
Forensic Science International: Digital Investigation 48 (2024) 301689

Available online 15 March 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2024 - Selected Papers from the 11th Annual Digital Forensics Research Conference Europe

Ubi est indicium? On forensic analysis of the UBI file system

Matthias Deutschmann *, Harald Baier
University of the Bundeswehr Munich, Research Institute CODE, Munich, Germany

A R T I C L E I N F O

Keywords:
UBI
UBIFS
MTD
Digital forensics
Data recovery

A B S T R A C T

Crimes involving Internet of Things (IoT) or embedded devices like drones are on the rise. A widespread class of
file systems for storing data on embedded devices are flash file systems (FFS). FFS are optimized to manage
conceptual limitations and characteristics of raw flash memory, i.e., memory that is not managed by an addi
tional hardware controller that hides the characteristics of flash (called the Flash Translation Layer). Thus, FFS
incorporate mechanisms and structures, which are not part of traditional block-based file systems like NTFS,
APFS, or ExtX. Regarding analyses of FFS-based embedded devices, digital forensics tools handling FFS are
needed. Unfortunately, currently available tools are not able to analyze FFS or raw flash images in general. In this
paper, we provide a concept and an open-source implementation of a digital forensics tool bridging this gap for
the widespread UBI File System. Our concept is inspired by the well-known Sleuth Kit and reflects the different
abstraction layers of a digital forensics analysis (e.g., the storage device level, the volume level, the file system
level). We provide an open-source tool of our concept, which we call UBI Forensic Toolkit (UBIFT). In contrast to
previous work, UBIFT is able to parse file system structures like the directory tree or the UBIFS journal to recover
deleted files including the respective metadata. We show the usefulness of UBIFT by a twofold evaluation: we
first apply our tool to a publicly available Internet camera flash dump to perform a forensically sound analysis of
the flash device. Our second evaluation comprises both a methodology for creating adaptable flash dumps in
general and the comparison of our tool to competitors with similar functionality on the basis of self-generated
flash dumps. Finally, we address the usability aspect of UBIFT by providing an Autopsy plugin of our tool.

1. Introduction

The increasing number of IoT devices demands storage solutions that
are cost-effective while offering ample space for extensive data. The
most common technologies used in conjunction with IoT or embedded
devices are NOR and NAND flash memory, respectively (Brewer and
Gill, 2008). In both cases FFS play a pivotal role in managing
flash-specific characteristics not found on traditional hard disks, they
are used to mitigate the complexities by efficiently managing
flash-specific characteristics. An alternative approach to manage a
flash-based storage chip is the usage of a Flash Translation Layer (FTL).
An FTL is tasked to emulate a block device to outside clients, thus hiding
the physical properties of the underlying flash. As a consequence, an FTL
enables the use of traditional block-based file systems like FAT, NTFS, or
ExtX on top. FTLs are mostly put into practice as hardware components
on chips, thus essentially being black boxes and their algorithms vendor
secrets, additionally hampered by patent restrictions. FTLs are present in
various peripherals, including SSDs, SD/MMC cards, and eMMC chips.

Unlike FTLs, which require an additional file system on top, FFS are
explicitly designed for use on raw flash devices, therefore eliminating
unnecessary translation layers (Boukhobza, 2017; Liu et al., 2010).

Axis Communications AB introduced one of the first FFS, called the
Journaling Flash File System (JFFS), in 1999 under the GNU General
Public License (Woodhouse, 2001). Today, there exist a diverse array of
FFS, showcasing the rapid evolution of storage technology. FFS can be
found within various consumer products, from smartphones and tablets
to digital cameras and USB drives. A notable example of an FFS is YAFFS
(YAFFS, 2023) (Yet Another Flash File System). YAFFS finds extensive
utilization across diverse areas such as communications (radios, mobile
phones, cell towers), industrial equipment, avionics and satellite
equipment, sewing machines, office copiers, transport (bus, train,
traffic-signal management) and many more (Woodhouse, 2001).

The Unsorted Block Images File System (UBIFS) represents a more
recent development in the domain of FFS, it has first been introduced in
2008 in Linux kernel 2.6.27 and has since then been constantly updated.
Benchmarks show that it has several advantages over other FFS,

* Corresponding author.
E-mail address: matthias_de@gmx.net (M. Deutschmann).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301689

mailto:matthias_de@gmx.net
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2023.301689
https://doi.org/10.1016/j.fsidi.2023.301689
https://doi.org/10.1016/j.fsidi.2023.301689
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2023.301689&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 48 (2024) 301689

2

particularly in terms of performance (Olivier et al., 2012). Similar to
YAFFS, UBIFS can be found in manifold devices, ranging from robot
vacuums, Internet security cameras to drones, or routers (Moonbeom
Park, 2017). Moreover, UBIFS is an integral component of OpenWRT, a
Linux-based operating system designed for embedded devices
(OpenWrt, 2023). OpenWRT is a versatile operating system widely
deployed in various devices, including routers, NAS systems, smart TVs,
VPN servers, and more (Zeifman and Rossi, 2023).

In the context of digital forensics, it is key to understand the
fundamental concepts and mechanisms of FFS in order to successfully
retrieve valuable information. A significant problem regarding FFS in
the field of digital forensics is the lack of practical tools for in-depth
forensic investigations. While FFS such as YAFFS2 have been well-
studied in regard to digital forensics, providing theoretical back
ground for recovering deleted data (Zimmermann et al., 2012),
UBI/UBIFS is currently poorly documented and out-of-scope of the
digital forensics community. As a consequence both established
open-source tools like The Sleuth Kit by Brian Carrier or commercial
applications like Cellebrite UFED or MSAB XRY do not provide any
support for UBI/UBIFS, leading to the inability of forensic practitioners
to retrieve crucial information from raw flash chips from drones, which
have become a popular tool for criminals to perform manifold illegal
activities. Moreover, currently available open-source tools for UBIFS,
such as the UBI Reader,1 exhibit notable deficiencies in forensic capa
bilities, such as the recovery of deleted files. Their usability is con
strained to a command-line interface without a graphical solution,
which could overwhelm forensic practitioners unfamiliar with the in
tricacies of UBIFS.

