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Abstract
In the context of simulation-based methods, multiple challenges arise, two of
which are considered in this work. As a first challenge, problems including
time-dependent phenomena with complex domain deformations, potentially
even with changes in the domain topology, need to be tackled appropriately. The
second challenge arises when computational resources and the time for evalu-
ating the model become critical in so-called many query scenarios for paramet-
ric problems. For example, these problems occur in optimization, uncertainty
quantification (UQ), or automatic control, and using highly resolved full-order
models (FOMs) may become impractical. To address both types of complexity,
we present a novel projection-based model order reduction (MOR) approach
for deforming domain problems that takes advantage of the time-continuous
space-time formulation. We apply it to two examples that are relevant to engi-
neering or biomedical applications and conduct an error and performance
analysis. In both cases, we are able to drastically reduce the computational
expense for a model evaluation and, at the same time, maintain an ade-
quate accuracy level, each compared to the original time-continuous space-time
full-order model (FOM). All in all, this work indicates the effectiveness of the
presented MOR approach for deforming domain problems by taking advantage
of a time-continuous space-time setting.

K E Y W O R D S

deforming domain problems, finite element method, model order reduction, time-continuous
space-time approach

1 INTRODUCTION

The use of simulation-based methods is nowadays widespread in scientific and engineering applications. Commonly,
these methods are intended to serve purposes like enhanced insight and prediction capabilities with respect to the
processes under investigation. In this way, they can be useful tools in the context of product design or optimization pro-
cedures. Furthermore, they may also help to quantify or enhance the reliability of a given process by techniques such
as uncertainty quantification (UQ). Lastly, they further allow to be integrated into ongoing operations, for example, as
digital twins or to set up optimal control.
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Arising in the context of simulation-based methods, we will focus on two specific types of complexity in this work.
First, we consider applications that show a transient behavior involving a deforming domain and, potentially, even
topology changes. These aspects need to be treated appropriately by the computational approach to cover all the relevant
effects. In the following, we restrict ourselves to methods that make use of a computational mesh although there
exists a variety of further simulation methods. In the case discussed here, the deformation of the domain requires
methods that can appropriately handle both the computational mesh and the unsteady solution field. Existing meth-
ods will be discussed in more detail in Section 3.1. The second kind of complexity is related to the expense—in
terms of computational resources and time—needed for an evaluation of the computational model. Especially the
design and development phase of a process or a product may entail the assessment of various operating points or
configurations, the optimization of process settings or component features, as well as uncertainty regarding involved
quantities. In all cases, one ends up with a so-called many query scenario in which a great number of model eval-
uations needs to be performed. Furthermore, the integration into an automatic control environment may demand
fast feedback from the simulation model. Typically, one can formulate the involved problems in a parametric man-
ner where each of the model evaluations is characterized by a certain sample of parameter values. In these situations,
employing the original model, which is often referred to as full-order model (FOM), for each sample may easily
exceed available resources or required feedback times. Here, the application of model order reduction (MOR) can pro-
vide a remedy. Based on the original model, a reduced-order model (ROM) with decreased computational complexity
is constructed, while keeping its accuracy in the desired range. Common MOR techniques will be presented later
in Section 4.1.

The work presented here addresses both types of complexity described above and entails a MOR approach for prob-
lems that are characterized by a transient solution field in a deforming domain with possibly changing topology. In the
following, we restrict ourselves to scenarios in which the deformation is known a-priori. Nevertheless, there exist a vari-
ety of relevant examples with prescribed motion in engineering, for example, the flow in an internal combustion engine
or around a ship’s propeller.

Regarding the question of deforming domain problems, we rely on the time-continuous space-time setting. To signif-
icantly decrease the computational demands and/or response times of the underlying model in a next step, we apply a
projection-based MOR technique for which we make use of proper orthogonal decomposition (POD). The key of the pro-
posed approach is the particular combination of this MOR technique with the choice of a time-continuous space-time
formulation. This connection allows us to construct a corresponding ROM for the aforementioned class of problems in a
straightforward manner. In this way, the benefits of MOR are made easily accessible even when dealing with deforming
domain problems that involve an unsteady solution and, if necessary, changes in the spatial topology. Alternative MOR
approaches that exist and are applicable to transient or deformation-driven scenarios will also be discussed later, that is,
in Section 4.1.

As examples of the type of problems in focus, we consider the simulation of two specific transient fluid flow scenarios
like they may appear in engineering or biomedical applications. The domain deformation in these examples results from a
moving valve plug or the narrowing of flexible artery walls. Furthermore, parameterization is induced through a variation
of the material properties of the fluid or of the boundary conditions.

The remainder of the article is structured as follows: in Section 2, we derive the parametric formulation for fluid flow
problems in deforming domains using the space-time perspective. Next, Section 3 contains the description of the respec-
tive FOM, which will be based on the finite element method (FEM). Subsequently, the construction of the corresponding
ROM using POD and projection is outlined in Section 4. Results for the two fluid flow test cases covering three- and
four-dimensional space-time domains are presented in Section 5 to illustrate the aptitude of the approach introduced in
this work. Finally, our findings are summarized and discussed in Section 6.

2 PARAMETRIC PROBLEM FORMULATION FOR FLUID FLOW IN
DEFORMING DOMAINS

To lay the foundation for the subsequent MOR approach, we begin by deriving the parametric formulation of tran-
sient flow problems defined in deforming domains. As mentioned before, parametric problems, for example, may occur
in the context of UQ or automatic control. Specifically, we consider problems that can be parametric in the material
properties involved or in their boundary conditions. The variations in the material illustrate potential uncertainties in
the process under investigation, which may be analyzed using UQ. Apart from that, adjustable boundary conditions
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F I G U R E 1 Definition of the computational domain(s) in the space-time approach for deforming domain problems. (A) The
time-continuous approach. (B) The time-discontinuous approach.

prescribing, for example, the inflow velocity, showcase the type of use in a context such as automatic control. As
mentioned earlier, we focus on unsteady processes that take place in time-varying domains, which potentially undergo
topology changes, too.

For the description of the time-dependent solution field in a deforming domain, it is convenient to treat space and
time coordinates, which are denoted by x and t, in the same way. To that end, the time-continuous space-time domain Q is
introduced, which results from the time-dependent spatial domain Ω(t) and the time interval [0,T], where nsd describes
the number of spatial dimensions:

Q =
{
(x, t) ∈ R

nsd × [0,T] | x ∈ Ω(t)
}
, (1)

such that (x, t) ∈ Q. The respective space-time boundary is denoted as P where portions on which conditions of
Dirichlet or Neumann type are prescribed are referred to as PD and PN, respectively. Furthermore, initial conditions can
be imposed over Ω(t = 0) = Ω(t0). A sketch can be found in Figure 1A. In contrast, in a time-discontinuous space-time
approach, one considers so-called time slabs Qm with boundaries Pm (see Figure 1B). This results in a kind of time-stepping
scheme with a modified computational domain in each time step. In that sense, the time-discontinuous approach
is comparable to a semi-discrete description. A systematic comparison of time-continuous and time-discontinuous
space-time formulations has been performed for advection-diffusion problems.1 However, as we would like to stress
again, the time-continuous description is essential to directly apply established MOR techniques to deforming domain
problems later.

