
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 11209–11223
November 12-16, 2024 ©2024 Association for Computational Linguistics

ITER: Iterative Transformer-based Entity Recognition and Relation
Extraction

Moritz Hennen1,2 Florian Babl1

1University of the Bundeswehr Munich, Germany
2Ludwig Maximilian University of Munich, Germany

{moritz.hennen,florian.babl,michaela.geierhos}@unibw.de

Michaela Geierhos1

Abstract
When extracting structured information from
text, entity recognition and relationship extrac-
tion are essential. Recent advances in both
tasks generate a structured representation of
the information in an autoregressive manner,
a time-consuming and computationally expen-
sive approach. This naturally raises the ques-
tion of whether autoregressive methods are nec-
essary in order to achieve comparable results.
In this work, we propose ITER, an efficient
encoder-based relation extraction model, that
performs the task in three parallelizable steps,
greatly accelerating a recent language modeling
approach: ITER achieves an inference through-
put of over 600 samples per second for a large
model on a single consumer-grade GPU. Fur-
thermore, we achieve state-of-the-art results
on the relation extraction datasets ADE and
ACE05, and demonstrate competitive perfor-
mance for both named entity recognition with
GENIA and CoNLL03, and for relation extrac-
tion with SciERC and CoNLL04.

1 Introduction

In recent years, there has been a shift towards the
use of autoregressive methods in many common
natural language processing (NLP) tasks. In par-
allel, there has been an increasing focus on ap-
proaching NLP tasks such as relation extraction
or (nested) named entity recognition as structured
prediction problems. Given a sequence of textual
input, a given model autoregressively generates out-
puts that encode the structure contained in the input,
providing flexibility since the source and target vo-
cabularies do not need to have any commonalities.

Flattening the output structure into a single
string, preserving the structure information in the
input, and using an autoregressive model to learn
to generate this adapted target language (Cabot and
Navigli, 2021; Paolini et al., 2021), is an implicit
approach known to work well across task bound-
aries (Raffel et al., 2020). However, representing

the structured output as a string introduces addi-
tional complexity when modeling intra-structure
dependencies (Liu et al., 2022). More recently, Liu
et al. has proposed restricting the autoregressive
model to explicit generation of the output structure.

However, since inference cannot be parallelized
across the sequence dimension, language modeling
approaches are prone to low throughput, especially
as model size increases (Pope et al., 2022). To
counteract this effect, a smaller output sequence
length is of critical importance. For ASP (Liu et al.,
2022), the output is always at least as long as the
input, leading to poor real-world performance (see
Eq. 1 in Appendix C). While scaling the model size
from hundreds of millions to billions of parame-
ters provides performance gains for Liu et al., this
scaling may become infeasible in terms of both
computational requirements and throughput when
using these large models in production.

This raises the natural question of whether a
non-autoregressive process capable of generating
such an output structure can achieve similar perfor-
mance while addressing the aforementioned limita-
tions of language modeling approaches. This paper
presents ITER, an encoder-only transformer-based
relation extraction model that addresses the limi-
tations of state-of-the-art architectures and shows
that the structured prediction problem can be ap-
proached without language modeling goals.

In summary, the main contributions we have
made are as follows:

1. We present ITER, a transformer-based,
encoder-only relation extraction model. In-
stead of using a language modeling target, our
model generates the structured output in three
basic steps. We show that this encoder-based
approach achieves competitive performance
compared to language modeling architectures,
while retaining only a fraction of the num-
ber of parameters and increasing the inference
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throughput by up to a factor of 23, to more
than 1,000 examples per second.

2. In our experiments, we find that the trained
FLAN T5 encoder is as powerful as encoders
from the BERT family, which motivates fur-
ther research in this direction.

3. We set a new state of the art for relation ex-
traction on ACE05 and ADE, 71.9 (+1.4) and
85.6 (+1.8) F1 respectively, while being com-
petitive on CoNLL04, SciERC, GENIA and
CoNLL03, especially considering a signifi-
cantly smaller model size and higher through-
put. For named entity recognition, we set
a new state-of-the-art of 91.9 and 92.2 on
ACE05 and ADE.

4. We publish our implementation and check-
points on GitHub1: https://github.com/

fleonce/ITER.

2 Related Work

The goal of relation extraction (RE), sometimes
also referred to as end-to-end relation extraction
or joint entity and relation extraction, is to iden-
tify the names and types of named entities, within
a given text, as well as to classify the relation-
ships between these entities (Grishman and Sund-
heim, 1996; Zhao and Grishman, 2005). Initial
approaches to relation extraction have been to split
the task into named entity recognition (NER) and
relation classification, where the named entities are
identified first, while the relationships between the
found named entities are then classified in a second,
separate stage that is being learned independently.
This pipeline-based approach is known to be prone
to error propagation (Sui et al., 2020; Zhong and
Chen, 2021). Because of this known limitation,
joint approaches modeling both tasks simultane-
ously have been introduced and have shown promis-
ing results (Gupta et al., 2016; Wang and Lu, 2020;
Miwa and Bansal, 2016).

2.1 Span-based Techniques

Table-filling or span-based strategies have been and
continue to be viable approaches to modeling RE
and related tasks (Gupta et al., 2016; Wang and Lu,
2020; Joshi et al., 2020; Tang et al., 2022; Zara-
tiana et al., 2024). Recent examples of this include

1Model checkpoints are linked there and have been up-
loaded to https://huggingface.co/fleonce/

DiffusionNER (Shen et al., 2023b), PL Marker (Ye
et al., 2022) and UniRel (Tang et al., 2022). Diffu-
sionNER formulates NER as a diffusion problem,
allowing overlapping entities to be decoded from
textual input in a fixed number of diffusion steps.

PL Marker uses two types of packing strate-
gies to identify spans from the set of all possible
spans, up to a defined maximum length, and their
interactions. Markers are inserted into the input
sequence that cannot be attended to by classical
tokens, but can be attended to everywhere. Con-
trolling the number of markers needed to model
the interactions in an input is a key challenge for
the authors, since increasing the input length for
a transformer leads to a quadratic scaling of the
inference time (Ye et al., 2022). UniRel combines
the input text and unique tokens for each relation
type to build an interaction map that models the
relationships between spans. This approach can
become increasingly complex when dealing with
common multi-token spans, as three types of inter-
action maps are then required. The computation
of interaction maps for UniRel scales quadratically
with the sum of the input size and the number of
relation types.

The main criticism of span-based approaches is
the increased design complexity, compared to lan-
guage modeling approaches, due to the abstraction
of most of the design complexity from the models
to the target language.

