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Abstract

We present a mixed integration point (MIP) formulation for hyperelastic isogeometric Kirchhoff–Love shells. While
revious works have proposed mixed integration point schemes for different structural formulations in the context of geometric
onlinearity, we extend this concept to the large strain regime in this paper. The non-trivial extension to the nonlinear dynamic
nalysis for these materials based on the one-step energy-conserving method is also proposed. We present a general, consistent
erivation of the formulation, which is not restricted to Kirchhoff–Love shells, hyperelastic materials, or isogeometric analysis,
ut can be applied to any structural problem involving geometric and material nonlinearities. Several numerical benchmark
xamples demonstrate the applicability and efficiency of the method.
2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is well known that in path-following methods [1] for geometrically nonlinear analyses mixed formulations [2],
hich consider both displacements and stresses as primary variables, perform better than displacement-based

ormulations in terms of robustness and efficiency regarding the necessary number of load steps [3–5].
On the other hand, mixed formulations are typically more complex than displacement-based ones, require a

areful choice of the discretization spaces for the different fields, and can be numerically expensive due to he
dditional fields to be discretized and solved for. The latter aspect is true especially for higher-order methods like
sogeometric analysis (IGA) [6]. In low-order finite element mixed methods, the stress fields may be discretized
y discontinuous functions which allows a static condensation of the additional unknowns at the element level.
or higher-order finite element and isogeometric mixed formulations, this is in general not possible, leading to a
ighly increased computational effort [7,8]. For these reasons, the so-called Mixed Integration Point (MIP) strategy
as been recently proposed in [9] as an effort to obtain the improved behavior of mixed methods as described
bove within the framework of displacement-based formulations. The main idea is to introduce additional stress
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variables locally at each integration point, which can then be eliminated by static condensation from the global
equation system, such that the variables to be discretized and solved for are the same as in a displacement-based
formulation. This represents a relaxation of the constitutive equations at each integration point during the Newton
iterative process.

The MIP concept was firstly proposed in the context of IGA in [10] for solid-shells, then in [11–13] for shells,
nd in [14–17] for spatial beams. Furthermore, it was successfully applied to Koiter post-buckling analysis [18],
hermoelastic analysis of shells [19], small strain plasticity in beams and shells [20], and in the context of reduced
rder models for the optimal design of shells undergoing buckling with imperfection sensitivity [21–24].

With this paper, we extend the application of the MIP concept from geometrically nonlinear problems to fully
onlinear problems including large strains, considering a hyperelastic Kirchhoff–Love shell formulation [25].

The formulation is derived consistently for a general nonlinear structural problem, and could, therefore, easily
e adapted to other formulations, for example solid-shell models [26–29]. In this context, we also investigate
he applicability of the simplified Kirchhoff–Love shell formulation proposed in [30] to the large strain regime.
urthermore, we extend the concept to dynamic problems by combining the MIP formulation with a one-
tep energy-conserving time integration method originally proposed in [31], based on the concepts for energy
onservation [32–36].

The paper is structured as follows. In Section 2, we review the isogeometric hyperelastic Kirchhoff–Love shell
odel [25], modified for the simplified bending strain measure [30]. We rewrite the formulation from [25] in a

ifferent form, which provides the basis for the MIP formulation presented in Section 3. Section 4 shows the
ombination of the formulation with the time integration scheme from [31], and Section 5 tests the presented
ormulations on different static and dynamic benchmark problems. Finally, we draw conclusions in Section 6.

. Hyperelastic Kirchhoff–Love shell formulation with simplified bending strain

In this section, we summarize the governing equations of a hyperelastic Kirchhoff–Love shell model as proposed
n [25], modified for the simplified bending strain measure initially proposed in [30]. This model is the basis for
he newly proposed MIP formulation presented in the next section.

.1. Governing equations

For presenting the governing equations, we employ index notation with Latin indices taking on values {1, 2, 3},
hile Greek indices take on values {1, 2}, and summation convention of repeated indices is used. A shell’s convective

urvilinear coordinates are denoted by θ i , where θα are the surface coordinates and θ3 is the thickness coordinate.
Partial derivatives with respect to θ i are indicated as (·),i = ∂(·)/∂θ i . Deformation is generally described through

eometric quantities in deformed and undeformed configurations, where variables of the undeformed configuration
re indicated by ˚(·).

Given a point r̊ on the midsurface of the reference configuration, the tangent base vectors åα and the unit normal
vector å3 of the midsurface are obtained as

åα = r̊,α , (1)

å3 =
å1 × å2⏐⏐å1 × å2

⏐⏐ . (2)

A point in the shell body off the midsurface is denoted by x̊ and is related to the corresponding point on the
idsurface r̊ via the normal vector as

x̊ = r̊ + θ3 å3 , (3)

ith −h/2 ≤ θ3
≤ h/2, h being the shell thickness. The base vectors at a point in the shell body are denoted by

˚ i = x̊,i and can be expressed by those of the midsurface åi as follows

g̊α = åα + θ3 å3,α , (4)

g̊3 = a3 . (5)
2
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The first and second fundamental forms of the midsurface yield the metric and curvature coefficients

