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The theory of martingales began life with the aim of providing
insight into the apparent impossibility of making money by
placing bets on a fair game.

J. Michael Steele



Introduction

30 years ago, a revolution took place at Wall Street. Until then European options,
financial derivatives that allow one party to buy an asset from another party at
a future date and at a prespecified price, have been known and traded, but the
pricing depended heavily on the market opinion of each trader. In 1973, however,
Fisher Black and Myron Scholes published their famous formula yielding an exact
price for each European option. This formula has been extended by Robert
Merton in a number of significant ways. The ideas behind their formula are
fundamental until today and represent the first model of the evolution of interest
rates.

A lot of progress has been made since then. The next step in the evolution of
interest rate models where the so called short-rate models. They were based on
the assumption that the prices of assets traded in the market depend solely on a
single stochastic process, the so called short-rate {ry;¢t € [0,T]} for some T > 0.
Precisely, if D,7 denotes time-t value of the zero coupon bond maturing at time

T then .
Dyr = exp(—/ Tudu).
t

The short-rate itself is usually modeled by some stochastic differential equation.
Short-rate models are easy to understand and easy to implement. but calibration
of these models requires some precaution. Further, evaluation is cumbersome,
usually requiring a Monte Carlo simulation. Another disadvantage from a model-
ing point of view is that the short-rate actually cannot be observed in the market.
Things changed radically in 1997 when Brace, Gatarek, Musiela and later Jamshid
ian introduced Market models. Instead of modeling the whole term structure by
a single short-rate their model considered only a discrete subset of rates of the
term structure with each rate given by a single stochastic differential equation:

dLy = o{aw?, 89, ¢ € [0, T3],

where {Lgi) ;t € [0,7;]} denotes the i-th interest rate maturing on 7; under some
probability measure S®. The corresponding zero coupon bond values may be
easily derived thereof. Each stochastic differential equation is driven by a one-
dimensional Wiener process {VVt(Z); t € [0,T;]}. These models are easy to calibrate
since the currently prevailing interest rate is part of the model input, contrary



to short-rate models. However, Market models may also only be evaluated by
means of Monte Carlo simulation, but the approach of modeling single interest
rates that can be observed in the market is a clear advantage over short-rate
models.

Interest rate models usually make the assumption of a log-normal distribution
of rates as Black and Scholes did. Unfortunately at the latest since the Asia
crisis in 1997 this is not the case anymore as statistical tests show. The distribu-
tion of interest rates observed in the market have fatter tails compared with the
log-normal distribution. Consequently extreme events are more likely to happen
as predicted by our models. Closing this gap between modeling and reality is
one of the greatest challenges in financial mathematics nowadays. One successful
attempt has been brought about lately by Hunt and Kennedy. They introduced
a general class of interest rate models known as Markov-functional models that
capture the implied distribution of interest rates. Further, they allow for a fast
numerical implementation using numerical integration. The class of models pro-
posed by Hunt and Kennedy allows only for one source of randomness in the
market. This is sufficient for simple products but for more complex derivatives
it is desirable to more sources of randomness. An extreme example would be to
model n different rates with n different, not necessarily independent, sources of
randomness. This work proposes an extension of the Markov-functional models
allowing exactly for this.
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Chapter 1

Preliminaries

Before introducing the multi-dimensional Markov-functional model we start with
some notation and a short introduction to probability theory. Our main focus
is on martingales, Markov processes and stochastic differential equations. These
are the ingredients to construct the Markov-functional model.

1.1 Notation

We start by introducing some notation that will be relevant throughout this work.
In this section let m,n,k € N.

Notation 1.1 (R*,R,N). Let R denote the set of real numbers, let R* denote
the set of positive real numbers,

R" := {z € R;z > 0}
and R} := RTU{0}. Let R denote the set RU{0c}, similarly R} := R{ U{+o0}.
N:={1,2,3,...}
denotes the set of natural numbers without zero and Ny := NU {0}.

Notation 1.2 (Matrices, vectors). Let A € R"™™ and i,j € N, where
1 <i<n1<j5<m. Then A; denotes the i-th row of A, A,; the i-th col-
umn and A;; the entry on position (i, j).
E, denotes the n-dimensional identity matrix.
Let v € R*. Then v(® denotes the i-th entry of v. For v € R*, diag(v™, ..., v™)
denotes the matrix having the entries v('),... v on the diagonal and 0 else-
where, i.e.,
v 0

diag(v®, ..., v™) = .

0 v
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Remark 1.3. We will identify R” with R**!, thus the elements of R" are column
vectors.

Notation 1.4 (Power set). Let A be an arbitrary set. J3(A) denotes the power
set of A, i.e., the set of all subsets of A.

Notation 1.5 (Indicator function). We denote the indicator function of any
set A by 1443, ie.,

1, z€A
iy (@) = {0, z ¢ A.
Notation 1.6 (Norms). 1. || -||2 denotes the Euclidean norm on R,

2. || - || denotes the Frobenius norm on R™"*™

[AllF =

Remark 1.7. The topology on R" is the topology induced by the Euclidean
norm.

Notation 1.8 (Neighborhood of z; € R”, open set). For ¢ > 0 and zy € R,
we define the e-neighborhood of xy by U(zo) := {z € R"; ||z — x¢||2 < €}. A set
U C R is called open, if for all z € U there exists an € > 0 such that U, (z) C U.

After defining a topology on R® we may also define spaces of continuous functions
on R".

Notation 1.9 (Spaces of continuous functions). Let U be an subset of R
and V be an subset of R*. We define

1. C(U,V):={f:U — V;fis continuous},
2. C(U) :=C(U,R).
If U and V are open, then we set for ¢ € N
3. CYU,V) :={f:U — V;fis ¢g-times continuous differentiable} ,

4. C9(U) := CI(U, R).
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Notation 1.10 (Derivative). Let U C R" be open and f € CY(U,R™). We
denote the derivative of f in x by

ar) afim)
%(@ T 3];(1)' ()
Df(x) := :
o) o f(m)
ai(n) (x) 3J;(n) (m)

If a function and its inverse are differentiable, we call it a diffeomorphism:

Definition 1.11 (Diffeomorphism). Let U,V C R be open subsets and f €
C"(U,V),n € N. If the inverse f! emists, f is called diffeomorphism.

It is known from real analysis, that under the assumptions of the last definition,
f~1 is also differentiable and f~! € C*(V,U).

The notion of monotonic increasing functions will be very important throughout
this work.

Definition 1.12 (Strictly monotonic increasing function). Let z,y € R".
x < y is defined component wise,

r<yeV1<i<n:z® <yDATie{l,...,n}:2® <yO®.
A function f: R — R s strictly monotonic increasing, if
z<y= f(z) < fly) for all z,y € U.
A function f : R® — R s strictly monotonic increasing, if for allz < y,z,y € R",
FW®, 2@ ™y < fa® ]y @ ™)
holds for all 1 < i < n such that () < 3@

Due to the importance of the definition above we give a slightly different in-
terpretation. Choose some y € R* and f : R* — R. f is strictly mono-
tonic increasing in the sense of this definition if the projections f; : R — R,
x> f(yW, .yt z y0+D y(M) are strictly monotonic increasing scalar func-
tions in z for every y € R”. We thus may reduce the question, whether a function
defined on R™ is strictly monotonic increasing or not, to the usual one-dimensional
case by examining the function componentwise for every such y € R*. Other gen-
eralizations to the multi-dimensional case are possible, but the one above will be
the most convenient for our purposes.
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1.2 Probability theory

Most important in the theory of derivative pricing is the modeling of the uncer-
tainty in an economy. This is accomplished by the means of probability theory
which is therefore a cornerstone of this work. In this chapter a short intro-
duction to probability theory and especially stochastic integration and stochas-
tic differential equations with respect to the Ito-Integral is given. An intro-
duction to interest rate derivatives based on the definitions made here will be
given in the next chapter. A more detailed and thorough course in proba-
bility theory and stochastic integration is provided by [Schaffler, Sturm 1994],
[Schiffler, Sturm 1995], [Schéffler 1996], [Bauer 1991], [Karatzas, Shreeve 2001]
and [Protter 1990]. All proofs for the theorems in this section may be found
in [Bauer 1991] and [Bauer 1992] unless stated otherwise.