2.2 Autoregressive Techniques
Modeling the task as a seq2seq problem has
become the state of the art for RE in recent
years (Cabot and Navigli, 2021; Wang et al., 2022;
Paolini et al., 2021; Liu et al., 2022; Fei et al.,
2022; Lu et al., 2022; Zaratiana et al., 2024). How-
ever, the primary concern in using this method is
the sacrifice in model throughput: the inference
time of such pre-trained language models (PLMs)
scales quadratically with the input length. While
encoding-based models often require only one
pass through the encoder, PLMs require one pass
through the decoder per generated token (naively),
which cannot be parallelized due to the dependence
on all previously generated tokens.

(m)REBEL (Cabot and Navigli, 2021; Cabot
et al., 2023), TANL (Paolini et al., 2021) and
ASP (Liu et al., 2022) translate the input sequence
into a flattened output string, which in the case
of (m)REBEL also no longer resembles natural
language, but an HTML-like structure, where the
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input text is no longer preserved. This structure has
implications for the interpretability of the model,
since it is unclear which occurrence is referred to in
the output if the entity appears multiple times in the
input. Paolini et al. extends the target output with
information about entity types and relationships to
other named entities. ASP generates a structured
sequence of actions interwoven with the original
input, where three types of actions allow marking
the start and end of spans and linking them together.
Due to the autoregressive nature of the generative
process, Liu et al. need to double the number of
relationship types to properly model the directions
of relationships between spans.

This raises the question whether the structured
prediction method employed by ASP can be per-
formed by an encoder-based, BERT-like model,
without the autoregressive language modeling ap-
proach taken by Liu et al., while improving infer-
ence throughput and maintaining the performance
of the original work.

3 Approach

We base ITER on the work of Liu et al.: To replace
the autoregressive component of their approach
with our inference process, several modifications
to the structured prediction are necessary. We will
divide the process into three basic steps:

(1) First, use is_left (Eq. 4) to identify all posi-
tions n in the input x where a span begins.

(2) After (1), identify all positions m ≥ n in the
input that pair with any of the previously iden-
tified positions n found in (1) using is_span
(Eq. 5), forming named entities. is_span pro-
duces a set of bracket pairs with previously
found left bracket actions [ corresponding
to spans of a given named entity type t ∈ TE

from n to m.

(3) Finally, test for relationships between all pairs
of named entities found in (2) using is_linkλ
(Eq. 7). This function returns a vector of
Boolean values indicating whether a relation-
ship between two spans is present or absent.

To allow an efficient implementation of our
model, each step can be individually parallelized
across the sequence dimension. First, we define the
set of structure-building actions A:

A = { [ , ] }

Our model must be allowed to perform both [
(i.e., marking the possible beginning of a span) and
] (i.e., ending a span) actions at the same time, in

order not to lose model expressiveness. Otherwise,
it will not be able to correctly classify single-token
spans2. Therefore, the structure-building actions
An ⊆ A performed at position n must now be
a subset of A, to allow for this behavior. This
change is reflected in the definition of the optimal
structured output y∗ that our model will learn to
generate: y∗ ∈×N

n=1 Yn. The possible actions Yn
to be performed at step n are defined as follows:

Yn = ℘(A)× ℘(Bn) (1)

where ℘ is the powerset operation.
To properly handle two or more entities ending

at the same position, the bracket-pairing actions
are also present in Yn as a subset of all possible Bn
actions. This change comes in combination with
two adjustments to the definition of Bn itself:

Bn = {n | n
(1)
≤ m ∧ [ ∈ An}

(2)
×TE (2)

At positionm, ITER is allowed to pair [ actions at
positions n ≤ m with position m, circumventing
single-token named entity issues (1, Eq. 2), and
each such individual pairing is allowed to have its
own named entity type t ∈ TE (2, Eq. 2).

3.1 Identifying Named Entities
Before relationships can be determined, spans must
be uniquely identified by their start and end posi-
tions in combination with the type of the named
entity in the input sequence. Prior to each of the
following three generation steps, the input x is
passed to the encoder of the base model, in our
case T5, which produces a sequence of contextu-
alized vector representations h = ⟨h1 . . . hN ⟩ for
x with hn ∈ Rδ, where δ is the dimension of the
latent representations produced by the base model.
All three stages use gated feed-forward networks
of the following form:

FFNψ
κ (ĥ) = ((f(ĥWa)⊗ ĥWi)Wo (3)

where ĥ ∈ Rψδ is the concatenation of ψ δ di-
mensional vectors from ⟨h1 . . . hN ⟩, Wa,Wi ∈
Rψδ×η,Wo ∈ Rη×κ are weight matrices learned

2Consider a single token named entity xi = BERLIN: the
model must be able to determine the span of this entity, since
it ends at the same position where it started. So ai must now
be a set: ai = { [ , ] }.
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Figure 1: Visualization of ITER for nest depth ω = 1. is_left returns two positions where spans start: 1 and
6. is_span then creates pairings of the types person between position 2 and 1, location between position 8 and
6, and state for position 8, a 1-token span. Since only the closest left bracket action is being considered when
ω = 1, is_span looks at the marked (✓) positions 1 and 6 for positions 1 to 5 and 6 to 8, respectively. In this
example, is_link tests the two spans “Barack Obama” and “Honolulu, Hawaii” for relationships. As shown above,
our implementation allows parallelization across the sequence dimension.

during training, f is a nonlinear function, and κ
is the output dimension. ψ = 2 if two vectors
are input (also ψ = 4 for four vectors), otherwise
ψ = 1.

3.1.1 Determine where Named Entities Start
To identify these spans, the model learns to predict
the positions where the spans of named entities
in the input x begin. This task is modeled by the
function is_left (Eq. 4), which takes a latent repre-
sentation hn as input and outputs a Boolean value
bn ∈ B:

is_left(hn) = FFNψ=1
κ=1 (hn) > 0 (4)

At all positions where is_left(hn) is true, the left
bracket action [ is included in the set of actions
An that are performed at position n.

3.1.2 Pair Left and Right Brackets
After determining where spans of named entities
start in the input x, the next step is to determine
which positions xm (m ≥ n) following xn in the
input form a span of named entity type t ∈ TE .
Our model learns a projection is_span that maps
the input position hm to a set of tuples of indices
and entity types (n, t), where each entry corre-
sponds to a pair of spans from n to m of type
t ∈ TE :

is_span : Rδ → ℘(Bn)
is_span(hm) = {(n, t) | stn,m}

(5)

where

stn,m = FFNψ=2
κ=#TE

(hm, hn)t > 0

∧ is_left(hn)

∧ n ≤ m

That is, a pair of positions n ≤ m was identified
as a span pair of type t, where previously hn was
marked as the beginning of a span.

For each position m where the output of Bm =
is_span(hm) is not empty, ITER performs a right
bracket action ] at position m. Each element
(n, t) ∈ Bm determines a pair of a left bracket at
position n with a right bracket at position m of
type t, forming a named entity. If a left bracket
from step one is left unbound, no named entity is
identified. This avoids invalid output artifacts. A
visualization of our model is available in Figure 1.

