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A B S T R A C T   

Crimes involving Internet of Things (IoT) or embedded devices like drones are on the rise. A widespread class of 
file systems for storing data on embedded devices are flash file systems (FFS). FFS are optimized to manage 
conceptual limitations and characteristics of raw flash memory, i.e., memory that is not managed by an addi
tional hardware controller that hides the characteristics of flash (called the Flash Translation Layer). Thus, FFS 
incorporate mechanisms and structures, which are not part of traditional block-based file systems like NTFS, 
APFS, or ExtX. Regarding analyses of FFS-based embedded devices, digital forensics tools handling FFS are 
needed. Unfortunately, currently available tools are not able to analyze FFS or raw flash images in general. In this 
paper, we provide a concept and an open-source implementation of a digital forensics tool bridging this gap for 
the widespread UBI File System. Our concept is inspired by the well-known Sleuth Kit and reflects the different 
abstraction layers of a digital forensics analysis (e.g., the storage device level, the volume level, the file system 
level). We provide an open-source tool of our concept, which we call UBI Forensic Toolkit (UBIFT). In contrast to 
previous work, UBIFT is able to parse file system structures like the directory tree or the UBIFS journal to recover 
deleted files including the respective metadata. We show the usefulness of UBIFT by a twofold evaluation: we 
first apply our tool to a publicly available Internet camera flash dump to perform a forensically sound analysis of 
the flash device. Our second evaluation comprises both a methodology for creating adaptable flash dumps in 
general and the comparison of our tool to competitors with similar functionality on the basis of self-generated 
flash dumps. Finally, we address the usability aspect of UBIFT by providing an Autopsy plugin of our tool.   

1. Introduction 

The increasing number of IoT devices demands storage solutions that 
are cost-effective while offering ample space for extensive data. The 
most common technologies used in conjunction with IoT or embedded 
devices are NOR and NAND flash memory, respectively (Brewer and 
Gill, 2008). In both cases FFS play a pivotal role in managing 
flash-specific characteristics not found on traditional hard disks, they 
are used to mitigate the complexities by efficiently managing 
flash-specific characteristics. An alternative approach to manage a 
flash-based storage chip is the usage of a Flash Translation Layer (FTL). 
An FTL is tasked to emulate a block device to outside clients, thus hiding 
the physical properties of the underlying flash. As a consequence, an FTL 
enables the use of traditional block-based file systems like FAT, NTFS, or 
ExtX on top. FTLs are mostly put into practice as hardware components 
on chips, thus essentially being black boxes and their algorithms vendor 
secrets, additionally hampered by patent restrictions. FTLs are present in 
various peripherals, including SSDs, SD/MMC cards, and eMMC chips. 

Unlike FTLs, which require an additional file system on top, FFS are 
explicitly designed for use on raw flash devices, therefore eliminating 
unnecessary translation layers (Boukhobza, 2017; Liu et al., 2010). 

Axis Communications AB introduced one of the first FFS, called the 
Journaling Flash File System (JFFS), in 1999 under the GNU General 
Public License (Woodhouse, 2001). Today, there exist a diverse array of 
FFS, showcasing the rapid evolution of storage technology. FFS can be 
found within various consumer products, from smartphones and tablets 
to digital cameras and USB drives. A notable example of an FFS is YAFFS 
(YAFFS, 2023) (Yet Another Flash File System). YAFFS finds extensive 
utilization across diverse areas such as communications (radios, mobile 
phones, cell towers), industrial equipment, avionics and satellite 
equipment, sewing machines, office copiers, transport (bus, train, 
traffic-signal management) and many more (Woodhouse, 2001). 

The Unsorted Block Images File System (UBIFS) represents a more 
recent development in the domain of FFS, it has first been introduced in 
2008 in Linux kernel 2.6.27 and has since then been constantly updated. 
Benchmarks show that it has several advantages over other FFS, 
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particularly in terms of performance (Olivier et al., 2012). Similar to 
YAFFS, UBIFS can be found in manifold devices, ranging from robot 
vacuums, Internet security cameras to drones, or routers (Moonbeom 
Park, 2017). Moreover, UBIFS is an integral component of OpenWRT, a 
Linux-based operating system designed for embedded devices 
(OpenWrt, 2023). OpenWRT is a versatile operating system widely 
deployed in various devices, including routers, NAS systems, smart TVs, 
VPN servers, and more (Zeifman and Rossi, 2023). 

In the context of digital forensics, it is key to understand the 
fundamental concepts and mechanisms of FFS in order to successfully 
retrieve valuable information. A significant problem regarding FFS in 
the field of digital forensics is the lack of practical tools for in-depth 
forensic investigations. While FFS such as YAFFS2 have been well- 
studied in regard to digital forensics, providing theoretical back
ground for recovering deleted data (Zimmermann et al., 2012), 
UBI/UBIFS is currently poorly documented and out-of-scope of the 
digital forensics community. As a consequence both established 
open-source tools like The Sleuth Kit by Brian Carrier or commercial 
applications like Cellebrite UFED or MSAB XRY do not provide any 
support for UBI/UBIFS, leading to the inability of forensic practitioners 
to retrieve crucial information from raw flash chips from drones, which 
have become a popular tool for criminals to perform manifold illegal 
activities. Moreover, currently available open-source tools for UBIFS, 
such as the UBI Reader,1 exhibit notable deficiencies in forensic capa
bilities, such as the recovery of deleted files. Their usability is con
strained to a command-line interface without a graphical solution, 
which could overwhelm forensic practitioners unfamiliar with the in
tricacies of UBIFS. 