1.2.1 Preliminaries

Notation 1.13 (Borel-o-field). Let B" denote the Borel-o-field in R*, n € N,
i.e., the o-field generated by the open subsets in R*. B := {4 € B(R); ANR € B}
denotes the extended o-field on R. Further, let A" denote the Lebesgue-measure
of dimension n.

In the remainder of this section we will work with a special probability space,
the Wiener space. This is the space Q" of all continuous functions F : Rf — R
equipped with the o-field B(Q"). B(2") is the smallest o-field S over Q" such
that the maps p; : Q" — R", F — F(t),t € R}, are S-B"-measurable. To define
a measure on this measurable space, the Wiener measure, we require some more
definitions.

Definition 1.14 (P-almost surely). Let (2, S, P) be a probability space. A
property is said to hold P-almost surely, if a set A € S of measure 0 exists such
that the property holds on the complement of A.

Definition 1.15 (Extended function). A function f : A — R defined on a
non-empty set A C Q" is called extended function.

Definition 1.16 (Random variable). A function X : Q" — R" is called (n-
dimensional) random variable, if it is B(Q")-B"-measurable. Given an R"-valued
random variable X, we denote by o(X) the smallest o-field A such that X is
A-B"-measurable.

Central to this work is the concept of stochastic processes.

Definition 1.17 (Stochastic process). Let X; : Q" — R" be an n-dimensional
random variable for allt > 0. The set {X;; t > 0} is called stochastic process or
simply process, if the mapping

(t,w) — Xi(w) : Rf x Q" - R®
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is B(RS) ® B(Q")-B"-measurable.

We will abbreviate a stochastic process {X;; t > 0} by simply writing X if the
choice of ¢ is clear from the context.

When freezing an w € 2", one obtains the path of a stochastic process.

Definition 1.18 ((Sample) Path of a stochastic process). Let {X;; t > 0}
be a stochastic process. The map X* : R — R",t — X;(w),w € Q" is called
(sample) path of the stochastic process {X;;t > 0}.

Definition 1.19 (Continuous stochastic process). If every path X¥ is a
continuous function a stochastic process {Xy; t > 0} is continuous.

If all information about the past is contained in the current o-field, we get an
increasing sequence of o-fields, a filtration.

Definition 1.20 (Filtration). Let (2, S, P) be a probability space, U C R and
{Fs;s €U} a set of o-fields in Q, where Fs C S for all s € U. Further, let
Fs CF, forall s,r € U satisfying s < r. Then {Fs;s € U} is a filtration in S.

Definition 1.21 (Adapted stochastic process). Let (2, S, P) be a probability
space, U C R, and {X; s € U} a stochastic process and {Fs; s € U} a filtration in
S. {X;;s € U} is adapted to the filtration {F; s € U} if X is F-B"-measurable
for each s € U.

Given a stochastic process {X;;s € U}, U C R, the simplest filtration is that
generated by the process itself, i.e.,

Fri=0(Xs;seUs<t).

This is the smallest o-field with respect to which X, is measurable for every
seU.

Definition 1.22 (The usual conditions). Let (2, S, P) be a probability space
and {Fy;t > 0} a filtration in Q. {F;t > 0} is right-continuous if Fy = (.5 Firse
for everyt > 0. If {F;;t > 0} is right-continuous and Fy contains all P-negligible
events {Fy;t > 0} is said to satisfy the usual conditions.

It is easy to see that any given filtration {F;;¢ > 0} can be augmented such that
the augmented filtration {f-};t > 0} satisfies the usual conditions and F; C F,
for all ¢ > 0. Throughout this work we assume that we always work with a
filtration satisfying the usual conditions. If a filtration does not satisfy the usual
conditions, we work with the corresponding augmented filtration.

Another important point is the independency of random variables. We will in-
troduce this notion first for events and after that for random variables.
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Definition 1.23 (Independent events). Let (2, S, P) be a probability space
and Aq,..., A, € §,n € N. The events Aq,..., A, are independent, if for each
ke Nk <n, and for each 1; € N1 < j <k, where1 <i; <...<1i <n,

P (ﬂ A,.]) = ﬁP(A,-j)

holds.
We derive now the definition of independency of a set of events.

Definition 1.24 (Independency of a set of events). Let (2, S, P) be a
probability space and {A; € S;i € I},1 # 0, a set of events. These events are
independent, if A;,, ..., A;, are independent for each n € N, with n < |I| and for

each set {iy,...,i,} CI.

Definition 1.25 (Independency of a set of subsets). Let (2, S, P) be a
probability space and {Fi;i € I}, I # 0, F; C 8, a set of subsets of ). These sets
are independent, if for arbitrary A;, € Fi,k =1,...,n, the events A;,,..., A
are independent for each n € N, with n < |I| and for each set {iy,...,i,} C I.

in

Definition 1.26 (Independency of random variables). Let (2, S, P) be a
probability space and (', S') a measurable space. The random variables X; : Q —
V,i € I, are independent, if the sets {o(X;);i € I} are independent.

We define now the distribution and expected value of random variables on a
probability space.

Definition 1.27 (Distribution). Let (2, S, P) be a probability space and X :
Q" — R™ a random variable thereon. The measure u on (R*, B(R™), \") defined

by
p(A) :==P({w € Q" X(w) € A})

for all A € B(R") is called the distribution of X.

Definition 1.28 (Expected value). Let X : Q" — R" be a random variable.
Then the expected value of X is defined via the integral

EplX] = /Q Xdp,

if the above integral exists.

An analogous definition as above holds for stochastic processes.
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Definition 1.29 (Mean value, covariance function). Let {X;;t > 0} be a
stochastic process on some probability space (2, S, P) and suppose Ep [X2] < oo.
We introduce the mean vector and covariance matrix functions

m(t) = E’})[Xt],
cov(s,t) = BEpl(Xs—m(s))(X; —m(t))"],
V(t) = cou(t,t),
for some s,t > 0, if the above integrals exist.

The notion of probability density functions is a very useful one.

Definition 1.30 (Density function). Let (2, S) be a measurable space and P
and pu measures on S. If a non-negative , S-B-measurable function f : ) — R
erists, satisfying

P(A) = /Afd,u forallAe S,

it is called the density function of the probability measure P with respect to the
Measure .

An important example is the density of the normal distribution.

Definition 1.31 (Normal distribution). Let (2, S, P) be a probability space
and X : Q — R", n € N. X is normally distributed with mean 0 and covariance
matriz tE, if X has the density function

(@) = (2rt) ¥ exp(~ 1218

2t
with respect to the n-dimensional Lebesgue measure. We write X ~ N(0,tE,). X
is said to be log-normally distributed, if exp(X) is normal distributed. Further,
we denote the cumulative distribution function of the normal distribution by ®(x).

Lemma 1.32. Let X : Q — R be a N(m, 0?)-distributed random variable on our
usual probability space (2, S, P). The expected value of exp(X) is

2

Eplexp(X)] = exp (m + %)

Proof. See [Hoffmann-Jgrgensen 1994|, Section 4.25. O

To verify whether a density function exists for a given measure, we need the
following two definitions.
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Definition 1.33 (Absolutely continuous measure). Let (2, S) be a measur-
able space and Q a measure on S. P is absolutely continuous with respect to Q,
iof for each A € S

QA)=0=PA)=0

holds. The two measures are equivalent, if P is absolutely continuous with respect
to Q and vice versa. The equivalence of two measures @ and P will be denoted

by Q ~ P.