3.2 Identify Relations among Named Entities

The third step now tests pairs of identified named
entities for their relationship to each other. For the
non-nested case, is_link projects two hidden states
hi and hj onto a vector of non-normalized logits,
similar to probabilities after applying the sigmoid
function (Eq. 6).

is_linkλ : Rδ × Rδ → Bκ

is_link(hi, hj)λ = σ(FFNψ
κ (hi, hj)) > λ

(6)

where λ ∈ [0, 1] , κ = |TR|, ψ = 2. The compari-
son with λ, a decision boundary parameter, is done
on an element-by-element basis. Thus, our model
can predict multiple relationships between any pair
of entities (spans). λ allows you to trade precision
for recall. By default, we set λ = 0.5 as shown in
Figure 2.
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Figure 2: Visualization of the trade-off between RE+
precision and recall for different values of λ on ACE05.
Five different seeds evaluated at the last checkpoint.

At both positions i, j, our model previously per-
formed a ] action. It also paired these two ac-
tions with left bracket actions at positions k, l with
span types ti, tj ∈ TE : ] ∈ Ai, Aj ∧ (k, ti) ∈
Bi ∧ (l, tj) ∈ Bj . is_link returns vectors con-
taining Boolean values for relations between two
entities identified in (1) and (2). During inference,
all combinations of entities found are tested for re-
lationships. The order of the head and tail entities
is important, so is_link(hi, hj) ̸= is_link(hj , hi)
unless a relationship is symmetric.

The abstraction of using only the latent represen-
tation of the last position of the span can no longer
be applied when dealing with nested entities, since
spans are no longer uniquely identified by their last
position. To counteract this, the representation of
the first position of a span is also included:

is_link : R4×δ → Bκ

is_link(h) = σ(FFNψ=4
κ=#TR

(h1 . . .h4))
(7)

where now ψ = 4,h = ⟨hi, ho, hj , hp⟩.

3.3 Training
A key issue in training our proposed model was the
choice of transformer encoder used in our experi-
ments. Since we base our work on the ASP (Liu
et al., 2022) architecture, we ultimately decided
to use the T5 (Raffel et al., 2020) autoregressive
model as the encoder by simply relying on the PLM
encoder stack. In addition, we perform experiments
on several BERT-like encoder models: ALBERT
and DeBERTa.

To avoid error propagation between the three
stages of ITER, the training will include all three
functions simultaneously: is_left , is_span , and
is_link . ITER takes as input a sequence of la-
tent representations h = ⟨h1, h2, . . . , hN ⟩. The

sequence of representations is shared across all
three tasks. The loss function used during training
can be found in Appendix B, in the Equations 10,
12, and 13. To minimize training loss, the model
is encouraged to assign weights greater than zero
to the correct decisions in all three cases, which
affects the decisions made by is_left , is_span , and
is_link .

3.4 ITER versus other Encoders
Since ITER is no longer an autoregressive model,
this motivates the discussion of other, encoding-
based approaches in terms of their differences and
similarities to our model.

Table-filling Approaches: Unlike most previ-
ous approaches, ITER does not recognize entities
with a classical table-filling pipeline, where each
combination of tokens in the input x is tested to be
a named entity (Gupta et al., 2016; Wang and Lu,
2020; Ma et al., 2020; Tang et al., 2022).

Span-based Approaches: The best known and
most powerful span-based approaches include Dy-
GIE++, PURE, and PL Marker (Wadden et al.,
2019; Zhong and Chen, 2021; Ye et al., 2022),
which mostly seem to follow the same basic idea
of creating all possible spans (with up to length
L) and consequently predicting the correct types
(including none). In addition, they use markers to
better teach the model start and end indices. For
instance, in PL Marker a group of levitated markers
is built for each token in the input, and appended
to the input sequence. Each such pair of markers
is able to accompany a subsequence of the whole
input, and there is one pair per possible span with a
maximum span length L depending on the data (Ye
et al., 2022). As a consequence, the input length
increases drastically by about 2NL depending on
L. This increase is also reflected in the throughput
of PL Marker (211.7 samples/s) compared to our
method (392.9 samples/s), as shown in Table 1.

In contrast, ITER identifies named entities in two,
linear time steps, as discussed in the next section.
To the best of our knowledge, and supported by our
experiments, ITER is the most efficient transformer-
based end-to-end relation extraction model.

3.5 Complexity
Here, the theoretical time complexity of our ap-
proach is briefly discussed. As follows from their
definitions, both steps (1) and (2) can be paral-
lelized over the sequence dimension. Since is_left
uses only linear projections and activation func-
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Dataset Architecture Throughput
NAME

# TOKENS MODEL PARAMS SAMPLES/S

WITHOUT CONTEXT:

ACE05 ▷◁
29 / 360 / 135.35

MIN / MAX / AVG

ITER + T5 (large) 410 M 392.908
PL Marker (base) 108 M 211.7
WITH CONTEXT:

ITER + T5 (large) 410 M 158.476
ASP + T5 (large) 745 M 34.826

SMALL MODELS:

CoNLL03
DOCUMENT LEVEL
46 / 1015 / 308.18

MIN / MAX / AVG

ITER + T5 (small) 46 M 156.44
ASP + T5 (small) 61 M 5.6685
LARGE MODELS:

ITER + FT5 (large) 370 M 43.05
ASP + T5 (large) 738 M 1.4981

CoNLL03
SENTENCE LEVEL

2 / 213 / 24.55
MIN / MAX / AVG

ITER + T5 (small) 46 M 3276.12
ITER + FT5 (large) 370 M 512.49
PL Marker (base) 108 M 54.8

SMALL MODELS:

CoNLL04
4 / 173 / 43.84
MIN / MAX / AVG

ITER + T5 (small) 54 M 1040.550
ASP + T5 (small) 64 M 44.459
LARGE MODELS:

ITER + T5 (large) 410 M 605.398
ASP + T5 (large) 745 M 27.177
ASP + T5 (3b) 2.9 B 29.427

Table 1: Comparison of inference throughput of dif-
ferent RE architectures: ITER, ASP, and PL Marker.
Experiments for ITER and ASP were performed on a
single RTX 4090 GPU with a batch size of 64. For
the document level CoNLL03, a single H100 GPU was
used with a batch size of 8. ITER is significantly faster
in inference than ASP and PL Marker, especially when
dealing with longer input lengths such as in CoNLL03.
▷◁: Statistics for ACE05 with additional context; with-
out, ACE05 has 25.21 tokens on average.

tions, its runtime is bounded by the length of the
input sequence h, yielding a linear time complexity
O(N). is_span is optimized to consider only the
ω closest left bracket actions, and in the trivial case
we set ω = 1. For nested named entity records, ω
can be calculated as follows:

ω = max

N⋃

m=1

{
m∑

k=n

r
[ ∈ Ak

z
∣∣∣∣∣(n, t) ∈ Bm

}

for an element of a given record. For ω = 1,
is_span performs one pass through the FFN per
element of the sequence h, thereby yielding a time
complexity O(N) linear in the input length N .
Similarly, ω can be derived for the entire dataset by
taking the maximum value over all samples. Our
choices for ω are also shown in Table 2. For ω > 1,
we have O(N ∗ ω), but ω ≪ N . Since steps (1)
and (2) are performed sequentially, their combina-
tion remains bounded by the sequence length N .