In this paper we present a forensic analysis of the UBI ecosystem, 
comprising different abstraction levels like MTD (Memory Technology 
Device), UBI and UBIFS. Our prototypical implementation, the UBI 
Forensic Toolkit (UBIFT), offers robust analyses of UBI/UBIFS struc
tures, enabling the extraction and recovery of deleted files and associ
ated metadata. UBIFT is publicly available at https://github.com/matth 
ias-deu/ubift. 

UBIFT is based on established digital forensics concepts introduced 
by Brian Carrier, which he heavily utilizes in his Sleuth Kit. UBIFT 
bridges the gap of other tools lacking functionality such as the recovery 
of deleted data and by providing a structured way of performing a digital 
forensics analysis. We further strengthen UBIFT’s usability by providing 
a plugin for the established Autopsy2 digital forensics platform, allowing 
investigators who may not be familiar with UBIFS to retrieve possibly 
crucial information. We show the usefulness of UBIFT by a twofold 
evaluation: we first evaluate our implementation based on a freely 
available Internet camera flash dump that was extracted from a regular 
device. Additionally, we provide a methodology to generate artificial 
NAND flash dumps based on freely available tools in Linux. We finish 
our evaluation by comparing our tool to related ones with similar 
functionality. 

The subsequent sections are structured as follows: Section 2 in
troduces the necessary fundamental concepts of FFS in general and 
UBIFS in particular. We emphasize key forensically relevant data 
structures and mechanisms of UBIFS, with a specific focus on recovering 
deleted files. Next, in Section 3, we present the conceptual idea of our 
developed tool. We further outline how we included established con
cepts defined by Brian Carrier. Section 4 describes implementation de
tails and introduces the functionality and commands offered by our 
prototypical implementation. We then evaluate our approach in Section 
5 and conclude our paper in Section 6. 

2. Forensically relevant data structures in UBI 

As UBIFS is currently not documented with respect to its forensically 
relevant data structures, we first review general mechanisms of FFS in 
Section 2.1 that are highly relevant from a digital forensics perspective. 
In Section 2.2 we turn to important structures and mechanisms of UBIFS 
in the context of our work. Our analyses of the UBI ecosystem as pre
sented in this section are based on the Linux kernel version 6.2.0-rc7 
and will be used in our implementation in Section 4. 

2.1. Flash file systems 

Unlike traditional file systems like ExtX, FFS have specific re
quirements resulting from the limitations and degradations of flash 
memory (Micheloni et al., 2010; Micron Technology et al., 2010). More 
specifically, flash memory is made up of several blocks of memory cells. 
Such blocks are the minimal unit for erasure, hence called erase blocks. 
The erase operation is unique to flash and not found on hard disks. A 
block consists of consecutive pages, which are the minimal unit for write 
and read operations. Pages also incorporate a spare area, referred to as 
out-of-band (OOB) data. Its layout differs among manufacturers, hous
ing per-page metadata like error-correcting codes (ECC) or indicators of 
whether the block has gone bad. Flash blocks wear out over time, and 
when a block goes bad, it cannot be used anymore due to the physical 
conditions of the flash. Non-empty pages cannot be directly modified 
in-place due to the physical restrictions, thus their whole corresponding 
block has to be erased first, causing all data of that block to be lost if not 
saved. A naïve approach of saving data before erasure is given by 
reading a whole block into a buffer, replacing the contents of a specific 
page and writing everything back to flash. This approach takes roughly 
100 times longer than directly writing the updated page to another 
empty place (Hunter, 2008). Thus, FFS employ an out-of-place update 
approach. Fig. 1 highlights this concept: page modifications are per
formed by writing updated pages to another, empty space. The old page 
is marked as obsolete. 

This mechanism is highly relevant in the context of digital forensics, 
as old pages are typically not immediately deleted, thus their contents 
can be recovered. Since overall space on flash is limited and obsolete 
data increases over time, FFS utilize a garbage collector (GC) that is 
tasked to free up obsolete pages. The implementation of a GC is specific 
to individual FFS, thus no general conclusion can be drawn regarding 
the recoverability of data. We performed an analysis of the GC in UBIFS 
to derive metrics regarding the recoverability of data in UBIFS. 

2.2. UBIFS 

Fig. 2 shows the UBIFS architecture within the Linux kernel. UBIFS 
relies on additional layers called UBI and MTD (MTD, 2023). 