åαβ = åα · åβ , (6)

b̊αβ = åα,β · å3 . (7)

he metric coefficients at a point in the shell continuum are then obtained as

g̊αβ = åαβ − 2θ3bαβ +
(
θ3)2 å3,α · å3,β , (8)

g̊α3 = g̊3α = åα · å3 + θ3å3,α · å3 = 0 , (9)

g̊33 = å33 = 1 . (10)

Corresponding to the classical assumption of a linear strain distribution through the thickness, the quadratic term
in Eq. (8) is neglected

g̊αβ = åαβ − 2θ3b̊αβ . (11)

The displacement vector u describes the deformation of a point on the midsurface from the undeformed to the
deformed configuration r = r̊+u, and Eqs. (1)–(11) can be applied identically to the actual configurations. However,
in this work, we adopt the approximation of the unit normal vector in the deformed configuration as proposed in [30]

a3 =
a1 × a2⏐⏐å1 × å2

⏐⏐ , (12)

hich is then used for computing the curvature coefficients of the midsurface in the deformed configuration. This ap-
roximation reduces the nonlinearity of the strain measure and simplifies its linearization, as has been shown in [30],
here it was tested successfully for geometrically nonlinear problems. In the numerical examples of the present pa-
er, we investigate the accuracy of this simplified strain measure in the context of hyperelastic large-strain problems.

The metric coefficients (11) in the current configuration represent also the in-plane components of the right
auchy–Green deformation tensor Cαβ = gαβ , while Cα3 = gα3 = 0. The thickness deformation C33 ̸= g33 cannot
e obtained directly from the shell kinematics but needs to be recovered through the constitutive equations by
nforcing the plane stress condition, as briefly summarized in the following. Assuming an arbitrary hyperelastic
aterial, described by a strain energy function ψ , the second Piola–Kirchhoff stress tensor Si j and the tangent
aterial tensor Ci jkl are defined as

Si j
= 2

∂ψ

∂Ci j
, (13)

Ci jkl
= 4

∂2ψ

∂Ci j∂Ckl
. (14)

n incorrect assumption of C33 would lead to a violation of the plane stress assumption S33
= 0. In turn, the plane

stress condition can be used to determine the thickness deformation by an iterative correction as follows [25]

∆C (I )
33 = −2

S33
(I )

C3333
(I )

, (15)

C (I+1)
33 = C (I )

33 + ∆C (I )
33 , (16)

here I indicates the iteration step. With the updated C33, the updates of Si j and Ci jkl are computed until the plane
stress condition is satisfied up to a specified tolerance. In the case of incompressible materials, the correction of

33 can also be done analytically, leading to the following expressions for the stress and material tensors

Si j
= 2

∂ψel

∂Ci j
− 2

∂ψel

∂C33
C33C̄ i j , (17)

Ci jkl
= 4

∂2ψel

∂Ci j∂Ckl
− 2

∂ψel

∂C33
C33(C̄ i j C̄kl

− C̄ ikC̄ jl
− C̄ ilC̄ jk)

− 4
(

∂2ψel C33 +
∂ψel

δi3δ j3
)

C̄kl
− 4C̄ i j

(
∂2ψel C33 +

∂ψel
δk3δl3

)
, (18)
∂C33∂Ci j ∂C33 ∂C33∂Ckl ∂C33

3
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where ψel is the elastic part of the strain energy function without the incompressibility constraint, C̄ i j are the
components of the inverse of the deformation tensor, δi3 is the Kronecker Delta, and Jo is the in-plane Jacobian
determinant defined by

Jo =

√
|gαβ |
|g̊αβ |

. (19)

n the expressions Eqs. (17)–(18), both the incompressibility constraint and plane stress constraint are already
atisfied, for more details, reference is made to [25]. With the plane stress condition ensured, the statically condensed
aterial tensor Ĉαβγ δ can be obtained as

Ĉαβγ δ = Cαβγ δ −
Cαβ33C33γ δ

C3333 , (20)

and only in-plane stress and strain components need to be considered. As strain measure, we use the Green–Lagrange
strain obtained as

Eαβ =
1
2

(gαβ − g̊αβ) (21)

=
1
2

(
(aαβ − åαβ) − 2θ3(bαβ − b̊αβ)

)
(22)

= εαβ + θ3καβ . (23)

tresses are integrated over the thickness, yielding the stress resultants

nαβ =

∫ h/2

−h/2
Sαβdθ3 , (24)

mαβ
=

∫ h/2

−h/2
Sαβθ3dθ3 , (25)

epresenting membrane forces and moments, respectively. For their total differentials, we obtain

dnαβ =

(∫ h/2

−h/2
Ĉαβγ δdθ3

)
dεγ δ +

(∫ h/2

−h/2
Ĉαβγ δ θ3dθ3

)
dκγ δ , (26)

dmαβ
=

(∫ h/2

−h/2
Ĉαβγ δθ3dθ3

)
dεγ δ +

(∫ h/2

−h/2
Ĉαβγ δ(θ3)2 dθ3

)
dκγ δ . (27)

t should be noted that in Eqs. (26)–(27) only Ĉαβγ δ need to be integrated through the thickness, while strain
ariables are expressed by the midsurface variables dεγ δ and dκγ δ .