In this paper we present a forensic analysis of the UBI ecosystem,
comprising different abstraction levels like MTD (Memory Technology
Device), UBI and UBIFS. Our prototypical implementation, the UBI
Forensic Toolkit (UBIFT), offers robust analyses of UBI/UBIFS struc
tures, enabling the extraction and recovery of deleted files and associ
ated metadata. UBIFT is publicly available at https://github.com/matth
ias-deu/ubift.

UBIFT is based on established digital forensics concepts introduced
by Brian Carrier, which he heavily utilizes in his Sleuth Kit. UBIFT
bridges the gap of other tools lacking functionality such as the recovery
of deleted data and by providing a structured way of performing a digital
forensics analysis. We further strengthen UBIFT’s usability by providing
a plugin for the established Autopsy2 digital forensics platform, allowing
investigators who may not be familiar with UBIFS to retrieve possibly
crucial information. We show the usefulness of UBIFT by a twofold
evaluation: we first evaluate our implementation based on a freely
available Internet camera flash dump that was extracted from a regular
device. Additionally, we provide a methodology to generate artificial
NAND flash dumps based on freely available tools in Linux. We finish
our evaluation by comparing our tool to related ones with similar
functionality.

The subsequent sections are structured as follows: Section 2 in
troduces the necessary fundamental concepts of FFS in general and
UBIFS in particular. We emphasize key forensically relevant data
structures and mechanisms of UBIFS, with a specific focus on recovering
deleted files. Next, in Section 3, we present the conceptual idea of our
developed tool. We further outline how we included established con
cepts defined by Brian Carrier. Section 4 describes implementation de
tails and introduces the functionality and commands offered by our
prototypical implementation. We then evaluate our approach in Section
5 and conclude our paper in Section 6.

2. Forensically relevant data structures in UBI

As UBIFS is currently not documented with respect to its forensically
relevant data structures, we first review general mechanisms of FFS in
Section 2.1 that are highly relevant from a digital forensics perspective.
In Section 2.2 we turn to important structures and mechanisms of UBIFS
in the context of our work. Our analyses of the UBI ecosystem as pre
sented in this section are based on the Linux kernel version 6.2.0-rc7
and will be used in our implementation in Section 4.

2.1. Flash file systems

Unlike traditional file systems like ExtX, FFS have specific re
quirements resulting from the limitations and degradations of flash
memory (Micheloni et al., 2010; Micron Technology et al., 2010). More
specifically, flash memory is made up of several blocks of memory cells.
Such blocks are the minimal unit for erasure, hence called erase blocks.
The erase operation is unique to flash and not found on hard disks. A
block consists of consecutive pages, which are the minimal unit for write
and read operations. Pages also incorporate a spare area, referred to as
out-of-band (OOB) data. Its layout differs among manufacturers, hous
ing per-page metadata like error-correcting codes (ECC) or indicators of
whether the block has gone bad. Flash blocks wear out over time, and
when a block goes bad, it cannot be used anymore due to the physical
conditions of the flash. Non-empty pages cannot be directly modified
in-place due to the physical restrictions, thus their whole corresponding
block has to be erased first, causing all data of that block to be lost if not
saved. A naïve approach of saving data before erasure is given by
reading a whole block into a buffer, replacing the contents of a specific
page and writing everything back to flash. This approach takes roughly
100 times longer than directly writing the updated page to another
empty place (Hunter, 2008). Thus, FFS employ an out-of-place update
approach. Fig. 1 highlights this concept: page modifications are per
formed by writing updated pages to another, empty space. The old page
is marked as obsolete.

This mechanism is highly relevant in the context of digital forensics,
as old pages are typically not immediately deleted, thus their contents
can be recovered. Since overall space on flash is limited and obsolete
data increases over time, FFS utilize a garbage collector (GC) that is
tasked to free up obsolete pages. The implementation of a GC is specific
to individual FFS, thus no general conclusion can be drawn regarding
the recoverability of data. We performed an analysis of the GC in UBIFS
to derive metrics regarding the recoverability of data in UBIFS.

2.2. UBIFS

Fig. 2 shows the UBIFS architecture within the Linux kernel. UBIFS
relies on additional layers called UBI and MTD (MTD, 2023).

Memory Technology Devices (MTD) is an abstraction layer for raw
flash devices (MTD, 2023). It is implemented as a Linux subsystem. Its
primary aim is to provide a generic interface between hardware drivers

Fig. 1. Flash file system out-of-place update approach.

1 https://github.com/onekey-sec/ubi_reader.
2 https://www.autopsy.com/.

M. Deutschmann and H. Baier

https://github.com/matthias-deu/ubift
https://github.com/matthias-deu/ubift
https://github.com/onekey-sec/ubi_reader
https://www.autopsy.com/

Forensic Science International: Digital Investigation 48 (2024) 301689

3

and upper layers within the Linux architecture. As such, an MTD device
provides uniform access to underlying flash devices. MTD further en
ables the partitioning of a device into multiple static MTD-partitions.
Generally, raw flash devices are not partitioned like hard disks, which
contain well-defined partition tables within the Master Boot Record
(MBR). Instead, there are three methods of defining partitions within a
raw flash device (Abbott, 2013):

1. Hard-coding partitions in the source code of a driver
2. Defining partitions within a bootloader which can then pass its

partition layout to the kernel command-line
3. Describing the partition layout via device trees

As a result, deriving partitioning information for raw flash devices in
a digital forensics tool may require multiple approaches and distinct
heuristics rather than direct extraction from specified locations.

Unsorted Block Images (UBI) is a flash management layer above the
MTD layer (Bityutskiy, 2007; UBI, 2020). UBI provides management of
multiple flexible volumes that consist of several consecutive logical
erase blocks (LEB). LEBs are dynamically mapped to physical erase
blocks (PEB) within the MTD layer, thus providing an address trans
lation functionality. Various other flash-related mechanisms such as
wear-leveling, bad block handling and scrubbing are also implemented
within the UBI layer.