Memory Technology Devices (MTD) is an abstraction layer for raw 
flash devices (MTD, 2023). It is implemented as a Linux subsystem. Its 
primary aim is to provide a generic interface between hardware drivers 

Fig. 1. Flash file system out-of-place update approach.  

1 https://github.com/onekey-sec/ubi_reader.  
2 https://www.autopsy.com/. 
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and upper layers within the Linux architecture. As such, an MTD device 
provides uniform access to underlying flash devices. MTD further en
ables the partitioning of a device into multiple static MTD-partitions. 
Generally, raw flash devices are not partitioned like hard disks, which 
contain well-defined partition tables within the Master Boot Record 
(MBR). Instead, there are three methods of defining partitions within a 
raw flash device (Abbott, 2013):  

1. Hard-coding partitions in the source code of a driver  
2. Defining partitions within a bootloader which can then pass its 

partition layout to the kernel command-line  
3. Describing the partition layout via device trees 

As a result, deriving partitioning information for raw flash devices in 
a digital forensics tool may require multiple approaches and distinct 
heuristics rather than direct extraction from specified locations. 

Unsorted Block Images (UBI) is a flash management layer above the 
MTD layer (Bityutskiy, 2007; UBI, 2020). UBI provides management of 
multiple flexible volumes that consist of several consecutive logical 
erase blocks (LEB). LEBs are dynamically mapped to physical erase 
blocks (PEB) within the MTD layer, thus providing an address trans
lation functionality. Various other flash-related mechanisms such as 
wear-leveling, bad block handling and scrubbing are also implemented 
within the UBI layer. 

The address translation feature of UBI is shown in Fig. 3: LEBs within 
the UBI layer are dynamically mapped to PEBs in the MTD layer. Bad 
blocks are transparently handled by UBI and its wear-leveling 

mechanism aims to evenly distribute erase operations across PEBs by 
transferring the contents from an underused PEB to a free one that has 
undergone a higher number of erasures compared to other blocks3. 

UBI attaches two additional headers to a PEB in order to implement 
its mechanisms, as shown in Fig. 4: an erase counter header (EC) and a 
volume identifier header (VID). The EC header is used by the wear- 
leveling subsystem of UBI. Its magic bytes of value 0x55424923 
(ASCII “UBI#”) are of particular importance in the context of digital 
forensics, as they mark the start of an LEB, thus they enable the iden
tification of all available LEBs within a device. Further information can 
then be derived from the additional VID header, which stores a volume 
ID to indicate to which volume the LEB belongs to, and an LEB number 
to indicate the particular mapping between LEB and PEB. Respectively, 
this information can be found in its vol_id and lnum fields. Similar to 
the EC header, the VID header has magic bytes of value 0x55424921 
(ASCII “UBI!”). 

While the EC header is always available (unless there are faulty 
conditions), the VID header can be missing if a PEB is currently not 
referenced by an LEB. UBI’s volume management is implemented by 
providing a reserved volume with ID 0x7fffefff and name layout 
volume. Hence, it can be identified by scanning for LEBs and comparing 
their vol_id. That way, all available UBI volumes can be identified. As 
instances of UBIFS reside within UBI volumes, it may occur that multiple 
UBIFS instances are present across multiple UBI volumes. 

The UBI File System builds on the UBI layer, relying on its mecha
nisms such as the translation of LEBs to PEBs. Unlike its predecessor 
JFFS2, UBIFS stores the file-index on flash, enabling the mounting of 
large flash memories as the index is not limited to the size of the RAM 
anymore. However, UBIFS introduces additional complexity in man
aging the on-flash index. Its file-index structure is realized by a B+-Tree, 
which is a specific kind of balanced search tree that is not limited to two 
children per node. The amount of a node’s children is given by its 
branching factor, also called fanout. Per default, UBIFS utilizes a fanout 
of eight. Compared to a regular B-Tree, a B+-Tree strictly keeps data in 
leaf nodes only. Inner nodes, also called indexing nodes, are used to store 
keys and pointers. UBIFS’ file system objects can therefore be found in 
leaves. Fig. 5 illustrates the structure of a B+-Tree in UBIFS with a fanout 
of three. It is noteworthy that index nodes and leaf nodes are strictly kept 
in separate erase blocks on flash. 

UBIFS distinguishes between 14 different node types. Every node 
type has distinct purpose with varying forensic relevance. All nodes have 
a common header (ubifs_ch), which contains magic bytes of value 
0x06101831 within its field magic. This enables a straightforward 
scanning approach: every available node can be found by searching for 
common headers, which can then be further processed depending on 
their concrete node type stored in the common header’s node_type 
field. Each node within the B+-Tree has a unique key. Even though 

Fig. 2. Architecture of UBIFS (Bharadwaj and Singh, 2019).  

Fig. 3. UBI layer: mapping LEBs to PEBs.  
Fig. 4. UBI headers attached to a PEB.  