The variational formulation of the problem is obtained from the equilibrium of internal and external virtual work,
W int

= δW ext , with internal and external virtual work defined as

δW int
=

∫
A
(n : δε + m : δκ) dA , (28)

δW ext
=

∫
A

f · δu dA , (29)

here δu is a virtual displacement, δε and δκ are the corresponding virtual membrane strain and change in curvature,
espectively, while f denotes the external load. A denotes the midsurface and dA =

√
|åαβ |dθ1dθ2 the differential

rea, both in the reference configuration.

.2. Discretization and linearization

The displacement vector is discretized as

u =

nsh∑
N aua , (30)
a

4
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where N a are the shape functions, with nsh as the total number of shape functions, and ua are the nodal displacement
vectors with the components ua

i (i = 1, 2, 3) referring to the global x−, y−, z−components. The global degree of
freedom number r of a nodal displacement is defined by r = 3(a − 1) + i , such that ur = ua

i . The variation with
respect to ur is obtained by the partial derivative ∂/∂ur

∂u
∂ur

= N aei . (31)

imilar to Eq. (31), the variations of derived variables, such as strains, with respect to ur can be obtained, which
s shown in detail in [25]. The variations of δW int and δW ext with respect to ur yield the vectors of internal and

external nodal forces, with F int
r and Fext

r representing their r th component

F int
r =

∫
A

(
n :

∂ε

∂ur
+ m :

∂κ

∂ur

)
dA , (32)

Fext
r =

∫
A

f ·
∂u
∂ur

dA . (33)

inearizing Eq. (32), we obtain the components of the tangential stiffness matrix

Krs =

∫
A

(
∂n
∂us

:
∂ε

∂ur
+
∂m
∂us

:
∂κ

∂ur
+ n :

∂2ε

∂ur∂us
+ m :

∂2κ

∂ur∂us

)
dA . (34)

Finally, we write the linearized equation system which is solved for the incremental displacement vector u̇

K u̇ = −R , (35)

ith R = Fint
− Fext being the residual vector.

As the curvature-related terms in the internal force vector and stiffness matrix involve second derivatives of
he displacement, a C1-continuous discretization is necessary. In this paper, we use NURBS-based isogeometric
nalysis [6]. The details of the linearization of ε and κ with respect to ur , us are presented in [25].

For implementation, we rewrite the relevant tensors in Voigt notation as follows

n =

⎛⎝n11

n22

n12

⎞⎠ , m =

⎛⎝m11

m22

m12

⎞⎠ , ε =

⎛⎝ ε11
ε22

2 ε12

⎞⎠ , κ =

⎛⎝ κ11
κ22

2 κ12

⎞⎠ , (36)

and the material tensor represented as a 3 × 3 material matrix:

D =

⎛⎜⎝ Ĉ1111 Ĉ1122 Ĉ1112

Ĉ2222 Ĉ2212

symm. Ĉ1212

⎞⎟⎠ . (37)

Furthermore, we introduce the following thickness-integrated material matrices:

D0
=

∫ h/2

−h/2
D dθ3 , D1

=

∫ h/2

−h/2
θ3D dθ3 , D2

=

∫ h/2

−h/2

(
θ3)2 D dθ3 , (38)

uch that Eqs. (26)–(27) can be rewritten as:

dn = D0
dε + D1

dκ , (39)

dm = D1
dε + D2

dκ . (40)

Finally, we can write the internal forces (32) and stiffness matrix (34) components as:

F int
r =

∫
A

(
nT ∂ε

∂ur
+ mT ∂κ

∂ur

)
dA , (41)

Krs =

∫ ((
D0 ∂ε

∂u
+ D1 ∂κ

∂u

)T
∂ε

∂u
+ nT ∂2ε

∂u ∂u
+

(
D1 ∂ε

∂u
+ D2 ∂κ

∂u

)T
∂κ

∂u
+ mT ∂2κ

∂u ∂u

)
dA . (42)
A s s r r s s s r r s

5
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The stiffness matrix formulation (42) can be split into two parts, which are typically denoted as the material and
eometric stiffness matrices, Kmat and Kgeo, respectively, as follows

K mat
rs =

∫
A

((
D0 ∂ε

∂us
+ D1 ∂κ

∂us

)T
∂ε

∂ur
+

(
D1 ∂ε

∂us
+ D2 ∂κ

∂us

)T
∂κ

∂ur

)
dA , (43)

K geo
rs =

∫
A

(
nT ∂2ε

∂ur∂us
+ mT ∂2κ

∂ur∂us

)
dA , (44)

ith K = Kmat
+ Kgeo.

For a more compact notation of (41)–(44), we introduce the following generalized vectors for the stress resultants
nd the strain variables

t =

(
n
m

)
, ρ =

(
ε

κ

)
, (45)

nd the variations of the latter with respect to ur , us

ρ,r =

(
∂ε
∂ur
∂κ
∂ur

)
, ρ,rs =

⎛⎝ ∂2ε
∂ur ∂us

∂2κ
∂ur ∂us

⎞⎠ . (46)

urthermore, we gather the first variations of the strain variables in a strain–displacement matrix B

B =
(
ρ,1 ρ,2 . . . ρ,ndof

)
, (47)

oting that B is still a function of the displacements u, and we define the 6 × 6 material matrix D

D =

(
D0 D1

D1 D2

)
, (48)

here D0
,D1

,D2
are the thickness-integrated material matrices defined in (38).