Testing for relationships in step (3) requires testing
all combinations of entities found and thus gives a
quadratic runtime, but not in the sequence length,
but in the number of entities E with E ≪ N . Us-
ing ITER thus gives a complexity of O(N +E2)),
where E is the number of entities.

3.6 Inference Algorithm

Algorithm 1 Inference (no nested entities, ω = 1)
Require: N ≥ 1

Require: x ∈ VN
Require: Transformer : VN → RN×δ

Require: is_span ′(hi, hj) : Rδ × Rδ → Bκ

is_span ′(hi, hj) = FFNis_span(hi, hj) > 0

h← Transformer(x)

a← ⟨0 . . . 0⟩N | is_left(h) ▷ a = Actions

is [ ← {n | 1 ≤ n ≤ N ∧ is_left(hn)}
beforem ← {n | n ∈ is [ ∧ n ≤ m} ∪ {−1}
closestm ← max(beforem)

▷ Collect all span starts before m (for all 1 ≤ m ≤ N )

▷ .. and retrieve the closest span start for position m

is ]
m
← is_span ′(hclosestm , hm)

is ] ∈ BN×κ where κ = |TE |
a← a | (any(is ] , dim=1)≪ 1)

▷ If there is a span of any type, bitshift
to the second bit in actions, denoting
] actions.

ents← {(n,m, t) | is ]
m,t
∧ n = closestm}

combinations← ents× ents
rels← {((n,m, t),∆, (u, v, w)) |

is_link(hm, hv)∆ = True

∧ ((n,m, t), (u, v, w)) ∈ combinations}
return a, ents, rels

In this section, we will briefly describe the in-
ference algorithm for ITER (Algorithm 1), as well
as outline program sections that allow for efficient
parallelization (e.g., across the sequence length di-
mension) during inference. As we will now demon-
strate, inference allows for parallelization over the
entire sequence in the first and second steps (as
outlined in Section 3.5).

The algorithm requires a trained ITER model
and an input sequence x ∈ VN . First, the input
is transformed into a latent representation using
the Transformer model, which can be any dis-
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Dataset Preprocessing from TRAIN DEV TEST ω
OVERLAPPING

ENTITIES

CONLL03 Liu et al. 954 216 231 1 0
CONLL04 Eberts and Ulges 922 231 288 1 0

SciERC Eberts and Ulges 1861 275 551 3 2.7%
ADE Eberts and Ulges 4,272 10%* 10%* 2 1.6 - 4.4%

ACE05 Wadden et al. 5217 1277 1130 1 0
GENIA Shen et al. 16,692 † 1,854 4 21.6%

Table 2: We report the number of samples per dataset split, the choice of ω per dataset and the number of samples
where overlaps do occur. We provide from which paper we took the dataset splits and preprocessing steps. We
count overlaps as entities that begin inside another. (*): There is no official dataset split for ADE, so we use 10-fold
cross-validation with 10% of the total examples. † In the dataset split provided by Shen et al., the training (train)
and development (dev) sets have been merged.

criminative transformer model. In our experiments,
we used microsoft/deberta-v3-*, google/flan-t5-*,
t5-* and bert-large-cased models for testing and
final evaluation. For T5, we used only the original
checkpoint encoder stack for our models. After
the transformation, we start building up the action
vector a ∈ {0 . . . 3}N .

First, we retrieve all positions where our model
has identified a span starting, using is_left and
the latent representation h obtained earlier. This
step can be trivially parallelized, since it does not
depend on any information other than the latent
representation of the respective positions. Using
this information, for each position in the sequence
(beforem) we build sets of preceding positions
where a span begins. Therefore, it holds that ∀n ∈
beforem : n ≤ m. In the case that there are no
nested entities being present (ω = 1), which we
assume to be true in this algorithm, we proceed
to identify the closest span start, again for each
position in the sequence (closestm).

Next, we test for spans of named entities. Using
the position n = closestm of the closest possible
span start at any positionm in the sequence, as well
as the latent information at position m, we then
test for the presence of a named entity between
those two exact positions. The output of is_span ′

is a two-dimensional Boolean matrix M (called
is ] in the algorithm) of size N × κ, where κ is
the number of named entity types #TE . A true
value at position (m, t) indicates a span of type t
between the positions n = closestm and m. If
it holds that ∃t : Mm,t ̸= False (i.e., there is a
span ending at position m of any type), then we
set the second bit in the action vector a to one,
indicating that a right bracket will be placed. Since
the possible beginnings of all spans have already
been determined, closestm can be computed in

parallel, for all positions, and consequently also the
test for the presence of named entities, yielding a
linear complexity for the identification of named
entities.

This is followed by a combination of all named
entities and a test for relationships between pairs of
them, using is_link as well as the latent representa-
tions of the positions where the two spans (n,m, t)
and (u, v, w) end: m and v (where n and u denote
the beginning of the two spans and t and w their
respective named entity types).

4 Experimental Results

In this section, we give an overview of the datasets
used (Section 4.1) followed by a discussion of the
results from our experiments (Section 4.2). Details
of the hyperparameter search we performed can be
found in Appendix D.