To be able to eventually demonstrate the presented approach, we consider a specific example of fluid flow equations
here. In particular, we make use of the Stokes equations, which can be used to model a variety of fluid flows of low Reynolds
numbers, for example. Based on the conservation of mass and momentum, the Stokes equations provide statements for
the, in this case parametric, velocity and pressure fields of the fluid, which are referred to as u(x, t;𝝁) and p(x, t;𝝁), respec-
tively. Here, 𝝁 denotes the parameter vector collecting parameter values to vary either material properties or boundary
conditions. Note that we will drop the arguments of u and p for the sake of notation in the following. Nevertheless,
dependencies on 𝝁 will be stressed if necessary.

The resulting boundary value problem (BVP) in the space-time setting reads as follows:

𝜵 ⋅ u(𝝁) = 0 in Q, (2)

𝜌

(
𝜕u(𝝁)
𝜕t

− f
)
− 𝜵 ⋅ 𝝈(u, p;𝝁) = 0 in Q, (3)

u(𝝁) = uD(𝝁) on PD, (4)
𝝈(u, p;𝝁) ⋅ n = h(𝝁) on PN, (5)

u(x, 0;𝝁) = u0(𝝁) in Ω(t0). (6)
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Here, 𝜌 is the fluid density, f is a body force, while uD(𝝁), u0(𝝁), and h(𝝁) are the parameter-dependent prescribed velocity
values and a traction vector, respectively. Moreover, we consider parametric material properties through the fluid viscosity
𝜂(𝝁) that is included in the Cauchy stress tensor given by

𝝈(u, p;𝝁) = −p(𝝁)I + 2𝜂(𝝁)𝝐(u(𝝁)), (7)

where 𝝐(u) = 1
2
(𝜵u + 𝜵uT) is the rate-of-strain tensor. In the following, we will consider fluid materials whose viscous

properties cannot be appropriately described by a Newtonian model. Examples of such non-Newtonian fluids are plastics
melt or blood. To account for shear-thinning effects of the fluid, we use the Carreau-Yasuda model2-4 for the viscosity,
which depends on the shear rate

𝛾̇(u;𝝁) =
√

2𝝐(u(𝝁)) ∶ 𝝐(u(𝝁)). (8)

To stress the dependency on the velocity field, we from now on write 𝜂(u;𝝁) given by

𝜂(u;𝝁) = 𝜂∞ + (𝜂0 − 𝜂∞)
[
1 + (𝜆𝛾̇)a

] n−1
a
, (9)

with zero-shear-rate viscosity 𝜂0, infinite-shear-rate viscosity 𝜂∞, characteristic time 𝜆, power-law index n, and a dimen-
sionless parameter a describing the transition region between the zero-shear-rate viscosity and the power-law regions.
In addition to the indirect parameter dependency of the viscosity through the parametric velocity field, we also take into
account potential fluctuations in the model parameters. This is motivated by the fact that these model parameters can
only be determined through a regression-based approach using measurement data associated with uncertainties.

Since the FEM will be used later to construct the FOM in Section 3, which in turn will serve as the basis for the ROM
presented in Section 4, it is worthwhile to state the weak formulation of the problem here. We will assume that appropriate
trial and weighting spaces for the velocity and the pressure field in the space-time domain Q are given. For the velocity,
the trial and weighting spaces are denoted as u(Q) and u(Q), respectively. For the pressure, the trial space is also the
weighting space and they are referred to as p(Q). The resulting weak formulation of the parametric problem defined in
the space-time domain Q reads:
Find(u(𝝁), p(𝝁)) ∈ u(Q) × p(Q), such that∀(w, q) ∈ u(Q) × p(Q):

∫Q
w ⋅ 𝜌

(
𝜕u(𝝁)
𝜕t

− f
)

dQ −
∫Q

p(𝝁)(𝜵 ⋅w) dQ

+
∫Q
𝝐(w) ∶ 2𝜂(u,𝝁)𝝐(u) dQ +

∫Q
q(𝜵 ⋅ u(𝝁)) dQ =

∫PN

w ⋅ h(𝝁) dP. (10)

To simplify notation, the following short forms will be used in the remainder of this work:

ut(𝝁) =
𝜕u(𝝁)
𝜕t

,

b(u, q;𝝁)Q =
∫Q

q(𝜵 ⋅ u(𝝁)) dQ,

(w, f)Q =
∫Q
𝜌w ⋅ f dQ,

(w,ut;𝝁)Q =
∫Q
𝜌w ⋅ ut(𝝁) dQ,

a(w,u; v,𝝁)Q =
∫Q
𝝐(w) ∶ 2𝜂(v,𝝁)𝝐(u) dQ,

(w,h;𝝁)PN
=
∫PN

w ⋅ h(𝝁) dP.

In this notation, Equation (10) can be stated as

(w,ut;𝝁)Q − b(w, p;𝝁)Q + a(w,u;u,𝝁)Q + b(u, q;𝝁)Q = (w, f)Q + (w,h;𝝁)PN
. (11)

3 FULL- ORDER MODEL FOR FLUID FLOW IN DEFORMING DOMAINS

In this section, we will derive the FOM which results from applying the FEM to the parametric problem introduced
beforehand. In particular, this model will be capable of simulating transient problems in deforming domains. To that
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KEY et al. 5129

end, Section 3.1 will first contain a brief outline of existing techniques that address deforming domain problems in this
context. Subsequently, we present the space-time FEM used in this work in Section 3.2.

3.1 Methodological background for deforming domains in the full-order model

In the following, we will roughly outline existing approaches for deforming domain problems, that is, problems
including moving boundaries or internal interfaces, without claiming completeness. First, one can make a divi-
sion into interface capturing and interface tracking methods.5 Well-known examples of interface capturing methods,
which employ an implicit description of domain boundaries or interfaces on a background mesh, are the level-set
method6,7 or the volume-of-fluid method.8 In contrast, interface tracking methods are based on boundary-conforming
meshes. Thus, an update procedure that adapts the computational mesh according to the deforming domain
is needed.

There exist a vast number of strategies, ranging from global remeshing to elaborate methods specifically designed for
certain applications or types of deformation. As examples of connectivity-preserving methods that update nodal coordi-
nates, one can mention partial differential equation (PDE)-based methods like the elastic mesh update method (EMUM),9
spring-based methods,10 or techniques using radial basis functions.11 Further methods extend these strategies by a subse-
quent mesh optimization, for example, through edge swapping or vertex smoothing operations.12,13 Moreover, specialized
mesh update methods use algebraic operations to control the mesh evolution for a-priori known boundary deforma-
tions.14,15 Furthermore, local remeshing strategies limit the cost of maintaining a high-quality boundary-conforming
mesh under large deformations.16-18 Broadening the scope of these methods, parts of the mesh can be activated and
deactivated19 and topology changes of the computational domain can be handled elegantly.20

As an alternative, one can also follow weak domain coupling strategies to account for the moving boundary or interface
by using composite grids and introducing additional conditions on the solution field. Examples are the Chimera method21

or sliding interface approaches.22-24 It is also worthwhile to mention the immersed boundary method,25 where simulations
are always performed on a cartesian background grid.