The address translation feature of UBI is shown in Fig. 3: LEBs within
the UBI layer are dynamically mapped to PEBs in the MTD layer. Bad
blocks are transparently handled by UBI and its wear-leveling

mechanism aims to evenly distribute erase operations across PEBs by
transferring the contents from an underused PEB to a free one that has
undergone a higher number of erasures compared to other blocks3.

UBI attaches two additional headers to a PEB in order to implement
its mechanisms, as shown in Fig. 4: an erase counter header (EC) and a
volume identifier header (VID). The EC header is used by the wear-
leveling subsystem of UBI. Its magic bytes of value 0x55424923
(ASCII “UBI#”) are of particular importance in the context of digital
forensics, as they mark the start of an LEB, thus they enable the iden
tification of all available LEBs within a device. Further information can
then be derived from the additional VID header, which stores a volume
ID to indicate to which volume the LEB belongs to, and an LEB number
to indicate the particular mapping between LEB and PEB. Respectively,
this information can be found in its vol_id and lnum fields. Similar to
the EC header, the VID header has magic bytes of value 0x55424921
(ASCII “UBI!”).

While the EC header is always available (unless there are faulty
conditions), the VID header can be missing if a PEB is currently not
referenced by an LEB. UBI’s volume management is implemented by
providing a reserved volume with ID 0x7fffefff and name layout
volume. Hence, it can be identified by scanning for LEBs and comparing
their vol_id. That way, all available UBI volumes can be identified. As
instances of UBIFS reside within UBI volumes, it may occur that multiple
UBIFS instances are present across multiple UBI volumes.

The UBI File System builds on the UBI layer, relying on its mecha
nisms such as the translation of LEBs to PEBs. Unlike its predecessor
JFFS2, UBIFS stores the file-index on flash, enabling the mounting of
large flash memories as the index is not limited to the size of the RAM
anymore. However, UBIFS introduces additional complexity in man
aging the on-flash index. Its file-index structure is realized by a B+-Tree,
which is a specific kind of balanced search tree that is not limited to two
children per node. The amount of a node’s children is given by its
branching factor, also called fanout. Per default, UBIFS utilizes a fanout
of eight. Compared to a regular B-Tree, a B+-Tree strictly keeps data in
leaf nodes only. Inner nodes, also called indexing nodes, are used to store
keys and pointers. UBIFS’ file system objects can therefore be found in
leaves. Fig. 5 illustrates the structure of a B+-Tree in UBIFS with a fanout
of three. It is noteworthy that index nodes and leaf nodes are strictly kept
in separate erase blocks on flash.

UBIFS distinguishes between 14 different node types. Every node
type has distinct purpose with varying forensic relevance. All nodes have
a common header (ubifs_ch), which contains magic bytes of value
0x06101831 within its field magic. This enables a straightforward
scanning approach: every available node can be found by searching for
common headers, which can then be further processed depending on
their concrete node type stored in the common header’s node_type
field. Each node within the B+-Tree has a unique key. Even though

Fig. 2. Architecture of UBIFS (Bharadwaj and Singh, 2019).

Fig. 3. UBI layer: mapping LEBs to PEBs.
Fig. 4. UBI headers attached to a PEB.

3 https://bootlin.com/blog/managing-flash-storage-with-linux/ubi/.

M. Deutschmann and H. Baier

https://bootlin.com/blog/managing-flash-storage-with-linux/ubi/

Forensic Science International: Digital Investigation 48 (2024) 301689

4

UBIFS provides the ability of using multiple key schemes, the only
available one is the Simple key scheme shown in Fig. 6: keys consist of 64-
bits divided into inode number (32-bits), key type (3-bits) and variable
content that depends on the type of node (29-bits).

UBIFS adheres to the Linux Virtual File System (VFS) abstraction,
hence providing structures needed to integrate with it. One central
structure of VFS being inodes. The VFS inode structure (struct inode)
is wrapped by UBIFS in its ubifs_inode_node node. Thus, many
digital forensics relevant artifacts found within the original inode
structure such as MAC (Modification, Access, Change) timestamps are
also available in UBIFS. Regarding timestamps, there is one notable
difference: the access timestamp is not written by default to prolong the
flash’s lifetime. Even though the timestamp is not updated, a test
showed that it is initially written on file creation, thus it can be used to
derive a file’s creation time. Besides the inode node, there are several
other forensic relevant node types:

Directory Entry Node A directory entry node (ubifs_dent_node), or
dent for short, associates an inode number with a name/directory. In
UBIFS, the root directory is associated with inode number 1. Generally,
there are two inode numbers associated with a dent node: an inum refers
to the inode number of the file (or directory) that the dent node is
associated with, while the inode number encoded in the first 32-bits of
the key is the inode number of the parent directory (enabling the
recursive determination of the full path).

Data Node A data node (ubifs_data_node) resembles a chunk of
data that an inode is associated with. By default, a single data node can
store the maximum amount of 4096 bytes, defined by the constant
UBIFS_BLOCK_SIZE in linux/fs/ubifs/ubifs-media.h. The last 29-bits
of a data node’s key are reserved for its block number, indicating
which specific chunk of a file it is.

Master Node Master nodes (ubifs_mst_node) record important po
sitions such as the location of the root index node of the B+-Tree.

UBIFS is divided into areas that have distinct LEB locations, set
during file system creation. Fig. 7 provides an overview of all areas.