With (45)–(48), Eqs. (39)–(44) can be rewritten in a more compact and general form, which can easily be applied
to other structural formulations. Eqs. (39)–(40) turn into a single equation

Ddρ = dt , (49)

nd the expressions for internal forces (41) and stiffness matrices (43)–(44) can be written in a as follows

Fint
=

∫
A

BT t dA , (50)

Kmat
=

∫
A

BT DB dA , (51)

Kgeo
=

∫
A

kgeo dA , (52)

kgeo
rs = tT ρ,rs . (53)

he integrals in (50)–(52) are evaluated by numerical quadrature

Fint
=

Ns∑
i=1

BT
i ti wi (54)

Kmat
=

Ns∑
i=1

BT
i Di Bi wi , (55)

Kgeo
=

Ns∑
i=1

kgeo
i wi , (56)

ith the subscript i indicating quantities evaluated at an integration point, Ns as the number of integration points,
nd wi as the corresponding integration weights. Eqs. (54)–(56) provide the basis for the derivation of the MIP

ormulation in the next section.

6
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3. The iterative scheme with mixed integration points (MIP)

The motivation of the MIP approach is the fact that standard displacement formulations may exhibit poor
obustness in the iterative solution scheme obtained via a standard Newton linearization in certain problem classes,
ike, e.g., thin shells, limiting the allowable load (or arc-length) step size and, by this, increasing the total numerical
ffort. The reason for this can be found in the large discrepancy of stiffness terms related to bending and membrane
eformations, respectively. In thin shells, the membrane stiffness is, in relation to the bending stiffness, very high.
s a result, small and moderate approximation errors in the incremental update of the displacements lead to very
igh residuals in the terms related to membrane forces, which can lead to divergence of the Newton scheme. This
roblem does not exist in mixed formulations, where stresses or stress resultants (including membrane forces)
re treated as independent variables. However, mixed formulations come at the cost of additional variables to be
iscretized and solved for, and specific requirements on the discretization spaces of the different variables [37,38].
he goal of the MIP approach is to combine the simplicity and efficiency of displacement-based formulations
ith the improved robustness in the iterative scheme of mixed formulations. To this end, additional variables are

ntroduced for stresses or stress resultants, similar to mixed methods. Unlike classical mixed methods, these variables
re not assumed continuous and are not discretized, but are defined as local variables at each integration point. Due to
his local definition, they can be eliminated from the formulation analytically by static condensation of the equation
ystem, such that only displacement variables are discretized and solved for, like in a standard displacement-based
ormulation. As a matter of fact, an MIP formulation can be considered as a modified Newton method for a standard
isplacement formulation.

In this section, we apply this approach to the hyperelastic Kirchhoff–Love shell formulation presented in the
revious section. The approach presented in the following can be considered as a general procedure of applying the
IP concept to nonlinear problems. First, we enhance the solution and residual vectors for the newly introduced

ariables and related equations accordingly, then we consistently linearize the enhanced residual equation resulting
n an enhanced tangential stiffness matrix, and finally, we perform static condensation to eliminate the additional
ariables and reduce the equation system to its original size with displacement degrees of freedom as the only
olution variables.

At each integration point, we introduce the independent variables ñi and m̃i , for membrane forces and bending
moments, respectively. For a consistent notation, all following variables depending on these newly introduced
variables will be indicated with a (̃) symbol. As in (45), we gather these stress resultants in a generalized stress
resultant vector

t̃i =

(
ñi

m̃i

)
, (57)

and obtain the corresponding related quantities as in (50)–(56)

F̃int
=

Ns∑
i=1

BT
i t̃i wi , (58)

R̃ = F̃int
− Fext , (59)

K̃geo
=

Ns∑
i=1

k̃geo
i wi , (60)

k̃geo
rsi = t̃T

i ρ,rsi . (61)

For ensuring equilibrium, we add an additional equation at each integration point

s̃i = t̃i − ti . (62)

where s̃i is a local residual, which should vanish at the end of each iteration. We can gather these local variables
and local residuals in global vectors T̃ and S̃

T̃ =

⎛⎜⎜⎝
t̃1

t̃2
. . .
˜

⎞⎟⎟⎠ , S̃ =

⎛⎜⎜⎝
s̃1
s̃2
. . .

⎞⎟⎟⎠ , (63)
tNs s̃Ns

7
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and then define the total vector of unknowns ũt and the total residual R̃t as

ũt =

(
T̃
u

)
, R̃t =

(
S̃
R̃

)
. (64)

he residual equation system R̃t = 0 is linearized with respect to ũt

R̃t +
dR̃t

dũt

˙̃ut = 0 , (65)

which can be expressed block-wise as⎛⎝ dS̃
dT̃

dS̃
du

dR̃
dT̃

dR̃
du

⎞⎠( ˙̃T
u̇

)
= −

(
S̃
R̃

)
, (66)

r, more explicitly⎛⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · −D1B1
0 1 · · · · · · −D2B2
...

...
. . .

...
...

...
... · · · 1 −DNs BNs

BT
1w1 BT

2w2 · · · BT
Ns
wNs K̃geo

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

˙̃t1
˙̃t2
...