Definition 1.34 (o-finite measure). Let (2, S) be a measurable space. A mea-
sure @ on S is o-finite if a sequence {A;}ien, Ai € S, of subsets of Q0 exists such
that

4 =9, Q(4) < oo for alli € N.
i=1

The following theorem gives us the conditions under which a density function for
a measure P with respect to a measure Q exists.

Theorem 1.35 (Radon-Nikodym). Let (2, S, P) be a probability space and
Q a o-finite measure on S. P has a probability density f with respect to Q iff
P is absolutely continuous with respect to Q. In this case we use the notation

% = f. % is called Radon-Nikodymderivative of P with respect to Q.

Throughout this work we need only probability densities with respect to the
Lebesgue measure A\". If the probability distribution of a random variable X has

a probability density f with respect to the Lebesgue measure, we say that X has
the density function f.

Based on the above theorem we define now the conditional expection of a random
variable.

Definition 1.36 (Conditional expectation). Let (2, S, P) be a probability
space and X : Q@ — R a random variable such that Ep|||X||s] < co. If H C S is
a sub-o-field of S, then the (P-a.s. unique) conditional expectation of X given
H, denoted by Ep|X|H], is defined by the following properties:

1. Ep[X|H] is H-measurable.
2. [ Ep[X|H]dP = [, XdP for all H € H.

The existence and uniqueness of the conditional expectation can be proved using
the Radon-Nikodym theorem. A proof can be found in [@ksendal 1998].

Random times and stopping times have been brought up to ’tame’ continuous
time processes and especially martingales.
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Definition 1.37 (Random time, stopping time). Let (2, S, P) be a probabil-
ity space equipped with the filtration {F;;t > 0}. An extended function 7: Q — R
is a random time, if T is S-B-measurable. A stopping time is a random time T,
such that {7 <t} € F; for all t > 0.

We now define an important stochastic process, the Wiener process or Brownian
motion. First we define the Wiener process on a general probability space, then
we show the existence of a measure, the Wiener measure, on (2", B(Q2")) such
that a Wiener process exists.

Definition 1.38 (Wiener process on (€2, S, P)). Let (2, S, P) be a proba-
bility space and let X; : Q — R" be S-B"-measurable for each t € R . Then a
stochastic process {X;;t > 0} with the following properties is called (standard)
n-dimensional Wiener process on (2, S, P):

1. Xo =0 P-almost surely,

2. for each k € N and each vector (t1,to,...,tx)T € R¥, where 0 < t; <ty <
... < tg, the increments Xy, Xy, — Xy, ..., Xy, — Xy, _, are independent,

3. for each s,t € RS, s < t, the random variable X; — X, is N(0, (t — s)E,)
distributed,

4. all paths of {Xy;t > 0} are continuous.

The following theorem shows the existence and uniqueness of a measure W" on
the Wiener space, such that a Wiener process exists on this certain space.

Theorem 1.39 (Wiener measure). Let {Wy;t > 0} be a stochastic process,
such that Wi(w) = w(t) for eacht > 0 and w € Q™. Then, for each n € N, there
erists exactly one measure W"* on (2", B(Q")), called Wiener measure, with the
properties 1 to 4 as stated in Definition 1.38.

We can now proceed with the following definition.

Definition 1.40 (Wiener process on (2", B(2"), W")). The stochastic process
{Wi;t > 0}, where Wy(w) = w(t) for eacht > 0 and w € Q", n € N, is called
n-dimensional Wiener process on (2", B(Q2"), W").

From now on we assume that the probability space we are working with supplies
an n-dimensional Wiener process.

When 'pinning down’ a Wiener process at some future time 7" > 0 the result is a
Wiener process connecting two points, the Brownian bridge:



12 CHAPTER 1. PRELIMINARIES

Theorem and Definition 1.41 (Brownian bridge). Let (2, S, P) be a prob-
ability space and {Wy;t > 0} a one-dimensional Wiener process. For any T € R*
and a,b € R the process

t t t
Bt i=a(1— ) +b+ (Wi ZWr), telo,T
t a T + T + t T T/ € [ ’ ]a
defines the Brownian bridge from a to b on [0, 7.

The process B¢ is normal distributed with P-almost surely continuous paths,
expectation function

t

m(t) = BplBi] = a1~ ) + bz,

t T
T € [0, T,

and covariance function

t
cov(s,t) = min(s,t) — %, s,t €10,T).

1.2.2 Martingales

Martingales are a class of processes defined by a conditional expectation that we
will use frequently.

Definition 1.42 ((Sub-)Martingale). Let (2, S, P) be a probability space
equipped with the filtration {F;;t > 0}. A real valued stochastic process {Xy;t > 0}
is a martingale, if it is adapted to the filtration {Fy;t > 0}, Ep[|X]] < oo for
all t > 0 and the martingale property

X, = Ep[X,|F,] (1.1)

holds for all s,t € R}, s <t. If {X;;t > 0} is adapted to {Fy;t > 0}, Ep[|X:]] <
oo for allt > 0 and X, < Ep[Xy|F;] holds instead of (1.1), {Xy;t > 0} is called
submartingale.

An important subset is the set of square-integrable martingales.

Definition 1.43 (Square-integrable martingale). Let (2, S, P) be a proba-
bility space, {Fy;t > 0} a filtration in S and {My;t > 0} a continuous, real valued
martingale adapted to {F;t > 0}. M is square-integrable, if Ep[|Mt|2] < 0o for
every t > 0.

Examples of square-integrable martingales are the Wiener process and the Brow-
nian bridge for any choice of 7', a and b.

For square-integrable martingales we define the quadratic variation and cross-
variation processes.



1.2. PROBABILITY THEORY 13

Theorem and Definition 1.44 (Quadratic variation). Let (92, S, P) be a
probability space, {Fi;t > 0} a filtration in S and {M;;t > 0} a continuous,
square-integrable martingale adapted to {Fyu;t > 0} satisfying Mg = 0 P-a.s.
Then a stochastic process {Qy;t > 0} with the following properties exists:

1. {Q;t > 0} is adapted to the filtration {F;;t > 0},
2. QO =0 P-G.S.,

3. the mapping t — Q(w) is a non-decreasing, right-continuous function for
P-almost all w € €,

4. EplQy] < oo for every t >0,
5. {M}? — Qq;t > 0} is a martingale.

We set <M>t = @y for every t and call the stochastic process {<M>t;t > 0} the

quadratic variation of M. The existence and uniqueness of <M> follows from
the fact that {M?;t > 0}, (t,w) — MZ(w) for everyt > 0 and w € Q, is a
submartingale and the Doob-Meyer-decomposition of submartingales.

Proof. See [Karatzas, Shreeve 2001], Definition 1.5.3, Definition 1.4.4 and Theo-
rem 1.4.10. O

The use of the term quadratic variation may appear to be unfounded. Indeed, a
more conventional use of this term is the following. Let (2, S, P) be a probability
space, let {X;;t > 0} be a real valued stochastic process, fix some ¢ > 0, and let
II = {to,t1,...,tn}, with 0 =t < t; < ... < t, = t, be a partition of [0,].
Define the quadratic variation of X over Il to be

Q) = Xy, — X, %
k=1

Now define the mesh of the partition II as ||II|] = maxi<k<n [tk — tk—1]. Our
justification of theorem and definition 1.44 is the following result.