4.1 Data

To evaluate our proposed model, we measured its
performance and throughput on a diverse portfo-
lio of six datasets, varying in domain and task:
CoNLL03 (Sang and Meulder, 2003) and GE-
NIA (Kim et al., 2003) were selected for NER,
followed by CoNLL04 (Roth and Yih, 2004),
ACE05 (Walker et al., 2006), ADE (Gurulingappa
et al., 2012) and SciERC (Luan et al., 2018) for
RE. CoNLL03, CoNLL04 and ACE05 contain ex-
amples taken from news articles, GENIA and ADE
have a biomedical domain and contain examples
from Medline abstracts and drug-drug interactions,
respectively. SciERC consists of 500 scientific
abstracts that have been annotated for scientific en-
tities, their relationships and co-references (Luan
et al., 2018). An overview of the selection of our
datasets can be found in Table 2. Following the
literature, we primarily evaluate our model in a
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ARCHITECTURE DATASET

MODEL PARAMETERS ACE05 CONLL04 ADE SCIERC CONLL03 GENIA
TOTAL VS. OURS NER RE+ NER RE+ NER RE+ NER RE+ NER NER

ITER (ours) (∗) (∗)
+ FT5 (large) 393 M 1.0 91.5 70.5 71.1 89.8 75.2 91.6 84.3 63.8 31.5 32.1 91.6 80.2
+ FT5 (xl) 1.3 B ×3.33 91.7 71.9 72.7 90.1 75.6 92.2 85.6 69.1 38.9 40.2 91.8 81.2
+ DeBERTaV3 (large) 476 M ×1.21 91.9 70.8 71.4 91.2 75.9 91.6 84.7 68.1 36.9 38.6 91.8 80.6
+ BERT (large) 340 M ×0.86 88.3 64.5 65.4 87.4 68.0 90.9 82.8 53.2 28.1 ◆ 28.6 77.6
+ SciDeBERTa (full) 436 M ×1.11 68.1 38.4 40.1

ASP
+ T5 (base) 229 M ×0.58 90.7 68.6 - 89.4 73.8 91.8
+ T5 (large) 745 M ×1.89 91.3 69.4 - 89.4 73.8 92.8
+ T5 / T0 (3b) 2.8 B ×7.12 91.3 70.5 - 90.3 76.3

PL Marker (albert-xxlarge-v1) 223 M ×0.56 91.1 - 71.1
PL Marker (scibert-uncased) 110 M ×0.27 69.9 - 41.6
DeepStruct (finetuned) 10 B ×25.1 86.9 66.8 - 90.7 78.3 91.3 83.2 93.1 80.8
ATG (deberta-v3-large) 479 M ×1.21 90.1 66.2 - 90.5 78.5
ATG (scibert-cased) 151 M ×0.38 69.7 38.6
TANL 222 M ×0.57 88.9 63.7 - 89.8 72.6 91.2 83.8 92.0 76.4
REBEL 406 M ×1.03 - 75.4 - 82.2
DiffusionNER 381 M ×0.85 86.9 - - 92.8 - 92.78 81.53
PFN 223 M ×0.56 89.0 66.8 - 91.3 83.2 66.8 38.4 -
UIE 737 M ×1.87 85.8 66.1 - - 75.0 - 36.53 92.99
LasUIE 737 M ×1.87 86.0 66.4 - - 75.3 93.2
Wang and Lu 223 M ×0.56 89.5 64.3 - 90.1 73.6 89.7 80.1
UNIRE (Wang et al.) 110 M ×0.27 68.4 - 36.9
TF-MTRNN unknown 93.6 72.1 86.80
Spert.PL 110 M ×0.27 70.53 39.41

Table 3: Final results for CoNLL04, ACE05, ADE, SciERC, CoNLL03, and GENIA. (∗): PL Marker and Wang
et al. weight the correct symmetry relations twice (Ye et al., 2022), further explained in Appendix F. For a fair
comparison, we also report results using their scoring method. ◆ One of the 5 runs with bert-large-cased diverged.

strict setting for RE: A predicted relationship be-
tween two entities is only considered correct if both
the span and the type of the entity match the gold
standard (RE+). We report micro F1 values unless
otherwise noted.

Models. We use an ensemble of different models
during training, in particular the FLAN T5 (Shen
et al., 2023a) encoders, referred to as FT5, T5 (Raf-
fel et al., 2020), and BART (Lewis et al., 2020).
We also train our model with DeBERTaV3 (He
et al., 2023, 2021), BERT (Devlin et al., 2019), and
ALBERT (Lan et al., 2020).

4.2 Results

Overall, ITER outperforms or is competitive with
the state-of-the-art on all datasets, as shown in Ta-
ble 3 for NER and RE+. In addition, our model
excels in terms of throughput: Our large model
variant ITER + FLAN T5 (large) outperforms the
autoregressive ASP by up to 22× and the encoder-
based PL Marker by up to 12.5×. See Table 1 for
the results of our throughput measurements.

For ACE05, we set a new state of the art of
71.9 F1 for RE+, but with a very large PLM as an
encoder: FLAN T5 (xl) with 1.3 billion parameters.
DeBERTaV3 (large) gave very competitive results

despite it being a 2.7 times smaller model: 70.8 F1
for RE+ and a state-of-the-art of 91.9 for NER. We
also set a new state-of-the-art for the biomedical
dataset ADE, for both NER and RE+ with 92.2 and
85.6 F1, respectively.

On CoNLL04, our model is only outperformed
by ASP + T0 (3b), DeepStruct and ATG with respect
to the strict RE F1 metric. The first two are ×7.12
and ×25.1 larger. For CoNLL03, our model per-
forms in line with the results from ASP, but does
not perform close to the state of the art on this
dataset. In an ablation study, we find that using
the best final checkpoint from CoNLL03 as the ini-
tialization for CoNLL04 increases the final model
performance by an average of 0.6 F1 points. More
details can be found in Appendix E. On both GE-
NIA and SciERC, our model achieves results that
are competitive with the current state of the art.

We conducted experiments with the BART, De-
BERTa, and ALBERT encoders on ACE05. Our
goal was to identify the best fitting pretrained
model for our proposed method. The results of this
investigation can be seen in Table 4 in Appendix A.
Comparing the performance of ITER with these
PLMs, we find that models with relative position
embeddings (T5 family, DeBERTa) to generally
perform better in our setting when compared to

11216



models with absolute position embeddings (BART,
ALBERT).
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Figure 3: Visualization of the throughput of ITER vs.
ASP (autoregressive) and PL Marker (encoder-based).¼ marks ITER, ⋎ marks PL Marker (Ye et al., 2022) and
▷◁ marks ASP (Liu et al., 2022). For the visualization,
we measured on ITER models of different sizes from
15 M to 1400 M parameters. For the largest models (≥
1.3B parameters), we used a single NVIDIA H100 GPU
with a batch size of 8, otherwise we report statistics as
in Table 1.

5 Conclusion and Future Work

In this work, we propose ITER, an efficient, well-
performing relation extraction model. We translate
the autoregressive process of Liu et al. into a con-
stant, easily parallelizable three-step process, while
maintaining the same level of performance and in-
creasing model throughput, especially for longer
sequence lengths. Our model allows us to perform
any kind of structured prediction task with max-
imum throughput (Figure 3) and state-of-the-art
performance. On ACE05, we set a new state-of-
the-art of 71.9 F1 and 91.9 for RE and NER. For
the biomedical dataset ADE, we set a new state-
of-the-art for NER (92.2) and RE+ (85.6). In our
experiments, we find that using the encoders of
generative T5 models can yield model performance
advantages over using discriminative models such
as BERT and ALBERT, while also outperforming
these models in terms of throughput. The only
exception to this finding is DeBERTa, where F1
performance is competitive (RE+) or even better
(NER). However, in terms of model throughput,
the T5 family models still outperform DeBERTa.
We also highlight the advantages of encoder-based
models over generative approaches in terms of

model throughput, with ITER being up to 42 times
faster than the autoregressive state-of-the-art model
ASP. To the best of our knowledge ITER is the first
model to successfully use only the encoder of an
autoregressively trained PLM in this domain, in-
spiring further research in this direction.