3 https://bootlin.com/blog/managing-flash-storage-with-linux/ubi/. 
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UBIFS provides the ability of using multiple key schemes, the only 
available one is the Simple key scheme shown in Fig. 6: keys consist of 64- 
bits divided into inode number (32-bits), key type (3-bits) and variable 
content that depends on the type of node (29-bits). 

UBIFS adheres to the Linux Virtual File System (VFS) abstraction, 
hence providing structures needed to integrate with it. One central 
structure of VFS being inodes. The VFS inode structure (struct inode) 
is wrapped by UBIFS in its ubifs_inode_node node. Thus, many 
digital forensics relevant artifacts found within the original inode 
structure such as MAC (Modification, Access, Change) timestamps are 
also available in UBIFS. Regarding timestamps, there is one notable 
difference: the access timestamp is not written by default to prolong the 
flash’s lifetime. Even though the timestamp is not updated, a test 
showed that it is initially written on file creation, thus it can be used to 
derive a file’s creation time. Besides the inode node, there are several 
other forensic relevant node types: 

Directory Entry Node A directory entry node (ubifs_dent_node), or 
dent for short, associates an inode number with a name/directory. In 
UBIFS, the root directory is associated with inode number 1. Generally, 
there are two inode numbers associated with a dent node: an inum refers 
to the inode number of the file (or directory) that the dent node is 
associated with, while the inode number encoded in the first 32-bits of 
the key is the inode number of the parent directory (enabling the 
recursive determination of the full path). 

Data Node A data node (ubifs_data_node) resembles a chunk of 
data that an inode is associated with. By default, a single data node can 
store the maximum amount of 4096 bytes, defined by the constant 
UBIFS_BLOCK_SIZE in linux/fs/ubifs/ubifs-media.h. The last 29-bits 
of a data node’s key are reserved for its block number, indicating 
which specific chunk of a file it is. 

Master Node Master nodes (ubifs_mst_node) record important po
sitions such as the location of the root index node of the B+-Tree. 

UBIFS is divided into areas that have distinct LEB locations, set 
during file system creation. Fig. 7 provides an overview of all areas. 

For digital forensics, the Log Area is of particular importance. The log 
is part of the journal. The main goal of the journal is to reduce the 
number of write accesses to the flash. Generally, UBIFS utilizes a wan
dering tree mechanism to implement its out-of-place update mechanism: 
every time a node within the tree is updated, it is written to another, 
empty space. As its parent node’s reference to the node is now outdated, 
it is also updated in similar fashion. Hence, nodes are updated out-of- 
place by also updating all nodes along their parent chain. To minimize 

these cascading write accesses to the flash, the journal acts as write 
cache. All changes to the file system are buffered to the journal before 
updating the tree. Once the journal reaches a certain size threshold, a 
commit operation is performed, updating all nodes within the file-index 
tree based on the contents of the journal. This has grave implications for 
forensics, as mere traversal of the file-index tree would miss files 
currently only buffered within the journal. As of time of writing this 
paper, we could not identify any other open-source tool that analyzes 
the journal. The log as part of the journal contains so-called reference 
nodes. Reference nodes point to LEBs in the main area containing nodes 
of the journal. Such nodes can be inode nodes, data nodes and so on. The 
referenced LEBs are also called buds. Fig. 8 illustrates this concept. 

File deletions and truncations are also buffered within the journal. 
The handling of file deletions varies depending on whether it involves 
the deletion of an inode or a directory entry. If an inode is deleted, an 
inode node with a link count of zero is written to the journal, basically 
resembling a deletion marker. Upon journal commit, during processing 
of the deletion marker, the corresponding inode and links pointing to it 
will be deleted. Directory entry deletions are handled similarly. A 
directory entry node is written to the journal with its inode number set 
to zero, also resembling a kind of marker. For truncations, specific 
truncations nodes (ubifs_trun_node) are written to the journal. Old 
inode and directory entry deletion markers within the journal can be 
recovered unless the GC has cleaned them, owing to the out-of-place 
mechanism that preserves old data. Generally two approaches can be 
used to find such markers. 

First, the file-index can be completely disregarded, essentially 
scanning the whole image. This brute-force approach is straightforward, 
as it would simply parse every node in the main area. A parsed node can 
then be checked whether it is an inode node with a link count of zero or a 
directory entry node with an inode number of zero. The second 
approach uses structures of the file system to find obsolete nodes. For 
instance, old reference nodes within the log may be used to find already 
committed buds. This approach is not very promising, as a new, empty 
log LEB is used after a commit. Thus, the old log LEB containing obsolete 
reference nodes is very likely already unmapped and scheduled for 
erasure. 

The quantity of remaining relevant obsolete nodes depends on the 
GC. If UBIFS runs out of space, the GC follows a greedy approach to turn 
dirty space, i.e., space occupied by obsolete nodes, into free space. It 
finds the LEB that has the most dirty space via the LEB property tree 
(LPT). The LPT stores per-LEB information such as their free and dirty 

Fig. 5. UBIFS B+-tree.  

Fig. 6. Simple key scheme.  

Fig. 7. Areas in UBIFS.  