Theorem 1.45. Let (2, S, P) be a probability space, let {F;t > 0} be a filtration
and {My;t > 0} a continuous, square-integrable martingale adapted to {F;;t > 0}
with My = 0 P-a.s. For partitions II of [0,t] we have limy_,o Q¢ (IT) = <M>t in
probability, i.e., for every e > 0,1 > 0 there exists § > 0 such that

I < 8 = P(|Q(TT) — (M),| > €) <.
Proof. See [Karatzas, Shreeve 2001], Theorem 1.5.8. O

Having introduced the quadratic variation of continuous martingales, we define
now the cross-variation of two continuous martingales.
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Definition 1.46 (Cross-variation). Let (2, S, P) be a probability space, let
{Fy;t > 0} be a filtration and {My;t > 0} and {Ny;t > 0} two continuous, square-
integrable martingales adapted to {Fy;t > 0}. Again we assume My = No = 0
P-a.s. We define the cross-variation process {(M,N) ;t > 0} of M and N by

<M’N>t = [<M+N>t_<M_N>t]

1
4
for allt > 0.

Lemma 1.47 (Properties of the Cross-variation). The cross-variation is
a symmetric bilinear form, i.e., let {Xy;t > 0}, {Yy;t > 0} and {Zi;t > 0} be
continous, square-integrable martingales as in Definition 1.46 and o, B € R. Then
(0X +8Y.2), = (X, 2),+B(v.2),
(X,v), = (V:.X),

for every t > 0.
Proof. See [Karatzas, Shreeve 2001], Definition 1.5.5 and Problem 1.5.7. O

Remark 1.48 (Quadratic variation of the Wiener process). Let {W;;t > 0}
be an one-dimensional Wiener process on some probability space (€2, S, P). The
following properties are known from probability theory:

1. {Wy;t > 0} is a square-integrable, continuous martingale.

2. <W>t =t forallt > 0.

If W and W® are two independent Wiener processes, then the cross-variation
process is P-a.s. zero,

(WO, W) =0 P-as. for all t > 0.

Important about martingales is the possibility to change the time-scale such that
the resulting process is a Wiener process under certain assumptions. We give a
multi-dimensional version of this theorem that also covers the one-dimensional
case.

Theorem 1.49 (Knight’s theorem). Let (2, S, P) be a probability space,
{F;t > 0} a filtration in S and {(Mt(l), ce Mt(n));t > 0} a continuous martin-
gale adapted to {F;t > 0}. Further, let limt_>oo<M(i)>t = o0 P-a.s. and

(MO, MDY =0 forall1 <i+#j<n,t>0. (1.2)

Define .
T;(s) = inf{t > 0; <M(z)>t > s} foralls > 0,1 <i<n,
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so that for each i and s, the random time T;(s) is a stopping time for the (right-
continuous) filtration {Fy;t > 0}. Then the processes

) o @ i) ;
w .= MTz(s), GW .= Frys), $>0, 1<i<n
are independent, standard, one-dimensional Wiener processes.

Proof. See [Karatzas, Shreeve 2001], Theorem 3.4.13. O

In the special case n = 1 the additional condition (1.2) is dropped and Knight’s
theorem reduces to the usual time-change theorem for continous martingales.

1.2.3 Markov processes

A Markov process is a process such that the behavior in the near future depends
not on the past of the process, given by the filtration generated by the process
up to the present, but only on the present state.

Definition 1.50 (Markov process). Let (2, S, P) be a probability space, let
{X;;t > 0} be a stochastic process and {F; ;t > 0} the filtration generated by
{Xi;t > 0}. {Xy;t > 0} is called Markovian or a Markov process if the Markov

property
P(X; € S|Fs) =P(X; € Slo(Xy)) (1.3)

holds P-a.s. for all s,t € RS ,s < t, and each S € S. The conditional probability
P(A|H) is defined by Ep[1iay|H] for any subset A € S and any o-field H C S.

We will derive an alternative formulation of the Markov property (1.3). This
needs some preparation. Especially transition kernels will play an important
role.

Definition 1.51 ((Transition) Kernel). Let (Q2,S) and (', S’) be two mea-
surable spaces. The mapping

K:QOx8 —RS
is called (transition) kernel from (Q2,S) to (Q',8') if the following holds:
1. we K(w, 8" is S-B(R{ )-measurable for every S' € &,
2. 8" K(w,S") is a measure on S' for every w € Q.

K is called Markovian, if
K(w,)=1

holds for every w € ().
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Naturally, a Markovian kernel K implies a probability measure on &' for every
w € .

If 1 is an arbitrary measure on S, we may define a measure u' on &' as follows.
Choose some S’ € §'. Define y' by

wwm=/Kwﬁwmm

for some kernel K. It follows from the properties of the integral that u' is a
measure on §'. If K is Markovian and p is a probability measure, y' is also a
probability measure. We usually denote ' by pK and write the definition in the
form

mmwm:/mmmwﬂm=/Mwwww>

The kernel K also induces a mapping from the set of extended S-B-measurable
functions to the set of extended S'-B-measurable functions. This can be verified
as follows. Let f' : ' — RJ be an extended S’-B-measurable function. Then
w i [ f'(w)K(w,dw') is an extended S-B-measurable function. We denote this
mapping also by K:

<Kﬂw»=/fwwmmmu

for every extended S’-B-measurable function f’.
As the next building block of our alternative formulation of the Markov property
we introduce semi-groups of kernels.

Definition 1.52 (Semi-groups of kernels). Let (K;)i>o be a set of kernels on
a measurable space (2, S). If the Chapman-Kolmogorov-equations

Ky(z,8) = /Ks(x,dy)Kt(y,S),

or shorter
Ks+t = KsKta

hold for every s,t € R and (z,5) € Q@ x S, (K)o s a semi-group of kernels
or transition semi-group. If all kernels are Markovian, the semi-group (K;)i>q s
also called Markovian.

The finite-dimensional distributions of a stochastic process can be deduced from
the transition semi-group as the following theorem shows.

Theorem 1.53. Let (2, S) be a measurable space, pu a probability measure thereon
and (Ky)i>0 a Markovian semi-group of kernels. For every finite subset of R,
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Ii'={t),...,t,} CRS, neN witht; <ty <...<t,, and S;,,...,S;, €S set

Pi(Xy, € Sy, Xy, €8,) =

// / l{StIX XSt} Il, e 7',1“Tl)Ktn—tn—1 (.Tn_l, diCn) Ce Ktl (.T(], d.Tl),U,(d.To)
(1.4)

Then (Pr); is a family of finite-dimensional distributions on (2, S), where the
index I Tuns over all finite subsets of Ry .

We are now in the position to formulate the Markov property (1.3) in an alter-
native way.

Theorem 1.54 (Equivalent formulation of the Markov property). Let
(2, S, P) be a probability space, { Xy;t > 0} a stochastic process, (Ki)i>0 a Marko-
vian semi-group of kernels and p a probability measure on S. Assume that the
finite-dimensional distributions of {X;;t > 0} are determined by (K;)i>o and p
as in theorem 1.53. Then {Xi;t > 0} is Markovian with respect to the filtration
{FXit >0}, F¥ == 0(X,;0 < s < t). Further, we have

P(Xt € S‘fs) = Kt—s(XSaS) (15)

P-a.s. for every S € S and s,t € RS, s < t.
K, (X, S) denotes the random variable w — K;_s(Xs(w), S).

Remark 1.55. Let (2, S, P) be a probability space. Since

K(w,S) = /S K (w, do) = /Q 15y (@)K () = (K15)) ()
we may write (1.5) as
Ep[1(s3(Xp)|Fs] = (Kis1isy) (Xs).

for s,t € Rf,s < t. Choose some non-negative, Q—B(E)—measurable extended

function f : w — ﬁ Approximating f in the usual way by indicator functions
and taking limits gives us

E’P[f © Xt|f5] = (thsf)(XS)'

Finally, this is the equivalent formulation of the Markov property we will use
later.

An important example of a Markov process is the Wiener process defined above.
Additionally, the Wiener process is also a martingale. Note, however, that there
are martingales that are not Markovian and vice versa.