For digital forensics, the Log Area is of particular importance. The log
is part of the journal. The main goal of the journal is to reduce the
number of write accesses to the flash. Generally, UBIFS utilizes a wan
dering tree mechanism to implement its out-of-place update mechanism:
every time a node within the tree is updated, it is written to another,
empty space. As its parent node’s reference to the node is now outdated,
it is also updated in similar fashion. Hence, nodes are updated out-of-
place by also updating all nodes along their parent chain. To minimize

these cascading write accesses to the flash, the journal acts as write
cache. All changes to the file system are buffered to the journal before
updating the tree. Once the journal reaches a certain size threshold, a
commit operation is performed, updating all nodes within the file-index
tree based on the contents of the journal. This has grave implications for
forensics, as mere traversal of the file-index tree would miss files
currently only buffered within the journal. As of time of writing this
paper, we could not identify any other open-source tool that analyzes
the journal. The log as part of the journal contains so-called reference
nodes. Reference nodes point to LEBs in the main area containing nodes
of the journal. Such nodes can be inode nodes, data nodes and so on. The
referenced LEBs are also called buds. Fig. 8 illustrates this concept.

File deletions and truncations are also buffered within the journal.
The handling of file deletions varies depending on whether it involves
the deletion of an inode or a directory entry. If an inode is deleted, an
inode node with a link count of zero is written to the journal, basically
resembling a deletion marker. Upon journal commit, during processing
of the deletion marker, the corresponding inode and links pointing to it
will be deleted. Directory entry deletions are handled similarly. A
directory entry node is written to the journal with its inode number set
to zero, also resembling a kind of marker. For truncations, specific
truncations nodes (ubifs_trun_node) are written to the journal. Old
inode and directory entry deletion markers within the journal can be
recovered unless the GC has cleaned them, owing to the out-of-place
mechanism that preserves old data. Generally two approaches can be
used to find such markers.

First, the file-index can be completely disregarded, essentially
scanning the whole image. This brute-force approach is straightforward,
as it would simply parse every node in the main area. A parsed node can
then be checked whether it is an inode node with a link count of zero or a
directory entry node with an inode number of zero. The second
approach uses structures of the file system to find obsolete nodes. For
instance, old reference nodes within the log may be used to find already
committed buds. This approach is not very promising, as a new, empty
log LEB is used after a commit. Thus, the old log LEB containing obsolete
reference nodes is very likely already unmapped and scheduled for
erasure.

The quantity of remaining relevant obsolete nodes depends on the
GC. If UBIFS runs out of space, the GC follows a greedy approach to turn
dirty space, i.e., space occupied by obsolete nodes, into free space. It
finds the LEB that has the most dirty space via the LEB property tree
(LPT). The LPT stores per-LEB information such as their free and dirty

Fig. 5. UBIFS B+-tree.

Fig. 6. Simple key scheme.

Fig. 7. Areas in UBIFS.

Fig. 8. UBIFS journal.

M. Deutschmann and H. Baier

Forensic Science International: Digital Investigation 48 (2024) 301689

5

space. The GC itself is implemented in linux/fs/ubifs/gc.c. Its function
ubifs_garbage_collect (line 670) is used as entry point. It is called
from several other places:

⋅ In the journal implementation journal.c (line 142) if no free space
is available when trying to allocate space for it.

⋅ In recovery.c (line 1193) to allocate a new empty LEB to be used
by the GC in the case of a recovery.

⋅ In budget.c (line 72). The file budget.c is an implementation of
the budgeting subsystem in UBIFS. The budgeting subsystem is used
to determine how much free space is available. This is, for instance,
used to assure that a RAM cache never grows bigger than the avail
able space on flash. This process is further complicated due to
various reasons in UBIFS. One reason being that UBIFS performs on-
the-fly compression.

In summary, the GC operates passively, only being used when there
is no more available space on flash during allocation processes. There is
another edge case in which LEBs with obsolete data are erased. If an LEB
consists of only dirty and free space, it is considered a freeable LEB. A
freeable LEB can safely be erased, as it contains no more valid data. The
erasure of freeable LEBs happens whenever the journal is committed via
the do_commit function in linux/fs/ubifs/journal.c (line 97). This
function, among other things, invokes the GC’s ubifs_gc_

start_commit function in linux/fs/ubifs/gc.c (line 876). The func
tion’s purpose is to unmap and therefore erase all freeable LEBs, causing
notable implications for the recoverability of deleted data. Suppose a file
is deleted, and its contents are contained within LEBs that become
freeable. Consequently, the file cannot be recovered anymore, as the
resulting freeable LEBs will be erased.

3. The concept of the UBI Forensic Toolkit

UBIFT provides various functionality to explore and analyze the UBI
File System, including methods to restore deleted files based on the
previously mentioned structures. Its architecture is based on the estab
lished concepts of TSK (especially the use of abstraction layers) by Brian
Carrier (2003). As data in its most basic form is only available as
collection of bits and bytes, a complexity problem arises. Carrier solves
this issue by introducing layers, each layer interpreting data at a higher
abstraction level. Thus, data can be viewed either at the lowest
abstraction level as bits and bytes if necessary, or at higher abstractions
like the file system level as files or other file system related structures.

Carrier’s original concept is heavily biased towards traditional block
based file systems, therefore we adapted it to fit FFS. One particular
issue was the need for an additional layer to encapsulate UBI, as it is a
layer not found on traditional file systems. Fig. 9 shows our adapted
concept. The lowest accessible layer is the Memory Technology Device
(MTD), providing access to physical erase blocks which can be further
divided into pages with possibly additional out-of-band areas. Instances
of UBI reside in MTD-partitions and finally instances of UBIFS are con
tained within UBI volumes.

The layers are taken as basic building blocks for the implementation
of our tool. We decided to implement a standalone tool instead of
extending TSK, as it lacks internal structures for the representation of
flash specific structures. Reviewing the TSK source code revealed chal
lenges in extending it to work with FFS like UBIFS, primarily due to its
inherent bias towards traditional file systems. Adapting TSK would
require extensive changes, which was out of scope for this project.
Nevertheless, as our implementation adheres to the concepts of TSK,
there is the possibility that it may be integrated into TSK in the future, or
it may remain as a standalone framework for flash file systems, resulting
in a flexible compromise.

4. Implementation

In this section we provide details on how we put our concept from
Section 3 into practice. We make use of Python 3 for the implementation
of our tool.