˙̃tNs

u̇

⎞⎟⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎝
s1
s2
...

sNs

R̃

⎞⎟⎟⎟⎟⎟⎠ . (67)

As can be seen, the equations for the updates of the stress variables ˙̃ti are independent of each other, which
s due to the fact that they are defined locally at each integration point. As a consequence, these variables can be
tatically condensed from the equation system by formally solving for ˙̃ti

˙̃ti = Di Bi u̇ − s̃i , (68)

nd substituting it back into (67), yielding the condensed equation system

K̃cu̇ = R̃c , (69)

ith

K̃c =

Ns∑
i=1

(
BT

i Di Bi + k̃geo
i

)
wi (70)

or the condensed tangential stiffness matrix. The condensed residual vector is given by

R̃c = F̃int
c − Fext

= R , (71)

ince

F̃int
c =

Ns∑
i=1

(
BT

i t̃i − BT
i si
)
wi =

Ns∑
i=1

(
BT

i t̃i − BT
i

(
t̃i − ti

))
wi (72)

=

Ns∑
i=1

(
BT

i ti
)
wi = Fint . (73)

s can be seen, the condensed vector of internal forces and, therefore, the condensed residual vector of the MIP
ormulation are identical to those of the standard displacement-based formulation. This is a typical feature of the

IP approach and it guarantees that the solution of the MIP formulation (in each load step) is identical to the
ne of the standard displacement-based solution. Only the tangential stiffness matrix, more precisely, the geometric
tiffness matrix, is modified by the locally defined mixed variables. These are updated in each iteration according
o

˙̃
˙ ˜
ti = Di Bi u − si . (74)

8
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Table 1
Schematic description of the principal points of the algorithms: the differences between the
standard and the MIP Newton’s methods are marked in red. ∆ indicates the extrapolation
values from the kth (converged) step at the beginning of the new iteration loop j .

Newton MIP Newton

Predictor u1
= u(k) + ∆u u1

= u(k) + ∆u
Fext1

= Fext
(k) + ∆Fext Fext1

= Fext
(k) + ∆Fext

t1
i = ti (u1) t̃1

i = t̃i(k) +
˙̃ti

Iteration matrix K(ti (u j ),u j ) K(t̃ j
i ,u j )

Residual vector Fext j
c − Fint j Fext j

c − Fint j

New estimate u j+1
= u j

+ u̇ u j+1
= u j

+ u̇
Fext( j+1)

= Fext j
+ Ḟext Fext( j+1)

= Fext j
+ Ḟext

t j+1
i = ti (u j+1)t̃ t̃ j+1

i = t̃ j
i +

˙̃ti

We note that the MIP-based iterative scheme is very simple to implement and few changes with respect to a
standard displacement-based Newton procedure are required (see Table 1). The MIP concept has been extensively
and successfully tested for geometrically nonlinear problems [12,30] and has been extended to material nonlinearity
here. We highlight that the consistent derivation presented in this section is general, it is not restricted to the specific
shell formulation or hyperelastic materials, but can be applied to arbitrary nonlinear problems.

4. Iterative solution for the one-step energy-conserving method in displacement and mixed form

In this section, the general MIP approach presented above is extended to the one-step energy-conserving time
ntegration method proposed in [31], which we refer to for deepening the argument. Here the equations are briefly
ecalled in order to present a unified updating process for the mixed variables involved in the iterative algorithm.
pplying a spatial discretization and following the assembly process as described above, the semi-discrete global

et of equations of motion can be written, leaving out the damping term, as{
v = u,t
Mv,t + Fint (u) = Fext (75)

where M is the mass matrix and where (·),t denotes a time derivative while v is the velocity vector. In one-step

time integration schemes, α =
t − t0
t1 − t0

is introduced to obtain the approximation in time for u and v over the time

step [t0, t1] with t1 = t0 + ∆t :{
v(α) = v0 + α(v1 − v0)
u(α) = u0 + α(u1 − u0) .

(76)

A possible choice to rewrite in discrete form the semi-discrete equations of motion (75) is⎧⎪⎨⎪⎩
v̄ =

u1 − u0

∆t

M
v1 − v0

∆t
+ F̄int (u) = F̄

(77)

here v̄, F̄int and F̄ext are the mean values of v(α), Fint (α) and Fext (α) over the step⎧⎪⎪⎨⎪⎪⎩
v1 + v0

2
=

u1 − u0

∆t

M
v1 − v0

∆t
+ F̄int (u) = F̄ext with F̄ext

≡

∫ 1

0
Fext (α)dα .

(78)

The iterative Newton-like solution method for the time integration proposed in [31] operates over the end-step
displacement u1 as unknown. The residual discrete equations of motion Fint

1 = Fint (u1) are

R1 ≡ 2M
u1 − u0 − v0∆t

+ F̄int
− F̄ext

= 0 . (79)

∆t2 1

9
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The mean internal force vector R̄1 = R̄(u1), introduced in (79), is defined as sum of spatial integration point
ontributions

F̄int
1 =

Ns∑
i=1

B̄T
i tiwi with ti (u1) = ti

(
ρi (u1) + ρi (u0)