Deforming domain problems are inherently transient and their solution requires a form of time discretization.
Common approaches include time-stepping methods which separate spatial and temporal discretization and space-time
methods which apply a combined discretization to the space-time domain. Time stepping schemes, for example, the gen-
eralized 𝛼-method,26 require an arbitrary Lagrangian–Eulerian (ALE) formulation for moving-domain simulations,27,28

while the space-time formulation directly accounts for the (spatial) mesh deformation.29,30

If the movement is known during mesh generation—typically this means before the simulation start—the
time-continuous space-time approach allows to incorporate complex deformations of the spatial domain in a
boundary-conforming space-time mesh. Even topology changes can be included as shown in finite volume and finite
element simulations.31,32 For two-dimensional problems, standard mesh generation tools can be used to construct the
three-dimensional space-time mesh. For three-dimensional problems, more sophisticated mesh generation and adapta-
tion techniques are required. The common approach to generate an unstructured four-dimensional mesh is based on the
extrusion of a tetrahedral mesh followed by a subdivision of the prismatic elements into pentatopes (four-simplices). The
subdivision can either be achieved with an element-wise Delaunay triangulation33 or with a predefined decomposition
which requires a consistently numbered tetrahedral mesh.34 Further techniques enable refinement and anisotropic adap-
tation of four-dimensional meshes.13,35,36 Four-dimensional meshes with complex deformations and topology changes of
the three-dimensional spatial domain can be obtained with an elastic mesh update following extrusion-based pentatope
mesh generation.37 Please, note that the additional effort for the space-time mesh generation completely replaces the spe-
cial treatment of a deforming domain problem during the simulation. Nevertheless, our boundary-conforming space-time
mesh approach is limited to 4D geometries that can be obtained by extrusion of a 3D geometry and a subsequent elastic
deformation. Generating meshes for general 4D geometries of engineering scale is—to the best of our knowledge—an
open research problem.

3.2 Discrete formulation for the full-order model

Next, we will derive the FOM, which will be based on the FEM. Thus, we introduce corresponding finite-dimensional
subspaces for the trial and weighting spaces introduced in Section 2. Let h

u(Q) and h
u(Q) be the finite-dimensional
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5130 KEY et al.

subspaces of u(Q) and u(Q), respectively. Furthermore, h
p (Q) is the finite-dimensional subspace of p(Q). We stick to

the time-continuous simplex space-time (C-SST) approach, that is, the computational mesh will be composed of simplex
elements filling the entire space-time domain Q. Furthermore, we use first-order polynomials as shape functions Nu

i and
Np

i for velocity and pressure, respectively.
To handle (parametric) Dirichlet boundary conditions, we introduce a velocity lifting function lh(𝝁) such that the

discrete velocity trial function is given as

uh(𝝁) = vh(𝝁) + lh(𝝁), (12)

with the homogeneous portion vh(𝝁) and lh(𝝁)|PD = uD(𝝁). Note that additional lifting functions may be used to separate
parameter-dependent and independent portions of the Dirichlet boundary conditions. For the sake of notation, how-
ever, we only consider the case of a single lifting function here. Consequently, it holds that uh ∈ h

u(Q) and vh ∈ h
u(Q).

Moreover, the discrete pressure trial function is denoted as ph(𝝁) ∈ h
p (Q).

We apply the Galerkin-least-squares (GLS) stabilization technique,38-41 which adds a least-squares form of the residual
within each element to the original variational formulation of the problem. In the C-SST formulation, this will apply to
space-time elements denoted by Qe.

Following the description, for example, from here, References 42,43 the resulting space-time Galerkin formulation
including the additional stabilization terms reads:

Find
(

vh(𝝁), ph(𝝁)
)
∈ h

u(Q) × h
p (Q), such that∀

(
wh
, qh) ∈ h

u(Q) × h
p (Q):

(
wh
, vh

t ;𝝁
)

Q − b
(

wh
, ph;𝝁

)
Q + a

(
wh
, vh;uh

,𝝁
)

Q + b
(

vh
, qh;𝝁

)
Q + sMOM

(
qh
,uh

, ph;uh
,𝝁

)
Q

=
(

wh
, f
)

Q +
(

wh
,h;𝝁

)
PN
−
(

wh
, lh

t ;𝝁
)

Q
− a

(
wh
, lh;uh

,𝝁

)

Q
− b

(
lh
, qh;𝝁

)

Q
, (13)

with

sMOM
(

qh
,uh

, ph;uh
,𝝁

)
Q = sv(qh

, vh;uh
,𝝁

)
Q + sl

(
qh
, lh;uh

,𝝁

)

Q
+ sp(qh

, ph;uh
,𝝁

)
Q, (14)

and

sv(qh
, vh;uh

,𝝁
)

Q =
∑

e ∫Qe
𝜏MOM

(
uh
,𝝁

)1
𝜌

(
−𝜵qh) ⋅

(
𝜌vh

t (𝝁)
)

dQ, (15)

sl
(

qh
, lh;uh

,𝝁

)

Q
=
∑

e ∫Qe
𝜏MOM

(
uh
,𝝁

)1
𝜌

(
−𝜵qh) ⋅

(
𝜌lh

t (𝝁)
)

dQ, (16)

sp(qh
, ph;uh

,𝝁
)

Q =
∑

e ∫Qe
𝜏MOM

(
uh
,𝝁

)1
𝜌

𝜵qh ⋅ 𝜵ph(𝝁) dQ. (17)

Note that the subscripts of sMOM and 𝜏MOM refer to the connection of these terms to the momentum equation stated
in Equation (3). The stabilization parameter 𝜏MOM

(
uh
,𝝁

)
is chosen as previously presented.44 Although the formulation

in detail is not of great importance for this work, note that it depends both on the parametric velocity uh(𝝁) and the
parametric viscosity 𝜂(uh

,𝝁) in a non-linear way. Furthermore, the second-order derivatives of the velocity weighting and
trial functions, which appear in the original formulation of the momentum stabilization, are omitted due to the first-order
linear basis functions in use.

As a foundation for the description of the ROM in the following section, we present next the algebraic formulation
of the problem. The vectors of coefficients are denoted as U ∈ R

Nh
u and P ∈ R

Nh
p for the homogeneous velocity vh and

pressure field ph, respectively. Here, Nh
u and Nh

p stand for the number of degrees of freedom (DOFs) in the FOM. The
solution can then be computed by solving the following non-linear system for U(𝝁) and P(𝝁):

[
E + A

(
uh
,𝝁

)
−BT

B + C
(

uh
,𝝁

)
S
(

uh
,𝝁

)

][
U(𝝁)
P(𝝁)

]

=

[
H + F + L

(
uh
,𝝁

)

G +D
(

uh
,𝝁

)

]

, (18)
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T A B L E 1 Dimensions of LHS matrices and RHS vectors for the FOM.