Much like TSK, UBIFT organizes its commands into layers using
prefixes and suffixes. The prefix signifies the layer, while the suffix
specifies the command to be executed. The currently available com
mands are detailed in Table 1. Refer to Section 2.2 for a detailed
description of the different UBI layers and to Section 5.1 for a sample use
of various UBIFT commands on a sample flash dump.

Most commands support specifying an additional scan or deleted
parameter. These parameters cause UBIFT to utilize the previously
mentioned scanning mechanism, instead of traversing the file-index, to
find nodes that are not part of the B+-Tree anymore, i.e., deleted content.
The deleted differs from the scan parameter in that it exclusively
shows nodes not found within the B+-Tree, while the other parameter
includes those within the tree as well. Listing 4.1 shows an exemplary
invocation of the fls command plus the deleted parameter.

Notable commands in the context of file recovery are fls and ils,
respectively. As in TSK, fls outputs information about file names and
metadata addresses. Listing 4.1 shows a sample use of fls to extract
deleted files from a sample flash dump, where the type, metadata
address, parent directory and file name are output, respectively. As all
extracted files are deleted, we assign an inode address of zero to them.

Fig. 9. UBIFT abstraction layers inspired by (Carrier, 2003).

Table 1
Available UBIFT commands.

Prefix Suffixes Prefix Suffixes

mtd ls, cat fs stat
peb cat i ls, cat, stat
ubi ls, cat f ls, find
leb ls, cat j ls

M. Deutschmann and H. Baier

Forensic Science International: Digital Investigation 48 (2024) 301689

6

Listing 4.1. Exemplary fls output. The inode number of zero is a marker for
deleted directory entries within the journal.

ils offers a comprehensive overview of all available inodes within
UBIFS and displays important forensic metadata such as user/group IDs,
timestamps, file type (a sample output of ils for an Internet camera is
depicted in Listing 5.4). When used in conjunction with the optional
deleted parameter, a tabular view of deleted inodes is obtained, of
fering valuable insights into their metadata.

UBIFT provides two additional commands for convenience and
further analysis:

ubift_info This command presents information on the recover
ability of deleted inodes. It calculates the cumulative amount of deleted
data by summing up the size field values for each identified deleted
inode.

ubift_recover This command enables the convenient export of
all files (including deleted ones) from an image into a local directory.

We streamline the UBIFT process through our Autopsy plugin, which
seamlessly integrates with the UBIFT CLI in the background. By
leveraging the ubift_recover command for image processing, the
plugin efficiently handles the entire procedure. This involves copying
the provided image to a temporary folder, executing the UBIFT CLI, and
capturing its output as a comprehensive report appended to the Autopsy
case. Thus, digital forensics practitioners can utilize the familiar Autopsy
file browser for a user-friendly investigation. Tested with Autopsy
4.20.0, the plugin is available for review on https://github.com/matth
ias-deu/ubift.

5. Evaluation

We present a twofold evaluation of our tool UBIFT. First, in Section
5.1, we apply UBIFT to a publicly available flash dump of a Foscam R2
camera4 to demonstrate its practicality and value in digital forensics
investigations. Second, in Section 5.2 we provide a methodology of
creating scenario-based adaptable flash dumps in Linux together with
the respective ground-truth. We generate diverse dumps to minimize the
likelihood of potential implementation errors, demonstrating the
robustness of UBIFT and highlighting its superiority to competitors like
the UBI Reader (GitHub, 2023-08-13b).

UBIFT also underwent additional evaluation in collaboration with a
third party within a confidential security research project. This
comprehensive evaluation involved a complete hardware forensics work
cycle, encompassing the chip-off process of a commercial drone’s NAND
flash and subsequent analysis of the extracted data using UBIFT. The
project served as a primary reference for defining UBIFT’s feature set
and established a baseline for its capabilities. In contrast to UBIFT, both
UBI Reader and UBIFS Dumper failed to work correctly with the chip-off
dump. Because disclosing detailed information on this depends on the
lifting of a confidentiality agreement, we are planning to conduct further
UBIFT evaluations on additional open data sets in the future.

5.1. Use case study

The flash dump of the Foscam R2 camera is provided as several bi
nary files, one for each MTD partition. As it is rather uncommon to know
the actual MTD partitioning of an acquired flash dump beforehand, we
concatenate each binary file, increasing the difficulty imposed on our
tool.

We initiate the analysis of the flash dump by employing the mtdls
command to identify all MTD partitions, encompassing those housing
UBI instances. The results are presented in a comprehensive tabular
format. An overview of the Foscam partitioning determined by UBIFT is
shown in Listing 5.1. A partition designated as Unallocated signifies the
absence of UBI, though it may still contain other data, such as a

bootloader. For further manual analysis, such partitions can be extracted
using the mtdcat command.

Listing 5.1. UBIFT mtdls output.

Subsequently, the UBI instances that have been identified can un
dergo more in-depth analyses, involving the exploration and analysis of
their UBI volumes or individual LEBs. Similar to the mtdls command,
the ubils command provides a comprehensive overview of available
UBI volumes within the analyzed UBI instance. Listing 5.2 shows the
existence of a dynamic (i.e. writable) UBI volume within the UBI
instance starting at PEB 213.

Listing 5.2. UBIFT ubils output.

On the next abstraction layer the identified UBI volumes can be
subject to a more granular investigation utilizing one of UBIFT’s diverse
commands designed for performing analyses on the file-system layer. An
investigator may seek to obtain a comprehensive overview of all files
that can be found via scanning approach, including all recoverable files,
in order to retrieve important evidence.

An illustrative example of this process is shown in Listing 5.3, which
demonstrates the usage of the fls command used in conjunction with the
scan option. The tabular overview provides investigators with a
comprehensive view of available files. An inode number of 0 serves as a
clear indicator that the corresponding directory entry has been deleted.
As demonstrated in Listing 5.3, our scanning approach unveils the ex
istence of a bash history file .ash_history. Remarkably, this file
remained undetected by the UBI Reader and UBIFS Dumper, under
scoring UBIFT’s distinctive scanning technique. The bash history is an
important artifact in digital forensics investigations, as it provides a
record of commands executed by users, offering valuable insights into
their activities, intentions, and potential evidence of malicious actions
or system compromises.