Fig. 8. UBIFS journal.  
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space. The GC itself is implemented in linux/fs/ubifs/gc.c. Its function 
ubifs_garbage_collect (line 670) is used as entry point. It is called 
from several other places:  

⋅ In the journal implementation journal.c (line 142) if no free space 
is available when trying to allocate space for it.  

⋅ In recovery.c (line 1193) to allocate a new empty LEB to be used 
by the GC in the case of a recovery.  

⋅ In budget.c (line 72). The file budget.c is an implementation of 
the budgeting subsystem in UBIFS. The budgeting subsystem is used 
to determine how much free space is available. This is, for instance, 
used to assure that a RAM cache never grows bigger than the avail
able space on flash. This process is further complicated due to 
various reasons in UBIFS. One reason being that UBIFS performs on- 
the-fly compression. 

In summary, the GC operates passively, only being used when there 
is no more available space on flash during allocation processes. There is 
another edge case in which LEBs with obsolete data are erased. If an LEB 
consists of only dirty and free space, it is considered a freeable LEB. A 
freeable LEB can safely be erased, as it contains no more valid data. The 
erasure of freeable LEBs happens whenever the journal is committed via 
the do_commit function in linux/fs/ubifs/journal.c (line 97). This 
function, among other things, invokes the GC’s ubifs_gc_

start_commit function in linux/fs/ubifs/gc.c (line 876). The func
tion’s purpose is to unmap and therefore erase all freeable LEBs, causing 
notable implications for the recoverability of deleted data. Suppose a file 
is deleted, and its contents are contained within LEBs that become 
freeable. Consequently, the file cannot be recovered anymore, as the 
resulting freeable LEBs will be erased. 

3. The concept of the UBI Forensic Toolkit 

UBIFT provides various functionality to explore and analyze the UBI 
File System, including methods to restore deleted files based on the 
previously mentioned structures. Its architecture is based on the estab
lished concepts of TSK (especially the use of abstraction layers) by Brian 
Carrier (2003). As data in its most basic form is only available as 
collection of bits and bytes, a complexity problem arises. Carrier solves 
this issue by introducing layers, each layer interpreting data at a higher 
abstraction level. Thus, data can be viewed either at the lowest 
abstraction level as bits and bytes if necessary, or at higher abstractions 
like the file system level as files or other file system related structures. 

Carrier’s original concept is heavily biased towards traditional block 
based file systems, therefore we adapted it to fit FFS. One particular 
issue was the need for an additional layer to encapsulate UBI, as it is a 
layer not found on traditional file systems. Fig. 9 shows our adapted 
concept. The lowest accessible layer is the Memory Technology Device 
(MTD), providing access to physical erase blocks which can be further 
divided into pages with possibly additional out-of-band areas. Instances 
of UBI reside in MTD-partitions and finally instances of UBIFS are con
tained within UBI volumes. 

The layers are taken as basic building blocks for the implementation 
of our tool. We decided to implement a standalone tool instead of 
extending TSK, as it lacks internal structures for the representation of 
flash specific structures. Reviewing the TSK source code revealed chal
lenges in extending it to work with FFS like UBIFS, primarily due to its 
inherent bias towards traditional file systems. Adapting TSK would 
require extensive changes, which was out of scope for this project. 
Nevertheless, as our implementation adheres to the concepts of TSK, 
there is the possibility that it may be integrated into TSK in the future, or 
it may remain as a standalone framework for flash file systems, resulting 
in a flexible compromise. 

4. Implementation 

In this section we provide details on how we put our concept from 
Section 3 into practice. We make use of Python 3 for the implementation 
of our tool. 

Much like TSK, UBIFT organizes its commands into layers using 
prefixes and suffixes. The prefix signifies the layer, while the suffix 
specifies the command to be executed. The currently available com
mands are detailed in Table 1. Refer to Section 2.2 for a detailed 
description of the different UBI layers and to Section 5.1 for a sample use 
of various UBIFT commands on a sample flash dump. 

Most commands support specifying an additional scan or deleted 
parameter. These parameters cause UBIFT to utilize the previously 
mentioned scanning mechanism, instead of traversing the file-index, to 
find nodes that are not part of the B+-Tree anymore, i.e., deleted content. 
The deleted differs from the scan parameter in that it exclusively 
shows nodes not found within the B+-Tree, while the other parameter 
includes those within the tree as well. Listing 4.1 shows an exemplary 
invocation of the fls command plus the deleted parameter. 

Notable commands in the context of file recovery are fls and ils, 
respectively. As in TSK, fls outputs information about file names and 
metadata addresses. Listing 4.1 shows a sample use of fls to extract 
deleted files from a sample flash dump, where the type, metadata 
address, parent directory and file name are output, respectively. As all 
extracted files are deleted, we assign an inode address of zero to them. 

Fig. 9. UBIFT abstraction layers inspired by (Carrier, 2003).  

Table 1 
Available UBIFT commands.  