One area of future work may be to develop a
large (synthetic) dataset that allows evaluation of
the expressiveness of RE models with respect to
nested entities, since nested entities are a real-world
problem, but existing datasets contain only a small
fraction of such examples (see Table 2). Enabling
zero- and few-shot task transfer for our pretrained
models without further training may be another
area of future work. As discussed earlier, using
the T5 encoder instead of BERT-style models gave
us equivalent training results for us and motivates
a more comprehensive study of the performance
of autoregressive, encoder-decoder models in set-
tings where typically encoder-based models are
employed.

6 Limitations

One limitation of our model is the output of named
entities that are not directly contained in the input
text. However, none of the six datasets used in
this paper contain an example where this problem
occurs. While the three functions is_left , is_span ,
and is_link seem very task-specific at a first glance,
they allow very flexible modeling of first-order rela-
tionships between any kind of spans in all kinds of
span modeling tasks. This includes tasks like coref-
erence resolution and entity linking. Our reference
implementation on GitHub3 includes easy-to-use
scripts to apply ITER to any kind of structured pre-
diction problem.
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A ITER with different PLMs

We investigate the performance of ITER with a
variety of different PLMs: T5, FLAN T5 (FT5),
BART, DeBERTaV3, and ALBERT. The results
can be seen in Table 4.

Transformer NER RE+ Throughput
MODEL F1 F1 SAMPLES/S

ITER +

T5 (large) 91.0 69.4 175.510
FT5 (large) 91.5 70.5 176.056
BART (large) 91.4 68.5 172.871
DeBERTaV3 (large) 91.9 70.8 138.589
ALBERT (xxlarge-v2) 91.4 69.8 36.029

Table 4: Comparing the performance of ITER on
ACE05 using different base models: using encoders
from the autoregressive models (FLAN-)T5, BART,
and the encoder-only models DeBERTa and ALBERT.
Throughput was measured with batch_size = 8 for all
models on a single H100 GPU.

B Training

The log-sum-exp operation LSE : RN → R used
in the following equations is defined as:

LSE N
n=1(x) = log

N∑

n=1

exp (xn) (8)

where x ∈ RN is a vector of real numbers. We
define η = #TE and φ = #TR to hold the num-
ber of entity and relation types. An ∈ An holds

the set of correct actions at position n. Likewise,
Bn ∈ Bn holds the set of correct bracket pairings
at position n.

During training, the model will learn to mini-
mize the following loss function:

LITER =
N∑

n=1

∑


Lis_left(n)
Lis_span(n)
Lis_link (n)


 (9)

is a sum of three loss values for each position in
the input sequence x.

The loss for placing left-bracket actions Lis_left
is defined as follows:

Lis_left(n) = LSE

[
γn
0

]
− LSE

[
Γn

α ∗ −M

]

(10)
using the feed-forward network from Eq. 4, we
define

γn = FFNis_left(hn)

Γn = γn + (1− α) ∗ −M
where hn ∈ R is the real-valued output of the
encoder model for input position n, M →∞.

α =

{
1 iff. [ ∈ An
0 otherwise

is equal to one if the model should perform a [
action at time step n, effectively canceling out one
of the terms in the above equation. Accordingly,
we define L′is_span for a pairing between positions
n and m:

L′is_span(n,m) = LSE

[
πn,m
0

]

−LSE
[
Πn,m + βn,m ∗ −M
(1− βn,m) ∗ −M

] (11)

where M →∞,

πn,m = LSE η
t=1

(
ĥn,m,t

)

Πn,m = LSE η
t=1

(
ĥn,m,t +∆n,m,t

)

using the feed-forward network from Eq. 5

ĥn,m = FFNis_span(hn, hm) ∈ Rη

ĥn,m is a vector containing one logit per entity type
corresponding to whether positions n to m form a
span of a particular type.

βn,m =

{
0 iff. (n, t) ∈ Bm
1 otherwise
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Dataset Learning Rate (LR)
Learning Rate

Schedule Warmup Weight Decay Batch
Size

Activation
Function

T5 ITER T5 ITER T5 ITER T5 ITER

CoNLL04 5e−5 3e−4 linear
with warmup

linear
with warmup

5% 1% 0.100 0.020 8 ReLU

ADE 2e−4 2.9e−4 constant
with warmup

constant
with warmup

10% 1% 0.028 0.026 32 ReLU

ACE05 4.9e−5 5.9e−4 linear
with warmup

linear
with warmup

1% 5% 0.082 0.109 8 ReLU

SciERC 3e−5 1e−4 linear
with warmup

linear
with warmup

5% 0% 0.1 0.1 8 ReLU

GENIA 2.6e−4 8e−4 linear
with warmup

linear
with warmup

20% 10% 0.045 0.056 16 ReLU

CoNLL03 2e−5 3e−4 linear
with warmup

linear
with warmup

0% 0% 0.096 0.0098 8 ReLU

Table 5: Hyperparameter search results obtained with SMAC3 (Lindauer et al., 2022). The single best incumbent
configuration was selected for final training on each dataset. For SciERC, we used the provided values since the
found hyperparameters did yield subpar training results.

equals one iff. pairing n with m with any type is
not a correct action at time-step m. Using Eq. 11,
we define Lis_span for ω = 1: Lis_span(n) =
L′is_span(n,m) where

n = max{n | n ≤ m ∧ [ ∈ An}

is the closest of the preceding positions n ≤ m
where [ ∈ An. For ω > 1, we define Lis_span
the following:

Lis_span(m) =

n≤m∑

n∈N
L′is_span(n,m) (12)

whereN = ⟨n1 . . . nω⟩ are the ω closest preceding
left bracket actions:

ni = max
{
j | j ≤ m ∧ [ ∈ Aj ∧ j ̸∈ N<i

}
.

We define

∆n,m,t =

{
0 iff. (m, t) ∈ Bn, t ∈ TE

−M otherwise

(M →∞) to equal zero iff. There is a bracket pair-
ing between the positions n ≤ m of type t ∈ TE ,
and a large negative value otherwise, effectively
canceling out any interaction between n and m of
type t. To minimize the loss function, the model
must assign negative values to non-existent interac-
tions between two positions n and n of a particular
type ti.