LHS matrices Dimensions RHS vectors Dimensions

E, A R
Nh

u×Nh
u H, F, L R

Nh
u

B, C R
Nh

p×Nh
u G, D R

Nh
p

S R
Nh

p×Nh
p

where the left-hand side (LHS) matrices for i, j = 1, … ,Nh
u and for k, l = 1, … ,Nh

p are given as

E =
[
Ei,j

]
, with Ei,j =

(

Nu
i ,
𝜕Nu

j

𝜕t

)

Q

,

B =
[
Bk,j

]
, with Bk,j = b

(
Nu

j ,N
p
k

)

Q
,

S =
[
Sk,l

]
, with Sk,l = sp(Np

k ,N
p
l ;u

h
,𝝁

)
Q,

A =
[
Ai,j

]
, with Ai,j = a

(
Nu

i ,N
u
j ;u

h
,𝝁

)
,

C =
[
Ck,j

]
, with Ck,j = sv

(
Np

k ,N
u
j ;u

h
,𝝁

)

Q
,

and the right-hand side (RHS) vectors read

H = {Hi}, with Hi = −
(

Nu
i , l

h
t ;𝝁

)

Q
,

L = {Li}, with Li = −a
(

Nu
i , l

h;uh
,𝝁

)
,

D = {Dk}, with Dk = −sl
(

Np
k , l

h;uh
,𝝁

)

Q
.

F = {Fi}, with Fi =
(

Nu
i , h;𝝁

)
PN
,

G = {Gk}, with Gk = −b
(

lh
,Np

k ;𝝁
)

Q
,

For convenience, the dimensions of the matrices and vectors are summarized in Table 1.

4 REDUCED- ORDER MODEL FOR FLUID FLOW IN DEFORMING
DOMAINS

Now that the FOM has been defined, we can turn to the MOR. We will start with a description of the underlying ideas of
MOR in Section 4.1 before the ROM is eventually constructed via POD with subsequent projection in Section 4.2.

4.1 Methodological background for the reduced-order model

In the context of MOR for numerical schemes, one can distinguish between interpolation- and projection-based
approaches.45 Methods of the former type try to directly capture input-output relations on the basis of data that comes
from numerical simulations or measurements. The latter project the underlying governing equations onto a reduced
space that has been constructed before. The class of projection-based methods further entails certified Reduced Basis (RB)
methods46 or POD-projection methods.45-47 It is also worthwhile to mention the proper generalized decomposition (PGD)
here.47 The applicability and effectiveness of these methods depend on the class of problems under consideration. For
example, in the realm of elliptic and steady problems, an extensive amount of research and scholarly work exists.48-53 For
a more detailed overview, see also these textbooks46,54 and references therein. In contrast, time-dependent problems pose
additional challenges, just as computational domains undergoing deformation. Both aspects are present in the problems
considered here. Therefore, we will focus on that subdomain of existing MOR techniques in which the unsteady nature
of a problem or a deforming computational domain is addressed.

To account for the transient character of the problem in the reduction process, there exist two alternative ways
of handling time.55 The first one follows the classical time-stepping approach. In this context, RB approximations
have been applied to a two-dimensional transient heat conduction problem.56 Based on so-called POD-greedy meth-
ods,57,58 linear and non-linear problems have been tackled as well. While the governing equations considered range
from convection-diffusion problems57 or Burger’s equation and porous media flow59 to the compressible Navier-Stokes
equations,60 all applications are limited to at most two-dimensional spatial domains. Additional work presents a reduc-
tion technique for the long-time integration of incompressible turbulent flows,61 but also analyzes only a two-dimensional
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5132 KEY et al.

lid-driven cavity flow. The second option for handling time is rather based on space-time formulations, which we consider
in this work. They have been used in the context of RB methods to derive effective long-time a-posteriori error bounds for
linear62,63 and non-linear64,65 parabolic PDEs. Another study presented a space-time least-squares Petrov–Galerkin pro-
jection method for the reduction of nonlinear dynamical systems, based on a tensor decomposition of snapshot data and
providing error bounds.66 However, the model problems in the aforementioned works involve only scalar unknowns and
up to two spatial dimensions. A staggered RB method in space-time for heat transfer and convection-diffusion problems
has also been introduced,67 but it is limited to two spatial dimensions and structured meshes. The space-time perspec-
tive has further been used to tackle, for example, time-dependent optimal control problems.68,69 In addition, a space-time
ROM for sub-intervals of the total simulation time has been presented.70 The interested reader may also refer to recent
works on the state of the art in RB methods for time-dependent problems.71,72 In distinction to the former methods and for
the first time, we apply a POD-projection approach to the time-continuous space-time formulation. It is this specific com-
bination of existing approaches by which we extend the range of available reduction techniques for transient problems. In
particular, we are able to tackle problems defined in up to three-dimensional space, resulting in up to four-dimensional
space-time domains. The respective computational meshes can be unstructured, consisting of simplex elements. Further-
more, we apply the method to a complex class of problems, that is, a non-linear form of the Stokes equations. It should
be noted, however, that due to the generality of this approach, we lack theoretical results such as error estimators. Nev-
ertheless, the presented method provides an alternative to existing reduction methods for time-dependent problems and
exhibits its fullest potential not least when applied to problems that additionally involve domain deformations.

For deforming domain problems, the construction of a ROM is usually quite involved and requires some careful treat-
ment of the deformations applied to the computational mesh.73,74 This is due to the fact that the FEM function spaces
are inherently linked with the geometry of the underlying grid. A strategy based on a mapping functional to relate the
time-dependent solution in one- and two-dimensional deforming domains to fixed reference domains has been devel-
oped.75 Furthermore, temporally-local eigenfunctions have been used for MOR, too.76 To this respect, the C-SST approach
(cf. Section 3.2) offers an appealing but straightforward alternative, since all deformations—as long as they are prescribed
or known a-priori—are already integrated into the computational mesh and, thereby, considered in the original function
spaces. As a result, the proposed technique can also work with transient problems in complex and deforming geometries,
as stated before, a very demanding scenario for MOR. Thus, it means a notable advancement concerning the application
area of existing MOR techniques. Also, it is worthwhile to note that this approach even works in the presence of spatial
topology changes without any further adaptions.

Although we are interested in spatially deforming domains, we would like to stress that we do not consider the MOR
of problems with geometrical parametrization here. The latter would need to be taken into account if we consider cases
in which the deformation is not known a-priori, for example, fluid-structure interaction problems. Even though the
presented approach only works for problems with prescribed motion, the extension to other scenarios with unknown
deformation is possible by allowing a parametrization of the geometry. In this case, one would have to resort to one of the
existing methods for parameterized domains77-84 and combine it with the presented approach.