As shown before, a Markov process can be characterized by its transition semi-
group. The most interesting for our purposes is the transition semi group of the
n-dimensional Wiener process.
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Theorem and Definition 1.56 (Transition semi group of Wiener pro-
cess). Let {W;;t > 0} be the standard n-dimensional Wiener process on some
probability space (2, S, P). The transition semi-group (K}V);>o of the Wiener
process is given by

(KY f)(= /qﬁt = ) F ()N (),

where
_ _n =]z ||2
oi(z) = (27t) ™2 exp for allt >0

denotes the density function of the standard n—dzmenswnal Wiener process and
f:R* = R is an arbitrary Borel-measurable, non-negative function, i.e., f(x) >
0 for all z € R*. We set ¢o(z) = €(x), the Dirac distribution, having mass 1 in
x and mass 0 anywhere else.

1.2.4 Stochastic integration

In this section we give a short overview over the stochastic Ito-Integral with
respect to continuous, square-integrable martingales. We will not go into the
details here, this section gives just an idea how the stochastic integral is con-
structed. A more in-depth description can be found in [Karatzas, Shreeve 2001]
and [Protter 1990]. Throughout this section we assume that we are working in a
probability space (2, S, P) supporting a filtration {F;;¢ > 0} that satisfies the
usual conditions and a standard, one-dimensional Wiener process.

To state the existence theorem for stochastic differential equations, we need a
rather technical definition.

Definition 1.57 (Progressively measurable). If the map f: Rf x Q — R*
is B(R}) ® §-B"-measurable and

fs: Q" > R* w f(s,w) is Fs-B"-measurable for each s > 0,

then the process { fi;t > 0} defined via the map fs is called progressively measur-
able with respect to {F;t > 0}.

Since we are only working with continuous processes, there is no gap between
measurable and progressively measurable processes.

Lemma 1.58. If the stochastic process {X;;t > 0} is adapted to the filtration
{F;t > 0} and every sample path is right-continuous or else every sample path

is left-continuous, then {X;;t > 0} is also progressively measurable with respect
to {Fy;t > 0}.

Proof. See [Karatzas, Shreeve 2001], Proposition 1.1.13 O
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Modifying the stochastic process { Xy; ¢ > 0} with P-a.s. continuous sample paths
on null sets, we may assume that all sample paths are continuous. Therefore con-
tinuous, {F;;t > 0}-adapted processes {Xy;t > 0} are also progressively measur-
able.

The construction of the It6-Integral is based on the approximation of stochastic
processes by simple processes.

Definition 1.59 (Simple process). A stochastic process {X;;t > 0} is called
simple if there exists a strictly increasing sequence of real numberst,, n € Ny, with
to = 0 and lim,,_,» t,, = 00, as well as a sequence of random variables (;, : 2 = R,
n € Ny, and a non random constant C < oo with sup,y, |¢(w)| < C, for every
w € Q, such that

o (, is Fy, -measurable for every n € Ny and

o Xi(w) = Go(w) oy () + D220 G(w) Lgsi iy (8),t € Ry ,w € Q.

Based on this definition we define the stochastic integral with respect to simple
processes.

Definition 1.60 (Ito-Integral for simple processes). Let {M;;t > 0} be a
continuous, square-integrable martingale on (2, S, P) adapted to the filtration
{Fi;t > 0}, and {Xy;t > 0} a simple stochastic process with respect to {Fy;t > 0}.
Further, let t, be s strictly increasing sequence of real numbers and (,, a sequence
of random variables as in Definition 1.59, such that

o0

Xi(w) = Co(w) 1o () + Y G@) Ly ().t € Ry, w € Q.

i=0
The Tto-integral I (X) of X with respect to M at time ¢t € RS is defined as
n—1
IMX): Q= Rwe Y G(My,, — M)+ G(M, — M,)
i=0

- Z CZ min(t;,ti+1) — Mmin(t,ti)):

where n > 0 s the unique integer for which t, <t <t,,1. We denote ItM(X) by

t
/ X,dM,.
0

The stochastic integral can now be extended to a wider class of processes that
shall be defined now.
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Definition 1.61 (Set of admissible integrands). Let {M,;t > 0} be a contin-
uous, square-integrable martingale adapted to the filtration {F;t > 0}. L*(M)
denotes the set of equivalence classes of all progressively measurable, {Fy;t > 0}-
adapted stochastic processes, satisfying

Bp| /0 " X2y, < oo (1.6)

for all'T > 0, where the integral fOT de<M>t 1s defined path wise in the Lebesque-
Stieltjes sense.

We shall follow the usual custom of not being very careful about the distinction
of equivalence classes and the stochastic processes which are members of those
classes. For example we have no qualms about saying, that L*(M) contains all
bounded, measurable, {F;;t > 0}-adapted processes. Of course, L*(M) depends
on the choice of M.

The integral for simple processes can be extended in a highly non-trivial, yet
straightforward manner. Details may be found in [Karatzas, Shreeve 2001]. From
now on we take the integral IM(X) for X € L*(M) with respect to some mar-
tingale M as granted and denote it also by

i
/ X,dM,.
0

Having introduced the Ito-Integral we give a short characterization and show
some interesting and useful properties.

Theorem 1.62 (Properties of the It6-Integral). Suppose {M;;t > 0} and
{Ny;t > 0} are two continuous, square-integrable, {F;t > 0}-adapted martin-
gales and take X € L*(M), Y € L*(N). Set IM(X) := [} X,dM,, IN(Y) =
fot ysdNs. Then the following properties hold:
o {IM(X);t > 0} is a continuous, square-integrable, { Fy;t > 0}-adapted mar-
tingale.
t
o (1Y), = fi X200,
t
o (IM(X),IN(Y)), = [y X.Y;d(M,N) .
Set now Ny = IM(X) for every t > 0 and suppose that Y € L*(N). Then
XY € L*(M) and
(Y) = IM(XY)
or shorter in differential notation, if AN = XdM then
YdN = XYdM.
Finally, suppose X,Y € L*(M) and o, f € R. Then

M(aX + BY) = aI™(X) + BIM(Y).
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Proof. See [Karatzas, Shreeve 2001], Proposition 3.2.10, Proposition 3.2.17 and
Corollary 3.2.20. d

Stochastic calculus knows an equivalent to the chain rule from real analysis, It6’s
formula.

Theorem 1.63 (Itd’s formula). Let (2, S, P) be our usual probability space,
{(Mt(l),..., t(n);tz 0} a wvector of continuous martingales, Mt(i) : Q= R,
adapted to some filtration {Fy;t > 0} and set Xy := Xog + My, t > 0, where
Xo:Q = R, n €N, is an Fo-B"-measurable random variable. Let f(t,z) :
RS x R* — R be of class CY2. Then, P-a.s.,

t n t
Ft, X)) =£(0, Xo) + /0 %f(s,Xs)ds—}-Z /0 —afu) f(s, Xs)dMD +
1=1

- - @ A
s 2 [ gty (s XM, 0,
=1 J=
for every t > 0.
Proof. See [Karatzas, Shreeve 2001], Theorem 3.3.3. O

Remark 1.64. Equation (1.7) is often written in differential notation,

) "9 ;
df (8, X,) =2 f(t, Xo)dt + ) 5 f(t, Xo)dM )+
ot — Oz

DI oG] (XA MO, MP) Pt € R

To evaluate the term d<M @ M (j)> ,» Which is also written as
d<M(i)’ M(j)>t — th(i)th(j)’

we apply Theorem 1.62 and the conventional 'multiplication table’

dt dw, dw,
d 0 0 0
dw, 0 dt 0
dw, 0 0 dt

where W, W are independent Wiener processes.
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1.2.5 Stochastic differential equations

We give an existence and uniqueness result for Ito-stochastic differential equa-
tions. Again let n,m € N.