2

)
(80)

hile the tangent stiffness matrix K̄1 = K̄(u1) is

K̄1 ≡
∂F̄int

1

∂u1
=

Ns∑
i=1

(
B̄T

i Di Biwi + k̄geo
i

)
(81)

here B̄i (u1) and k̄geo
i (u1) are the mean contribution to the residual and to the geometrical stiffness evaluated as a

um over temporal integration points defined by coordinates αn and weights ϖn

B̄i ≡

Nt∑
n=1

Bi (u(αn))ϖn, k̄geo
i ≡

Nt∑
n=1

kgeo
i (u(αn), t1),ϖn .

t is the case to note that the elastic stress ti in (80) cannot be evaluated through the deformation tensor evaluated
sing the displacement field as in [25]. It is evident that the displacement corresponding to the average strain is not
vailable within the analysis and then it must be evaluated using (21). The rule for the displacement update based
n Newton iteration is then

u j+1
1 = u j

1 −

[
2

∆t2 M + K̄ j
1

]−1

R j
1 . (82)

In applying the MIP concept, as usual, at each iteration loop, the constitutive relations are relaxed and solved
together with the motion equations as a parallel set of equations, so that

˜̄Fint (t̃,u1) =

Ns∑
i=1

B̄T
i t̃iwi

with, again, t̃i independent variables. Similarly to (62), the extended system of equations is⎧⎨⎩s̃i (t̃i ,u1) ≡ t̃i − t1 = 0

R̃(t̃,u1) ≡ 2M
u1 − u0 − v0∆t

∆t2 +
˜̄Fint (t̃,u1) − F̄ext

= 0 .
(83)

he resulting iteration scheme, including the stress updates, is:⎧⎪⎨⎪⎩u j+1
1 = u j

1 −

[
2

∆t2 M +
˜̄K(t̃ j ,u j

1)
]−1

R̃ j

t̃ j+1
i = t̃ j

i − s j
i + Di B

j
i (u j+1

1 − u j
1)

(84)

with ˜̄K(t̃ j ,u j
1) that has the same expression as in Eq. (81) but evaluated using the independent t̃ j

i instead of its
counterpart coming from u j

1 . As previously observed the internal force vector must be the same in both MIP and
displacement formulation and the correction of the generalized stress is of the same shape as the static nonlinear
case

t̃ j+1
i = t j

i + Di B
j
i (u j+1

1 − u j
1) .

As implementation insight, it is the case to note that if the new stress value is expressed in terms of increment
t̃ j+1
i = t̃ j

i +
˙̃ti the correction stress update is formally equal to the (74).

5. Numerical results

In this section, we present some benchmarks devoted to checking both the correctness of the proposed simplified
model (KLS) defined in (12) in the context of hyperelastic materials and the effect of MIP [9] on the iteration

process.

10
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Fig. 1. Tensile test: problem setup.

Table 2
Tensile test: Cumulative iteration numbers of the MIP and displacement-based (D)
formulations under load-control, for different neo-Hookean materials.

Model ν = 0.49 ν = 0.499 inc

D 60 54 54
MIP 59 55 55

5.1. Tensile test

The simple uniaxial tensile test has been studied in [25] where the comparison with analytical solutions was
resented for different constitutive laws. The square membrane, see Fig. 1, of unit length and thickness h = 0.01 is
upported on one edge (at x = 0) in x-direction and subjected to uniaxial unit tensile loading at the opposite edge.
he domain is modeled using a single cubic element, and boundary conditions in y and z are applied such that

igid body motions are prevented. We consider compressible and incompressible neo-Hookean and Mooney–Rivlin
aterial models [39–41], with

ψnh
el =

1
2
µ (I1 − 3) , (85)

ψmr
el =

1
2
µ1 (I1 − 3)−

1
2
µ2 (I2 − 3) (86)

escribing the incompressible neo-Hookean (85) and Mooney–Rivlin (86) materials, and

ψnh
=

1
2
µ
(
J−2/3 I1 − 3

)
+

1
4

K
(
J 2

− 1 − 2 ln J
)
, (87)

ψmr
=

1
2
µ1
(
J−2/3 I1 − 3

)
−

1
2
µ2
(
J−4/3 I2 − 3

)
+

1
4

K
(
J 2

− 1 − 2 ln J
)

(88)

escribing the compressible neo-Hookean (87) and Mooney–Rivlin (88) materials. In (85)–(88), µ is the shear
odulus, K the bulk modulus, and Ii denote the invariants of the deformation tensor, defined by I1 = tr(C),

I2 =
1
2

(
tr(C)2

− tr(C2)
)
, I3 = det(C) [41]. The material parameters are chosen as µ = 1.5 106 for the shear

modulus and µ1 = 0.875µ, and µ2 = −0.125µ. In the compressible cases, different values for the Poisson’s ratio
= {0.45, 0.49, 0.499} are considered, defining the bulk modulus via K = 2µ(1 + ν)/(3 − 6ν). The thickness

hange factor λ3 can be evaluated using λ3 =
√

C33 and is also tested in the numerical experiments.
In Table 2 the performance of MIP and displacement-based (D) formulations are compared in terms of Newton

terations.
As it is expected by the discussion given in [9,18] the MIP and the displacement-based formulation perform

imilarly as only the membrane stiffness is mobilized.
Figs. 2 and 3 show the λ3 − λ and u A − λ curves for compressible and incompressible Neo-Hookean materials.

he solutions for compressible and incompressible Mooney–Rivlin materials are shown in Figs. 4 and 5. In all

ases, the curves show a perfect match of the full and the simplified KL shell models.