4.2 Discrete formulation for the reduced-order model

Before we can construct an efficient ROM whose complexity is independent of the FOM, we will have to address the
non-linearity appearing in our problem through the viscosity model as well as through the formulation of the stabiliza-
tion parameter. For this purpose, we make use of the empirical interpolation method (EIM)85,86 here and introduce the
following approximations for the viscosity and the stabilization parameter:

𝜂

(
uh
,𝝁

)
≈

Q
𝜂∑

q=1
c𝜂q
(

uh
,𝝁

)
h𝜂q(x, t), 𝜏MOM

(
uh
,𝝁

)
≈

Q
𝜏∑

q=1
c𝜏q
(

uh
,𝝁

)
h𝜏q(x, t).

Note that each of the Q
⋆

terms consists of parameter-dependent coefficients c⋆q
(

uh
,𝝁

)
and parameter-independent

basis functions h⋆q (x, t), where ⋆ ∈ {𝜂, 𝜏}. The basis functions h⋆q (x, t) are defined in the entire space-time domain Q.
Consequently, the viscous term is replaced by

a
(

wh
, vh;uh

,𝝁
)

Q ≈
Q
𝜂∑

q=1
c𝜂q
(

uh
,𝝁

)
aq
(

wh
, vh)

Q, (19)

 10970207, 2023, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7342 by U
niversitat der B

undesw
ehr M

unchen, W
iley O

nline L
ibrary on [11/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KEY et al. 5133

with

aq
(

wh
, vh)

Q = ∫Q
𝝐
(

wh) ∶ 2h𝜂q(x, t)𝝐
(

vh) dQ. (20)

Moreover, the stabilization term sv is approximated via

sv(qh
, vh;uh

,𝝁
)

Q ≈
Q
𝜏∑

q=1
c𝜏q
(

uh
,𝝁

)
sv

q
(

qh
, vh)

Q, (21)

where

sv
q
(

qh
, vh)

Q =
∑

e ∫Qe
hq()𝜏(x, t)

1
𝜌

(
−𝜵qh) ⋅

(
𝜌vh

t
)

dQ. (22)

Analogously, the remaining stabilization terms sl(qh
, lh;uh

,𝝁)Q and sp(qh
, ph;uh

𝝁)Q can be approximated using
parameter-independent terms sl

q(qh
, lh)Q and sp

q(qh
, ph)Q, respectively. As a consequence, all the matrices and vectors in the

algebraic system of the FOM relying on these forms, that is, A, C, S, L, and D are replaced by approximations using Aq, Cq,
Sq, Lq, and Dq corresponding to the respective terms above. For example, this means Aq = [Aq

i,j], with Aq
i,j = aq(Nu

i ,N
u
j )Q.

For the computation of the coefficients c⋆q
(

uh
,𝝁

)
and basis functions h⋆q (x, t), we use a standard implementation of the

EIM,46 where the space-time coordinates (x, t) are used instead of the spatial coordinates present in the original algorithm.
To perform the projection step later, a basis spanning the reduced spaces is needed. To that end, we apply the POD

using the method of snapshots,87 that is, solutions of the FOM. In particular, this is done individually for the homogeneous
velocity vh and the pressure ph leading to the reduced finite-dimensional function spacesN

u ⊂ 
h
u andN

p ⊂ 
h
p . As a result

of the POD, we obtain Nv and Np basis functions for the reduced representation (vN
, pN) of the homogeneous velocity

and pressure field, respectively. To account for the Dirichlet boundary conditions, the basis for N
u is augmented with the

lifting function(s) lh yielding the reduced spaceN
u ⊂ 

h
u for the reduced velocity uN . Therefore, we use Nu ≥ Nv to denote

the number of basis functions for uN . We sort the basis functions in descending order of significance—indicated by the
magnitude of the corresponding eigenvalues—while the lifting functions are always leading to ensure that the Dirichlet
boundary conditions are met, even if we only use a subset of these basis functions.

For all basis functions, we collect the coefficients with respect to the FOM function spaces in the so-called basis func-
tion matrices Zu ∈ R

Nh
u×Nu and Zp ∈ R

Nh
p×Np . These matrices are multiplied with those from the algebraic system of the

FOM given in Equation (18), which yields the projection of the corresponding operators onto the reduced space. Thus,
one can formulate the algebraic system for the vectors of unknowns UN ∈ RNu and PN ∈ R

Np , where Nu and Np are the
number of unknowns of the ROM. The key assumption for an effective reduction is that it holds that N = Nu + Np ≪

Nh = Nh
u + Nh

p . The system finally reads:

[
EN + AN

(
uh
,𝝁

)
−BT

N

BN + CN
(

uh
,𝝁

)
SN

(
uh
,𝝁

)

][
UN(𝝁)
PN(𝝁)

]

=

[
HN + FN + LN

(
uh
,𝝁

)

GN +DN
(

uh
,𝝁

)

]

, (23)

where the LHS matrices read

EN = ZT
uEZu,

BN = ZT
p BZu,

AN
(

uh
,𝝁

)
=

Q
𝜂∑

q=1
c𝜂q
(

uh
,𝝁

)
Aq

N , and Aq
N = ZT

uAqZu,

CN
(

uh
,𝝁

)
=

Q
𝜏∑

q=1
c𝜏q
(

uh
,𝝁

)
Cq

N , and Cq
N = ZT

p CqZu,

SN
(

uh
,𝝁

)
=

Q
𝜏∑

q=1
c𝜏q
(

uh
,𝝁

)
Sq

N , and Sq
N = ZT

p SqZp,
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5134 KEY et al.

T A B L E 2 Dimensions of LHS matrices and RHS vectors for the ROM.

LHS matrices Dimensions RHS vectors Dimensions

EN , AN R
Nu×Nu HN , FN , LN R

Nu

BN , CN R
Np×Nu GN , DN R

Np

SN R
Np×Np

and the RHS vectors are given as

HN = ZT
uH,

FN = ZT
uF,

GN = ZT
p G,

LN
(

uh
,𝝁

)
=

Q
𝜂∑

q=1
c𝜂q
(

uh
,𝝁

)
Lq

N , and Lq
N = ZT

uLq
,

DN
(

uh
,𝝁

)
=

Q
𝜏∑

q=1
c𝜏q
(

uh
,𝝁

)
Dq

N , and Dq
N = ZT

p Dq
.

Table 2 gives an overview over the dimensions of the matrices and vectors for the ROM. Due to the reduced dimensions,
the solution of the algebraic system of the ROM for any new parameter sample 𝝁 is possible with significantly less
computational resources. Thanks to the EIM, the same holds for the assembly process of this system. Note, how-
ever, that due to the specific implementation of the full-order solver, we keep the dependency on uh in the EIM
coefficients.

5 NUMERICAL RESULTS

In the following, we will illustrate how the proposed ROM approach, which makes use of a time-continuous space-time
setting, can help to significantly decrease the required computational resources for time-dependent parametric problems
defined in deforming domains. To that end, we present error and performance analysis results for two test cases. The test
cases are representative of applications that may arise from engineering or biomedical problems, for example. The first
test case involves a two-dimensional valve-like geometry, resulting in a 3D space-time geometry. In space, the valve plug
moves over time and even closes off parts of the geometry, which means that the spatial topology changes. In the second
test case, we consider a three-dimensional artery-like geometry. Consequently, the resulting space-time domain is 4D. In
the center region, the geometry is compressed over time, which yields a deforming domain problem.