Definition 1.65 (Stochastic differential equation). Let {W;;t > 0} be an
m-dimensional Wiener process on our probability space (2, S, P) and & an n-
dimensional random variable independent of {Wy;t > 0}. Assume Epl[ll€|5] <
0o. Further, let the mapping b : Rf x R* — R* be B(R{) ® B"-B"-measurable
and the mapping o : Ry x R* — R™™ B(R{) ® B"-B"*™-measurable. The
equation

t t
X, =¢ +/ b(s, X,)ds + / o(s, X,)dW,, P, t € Rf, X =&, (1.8)
0 0

is called Tto stochastic differential equation, where {X;;t > 0} is a suitable pro-
cess with continuous sample paths, the ’solution’ of (1.8), which we will define
immediately.

Instead of (1.8) we usually write
dX; = b(t, Xy)dt + o(t, Xy)dW;, P, t € Rf, Xo = &. (1.9)
b(t, Xy) is called drift term, o(t, X;) is called diffusion term.

Usually, we denote under which measure the stochastic differential equation is
valid since we will later regularly switch to equivalent measures, thus changing
the stochastic differential equation in some way.

We define now the solution of (1.8) respectively (1.9).

Definition 1.66 (Solution of an SDE). Under the assumptions of Defini-
tion 1.65 we define the augmented filtration {F;;t > 0} as follows. Consider the
filtration

gt ::O(é-;Ws;OSSSt)v tZ(]v

as well as the collection of null sets
N :={NC %3G eo(| JG:) with N C G and P(G) = 0}
>0

and create the augmented filtration

Fi=0(GiUN), t>0; Fu:= O'(U Fr). (1.10)

A strong solution of the stochastic differential equation (1.8) respectively (1.9),
on the probability space (2, S, P) and with respect to the fired Wiener process W
and initial condition &, is a stochastic process { Xy;t > 0} with continuous sample
paths and with the following properties:
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1. {Xy;t > 0} is adapted to the filtration {Fy;t > 0},
2. P{we O Xo(w) =&} =1,

3. P({w € O fot b9 (s, Xy(w)) + 0% (s, Xs(w))ds < 0o}) = 1 holds for every i =
1,...,n,5=1,....mandt >0,

4. the integral equation (1.8) holds P-almost surely.

Remark 1.67. The filtration {F;;t > 0} defined by (1.10) satisfies the usual
conditions (see [Karatzas, Shreeve 2001]).

We can formulate conditions under which a solution of a It6-SDE exists.

Theorem 1.68 (Existence and uniqueness). Suppose the assumptions of Def-
inition 1.65 and 1.66 hold and that the coefficients b(t,z) and o(t,x) satisfy the
global Lipschitz and linear growth conditions

16(t, 2) = b, y)ll2 + llo(t, 2) — ot y) |l < Ll =yl (1.11)
16(2, )13 + llo (¢, @)% < L*(1 + ||=]l3) (1.12)

foe everyt > 0, x,y € R*, where L is a positive constant. On some probability
space (2, S, P), let & be an R"-valued random variable, independent of the m-
dimensional Wiener process {Wy;t > 0}, and with finite second moment

Eplli€ll3] < oo.

Let {Fy;t >0} be as in (1.10). Then there exists a continuous, {Fu;t > 0}-
adapted process {X;;t > 0} which is a strong solution of equation (1.8) relative
to W with initial condition £&. Moreover, this process is square-integrable: for
every T > 0, there exists a constant C(L,T), depending only on L and T, such
that

EplIX:ll2] < C(L, T)(1 + Ep[ligll3]) exp(C(L, T)t), t€[0,T].
Let {Y;;t > 0} be another strong solution of (1.8). Then
P{w € Q; X3 (w) =Y (w) fort >0}) =1
holds (P-a.s. uniqueness).
Remark 1.69. It is also possible to define a weak solution of (1.8). Since we are

only interested in strong solutions, we omit this concept and speak simply of a
solution of (1.8) when talking about a strong solution.
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Remark 1.70 (Alternative definition of the Brownian bridge). There are
other ways to define a Brownian bridge with parameters a,b € R and T € R*.
First, define the stochastic differential equation

_ Ra—b

b—B
——t —dt+ dW,,P,t €[0,T], B{"" = a. (1.13)

dBa—)b —
; T;

It can be shown that the solution of (1.13) coincides with the definition 1.41 of
the Brownian bridge given above.

Another interpretation of a Brownian bridge would be a standard Wiener process
with given start and end condition. In differential notation,

dB" = dW,,P,t € [0,T], By" = a, B4 = b.
A Brownian bridge with additional parameters, for example
dB = 0, dW,, P,t € [0, T), BS™" = a, B&" = b,

or
dB™" = B7%6,dW,, P, t € [0,T), BS" = a, B&7" = b,

is called generalized Brownian bridge. Of course, o and & are such that the above
SDEs admit a solution.

To end this section, we present an important theorems from the theory of stochas-
tic differential equations, Girsanov’s theorem.

Theorem 1.71 (Girsanov’s theorem). Let (2, S, P) be a probability space,
{Wy;t € [0,T)}, T € R, an n-dimensional Wiener process, n € N, and let the
mappings h and G be defined as in Definition 1.65 such that the SDE

dXt - h(t, Xt)dt + G(t, Xt)th, P, t e [O, b], XO = Ty,
admits a solution {X;t € [0,T]}. Suppose there exist an R™-valued stochas-
tic process {Uy;t € [0,T]}, an R*-valued stochastic process {Vi;t € [0,T]|} and
a filtration {H;t € [0,t]} in S such that {Uy;t € [0,T]} and {Vi;t € [0,T]} are
adapted to {H;t € [0,T)} and martingales with respect to this filtration. Assume
further that
G(t,w)U(t,w) = h(t,w) — V(t,w) for allt € [0,T] P-a.s.

holds and U(t,w) satisfies Novikov’s condition

Ep [exp(% /OT U2(s,w)ds)] < 00.
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Put

t t
M, = exp(—/ U(s,w)dW, — %/ U%s,w)ds) for allt € [0,T]
0 0

and define the measure Q by
dQ(w) = Mr(w)dP(w) on Fr. (1.14)

Then .
/Wt = / U(S’w)ds + Wta Qat € [O’T]’ WO = 0’
0

s a Wiener process with respect to @ and in terms of Wt the process { Xy;t € [0, T}
has the stochastic integral representation

dX, = V(t,w)dt + G(t,w)dW,, Q,t € [0,T].

Remark 1.72. In the theorem above Novikov’s condition is sufficient to guar-
antee that {M;;t € [0,T]} is a martingale. This in turn yields the existence and
uniqueness of the measure Q as defined by (1.14). An alternative way of express-

ing (1.14) is Z—Q = My on Frp. Since My > 0 P-a.s. P is absolutely continuous
with respect to @ and thus the two measures are equivalent, P ~ Q

It0’s formula can be viewed as a change-of-variables formula for stochastic differ-
ential equations and Girsanov’s theorem tells us, how a given SDE changes under
a change of measure. It is remarkable that only the drift term changes, but not
the diffusion term. We will exploit this later when pricing derivatives.

1.3 Option pricing theory

Before we start pricing derivatives we must first define the underlying economy
in which we are working. An economy with a finite time horizon 7' € R*, which
we denote by &, consists of an underlying probability space (2, S, P) supporting
a Wiener process and the corresponding filtration {F}";t € [0,7]} and a set of
non-dividend paying assets. We model the prices of the assets by n stochastic
processes {A\):t € [0,T]}, where A" : [0,T] x Q@ — R are B([0,T]) @ S-B(R{ )-
measurable random variables for : = 1,...,n. Again we use the shorter notation
A instead of {A":t € [0,T]} when appropriate. We also assume that there
are no transaction costs, so the stochastic process {Agi);t € [0,T]} gives us the
(random) price at which we may buy or sell an arbitrary amount of the i-th asset
at any time ¢ € [0, T]. Further, the processes A® are assumed to be continuous
and almost surely finite. .