Prefix Suffixes Prefix Suffixes 

mtd ls, cat fs stat 
peb cat i ls, cat, stat 
ubi ls, cat f ls, find 
leb ls, cat j ls  

M. Deutschmann and H. Baier                                                                                                                                                                                                               
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Listing 4.1. Exemplary fls output. The inode number of zero is a marker for 
deleted directory entries within the journal. 

ils offers a comprehensive overview of all available inodes within 
UBIFS and displays important forensic metadata such as user/group IDs, 
timestamps, file type (a sample output of ils for an Internet camera is 
depicted in Listing 5.4). When used in conjunction with the optional 
deleted parameter, a tabular view of deleted inodes is obtained, of
fering valuable insights into their metadata. 

UBIFT provides two additional commands for convenience and 
further analysis: 

ubift_info This command presents information on the recover
ability of deleted inodes. It calculates the cumulative amount of deleted 
data by summing up the size field values for each identified deleted 
inode. 

ubift_recover This command enables the convenient export of 
all files (including deleted ones) from an image into a local directory. 

We streamline the UBIFT process through our Autopsy plugin, which 
seamlessly integrates with the UBIFT CLI in the background. By 
leveraging the ubift_recover command for image processing, the 
plugin efficiently handles the entire procedure. This involves copying 
the provided image to a temporary folder, executing the UBIFT CLI, and 
capturing its output as a comprehensive report appended to the Autopsy 
case. Thus, digital forensics practitioners can utilize the familiar Autopsy 
file browser for a user-friendly investigation. Tested with Autopsy 
4.20.0, the plugin is available for review on https://github.com/matth 
ias-deu/ubift. 

5. Evaluation 

We present a twofold evaluation of our tool UBIFT. First, in Section 
5.1, we apply UBIFT to a publicly available flash dump of a Foscam R2 
camera4 to demonstrate its practicality and value in digital forensics 
investigations. Second, in Section 5.2 we provide a methodology of 
creating scenario-based adaptable flash dumps in Linux together with 
the respective ground-truth. We generate diverse dumps to minimize the 
likelihood of potential implementation errors, demonstrating the 
robustness of UBIFT and highlighting its superiority to competitors like 
the UBI Reader (GitHub, 2023-08-13b). 

UBIFT also underwent additional evaluation in collaboration with a 
third party within a confidential security research project. This 
comprehensive evaluation involved a complete hardware forensics work 
cycle, encompassing the chip-off process of a commercial drone’s NAND 
flash and subsequent analysis of the extracted data using UBIFT. The 
project served as a primary reference for defining UBIFT’s feature set 
and established a baseline for its capabilities. In contrast to UBIFT, both 
UBI Reader and UBIFS Dumper failed to work correctly with the chip-off 
dump. Because disclosing detailed information on this depends on the 
lifting of a confidentiality agreement, we are planning to conduct further 
UBIFT evaluations on additional open data sets in the future. 

5.1. Use case study 

The flash dump of the Foscam R2 camera is provided as several bi
nary files, one for each MTD partition. As it is rather uncommon to know 
the actual MTD partitioning of an acquired flash dump beforehand, we 
concatenate each binary file, increasing the difficulty imposed on our 
tool. 

We initiate the analysis of the flash dump by employing the mtdls 
command to identify all MTD partitions, encompassing those housing 
UBI instances. The results are presented in a comprehensive tabular 
format. An overview of the Foscam partitioning determined by UBIFT is 
shown in Listing 5.1. A partition designated as Unallocated signifies the 
absence of UBI, though it may still contain other data, such as a 

bootloader. For further manual analysis, such partitions can be extracted 
using the mtdcat command. 

Listing 5.1. UBIFT mtdls output.  

Subsequently, the UBI instances that have been identified can un
dergo more in-depth analyses, involving the exploration and analysis of 
their UBI volumes or individual LEBs. Similar to the mtdls command, 
the ubils command provides a comprehensive overview of available 
UBI volumes within the analyzed UBI instance. Listing 5.2 shows the 
existence of a dynamic (i.e. writable) UBI volume within the UBI 
instance starting at PEB 213. 

Listing 5.2. UBIFT ubils output.  

On the next abstraction layer the identified UBI volumes can be 
subject to a more granular investigation utilizing one of UBIFT’s diverse 
commands designed for performing analyses on the file-system layer. An 
investigator may seek to obtain a comprehensive overview of all files 
that can be found via scanning approach, including all recoverable files, 
in order to retrieve important evidence. 

An illustrative example of this process is shown in Listing 5.3, which 
demonstrates the usage of the fls command used in conjunction with the 
scan option. The tabular overview provides investigators with a 
comprehensive view of available files. An inode number of 0 serves as a 
clear indicator that the corresponding directory entry has been deleted. 
As demonstrated in Listing 5.3, our scanning approach unveils the ex
istence of a bash history file .ash_history. Remarkably, this file 
remained undetected by the UBI Reader and UBIFS Dumper, under
scoring UBIFT’s distinctive scanning technique. The bash history is an 
important artifact in digital forensics investigations, as it provides a 
record of commands executed by users, offering valuable insights into 
their activities, intentions, and potential evidence of malicious actions 
or system compromises. 