5.1 Valve-like geometry with topology changes

In this section, we consider a two-dimensional valve-like geometry composed of a valve plug encased in a flow channel.
Its initial configuration for t = 0 s is depicted in Figure 2A. At the top, fluid can enter the channel through an inlet with
width Linlet = 0.025 m. The outlet is located at the bottom. All remaining boundary portions are impermeable. We con-
sider a time interval such that t ∈ [0, 1.8] s. With the passage of time, the plug starts to move inward for t ∈ [0.3, 0.7) s,
opening a second branch for the flow on the left-hand side. After reaching the center of the casing, the plug stays at rest
for t ∈ [0.7, 1.1) s and, still a bit later, the movement is reversed for t ∈ [1.1, 1.5) s to close the emerged branch for the
remainder of the simulation. The resulting three-dimensional space-time domain is shown in Figure 2B and the com-
putational mesh can be produced with standard meshing tools. The spatial geometry for different time instances can be
seen in Figure 3. The velocity of the plug in x-direction is uplug = ±0.0625 m s−1 for the inward and outward movement,
respectively.

The fluid is supposed to be plastics melt as present, for example, in various polymer processing techniques for ther-
moplastics. We use material properties for an exemplary polycarbonate (PC) offered by Covestro Makrolon®. We use the
density 𝜌 = 1200 kg m−3 and, following existing literature,88 the parameters for the viscosity model from Equation (9) as

𝜂0 = 270 Pa s, 𝜂∞ = 0Pa s, 𝜆 = 1.2 × 10−3 s, a = 1, n = 0.775. (24)
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0.025 m

0.0125 m

0.05 m

0.0125 m

0.025 m

0.0
25

m
0.0

25
m

0.0
5m

= 0.0
1m

plug

(A) (B)

F I G U R E 2 Computational domain of valve-like test case. (A) Spatial domain for t = 0.0 s. (B) Space-time domain.

In the following, the velocity vector u = [u, v]T will collect the velocity components u and v for the x- and y-direction,
respectively. We prescribe a time-dependent inflow profile given as

uin(x, t) = 0 m s−1
,

vin(x, t) = v0
in(x(x − 0.025 m))

√
t

1.8 s
.

Choosing v0
in = 640 m−1 s, this leads to a Reynolds number of approximately Re = 1 × 10−2 such that the Stokes equations

are appropriate to model this creeping flow. For the walls of the casing, no-slip boundary conditions are assumed. At the
outlet, a parallel outflow is enforced by setting the velocity in x-direction to zero, that is, uout = 0 m s−1. The resulting
flow field is visualized in Figure 3 for several points in time.

5.1.1 ROM for the flow of plastics melt in a valve-like geometry

In the following, we will consider uncertainties in the model parameters from the viscosity model stated in Equation (9).
Therefore, we collect two of those parameters in the parameter vector, that is, 𝝁 = [𝜆,n]. Assuming that variations of±5%
may occur, it follows that 𝝁 ∈

[
0.95𝜆, 1.05𝜆

]
×
[
0.95n, 1.05n

]
, with 𝜆 = 1.2 × 10−3 s and n = 0.775.

Next, we will construct the ROM. To create the snapshots, we generate Ntrain = 256 training samples that are equidis-
tantly spaced over the parameter domain. Note that since we rely on POD to construct the basis, the number of necessary
snapshots to compute is not known a-priori or determined dynamically. Thus, we choose Ntrain conservatively, that is,
large enough to capture all relevant information in the snapshots. These snapshots are used both for the POD and the
EIM. For an analysis of how the ROM is affected by different numbers of training samples, see Section A.1.

Applying the POD results in the distribution of eigenvalues 𝜆i shown in Figure 4A. Based on a threshold for the
so-called retained energy, we choose Nv = 1, … , 10 and Np = 1, … , 6 in the following. Since all Dirichlet boundary
conditions are parameter-independent in this case, we use only one lifting function resulting in Nu = 1, … , 11. For com-
parison, the FOM includes a total number of DOFs of Nh = 334,762. As has been mentioned before, the non-linearity in
the viscosity 𝜂 and in the stabilization parameter 𝜏MOM is tackled by the EIM. The maximum interpolation error for both
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5136 KEY et al.

(A) (B)

(C)

(D) (E)

F I G U R E 3 Valve-like test case: Flow field for different points in time. (A) t = 0.0 s. (B) t = 0.45 s. (C) t = 0.9 s. (D) t = 1.35 s. (E) t = 1.8 s.
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F I G U R E 4 Valve-like test case: Results from the construction of the ROM. (A) Distribution of the eigenvalues from the POD. (B)
Maximum interpolation error during the EIM.
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F I G U R E 5 Valve-like test case: Maximum relative error of the ROM over all testing samples. (A) Velocity. (B) Pressure.

quantities in the course of the greedy search is depicted in Figure 4B. Setting a tolerance of 5 × 10−15 and 2 × 10−15, we
use Q

𝜂
= 45 and Q

𝜏
= 39 terms for the approximation.

To quantify the quality of the ROM, we perform an error and performance analysis. To that end, we create Ntest = 50
testing samples drawn from a uniform distribution. For each sample, we compare the solutions from the FOM and the
ROM as well as the respective runtimes. To evaluate the accuracy of the ROM, we use the following error definitions:

𝜀u =
|uh − uN |1

|uh|1
, 𝜀p =

||ph − pN ||L2

||ph||L2
, (25)

where | ⋅ |1 and || ⋅ ||L2 are discrete measures for the 1 semi-norm and the L2 norm, respectively. The maximal error
over all testing samples is shown in Figure 5, using different numbers of basis functions for the velocity and the pressure
field. Note that we ignore the lifting function in these plots, since it does not represent a solution, but is only intended to
ensure the Dirichlet boundary conditions. For the velocity, the error ranges from values smaller than 1 × 10−2 to values
smaller than 1 × 10−6 when increasing the number of basis functions. Similarly, the maximum error in the pressure is
limited by 1 × 10−2 and drops below 1 × 10−7 for Nu and Np large enough. These results suggest that the error introduced
by the ROM is in a reasonable range for typical engineering applications and, furthermore, that it can be controlled by
choosing the number of basis functions such that a desired accuracy is achieved.
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F I G U R E 6 Valve-like test case: Performance results. (A) Average speed-up over all testing samples. (B) Maximum speed-up over all
testing samples.

T A B L E 3 Valve-like test case: Values of the runtime of the FOM over the testing set.

Minimum Median Maximum

TFOM
CPU [s] 831.59 873.37 982.11

Finally, we investigate the performance of the ROM by comparing the CPU time needed for a single evaluation
of the ROM to that for the FOM. Note that the former has been run on a single core, whereas the latter used
64 cores. Also in this analysis, we skip the lifting function for the same reason as before. Figure 6 presents the
speed-up, that is, the ratio between the CPU time of FOM and ROM evaluations, for different numbers of basis
functions Nu and Np. Both, the average and the maximum speed-up, are in the order of 1000 and indicate that
a significant reduction of the runtime for the ROM is realized. In order to be able to calculate the speed-up also
with respect to another FOM of choice, for example, a semi-discrete one, we also report the absolute CPU times
of our FOM denoted by TFOM

CPU . Together with the runtime of the method to be compared, the speed-up results
presented here can be converted. Table 3 states the minimum, median, and maximum values of TFOM

CPU over the
testing set.