Trading in the economy is modeled by stochastic processes {\Ilgz);t € (0,71},
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where ¥\ : [0, T] x Q — R are B([0, T]) ® S-B-measurable random variables
for every i = 1,...,n. We interpret {¥\?;¢ € [0, 7]} as the (random) amount we
hold of the i-th asset at time ¢. If U\’ )( ) is positive for some ¢ € [0, 7] and w € €2,
we bought that amount of the i-th asset, if the sign is negatlve we sold the ade-
quate amount. The set of stochastic processes ¥ := {(U\" ... w™):¢ ¢ [0, T]}
is called trading strategy. We will allow trading in thls economy throughout
time, but we will prelude the injection of external funds in the economy - all
trading strategies must be self-financing. Further, we assume that all trading
strategies are P-almost surely bounded form below by a constant not depending
on t. These strategies are called tame. When holding a portfolio of assets ac-
cording to a trading strategy U, the value V,¥ of the portfolio as time ¢ is given
by V¥ := 37 0P AD . We call {V,;¥;t € [0,T]} a price process and any price
process that is almost surely positive is a numeraire.

We are not only interested in the assets themselves, but also in derivatives of
those assets. A derivative is a financial instrument whose value depends only on
the value of one or more underlying assets.

We will further assume that the economy is arbitrage-free. The concept of ar-
bitrage and its absence have important consequences as stated by the following
theorems.

Theorem and Definition 1.73 (Arbitrage). An arbitrage is a self-financing
tame trading strategy U for the time interval [0, T| such that V¥ =0 and V3¥ > 0
with positive probability. Further V,¥ > 0 P-almost surely for every t € (0,T].

If a measure N P and a numeraire {Ny;t € [0,T]} exist such that all relative

asset prices {T’t € [0,T]} are martingales with respect to {F}";t € [0,T]},

A(i)

A(Z T | W
= — | F <1< .
EN[ T‘ t ], l_z_n, (115)

N,

the measure N is called an equivalent martingale measure.

An economy & is arbitrage-free, if @ numeraire pair (N, N), consisting of a nu-
meraire { Ny; t € [0,T]} and an equivalent martingale measure N, exists and (1.15)
holds.

The existence of an arbitrage implies that is possible to make a riskless profit,
something we want to exclude from our model.

For our purposes it is sufficient to know that an economy is arbitrage-free if a
numeraire pair exists and (1.15) holds.

An important consequence of the absence of arbitrage is the following theorem.

Theorem 1.74 (Fundamental theorem of asset pricing). Suppose £ is an
arbitrage-free economy with a numeraire pair (N,N) given. Let {Vy;t € [0,T]}
denote the value of a derivative and assume that at some time T > 0 the price
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Vi of the derivative has been determined by the evolution of asset prices. Then
the value V; of the deriwative at any time t prior to T is given by

Vi = NEn[VeNp | F] . (1.16)
Proof. See [Hunt, Kennedy 2000]. O

It will be important to be able to change the numeraire we are working with.
The following lemma gives more details.

Lemma 1.75 (Change of Numeraire). Assume we are working in an economy
E supporting a numeraire pair consisting of a numeraire {Ny;t € [0,T]} and a
probability measure N' ~ P such that the price of any traded asset A% relative
to N is a martingale under N, i,e.

Agi) B [A(i)
Ny

T FW <t<T.
NT‘ft]’ 0— —

Let {My;t € [0,T]} be an arbitrary numeraire. Then there erists a probability
measure M ~ P such that the price of any derivative {Cy;t € [0,T]}, whose value
at time T can be replicated by some trading strategy ¥, V¥ = Cr, normalized by
M s a martingale under M, i.e.,

¢’ Cr o
— = — <t<T. .
i EM[MT|.7-"t], 0<t<T (1.17)

Equation (1.17) holds in particular if C is one of the assets in the market.

Moreover, the density function % defining the measure M with respect to the

measure N is given by
dM  MrN,

AN~ MoNg'
Proof. See [Geman et al. 1995]. O

Our main interest will lie on a special kind of derivatives, namely options.

Definition 1.76 (Option). An option is a contract between two counterparties
that gives one party the right, but not the obligation, to buy (call-option) or sell
(put-option) an asset for a pre-specified price on a pre-specified date.

Of course the theory developed so far for pricing derivatives is also valid for
pricing options.

Like other assets, options are traded continuously in the market and may be
bought and sold at any time. Knowing the option value at some time 7" we may
determine the option price at any time ¢t < T using (1.16). Usually one takes
T to be the maturity of the option. In this case, Vr is called the payoff of the
option.
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Chapter 2

Interest Rate Derivatives

In this chapter we will introduce some of the basic products that define the
interest rate market. The products that we consider are all traded in the mar-
ket and as already mentioned in the last chapter we will also consider options
based on these products. We will also introduce standard market terminology
which is important for the discussions that follow. Most of this chapter is due
to [Hunt, Kennedy 2000].

2.1 Deposits

We begin with the most fundamental instrument in the market, the deposit.

Definition 2.1 (Deposit). A deposit is an agreement between two parties in
which one pays the other a cash amount and in return receives the money back at
some pre-agreed future date, with a pre-agreed additional payment of interest.

Observe that in the above definition deposits are always made until a fixed date.
Deposits are available for a range of maturities, the most common being overnight,
1 week, 1, 2, 3, 6 and 12 months. The amount of interest being paid at the end of
the interest period is quoted via an accrual factor and an interest rate. These two
concepts will play an important role in most of the derivatives we shall encounter.

2.1.1 Accrual factor and LIBOR

Definition 2.2 ((Spot) LIBOR). LIBOR, also called spot LIBOR, is the Lon-
don Interbank Offer Rate, the rate of interest that one London bank will offer to
pay on a deposit made by another London bank.

There will, in general, be a different LIBOR for each of the standard deposit ma-
turities. LIBOR is always quoted on a per annum basis, i.e., it is the interest rate
paid for a deposit maturing in exactly one year. For other maturities, especially

29
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those below one year, we have to calculate the appropriate fraction thereof. To
be able to do this we introduce accrual factors, also called daycount fractions:

Definition 2.3 (Accrual factor, daycount fraction). The total amount of
interest that the depositing bank will receive is calculated by multiplying the LI-
BOR by the amount of time, as a proportion of a year, for which the money has
been on deposit. This amount of time is called the accrual factor or daycount
fraction.

Accrual factors are calculated by dividing the number of days in the period by the
number of days in a year. Naturally, different markets use different conventions
to calculate these figures. A common example is actual/360. Here the number of
days in the interest period is the exact number of calendar days. The whole year
is taken to be 360 days long, therefore we divide by 360. Due to this convention
the accrual factor may be greater than 1, since the number of calendar days in a
year is 365 respectively 366 in a leap year. We will not need detailed knowledge
about how the accrual factor is calculated and simply assume that an appropriate
accrual factor has already been calculated. Say we made a deposit of notional
amount A for a certain period of time, denoting the corresponding LIBOR by
L and the accrual factor by a. At maturity along with the notional amount A
we will receive an interest payment of amount AaL. Usually we suppress the
notional amount and assume it to be unity. These cashflows are illustrated in
Figure 2.1.

' T

Figure 2.1: Deposit cashflows

We will often represent products in this way. The horizontal axis represents the
time of cashflows; those above the axis are ones we receive, while those below the
line are ones we pay.

2.1.2 Forward LIBOR

Until now we restricted ourselves to deposits starting today and maturing on
some future date. But what if we want to make a deposit starting on some future
date? The LIBOR rates introduced in Section 2.1.1 are clearly inappropriate
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interest rates since they implicitly assume that the deposit starts today. We have
to introduce another class of interest rates, the forward LIBORs.