Listing 5.3. UBIFT fls output.  

More information, including important metadata like timestamps, 
can be obtained using the ils command. Similar to fls, the command 
will output a comprehensive table as shown in Listing 5.4. It is worth 
noting that after the initial identification, a total of 18 data nodes can 
still be recovered from the previously identified bash history associated 

4 https://github.com/timawesomeness/foscam-r2-fw. 
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with inode number 4025. 

Listing 5.4. UBIFT ils output (truncated).  

Finally, the contents of the bash history can be retrieved using the 
icat command, as shown in Listing 5.5. We see that the user opened a 
bash shell and inspected the system files showing all users (/etc/ 
passwd) and their respective hashed credentials (/etc/shadow). 

Listing 5.5. UBIFT icat output.  

UBIFT stands out from other tools like the UBI Reader and UBIFS 
Dumper not solely for its capability to retrieve information about 
deleted inodes, but also for its structured examination features, which 
collectively play a pivotal role in recovering evidence that could ulti
mately lead to identifying and apprehending a perpetrator. 

As a manual analysis requires some degree of knowledge about the 
file system, we provide an Autopsy ingest module. The plugin facilitates 
graphical exploration of all available files, including recoverable deleted 
files. In Fig. 10, a visualization in Autopsy of recoverable files within 
UBIFS of the first UBI instance is presented. The seamless integration of 
UBIFS into Autopsy empowers investigators, even those without prior 
knowledge of this file system, to conduct purposeful and effective 
forensic examinations. To the best of our knowledge, no other tool 
currently offers a graphical interface for UBIFS. 

5.2. Artificial flash dumps 

Since publicly available flash dumps of embedded devices are sparse, 
we propose a methodology for creating artificial flash dumps that can be 
used for the evaluation of arbitrary tools. The methodology relies on 

open-source tools available within the mtd and mtd-utils Linux 
packages. The mtd package contains the nandsim module, capable of 
simulating NAND flash in RAM with various options. Listing 5.6 shows 
the command necessary to emulate a 16 MiB NAND flash with a page 
size of 512 Bytes. 

Listing 5.6. nandsim Linux module and dmesg output.  

After creation of the flash in RAM our methodology contains the 
following steps:  

1. Create an arbitrary amount of UBI instances within the MTD device 
using the ubinize tool within mtd-utils. The ubinize tool re
quires a config file as parameter which describes the volumes in the 
UBI instance. Contents of a volume can be specified in the config file 
using the image parameter. 

2. Either create a UBIFS image beforehand and supply it to a UBI vol
ume via the image parameter, or directly format UBI volumes. Both 
is achieved using the Linux mkfs.ubifs tool.  

3. UBI may be attached used the ubiattach tool within mtd-utils, 
to mount available UBIFS instances within UBI volumes. Once 
mounted, the file system can be manipulated to create artificial crime 
or testing scenarios.  

4. Dump the contents of the MTD device into a file, so it may be used for 
evaluation. This is done via nanddump tool of mtd-utils. 

In order to streamline the process, we offer a Python script that au
tomates the majority of the tasks involved. It can be found in the ubigen 
folder of our repository.5 It is implemented as a CLI offering the 
following sub-commands: 

create Creates a NAND device in RAM, followed by generating an 
arbitrary folder structure using names extracted from an external text 
file. A subsequent loop randomly selects and places files from the local 
directory into corresponding folders, ensuring a diverse arrangement. 
Currently, the random seed value responsible for the process cannot be 
altered, but the number of files taken can be supplied via file_count 
parameter. The created folder structure forms the root directory for the 
subsequently generated UBIFS image, for which a UBI instance con
taining one volume is then created. 

mount Takes the path to an image and attempts to mount it. Using 
the previously created UBI image file via create, this creates the device 
/dev/ubi0_0, which will be mounted as UBIFS at the mount point /mnt. 
A forensic practitioner may then manually manipulate its contents. 

simulate Simulates a specified number of random file deletions 
and copies, determined by a count parameter, on a given mounted 
UBIFS instance. This can be used to evaluate the recoverability of 
deleted files by producing obsolete data on flash, so that the GC is forced 
to become active. Thus, it facilitates the evaluation of the extent to 
which the GC affects the recoverability of deleted files. Currently, the 
operations are only displayed on the console. In future script iterations, 
incorporating a comprehensive log to track the ground truth, detailing 
the files copied and deleted, would be beneficial. Presently, the user 
cannot set the random seed here either. 

In Listing 5.7, we provide an excerpt of the mount command’s 

Fig. 10. Recovered files in Autopsy.  5 https://github.com/matthias-deu/ubift. 
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implementation, wherein the requisite Linux tasks are programmatically 
invoked. This automation simplifies tasks, enabling users to perform 
them without delving into technical details. Similarly, the other com
mands allow users to focus on essential image creation tasks, avoiding 
technical intricacies. 