Taken together, the error and performance analysis confirms the effectiveness of the approach for this
two-dimensional deforming domain problem with topology changes. In particular, the accuracy of the ROM is accept-
able as well as controllable while a significant reduction of the computational demands is achieved, too. This qualifies
the ROM as a surrogate model, for example, in one of the aforementioned many query scenarios.

5.2 Artery-like geometry with compression

After presenting results for a spatially deforming two-dimensional geometry, we will now demonstrate the aptitude of the
proposed approach also for the three-dimensional case, resulting in a four-dimensional space-time domain. The geom-
etry is inspired by an artery that locally undergoes compression over time. The initial spatial geometry can be seen in
Figure 7A–C. It has a length of L = 60 × 10−3 m and a radius of r0 = 5 × 10−3 m. We are interested in the internal flow
over a time period of 1 s where fluid enters on the left-hand side, that is, at xmin. The local narrowing of the artery happens
according to the following expression for the upper and lower parts of the moving boundary:

y(t) = ±
[
0.2 + 0.2 ⋅

(
cos(𝜋 t s−1) + 1

)]
⋅ r0.

The final state of the deformed spatial geometry is depicted in Figure 7D,E.
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(A)

(B) (C)

(D) (E)

F I G U R E 7 Artery-like test case: Geometry. (A) Front view. (B) Side view at t = 0.0 s. (C) Top view at t = 0.0 s. (D) Side view at t = 1.0 s.
(E) Top view at t = 1.0 s.

To mimic blood, the density is set to 𝜌 = 1058 kg m−3 and the parameters for the viscosity model are chosen as
presented in Reference 89:

𝜂0 = 0.056 Pa ⋅ s, 𝜂∞ = 0.00345 Pa ⋅ s, 𝜆 = 1.902 s, a = 1.25, n = 0.22.

For the inflow velocity, we prescribe the following time-dependent profile:

u = u0
in

(
1 − (y2+z2)

r2
0

)
⋅

⎧
⎪
⎨
⎪
⎩

√
t

0.2 s
for t < 0.2 s,

1 for t ≥ 0.2 s,
v = 0 m s−1

, w = 0 m s−1
,

with the velocity vector u = [u, v,w]T and u0
in = 0.1 m s−1. At the outlet, a parallel outflow is enforced, that is, v = w = 0.

Along the walls, no-slip conditions are set. To account for the narrowing, we apply the following boundary conditions for
the velocity in y-direction on the horizontal and rounded parts:

v =
𝜕y(t)
𝜕t

= ∓𝜋 sin(𝜋t) × 10−3 m s−1
. (26)

The sign of this term depends on whether you consider the upper or the lower part. In particular, the negative and the
positive sign correspond to a downward movement for y > 0 and an upward movement for y < 0, respectively. Figure 8
shows the resulting velocity field along the artery in its center plane for the initial and final state.

For this geometry, a locally refined boundary-conforming simplex space-time mesh is constructed through extrusion
of a three-dimensional mesh33 and using the four-dimensional elastic mesh update method (4DEMUM).37 In
particular, we start with a tetrahedral mesh with extension in the x-, y-, and t-directions, as shown in Figure 9. It can be
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(A) (B)

F I G U R E 8 Artery-like test case: Velocity field. (A) Initial state at t = 0.0 s. (B) Final state at t = 1.0 s.

F I G U R E 9 Artery-like test case: Three-dimensional x-y-t-mesh with local refinement.

thought of as a space-time grid for the two-dimensional center plane (z = 0). Note that in this mesh we can refine elements
in the deforming region. Then, the mesh is extruded in the fourth dimension, which inserts nodes along the z-direction
and generates a pentatope triangulation of the four-dimensional space-time domain. After extrusion, however, the mesh
cross-section at x = 0, t = 0 is a square. To obtain the approximately circular cross-section of the artery-like geometry, we
apply the aforementioned 4DEMUM. A representative example is visualized in Figure 10.

5.2.1 ROM for the flow of blood in an artery-like geometry

In the following, a ROM is constructed for a variation of the prescribed inflow velocity, that is, 𝝁 = [u0
in]

with 𝝁 ∈ [0.95u0
in, 1.05u0

in]. In this case, we have to distinguish between the inlet boundary portion with a
parameter-dependent Dirichlet boundary condition and the moving artery walls with prescribed values that are non-zero
but parameter-independent. Thus, we make use of two lifting functions here.

First, we compute snapshots with the FOM for Ntrain = 41 training samples that are equidistantly distributed. Refer
to Section A.2 to see how the ROM is affected by different numbers of training samples. Here, the FOM involves Nh =
2,194, 390 DOFs in total. As a result of the POD, the distribution of eigenvalues is depicted in Figure 11A and we choose
Nu = 1, … , 6, including the two velocity lifting functions, and Np = 1, … , 3. For the EIM, we set a tolerance of 1 × 10−12

and 1 × 10−13 and obtain Q
𝜂
= 30 and Q

𝜏
= 26, respectively. Figure 11B shows the maximum interpolation error for the

viscosity 𝜂 and the stabilization parameter 𝜏MOM during the EIM.
Subsequently, we use Ntest = 20 uniformly distributed random samples to carry out the error and performance analy-

sis. The results for the maximal relative errors 𝜀u and 𝜀p are presented in Figure 12. The qualitative behavior of the errors
is very similar as for the valve-like test case (see Section 5.1.1). For the velocity, it is smaller than 1 × 10−2 and decreases
to below 1 × 10−6. In a like manner, the error in the pressure ranges from values smaller than 1 × 10−2 to values less than
1 × 10−5.
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(A) (B)

F I G U R E 10 Artery-like test case: Cross section in the y-z-plane after (A) extrusion and (B) application of the 4DEMUM.
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F I G U R E 11 Artery-like test case: Results from the construction of the ROM. (A) Distribution of the eigenvalues from the POD. (B)
Maximum interpolation error during the EIM.
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F I G U R E 12 Artery-like test case: Maximum relative error of the ROM over all testing samples. (A) Velocity. (B) Pressure.
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F I G U R E 13 Artery-like test case: Performance results. (A) Average speed-up over all testing samples. (B) Maximum speed-up over all
testing samples.

T A B L E 4 Artery-like test case: Values of the runtime of the FOM over the testing set.

