
rimming curves and the underlying rectangle patch are illustrated in Fig. 13. The NURBS description of curve C1

in the 2D physical space is:

C P1 = {(3, 2.5), (3, 2), (2.5, 2), (2, 2), (2, 2.5), (2, 3), (2.5, 3), (3, 3), (3, 2.5)} (B.1)

w1 =

{
1,

1
√

2
, 1,

1
√

2
, 1,

1
√

2
, 1,

1
√

2
, 1

}
(B.2)

Ξ1 = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1} (B.3)

p1 = 2 (B.4)

The NURBS description of curve C2 in the 2D physical space is:

C P2 ={(2.5, 8), (3.5, 8), (4.5, 8), (5, 8), (5, 7.5), (5, 7), (4.5, 7), (4, 7), (3.5, 7), (3, 7), (3, 6.5), (3, 5.5),

(3, 5), (2.5, 5), (2, 5), (2, 5.5), (2, 6.5), (2, 7.5), (2, 8), (2.5, 8)} (B.5)

w2 =

{
1, 1, 1,

1
√

2
, 1,

1
√

2
, 1, 1, 1,

1
√

2
, 1, 1, 1,

1
√

2
, 1,

1
√

2
, 1, 1, 1,

1
√

2
, 1

}
(B.6)

Ξ2 ={0, 0, 0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 1, 1, 1} (B.7)

p =2 (B.8)

he NURBS description of curve C3 in the 2D physical space is:

C P3 ={(8, 8), (9, 8), (10, 8), (10.5, 8), (10.5, 7.5), (10.5, 7), (10, 7), (9, 7), (8, 7), (7.5, 7),

(7.5, 7.5), (7.5, 8), (8, 8)} (B.9)

w2 ={1, 1, 1,
1

√
2
, 1,

1
√

2
, 1, 1, 1,

1
√

2
, 1,

1
√

2
, 1} (B.10)

Ξ3 ={0, 0, 0, 0.25, 0.25, 0.375, 0.375, 0.5, 0.5, 0.75, 0.75, 0.875, 0.875, 1, 1, 1} (B.11)

p =2 (B.12)
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