11
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Fig. 2. Tensile test: Thickness change factor λ3 and load–displacement λ-uA for a compressible neo-Hookean material with different Poisson’s
ratios. Comparison of the full Kirchoff–Love model (KL) and the simplified model (KLS).

Fig. 3. Tensile test: Thickness change factor λ3 and load–displacement λ-uA for incompressible and nearly incompressible neo-Hookean
materials.

5.2. Inflation of a balloon

In this benchmark problem, the inflation of a balloon is modeled. The balloon is modeled by a sphere with
an initial radius R = 10 and h = 0.1 of which 1/8th of the surface is modeled using 4 × 4 cubic elements, as
depicted in Fig. 6. The balloon is subjected to an internal pressure. An analytical solution is given in [41] for an
incompressible neo-Hookean (85) and an incompressible Mooney–Rivlin (86) material, and the problem was solved
successfully with the KL shell model in [25], which herein is used to validate the KLS proposed in the present
paper. As material property we choose µ = 4.225 · 105, µ1 = 0.875µ, and µ2 = −0.125µ.

In Fig. 7 the highlighted part (in gray) is the deformed shape obtained with the full model, the white part is
obtained by the simplified one, and the green part is the undeformed geometry. As it is possible to observe the

portions match perfectly. In the comparison of neo-Hookean and Mooney–Rivlin constitutive models, the same

12
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5

o

Fig. 4. Tensile test: Thickness change factor λ3 and displacement uA for different Mooney–Rivlin materials.

Fig. 5. Tensile test: Thickness change factor λ3 and displacement uA for incompressible and nearly incompressible Mooney–Rivlin materials.

scaling of the axes has been used. For both materials the λ1 −λ and u A −λ curves show the ability of the simplified
model to describe the same solution of the full model as it is shown in Figs. 8 and 9. The equilibrium paths are
drawn by evaluating the actual pressure as p =

λ
A , and the membrane stretches as λ1 = λ2 =

√
A

A0
where A0 and

A are the initial and the actual surface area, respectively.

.3. Cantilever beam

As a first bending-dominated problem, we propose the cantilever beam shown in Fig. 10. In this case, the effect
f the MIP formulation is expected to be relevant. The beam is modeled as a rectangular 10.0 × 1.0 shell with

thickness h = 0.10 (L/h = 100) and loaded with a unit line load at the free edge. Compressible and incompressible
neo-Hookean materials with the same material properties as in the tensile test of Section 5.1 are used. A mesh of
8 × 1 cubic elements is used. Finally, it is the case to note that membrane locking is cured by using the reduced
13
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Fig. 6. Initial geometry of the inflation of a balloon benchmark. One eighth of a sphere with modeled with 4 × 4 cubic elements.

Fig. 7. Inflation of a balloon. Deformed shapes for different load levels.

integration scheme established in [30]. Table 3 shows the cumulative iterations required to execute the analysis with
the displacement-based (D) and MIP formulations. It can be seen that the required iteration number with MIP is
almost 50% of that required by the displacement-based solution process.

5.4. Pinched cylinder

This example regards the pinching of a cylinder. The cylinder has a radius R = 9, length L = 30, and thickness

h = 0.2 and is subjected to line-loads on the top and bottom as shown in Fig. 11. Due to symmetry only a

14
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i
l

Fig. 8. Inflation of a balloon: comparison of simplified and full models for different neo-Hookean materials.

Fig. 9. Inflation of a balloon: comparison of simplified and full models for incompressible Mooney–Rivlin.

Table 3
Cantilever beam: total number of Newton iterations for different materials in
nonlinear static case.

Model ν = 0.45 ν = 0.49 ν = 0.499 inc

D 64 63 63 63
MIP 30 30 30 30

quarter of the domain with symmetry conditions is modeled. The geometry is meshed by 8 × 16 cubic elements
n radial and longitudinal directions, respectively. We analyze the load case of both inward and outward-directed
oads. This problem setup is similar to the pinched cylinder problem originally proposed by [42] and also modeled
15
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s

Fig. 10. Initial geometry of the cantilever beam (left). Load–displacement curve λ−wA for different neo-Hookean materials (right).

Fig. 11. The initial geometry of the cylinder for the pinched cylinder benchmark. The geometry is modeled by a quarter, as indicated, with
ymmetry conditions on both sides and with 8 elements in the radial direction and 16 in the length direction.

Table 4
Pinched cylinder: total number of Riks iterations for different load cases.

Model Inward load Outward load

D 100 48
MIP 63 31

in [25], which, however, has slightly different boundary conditions resulting in reduced symmetry, and considers
inward-directed loads only. As in the original benchmark we use a compressible neo-Hookean material defined by
the following strain energy function:

Ψel =
µ

2
(I1 − 3) − µ ln(

√
I3) +

Λ

4
(I3 − 1 − 2 ln(

√
I3)) (89)

with µ = 60 and Λ = 240 as the Lamé constants. Table 4 shows that the MIP improves the performances of the
Newton method of almost 40% in this case for both inward load and of the 35% for the outward load case.
16



L. Leonetti and J. Kiendl Computer Methods in Applied Mechanics and Engineering 416 (2023) 116325

c

c
b
s
o

s
f
(
o
r

Fig. 12. Pinched cylinder: comparison of simplified and full models for neo-Hookean materials. Inward (left) and Outward (right) loads.