Minimum Median Maximum

TFOM
CPU [s] 98,915.08 100,145.87 104,788.65

Next, we present the results from the performance analysis. The ROM has been evaluated on a single core, whereas
we have used 240 cores to compute the FOM. The measured speed-up—the average and the maximum over all the test-
ing samples—is shown in Figure 13. The results are, to some extent, counter-intuitive. First, one can observe that the
speed-up is mainly governed by Nu and roughly constant for Np. Second, the speed-up does not change monotonically
with increasing Nu but has a local minimum at Nu = 4. Analyzing the evaluation of the ROM in more detail has revealed
that this pattern originates from the number of iterations needed to solve the non-linear reduced system. In particular,
the value for Nu influences the number of non-linear iterations and, in some cases, slows down the solution process. Nev-
ertheless, the order of magnitude of the observed speed-up, ranging from 12,000 to 20,000, is still compelling and even
much more significant than in the previous test case. As before, we give information about the absolute runtime of the
FOM TFOM

CPU in Table 4.
So, also the results for this test case underline the advantages of the proposed approach in general and, specifically, its

ability to handle problems defined in a four-dimensional space-time domain.

6 CONCLUSION

In this work, we presented a MOR concept for parametric time-dependent problems defined in domains with pre-
scribed deformations that are allowed to even entail spatial topology changes. There are two main building blocks
in this approach. First, we make use of the time-continuous space-time setting. Here, the C-SST-FEM leads to fixed
finite-dimensional subspaces for the entire space-time domain, implicitly accounting for current domain deformations.
Working on these fixed subspaces, we make use of a projection-based MOR technique based on POD. In contrast to
other MOR methods applied to deforming domain problems, the particular approach proposed in this paper can be
applied in a straightforward manner. Taken together, we argued that it can reduce the computational complexity for the
aforementioned class of problems and, at the same time, maintain the desired level of accuracy in the results.

To confirm this claim, we investigated two representative test cases from the fields of engineering and biomedical
applications. In particular, we carried out error and performance analyses for both cases, where we compared the ROM
relative to the original time-continuous space-time FOM. For a comparison with respect to a different solver of choice,
we additionally provided data to allow a direct conversion of the speed-up results. The first test case was composed of a
two-dimensional valve-like geometry containing a moving plug. In the resulting three-dimensional space-time domain,
we considered the flow of plastics melt, which occurs in many polymer processing techniques. The parametric charac-
ter of the problem originated from incorporating uncertainty in the viscosity model, that is, fluctuations in the model
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parameters. The error analysis showed that we are able to reduce the original model effectively while keeping control
over the magnitude of the error in the relevant physical fields. Moreover, a significant speed-up in terms of computational
time was proven. By means of the second test case, we extended our analysis to four-dimensional space-time domains
that arise when considering three-dimensional bodies in space. Specifically, we studied blood flow in an artery-like vol-
ume that undergoes compression, yielding the domain deformation. The problem was varied via a parametric prescribed
inflow velocity. The results of the error and performance analysis confirmed the findings from the previous test case and
demonstrate the applicability of the approach, also when interested in spatially three-dimensional problems.

Overall, the approach presented here extends the collection of existing MOR techniques with a simple but elegant
approach for deforming domain problems. Despite the fact that it shows methodologically favorable characteristics and
yields plausible results for the presented test cases, practical difficulties may arise. For example, in three-dimensional
application cases, the generation of the required four-dimensional meshes can be challenging and limits the applicabil-
ity as discussed in Section 3.1. Furthermore, the nature of the resulting reduced system may influence and potentially
limit the speed-up that can be realized. Especially, the latter observation remains to be elucidated. Nevertheless, the pro-
posed approach is able to make the advantages of MOR accessible for the class of complex problems that include domain
deformations, potentially with spatial topology changes.
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APPENDIX A. ANALYSIS OF THE INFLUENCE OF THE AMOUNT OF TRAINING DATA

In the appendix of this work, we present a brief analysis of the influence of the amount of training data on the accuracy of
the ROM. For the test cases presented in Section 5, we perform numerical experiments in which we reduce the number
of training samples from the quantity initially used. By investigating the behavior of the ROMs across different training
data sizes, we aim to gain deeper insights regarding the expected offline costs and the generalization of the proposed
methodology.

A.1 Valve-like test case
For the valve-like test case, we choose Ntrain ∈ {4, 16, 64,256} where Ntrain = 256 was used in Section 5.1.1. As before, the
training samples are equidistantly spaced for each Ntrain. The results for the normalized eigenvalues and the EIM error
are given in Figure A1. Both show a consistent behavior for all numbers of training samples, with the only distinction
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F I G U R E A1 Valve-like test case: Results from the construction of the ROM for different numbers of training samples Ntrain (rows);
distribution of the eigenvalues from the POD (left column) and maximum interpolation error during the EIM (right column).

being that each curve is truncated after reaching its respective maximum number of samples. For the EIM, note that the
error immediately drops to machine accuracy as soon as q = Ntrain, since it is able to interpolate all of the training points.
Given the eigenvalues, we choose the maximal number of basis functions for the velocity and pressure, that is, Nmax

u and
Nmax

p , based on the retained energy (see Table A1).
In Figure A2, we show the velocity and pressure errors for different numbers of training samples. In these plots, white

areas appear when the maximum number of basis functions for the ROM has been exceeded. One can observe that the
errors are qualitatively the same for each choice of Ntrain, suggesting that a smaller number of training samples is sufficient
to obtain a ROM with comparable accuracy. However, it can also be seen that the choice of Ntrain = 4 does not allow
to reduce the errors as much as in the other cases. Furthermore, the eigenvalue distribution seems to be an adequate
indication of the minimum number of training samples. Nevertheless, we would like to reiterate that this is the result of
a post-analysis and cannot be determined in advance.
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T A B L E A1 Valve-like test case: Maximal numbers of basis functions for different sizes of the training set.
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F I G U R E A2 Valve-like test case: Maximum relative error of the ROM over all testing samples for different numbers of training
samples Ntrain (rows) and for velocity (left column) and pressure (right column).
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A.2 Artery-like test case
The same experiment has been performed for the artery-like test case. Here, we use Ntrain ∈ {3, 11, 21, 41} equidistant
training samples, where Ntrain = 41 is the original number chosen in Section 5.2.1. In Figure A3, the eigenvalues and EIM
errors are depicted. It can be seen that the curves show the same characteristics as previously observed in the valve-like
test case. Regardless of the number of training samples, the behavior remains qualitatively consistent, exhibiting the
distinctive cut-off. The maximal numbers of basis functions that were used to construct the respective ROMs are given in
Table A2.

Figure A4 presents the relative error in the velocity and pressure fields for the different values of Ntrain. Again, we
observe that the error exhibits a similar behavior even with a decreased amount of training data. It is only when we reduce
Ntrain too much, that is, for Ntrain = 3, that we lose an order of magnitude in the minimum errors. Also for this test case,
the behavior corresponds to the distribution of eigenvalues.
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F I G U R E A3 Artery-like test case: Results from the construction of the ROM for different numbers of training samples Ntrain (rows);
distribution of the eigenvalues from the POD (left column) and maximum interpolation error during the EIM (right column).
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T A B L E A2 Artery-like test case: Maximal numbers of basis functions for different sizes of the training set.
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F I G U R E A4 Artery-like test case: Maximum relative error of the ROM over all testing samples for different numbers of training
samples Ntrain (rows) and for velocity (left column) and pressure (right column).
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