Finally, Lis_link is defined as the binary cross
entropy loss function:

Lis_link (m) =

N∑

n=1

φ∑

i=1





µn,m,i iff. ] ∈ An
∧ ] ∈ Am

0 otherwise
(13)

where

µn,m,i = θn,m,i ∗ log (ĥn,m,i)
+ (1− θn,m,i) ∗ log (1− ĥn,m,i)

with the feed-forward network from Eq. 7:

ĥ = FFNis_link (hn, hm).

θn,m,i = 1 iff. The spans ending at positions n and
m are in relationship i, otherwise θn,m,i = 0.

C Proofs

Theorem 1. Let x ∈ VN be a sequence of tokens
with xN = EOS. If y ∈ Y1×. . .YM is the decoded
sequence of actions, then M ≥ N holds for all
x ∈ VN.

Proof. Let am be the action chosen at step m,
# copy (m) =

∑m
i=1 1

[
ai= copy

] be the number

of tokens xn that have been copied until generation
step m. Recall: generation completes at step m
when x# copy (m) = EOS ∧ am = copy (1), i.e.
the EOS token has been copied into the output.

Let #A(m) = m be the number of actions per-
formed up until a certain point m in the output
sequence y of length M . It holds that
#A(m) =

∑m
i=1 1ai= copy

≥ 0

+
∑m

i=1 1ai ̸= copy
≥ 0

.

With that, it follows that # copy (m) ≤ #A(m)
(2). Using (1) we get # copy (M) = N and with
(2) we then get N ≤ #A(M) = M =⇒ N ≤
M ⇔M ≥ N

D Hyperparameter Search

Before training ITER with FLAN T5 (large) on
ACE05, CoNLL04, ADE, SciERC, CoNLL03 and
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GENIA, we perform a hyperparameter search on
all datasets using SMAC3 (Lindauer et al., 2022).
For all datasets, we optimize for high RE+ or NER
F1, depending on the task. The search space con-
sists of learning rates lr ∈ [1e−3, 2e−5], learn-
ing rate schedules (constant or linear), warmup ra-
tio r ∈ {0.0, 0.05, 0.1, 0.2} and weight decay rate
wd ∈ [0, 0.1] for both the parameters of the base
model (T5 in our case) and the parameters above
that are responsible for modeling the functions
is_left , is_span and is_link , combined with the
batch size bs ∈ {8, 16, 32, 64} and the choice of
activation function act ∈ {GELU,ReLU, tanh}.
The results of this hyperparameter search can be
found in Table 5.

E Pretraining ITER

In this ablation study, we experiment with using
the best performing CoNLL03 checkpoint for trans-
fer learning by using it as a starting point used to
train ACE05 and CoNLL04. On CoNLL04, we are
able to increase the average model performance by
0.6 F1 points to 76.3 F1. Using the same strategy
for ACE05 does not yield any improvement at all,
performance drops by an average of 1.8 F1 points.

Dataset and Architecture NER RE+
MODEL PARAMS F1 F1

C
oN

L
L

04

ITER (ours)

+ FT5 (large) 393 M 89.7 ± 0.51 75.1 ± 0.39
+ FT5+CONLL03 (large) 393 M 91.1 ± 0.53 76.3 ± 0.80
+ DeBERTaV3 (large) 476 M 91.2 ± 0.20 75.9 ± 1.41

A
C

E
05

ITER (ours)

+ FT5 (large) 393 M 91.5 ± 0.16 70.5 ± 0.51
+ FT5+CONLL03 (large) 393 M 91.3 ± 0.15 68.3 ± 0.36
+ DeBERTaV3 (large) 476 M 91.9 ± 0.38 70.8 ± 0.47

Table 7: Comparing CoNLL03-pretrained ITER +
FT5+CONLL03 (large) with normal ITER versions on 3
seeds. FT5 refers to FLAN T5.

F On the Evaluation of PL Marker

PL Marker follow Wang et al. and imple-
ment the following evaluation for symmet-
ric relations in ACE05 and SciERC: Their
model predicts symmetric relations twice,
outputting (head, symmetric_type, tail) and
(tail, symmetric_type, head) for a symmetric
relation between head and tail. In their evaluation,
however, this counts as two different outputs, and
thus they will be weighted twice in case of either
being a correct model output. Apart from our evalu-
ation, where symmetric relationships are output as

a 3-element set {head, tail, symmetric_type, }
and thus a correct output is not weighted twice,
we also implement the evaluation according to
PL Marker and Wang et al. and indicate results
stemming from this evaluation with an asterisk
(∗) in our result tables to allow a fair comparison
between the two methods. This subtle change has
an effect on the final performance for RE+, as can
be seen in Tables 3 and 6.
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Dataset Architecture # NER RE RE+ (strict)
W/ MODEL SEEDS PRECISION RECALL F1 PRECISION RECALL F1 PRECISION RECALL F1

CoNLL04

ITER (ours)

+ FLAN T5 (large) 5 89.5 ± 0.43 90.1 ± 0.80 89.8 ± 0.51 78.3 ± 2.04 73.0 ± 1.43 75.5 ± 0.29 77.9 ± 2.10 72.7 ± 1.38 75.2 ± 0.39
+ FLAN T5 (xl) 5 89.9 ± 0.56 90.3 ± 0.52 90.1 ± 0.44 77.8 ± 2.16 73.7 ± 1.25 75.7 ± 1.52 77.7 ± 2.13 73.6 ± 1.22 75.6 ± 1.49
+ DeBERTaV3 (large) 5 90.8 ± 0.28 91.7 ± 0.43 91.2 ± 0.20 79.2 ± 2.49 73.1 ± 1.24 76.0 ± 1.43 79.0 ± 2.51 73.0 ± 1.15 75.9 ± 1.41
+ BERT (large-cased) 3 87.3 ± 0.29 87.6 ± 0.67 87.4 ± 0.23 69.1 ± 2.13 67.2 ± 2.28 68.1 ± 1.25 69.0 ± 2.03 67.2 ± 2.03 68.0 ± 1.11

ACE05

ITER (ours)

+ FLAN T5 (large) 5 90.6 ± 0.38 92.4 ± 0.20 91.5 ± 0.24 75.3 ± 0.62 72.0 ± 0.48 73.6 ± 0.36 72.1 ± 0.76 69.0 ± 0.53 70.5 ± 0.51
+ FLAN T5 (xl) 5 90.6 ± 0.26 92.6 ± 0.26 91.6 ± 0.12 76.7 ± 0.72 73.5 ± 0.92 75.1 ± 0.49 73.5 ± 0.65 70.4 ± 1.00 71.9 ± 0.56
+ DeBERTaV3 (large) 5 91.1 ± 0.49 92.7 ± 0.30 91.9 ± 0.38 76.2 ± 0.90 71.6 ± 0.60 73.8 ± 0.54 73.1 ± 0.91 68.6 ± 0.40 70.8 ± 0.47
+ T5 (large) 3 90.0 ± 0.55 91.3 ± 0.02 90.7 ± 0.27 76.0 ± 1.12 63.1 ± 0.53 69.0 ± 0.58 73.1 ± 1.01 60.7 ± 0.65 66.3 ± 0.62
+ BART (large) 3 90.7 ± 0.27 92.0 ± 0.08 91.4 ± 0.15 74.6 ± 0.77 68.3 ± 0.82 71.3 ± 0.50 71.7 ± 0.35 65.6 ± 0.92 68.5 ± 0.42
+ ALBERT (xxlarge-v2) 3 90.8 ± 0.32 92.1 ± 0.23 91.4 ± 0.23 74.9 ± 2.32 70.3 ± 1.24 72.5 ± 0.70 72.1 ± 2.16 67.7 ± 1.28 69.8 ± 0.67