Listing 5.7. Excerpt of the mount command’s implementation in ubigen.  

The commands are designed so that multiple forensic scenarios may 
be created. A user can employ the create command to generate a 
foundational image, subsequently utilizing the mount command for 
mounting and customizing it according to distinct use-case scenarios. 
These resultant scenarios not only serve as valuable test environments 
for forensic tools but also as invaluable educational assets for aspiring 
forensic practitioners. 

As of now, the script is limited. Parameters such as the geometry of 
the created NAND in RAM are hard-coded. Nevertheless, it proved to be 
a valuable factor in the evaluation of our tool. Further development can 
potentially benefit many projects related to flash. In future iterations, 
there is potential to elevate the tool’s capabilities by extending support 
to various flash file systems, while also providing flexibility for users to 
customize the flash and file system geometries according to their specific 
requirements. 

5.3. Related tools 

Lastly, we compare UBIFT to two of the most established tools on 
GitHub which provide similar functionality. 

UBI Reader (GitHub, 2023-08-13b): The UBI Reader is a Python 
module and script collection designed for extracting data and analyzing 
UBI/UBIFS images. The extensive array of standalone scripts within the 
UBI Reader presents challenges in terms of usability. To accomplish 
specific tasks, users must initially locate the relevant script and explore 
its functionality, introducing potential complexity. When applied to an 
artificially generated flash dump devoid of structural errors, UBI Reader 
produces outcomes akin to those of UBIFT. Using its script ubir
eader_extract_files on the Foscam dump, it creates three folders 
containing the UBI/UBIFS instances with their respective files, similar to 
the UBIFT ubift_recover command. Nevertheless, UBI Reader lacks 
features for the recovery of deleted files and does not consider the file 
system journal—a known issue documented on the author’s GitHub 
page. Consequently, uncommitted data within the journal that is 
potentially crucial to digital forensics investigations remains over
looked, possibly resulting in the omission of evidence crucial to the 
success of an inquiry. As an illustration, our attempts to recover the 
previously mentioned bash history from Section 5.1 using UBI Reader 
proved unsuccessful. 

UBIFS Dumper (GitHub, 2023-08-13a): The UBIFS Dumper is pro
vided as a single Python script that is implemented as a CLI. It provides 
the functionality to view or extract the contents of UBIFS images. 
However, when employed on the Foscam dump, the tool encounters 
issues, yielding the output message Unknown file type. Conversely, it 
operates effectively when used on a single MTD partition, implying a 
possible limitation in handling multiple UBI instances. Furthermore, 
similar to the UBI Reader, the tool lacks journal support, rendering it 
unable to recover deleted files. 

In summary, UBIFT distinguishes itself from tools such as the UBI 
Reader and UBIFS Dumper by introducing novel features and 
capabilities: 

UBIFT is based on established TSK layer concept Incorporating 
concepts from Brian Carrier’s Sleuth Kit aims to enhance the acceptance 
of UBIFT within the digital forensics community. However, integrating 
it into The Sleuth Kit appears questionable at present, given the addi
tional layers introduced by the UBI ecosystem. 

Comprehensive recovery of deleted files UBIFT sets itself apart as 
the only currently available tool that enables the recovery of deleted 
files by leveraging the journal of UBIFS. UBIFT’s distinctive scanning 
mechanism enables the recovery of data that other methods, such as 
relying solely on file index tree, fail to uncover. 

Ease of use UBIFT prioritizes usability, making it a standout choice 
for digital forensics practitioners, as it offers a streamlined solution with 
a unified CLI and an integrated Autopsy plugin. 

6. Conclusion and future work 

In this paper, we presented UBIFT, a Python toolkit providing the 
ability to perform in-depth digital forensics evaluations on UBIFS. We 
showed that UBIFT enables a structured analysis of an image while being 
compliant with established concepts introduced by Brian Carrier. We 
further provided an analysis and evaluation of UBIFS, highlighting the 
fact that deleted data can be recovered due to its journal and the out-of- 
place update approach generally employed by flash file systems. To the 
best of our knowledge, no other tool is capable of recovering deleted 
data in UBIFS. 

However, there are several limitations. First, UBIFT is not able to 
handle all kinds of flash dumps, e.g., flash dumps that contain erroneous 
structures or bit flips may cause unforeseen issues. This is a consequence 
of UBIFT mainly being tested with self-created dumps containing no 
erroneous structures whatsoever. Many edge cases such as encrypted 
instances of UBIFS have not been tested either. In future works, we aim 
to enhance the robustness and versatility of UBIFT by subjecting it to a 
more comprehensive array of data sets, including those featuring edge 
cases such as erroneous structures or encrypted instances of UBIFS. 

Second, we plan to extend the capabilities of UBIFT beyond its cur
rent support for UBIFS. Drawing inspiration from related works, such as 
the forensic analysis conducted by Zimmermann et al. (2012) on 
YAFFS2, we envision the evolution of UBIFT into a versatile tool capable 
of supporting various flash file systems. 
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