Fig. 13. Pinched cylinder: Deformed shapes for different load levels and Inward load direction. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

Fig. 12 shows that the simplified and the full models overlap also in this case for both inward and outward load
ases. Similarly to the case of the inflation of a balloon 5.2 the deformed shapes depicted in Figs. 13 and 14 are
icolor and compared with the undeformed geometry colored in green. Again, the gray parts represent the deformed
hapes, for different load levels, obtained with the full model while the white part is obtained with the simplified
ne.

Furthermore, we use this example to give an indicative estimate on the computational saving by using the
implified bending strain measure based on the simplified formula for the normal vector (12) compared to a
ormulation with the consistent normal vector (2). For this comparison, the problem is solved with both formulations
simplified and standard bending strains) in a standard load-controlled Newton method. In this case, the total number
f iterations is the same for both formulations, nevertheless, the formulation with the simplified bending strains

esults in a saving of almost 12% of the computation time.
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Fig. 14. Pinched cylinder: Deformed shapes for different load levels and Outward load direction. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Initial geometry of the vibrating beam.

5.5. Nonlinear dynamic benchmark problems

Within this section the method proposed in [31], considering three temporal integration points, is compared with
the standard Newmark method [43]. For both examples, a compressible and incompressible neo-Hookean material
with the same material property of the tensile test of Section 5.1 and 0.5 normalized mass density are used.

Firstly the cantilever beam, with thickness h = 0.10, is tested considering the loading law represented in Fig. 15.
The Fig. 16 compares the performances of the mid-point rule method as proposed in [31] and the Newmark
method [43] while Fig. 17 shows the ability of the model in well reproducing the behavior of nearly incompressible
materials. It is possible to see that, also in the case of hyperelastic materials, the approach proposed in [31] is stable
while the standard Newmark fails even for a very small step size.

Table 5 shows the cumulative iterations, total and average for time step (in brackets) when the mid-point rule [31]
is executed for different Neo-Hookean materials. The MIP formulation allows us to save 12% (incompressible case)
of the total number of iterations. If the time step ∆t is halved we get, for the incompressible case, (D) 3705 (4.62)
and (MIP) 3196 (3.99) respectively speeding up the solution process of the 15% and the solution process takes
much more advantage from the mixed format.

A further test in the dynamical regime regards a square plate with thickness h = 0.02, meshed by 8 × 8 cubic
elements, with one fixed edge, one simply supported and two free as depicted in Fig. 18. The dynamical response

of the plate is reported in Fig. 19.
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Fig. 16. Vibrating beam: ν = 0.45 and different time step ∆t . Comparison of the mid-point rule [31] (Top) and Newmak method (bottom).

Fig. 17. Vibrating beam: mid-point rule. Incompressible vs. nearly incompressible.

Table 5
Vibrating beam: total number of Newton iterations (and average loops per time-step
in brackets) for ν = 0.499 and incompressible material and a time step ∆t = 0.005.
Results for the displacement-based (D) and MIP formulations.

Model ν = 0.499 inc

D 2264 (5.64) 2080 (5.19)
MIP 2047 (5.10) 1850 (4.61)

For this last example, the Newmark method (in both MIP and D formats) and the mid-point rule method [31] in
he displacement (D) format have been also tested. In the former case, the time integration scheme diverges very
oon while in the latter after 0.5 s the solver reports the warning for ill-conditioned iteration matrix. This example
learly shows that only the mid-point rule method [31] in MIP format is able to finish the analysis proving once
ore the robustness of the proposed approach.

. Conclusions

We have presented a mixed integration point (MIP) formulation for structural problems including geometric and
aterial nonlinearities. We have applied it to the case of hyperelastic Kirchhoff–Love shells with isogeometric

iscretization. However, the presented MIP formulation is general and can be applied to arbitrary structural
ormulations involving geometric and material nonlinearities. We have presented how to combine this formulation
ith a one-step energy-conserving time integration method [31] for extending the approach to structural dynamics.
oreover, we have tested the applicability of the simplified bending strain measure proposed for Kirchhoff–Love
hells in the context of geometric nonlinearities [30] in the fully nonlinear regime including large strains. Several
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Fig. 18. Initial geometry of the vibrating plate.

Fig. 19. Vibrating plate: mid-point rule MIP. Incompressible vs. nearly incompressible.

enchmark problems involving large deformations and large strains as well as statics and dynamics demonstrate the
pplicability and efficiency of the proposed formulations. Comparisons to a displacement-based formulation [25]
howed that the MIP approach can significantly reduce the required number of Newton iterations in path-following
ethods for nonlinear static analysis as well as in implicit time integration schemes within nonlinear structural

ynamics. Comparisons of the solutions obtained with the simplified bending strain measure [30] to those obtained
ith the full strain measure [44] showed that the simplified version also performs well in a large strain context,

urther improving the efficiency of the method.
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