ACE05 (∗)

ITER (ours)

+ FLAN T5 (large) 5 90.6 ± 0.38 92.4 ± 0.20 91.5 ± 0.24 75.5 ± 0.59 72.5 ± 0.64 74.0 ± 0.40 72.5 ± 0.34 69.6 ± 0.71 71.1 ± 0.59
+ FLAN T5 (xl) 5 90.6 ± 0.26 92.6 ± 0.26 91.6 ± 0.12 77.0 ± 0.62 74.1 ± 0.84 75.6 ± 0.37 73.9 ± 0.51 71.2 ± 0.93 72.6 ± 0.44
+ DeBERTaV3 (large) 5 91.1 ± 0.49 92.7 ± 0.30 91.9 ± 0.38 76.5 ± 0.90 72.2 ± 0.66 74.3 ± 0.56 73.6 ± 0.91 69.4 ± 0.54 71.4 ± 0.53
+ T5 (large) 3 90.0 ± 0.55 91.3 ± 0.02 90.7 ± 0.27 76.4 ± 1.05 63.7 ± 0.38 69.4 ± 0.43 73.6 ± 0.89 61.4 ± 0.50 67.0 ± 0.42
+ BART (large) 3 90.7 ± 0.27 92.0 ± 0.08 91.4 ± 0.15 75.0 ± 0.76 69.0 ± 0.57 71.9 ± 0.50 72.3 ± 0.33 66.4 ± 0.61 69.2 ± 0.29
+ ALBERT (xxlarge-v2) 3 90.8 ± 0.32 92.1 ± 0.23 91.4 ± 0.23 75.2 ± 2.30 70.8 ± 1.08 72.9 ± 0.78 72.6 ± 2.16 68.4 ± 1.13 70.4 ± 0.75

ADE

ITER (ours)

+ FLAN T5 (large) 10 91.1 ± 0.93 92.1 ± 0.85 91.6 ± 0.73 83.6 ± 1.46 85.0 ± 1.85 84.3 ± 1.46 83.6 ± 1.46 85.0 ± 1.85 84.3 ± 1.46
+ FLAN T5 (xl) 10 91.2 ± 1.37 93.3 ± 0.60 92.2 ± 0.89 84.3 ± 1.95 87.0 ± 1.38 85.6 ± 1.42 84.3 ± 1.95 87.0 ± 1.38 85.6 ± 1.42
+ DeBERTaV3 (large) 10 90.6 ± 1.24 92.7 ± 0.90 91.6 ± 0.77 83.2 ± 2.00 86.3 ± 1.85 84.7 ± 1.39 83.2 ± 2.01 86.3 ± 1.86 84.7 ± 1.40
+ BERT (large-cased) 10 89.9 ± 0.97 91.8 ± 1.02 90.9 ± 0.85 81.4 ± 2.16 84.4 ± 2.22 82.8 ± 1.83 81.4 ± 2.16 84.4 ± 2.22 82.8 ± 1.83

SciERC

ITER (ours)

+ FLAN T5 (large) 5 64.9 ± 1.05 62.8 ± 0.59 63.8 ± 0.75 51.7 ± 2.53 36.0 ± 2.19 42.3 ± 1.12 38.5 ± 1.69 26.8 ± 2.12 31.5 ± 1.47
+ FLAN T5 (xl) 5 68.3 ± 0.50 69.9 ± 1.19 69.1 ± 0.46 56.7 ± 0.83 46.4 ± 2.07 51.0 ± 1.12 43.2 ± 0.78 35.4 ± 1.35 38.9 ± 0.58
+ DeBERTaV3 (large) 5 67.3 ± 1.12 69.0 ± 1.93 68.1 ± 1.21 56.0 ± 1.39 45.5 ± 0.95 50.2 ± 0.22 41.2 ± 1.51 33.5 ± 1.92 36.9 ± 1.62

SciERC (∗)

ITER (ours)

+ FLAN T5 (large) 5 64.9 ± 1.05 62.8 ± 0.59 63.8 ± 0.75 52.7 ± 2.38 36.8 ± 2.39 43.3 ± 1.21 39.1 ± 1.61 27.3 ± 2.39 32.1 ± 1.74
+ FLAN T5 (xl) 5 68.3 ± 0.50 69.9 ± 1.19 69.1 ± 0.46 57.7 ± 1.00 48.3 ± 2.28 52.6 ± 1.04 44.2 ± 1.01 37.0 ± 1.53 40.2 ± 0.54
+ DeBERTaV3 (large) 5 67.3 ± 1.12 69.0 ± 1.93 68.1 ± 1.21 57.6 ± 1.38 47.9 ± 1.16 52.2 ± 0.28 42.5 ± 1.29 35.4 ± 2.09 38.6 ± 1.63

CoNLL03

ITER (ours)

+ FLAN T5 (large) 5 90.9 ± 0.59 92.3 ± 0.28 91.6 ± 0.39
+ FLAN T5 (xl) 5 91.2 ± 0.87 92.4 ± 0.53 91.8 ± 0.69
+ DeBERTaV3 (large) 5 91.4 ± 0.70 92.1 ± 0.33 91.8 ± 0.29

GENIA

ITER (ours)

+ FLAN T5 (large) 5 81.7 ± 3.47 78.7 ± 7.25 80.2 ± 2.52
+ FLAN T5 (xl) 5 81.6 ± 0.60 80.8 ± 0.76 81.2 ± 0.25
+ DeBERTaV3 (large) 5 82.0 ± 0.24 79.2 ± 0.49 80.6 ± 0.24

Table 6: Final training results for all used datasets: CoNLL04, ACE05, ADE, SciERC, CoNLL03 and GENIA.
We run experiments on five seeds (three for ablation studies) and report the mean performance and the standard
deviation. (∗): On the SciERC and ACE05 datasets, we implement PL Marker and Wang et al.’s strict F1 scoring
for symmetric relations to get comparable results. More information regarding this evaluation method can be found
in Appendix F.
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