Listing 5.3. UBIFT fls output.

More information, including important metadata like timestamps,
can be obtained using the ils command. Similar to fls, the command
will output a comprehensive table as shown in Listing 5.4. It is worth
noting that after the initial identification, a total of 18 data nodes can
still be recovered from the previously identified bash history associated

4 https://github.com/timawesomeness/foscam-r2-fw.

M. Deutschmann and H. Baier

https://github.com/matthias-deu/ubift
https://github.com/matthias-deu/ubift
https://github.com/timawesomeness/foscam-r2-fw

Forensic Science International: Digital Investigation 48 (2024) 301689

7

with inode number 4025.

Listing 5.4. UBIFT ils output (truncated).

Finally, the contents of the bash history can be retrieved using the
icat command, as shown in Listing 5.5. We see that the user opened a
bash shell and inspected the system files showing all users (/etc/
passwd) and their respective hashed credentials (/etc/shadow).

Listing 5.5. UBIFT icat output.

UBIFT stands out from other tools like the UBI Reader and UBIFS
Dumper not solely for its capability to retrieve information about
deleted inodes, but also for its structured examination features, which
collectively play a pivotal role in recovering evidence that could ulti
mately lead to identifying and apprehending a perpetrator.

As a manual analysis requires some degree of knowledge about the
file system, we provide an Autopsy ingest module. The plugin facilitates
graphical exploration of all available files, including recoverable deleted
files. In Fig. 10, a visualization in Autopsy of recoverable files within
UBIFS of the first UBI instance is presented. The seamless integration of
UBIFS into Autopsy empowers investigators, even those without prior
knowledge of this file system, to conduct purposeful and effective
forensic examinations. To the best of our knowledge, no other tool
currently offers a graphical interface for UBIFS.

5.2. Artificial flash dumps

Since publicly available flash dumps of embedded devices are sparse,
we propose a methodology for creating artificial flash dumps that can be
used for the evaluation of arbitrary tools. The methodology relies on

open-source tools available within the mtd and mtd-utils Linux
packages. The mtd package contains the nandsim module, capable of
simulating NAND flash in RAM with various options. Listing 5.6 shows
the command necessary to emulate a 16 MiB NAND flash with a page
size of 512 Bytes.

Listing 5.6. nandsim Linux module and dmesg output.

After creation of the flash in RAM our methodology contains the
following steps:

1. Create an arbitrary amount of UBI instances within the MTD device
using the ubinize tool within mtd-utils. The ubinize tool re
quires a config file as parameter which describes the volumes in the
UBI instance. Contents of a volume can be specified in the config file
using the image parameter.

2. Either create a UBIFS image beforehand and supply it to a UBI vol
ume via the image parameter, or directly format UBI volumes. Both
is achieved using the Linux mkfs.ubifs tool.

3. UBI may be attached used the ubiattach tool within mtd-utils,
to mount available UBIFS instances within UBI volumes. Once
mounted, the file system can be manipulated to create artificial crime
or testing scenarios.

4. Dump the contents of the MTD device into a file, so it may be used for
evaluation. This is done via nanddump tool of mtd-utils.

In order to streamline the process, we offer a Python script that au
tomates the majority of the tasks involved. It can be found in the ubigen
folder of our repository.5 It is implemented as a CLI offering the
following sub-commands:

create Creates a NAND device in RAM, followed by generating an
arbitrary folder structure using names extracted from an external text
file. A subsequent loop randomly selects and places files from the local
directory into corresponding folders, ensuring a diverse arrangement.
Currently, the random seed value responsible for the process cannot be
altered, but the number of files taken can be supplied via file_count
parameter. The created folder structure forms the root directory for the
subsequently generated UBIFS image, for which a UBI instance con
taining one volume is then created.

mount Takes the path to an image and attempts to mount it. Using
the previously created UBI image file via create, this creates the device
/dev/ubi0_0, which will be mounted as UBIFS at the mount point /mnt.
A forensic practitioner may then manually manipulate its contents.

simulate Simulates a specified number of random file deletions
and copies, determined by a count parameter, on a given mounted
UBIFS instance. This can be used to evaluate the recoverability of
deleted files by producing obsolete data on flash, so that the GC is forced
to become active. Thus, it facilitates the evaluation of the extent to
which the GC affects the recoverability of deleted files. Currently, the
operations are only displayed on the console. In future script iterations,
incorporating a comprehensive log to track the ground truth, detailing
the files copied and deleted, would be beneficial. Presently, the user
cannot set the random seed here either.

In Listing 5.7, we provide an excerpt of the mount command’s

Fig. 10. Recovered files in Autopsy. 5 https://github.com/matthias-deu/ubift.

M. Deutschmann and H. Baier

https://github.com/matthias-deu/ubift

Forensic Science International: Digital Investigation 48 (2024) 301689

8

implementation, wherein the requisite Linux tasks are programmatically
invoked. This automation simplifies tasks, enabling users to perform
them without delving into technical details. Similarly, the other com
mands allow users to focus on essential image creation tasks, avoiding
technical intricacies.

Listing 5.7. Excerpt of the mount command’s implementation in ubigen.

The commands are designed so that multiple forensic scenarios may
be created. A user can employ the create command to generate a
foundational image, subsequently utilizing the mount command for
mounting and customizing it according to distinct use-case scenarios.
These resultant scenarios not only serve as valuable test environments
for forensic tools but also as invaluable educational assets for aspiring
forensic practitioners.

As of now, the script is limited. Parameters such as the geometry of
the created NAND in RAM are hard-coded. Nevertheless, it proved to be
a valuable factor in the evaluation of our tool. Further development can
potentially benefit many projects related to flash. In future iterations,
there is potential to elevate the tool’s capabilities by extending support
to various flash file systems, while also providing flexibility for users to
customize the flash and file system geometries according to their specific
requirements.

5.3. Related tools

Lastly, we compare UBIFT to two of the most established tools on
GitHub which provide similar functionality.

UBI Reader (GitHub, 2023-08-13b): The UBI Reader is a Python
module and script collection designed for extracting data and analyzing
UBI/UBIFS images. The extensive array of standalone scripts within the
UBI Reader presents challenges in terms of usability. To accomplish
specific tasks, users must initially locate the relevant script and explore
its functionality, introducing potential complexity. When applied to an
artificially generated flash dump devoid of structural errors, UBI Reader
produces outcomes akin to those of UBIFT. Using its script ubir
eader_extract_files on the Foscam dump, it creates three folders
containing the UBI/UBIFS instances with their respective files, similar to
the UBIFT ubift_recover command. Nevertheless, UBI Reader lacks
features for the recovery of deleted files and does not consider the file
system journal—a known issue documented on the author’s GitHub
page. Consequently, uncommitted data within the journal that is
potentially crucial to digital forensics investigations remains over
looked, possibly resulting in the omission of evidence crucial to the
success of an inquiry. As an illustration, our attempts to recover the
previously mentioned bash history from Section 5.1 using UBI Reader
proved unsuccessful.

UBIFS Dumper (GitHub, 2023-08-13a): The UBIFS Dumper is pro
vided as a single Python script that is implemented as a CLI. It provides
the functionality to view or extract the contents of UBIFS images.
However, when employed on the Foscam dump, the tool encounters
issues, yielding the output message Unknown file type. Conversely, it
operates effectively when used on a single MTD partition, implying a
possible limitation in handling multiple UBI instances. Furthermore,
similar to the UBI Reader, the tool lacks journal support, rendering it
unable to recover deleted files.

In summary, UBIFT distinguishes itself from tools such as the UBI
Reader and UBIFS Dumper by introducing novel features and
capabilities:

UBIFT is based on established TSK layer concept Incorporating
concepts from Brian Carrier’s Sleuth Kit aims to enhance the acceptance
of UBIFT within the digital forensics community. However, integrating
it into The Sleuth Kit appears questionable at present, given the addi
tional layers introduced by the UBI ecosystem.

Comprehensive recovery of deleted files UBIFT sets itself apart as
the only currently available tool that enables the recovery of deleted
files by leveraging the journal of UBIFS. UBIFT’s distinctive scanning
mechanism enables the recovery of data that other methods, such as
relying solely on file index tree, fail to uncover.

Ease of use UBIFT prioritizes usability, making it a standout choice
for digital forensics practitioners, as it offers a streamlined solution with
a unified CLI and an integrated Autopsy plugin.

6. Conclusion and future work

In this paper, we presented UBIFT, a Python toolkit providing the
ability to perform in-depth digital forensics evaluations on UBIFS. We
showed that UBIFT enables a structured analysis of an image while being
compliant with established concepts introduced by Brian Carrier. We
further provided an analysis and evaluation of UBIFS, highlighting the
fact that deleted data can be recovered due to its journal and the out-of-
place update approach generally employed by flash file systems. To the
best of our knowledge, no other tool is capable of recovering deleted
data in UBIFS.

However, there are several limitations. First, UBIFT is not able to
handle all kinds of flash dumps, e.g., flash dumps that contain erroneous
structures or bit flips may cause unforeseen issues. This is a consequence
of UBIFT mainly being tested with self-created dumps containing no
erroneous structures whatsoever. Many edge cases such as encrypted
instances of UBIFS have not been tested either. In future works, we aim
to enhance the robustness and versatility of UBIFT by subjecting it to a
more comprehensive array of data sets, including those featuring edge
cases such as erroneous structures or encrypted instances of UBIFS.

Second, we plan to extend the capabilities of UBIFT beyond its cur
rent support for UBIFS. Drawing inspiration from related works, such as
the forensic analysis conducted by Zimmermann et al. (2012) on
YAFFS2, we envision the evolution of UBIFT into a versatile tool capable
of supporting various flash file systems.

Acknowledgement

The authors thank the anonymous reviewers for their detailed
comments and Frank Adelstein for his valuable advice in the generation
of the final version.

References

Linux for embedded and real-time applications. In: Abbott, D. (Ed.), 2013. Embedded
Technology Series, third ed. Elsevier Science, Burlington.

Bharadwaj, N.K., Singh, U., 2019. Acquisition and analysis of forensic artifacts from
raspberry pi an Internet of things prototype platform. Recent Findings in Intelligent
Computing Techniques 707, 311–322. URL. https://www.researchgate.net/publicat
ion/328732814_Acquisition_and_Analysis_of_Forensic_Artifacts_from_Raspberry_Pi_
an_Internet_of_Things_Prototype_Platform_Proceedings_of_the_5th_ICACNI_2017_
Volume_1.

Bityutskiy, A., 2007. UBI - unsorted block images. URL. http://www.linux-mtd.infradead
.org/doc/ubi.ppt. (Accessed 30 September 2023).

Boukhobza, J., 2017. Flash Memory Integration: Performance and Energy Issues. Energy
Management in Embedded Systems Set. Elsevier Science, San Diego. URL. http://
www.sciencedirect.com/science/book/9781785481246.

Brewer, J.E., Gill, M., 2008. Nonvolatile Memory Technologies with Emphasis on Flash:
A Comprehensive Guide to Understanding and Using NVM Devices.

Carrier, B., 2003. Defining digital forensic examination and analysis tools using
abstraction layers. URL. https://www.utica.edu/academic/institutes/ecii/publicati
ons/articles/A04C3F91-AFBB-FC13-4A2E0F13203BA980.pdf.

M. Deutschmann and H. Baier

http://refhub.elsevier.com/S2666-2817(23)00208-1/sref1
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref1
https://www.researchgate.net/publication/328732814_Acquisition_and_Analysis_of_Forensic_Artifacts_from_Raspberry_Pi_an_Internet_of_Things_Prototype_Platform_Proceedings_of_the_5th_ICACNI_2017_Volume_1
https://www.researchgate.net/publication/328732814_Acquisition_and_Analysis_of_Forensic_Artifacts_from_Raspberry_Pi_an_Internet_of_Things_Prototype_Platform_Proceedings_of_the_5th_ICACNI_2017_Volume_1
https://www.researchgate.net/publication/328732814_Acquisition_and_Analysis_of_Forensic_Artifacts_from_Raspberry_Pi_an_Internet_of_Things_Prototype_Platform_Proceedings_of_the_5th_ICACNI_2017_Volume_1
https://www.researchgate.net/publication/328732814_Acquisition_and_Analysis_of_Forensic_Artifacts_from_Raspberry_Pi_an_Internet_of_Things_Prototype_Platform_Proceedings_of_the_5th_ICACNI_2017_Volume_1
http://www.linux-mtd.infradead.org/doc/ubi.ppt
http://www.linux-mtd.infradead.org/doc/ubi.ppt
http://www.sciencedirect.com/science/book/9781785481246
http://www.sciencedirect.com/science/book/9781785481246
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref5
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref5
https://www.utica.edu/academic/institutes/ecii/publications/articles/A04C3F91-AFBB-FC13-4A2E0F13203BA980.pdf
https://www.utica.edu/academic/institutes/ecii/publications/articles/A04C3F91-AFBB-FC13-4A2E0F13203BA980.pdf

Forensic Science International: Digital Investigation 48 (2024) 301689

9

GitHub, 2023-08-13. ubidump: tool for viewing and extracting files from an UBIFS
image. URL. https://github.com/nlitsme/ubidump.

GitHub, 2023-08-13. ubi_reader: collection of Python scripts for reading information
about and extracting data from UBI and UBIFS images. URL. https://github.com/on
ekey-sec/ubi_reader.

Hunter, A., 2008. A brief introduction to the design of UBIFS: UBIFS whitepaper. URL.
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf.

Liu, S., Guan, X., Tong, D., Cheng, X., 2010. Analysis and comparison of NAND flash
specific file systems. Chin. J. Electron. 19 (3), 403–408.

Micheloni, R., Crippa, L., Marelli, A., 2010. Inside NAND Flash Memories. Springer
Netherlands, Dordrecht.

Micron Technology, Inc. jcooke, dberrett (TW), vschulthies, 2010. Nand Flash 101: an
Introduction to Nand Flash and How to Design it into Your Next Product. URL. htt
ps://user.eng.umd.edu/~blj/CS-590.26/micron-tn2919.pdf.

Moonbeom Park, S.J., 2017. Iot hacking & forensic with 0-day. URL. https://troopers.de/
downloads/troopers17/TR17_What_happened_to_your_home.pdf.

MTD, 2023. Memory technology device subsystem for linux. URL. http://www.linux
-mtd.infradead.org/. (Accessed 30 September 2023).

Olivier, P., Boukhobza, J., Senn, E., 2012. On benchmarking embedded linux flash file
systems. ACM SIGBED Rev. 9 (2), 43–47, 9. URL. https://arxiv.org/pdf/1208.6391.
pdf.

OpenWrt, 2023. Openwrt project. URL. https://openwrt.org/docs/tech
ref/filesystems#ubifs. (Accessed 30 September 2023).

UBI, 2020. Unsorted block images. URL. http://www.linux-mtd.infradead.org/doc/ubi.
html. (Accessed 30 September 2023).

Woodhouse, David, 2001. Jffs : the journalling flash file system. URL. https
://sourceware.org/jffs2/jffs2.pdf.

YAFFS, 2023. Yet another flash file system. URL. https://yaffs.net/. (Accessed 25
September 2023).

Zeifman, I., Rossi, B., 2023. OpenWrt OS: how it works, challenges, security concerns and
alternatives. URL. https://sternumiot.com/iot-blog/openwrt-how-it-works-challe
nges-and-alternatives. (Accessed 30 September 2023).

Zimmermann, C., Spreitzenbarth, M., Schmitt, S., Freiling, F.C., 2012. Forensic analysis
of YAFFS2. In: Suri, N., Waidner, M. (Eds.), SICHERHEIT 2012 – Sicherheit, Schutz
und Zuverlässigkeit. Gesellschaft für Informatik e.V., Bonn, pp. 59–69.

M. Deutschmann and H. Baier

https://github.com/nlitsme/ubidump
https://github.com/onekey-sec/ubi_reader
https://github.com/onekey-sec/ubi_reader
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref10
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref10
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref11
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref11
https://user.eng.umd.edu/~blj/CS-590.26/micron-tn2919.pdf
https://user.eng.umd.edu/~blj/CS-590.26/micron-tn2919.pdf
https://troopers.de/downloads/troopers17/TR17_What_happened_to_your_home.pdf
https://troopers.de/downloads/troopers17/TR17_What_happened_to_your_home.pdf
http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/
https://arxiv.org/pdf/1208.6391.pdf
https://arxiv.org/pdf/1208.6391.pdf
https://openwrt.org/docs/techref/filesystems#ubifs
https://openwrt.org/docs/techref/filesystems#ubifs
http://www.linux-mtd.infradead.org/doc/ubi.html
http://www.linux-mtd.infradead.org/doc/ubi.html
https://sourceware.org/jffs2/jffs2.pdf
https://sourceware.org/jffs2/jffs2.pdf
https://yaffs.net/
https://sternumiot.com/iot-blog/openwrt-how-it-works-challenges-and-alternatives
https://sternumiot.com/iot-blog/openwrt-how-it-works-challenges-and-alternatives
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref21
http://refhub.elsevier.com/S2666-2817(23)00208-1/sref21

	Ubi est indicium? On forensic analysis of the UBI file system
	1 Introduction
	2 Forensically relevant data structures in UBI
	2.1 Flash file systems
	2.2 UBIFS

	3 The concept of the UBI Forensic Toolkit
	4 Implementation
	5 Evaluation
	5.1 Use case study
	5.2 Artificial flash dumps
	5.3 Related tools

	6 Conclusion and future work
	Acknowledgement
	References