Definition 2.4 (Forward LIBOR). The forward LIBOR L;[T, U] is the rate of
interest one London bank will offer to pay at time t on a deposit made by another
London bank, starting on date T' and maturing on date U. Of course, t <T < U.

Naturally the interest rate L;|T’, U] is fixed once the deposit is made but its value
will change through time. We will soon see how to calculate this value. Note
that for ¢t = T the forward and spot LIBOR coincide.

2.2 Interest Rate Swaps

Definition 2.5 (Interest Rate Swap). An interest rate swap, which we will
abbreviate to swap, s an agreement between two counterparties to exchange a
series of cashflows on pre-agreed dates in the future.

We refer to all payments we receive as one leg of the swap, and those we pay
constitute the other leg. To specify the swap we must know its start date (the
start of the first accrual period), maturity date (the date of the last cashflow),
and the payment frequency, for each of the legs. Typical maturities are 1 to
10, 12, 15, 20 and 30 years. Each leg can in general have a different payment
frequency, but here we describe the case when it is the same for both legs.
Suppose there are a total of n cashflows in each leg, cashflow ¢ occurring at time
U;. One of the legs will be a fixed leg, for which all the cashflows are known at
the start of the swap. Assuming a notional unit amount the amount of cashflow
i is given by a; K, where «; is the accrual factor for the period [U; 1,U;] and K
is the fized rate for the swap.

The other leg is the floating leg, so called because the payment amounts will be
set during the life of the swap. The amount of payment : is set at time U;_; and
is the accrual factor o; multiplied by Ly,_, [U;—1, U;], the LIBOR then quoted for
the period [U;_1, U;]. For notational convenience we shall often refer to the start
of the i-th accrual period as T; (rather than U; ;). Then the LIBOR appropriate
for the i-th period is Ly, [T;, U].

From now on we will use the convention that 'wavy’ cashflows represent cashflows
not known today in our cashflow diagrams.

Swaps are usually entered at zero initial cost for both counterparties. A swap
with this property is called a par swap, and the value of the fixed rate K for
which the swap has zero value is called the par swap rate. In this case when the
swap start is spot (i.e., the swap starts immediately), this is often abbreviated
to just the swap rate, and it is these par swap rates that are quoted on trading
screens in the financial markets. A swap for which the start date is not spot is,
naturally enough, referred to as a forward start swap on the corresponding par
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B
IR

Figure 2.2: Payers interest rate swap

(x/n LTn[T ,Un]

swap rate is the forward swap rate.

We will denote the (forward) par swap rate, at time ¢ for a swap starting at date
T and making fized payments on dates given by the vector U = (Uy,...,U,),
by S¢[T,U] (often just S; when the context is clear). Note that this definition is
independent of the payment frequency of the floating leg. This is indeed the case
as we see when we learn how to value swaps in Section 2.4.3 .

Swaps where one pays a fixed rate and receives a floating rate are usually referred
to as payers swaps whereas swaps where one receives a fixed rate and pays a
floating rate are referred to as receiver swaps.

2.3 Zero coupon bonds

Definition 2.6 (Zero coupon bonds). Zero coupon bonds (ZCBs), also known
as pure discount bonds, are assets which entitle the holder to receive a cashflow
at some future date T. The amount of this cashflow is part of the contract speci-
fication, although we will often assume it to be a unit amount.

The main value from introducing ZCBs comes from the fact that other products
can be built up from them. In this sense they are fundamental. As an example,
the fixed leg of a swap consists of n known cashflows and so can be thought of as
n ZCBs. Thus the value of the fixed leg will be the sum of the values of each of
these component ZCBs. Note that although ZCBs mature on some future date 7’
they may be bought and sold at any time ¢ < T. Of course, one will not receive
the full (unit) notional amount when selling a ZCB at time ¢ < 7 but only a
fraction of it.

2.4 Discount factors and valuation

In this section we introduce discount factors, the most fundamental tool for sum-
marizing the value of interest rate products. We will see how discount factors
can be used to express the value of the basic instruments we have met and also
how they are related to forward LIBOR and swap rates.
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L,

T

Figure 2.3: Zero coupon bond

2.4.1 Discount factors

Suppose we are at time ¢. For any time ¢t < T there is a corresponding discount
factor, denoted as Dyr, defined to be the value, at time ¢, of a ZCB paying a unit
amount at time 7. The value D, is thus exactly the amount we have to invest
at time t to receive a unit payment at time 7. Note that, for all £, Dy = 1 since
a unit cashflow now is worth a unit.

We will usually assume that the initial discount curve, {Dor : T > 0} if today
time is zero, is known. This is not strictly the case since the standard liquid
market instruments only give us a limited amount of information. In practice
banks take these liquid market instruments and construct a full discount curve
consistent with their prices. There is no unique way to do this, and what is done
often depends on the use to which the discount curve is to be put. We shall
not discuss the techniques used to construct discount curves in detail and shall
assume that this has been done as the starting point for the rest of our analyses.
When setting up a model for the discount curve we will only model the pure
discount bond prices. An especially convenient way to accomplish is creating a
numeraire model:

Definition 2.7 (Numeraire model). Let € be an arbitrage-free economy with a
numeraire pair (N,N') given. Given a set of maturity dates T = {T;;1 < i < n}
the term structure using a numeraire model s defined by

D
D = NEN[Z |7 (2.1)

= NENINGYFY], TeT, 0<t<T. (2.2)

2.4.2 Deposit valuation

A standard deposit of unit amount at time 7" pays at maturity U an amount
1+ aLp[T,U]. Since there are no further payments than the initial deposit and
the final redemption, these two cashflows must have the same value at time 7.
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Thus it follows that

Drr =1+ aLy[T,U))Dry =1,
& Dry = (1+ oLy [T,U))7H,
& LT, U] = Drr — Dry (2.3)
aDry
~ 1—=Dgy
 aDgpy

Analogous to the above calculations we may find the value of some forward LI-

BOR rate LT, U],

Dy — D
LT, U] := t(TTUtU.

2.4.3 Swap valuation

Again we take the notional amount to be one for simplicity.

The fixed leg of a swap consists of a series of payments on dates Uy, ...,U,, the
payment at time U; being o; K. If the swap starts on time 7" the value of the
fixed leg at time ¢ < T is given by

V;Fia:ed — KzathUj
j=1
= KPR[T,U],

where U = (Uy,...,U,) and

BT, U] := iajpwj, te0,T). (2.4)

=1

We will refer to the expression { BT, U];t € [0,T]} as the present value per basis
point, or shortly PVBP, of the swap. It represents the value of the fixed leg of
the swap if the fixed rate where unity. The PVBP will play an important role in
some of the products we examine later. When there can be no possible confusion
we will usually abbreviate P,[T, U] to P;.

The floating leg of the swap is more difficult to value, comprising as it does a
series of floating payments. However, we can find a simple trading strategy which
replicates the swaps floating payments. Suppose at time ¢ we have an amount of

cash
V,[lout = Dyp — Dy, (2.5)

Take this cash and buy one ZCB of maturity 7" and sell one of maturity U,,. At
time T take the unit paid by the ZCB and deposit it at LIBOR until time U;.
At time U; (= Ty) we will receive 1 + oy Ly [T, U;]. The term «y Lp[T, Uy] is the
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floating payment we need to replicate the swap, the extra unit of principal we
deposit at LIBOR until time U;. We repeat this at each floating payment date
until time U,, we receive 1 + oy, L1, [Ty, U,]. The LIBOR part of this payment is
what we need for the last floating payment of the swap, the notional pays the
amount owed on the ZCB we sold at time ¢.

It follows that the net value of a payers swap is exactly

Payers Float Fized
Vi Vit =V,

— Dy — D, — KR[T,U]. (2.6)

The forward swap rate Sy[T,U] is the value K which sets this value to zero.
Substituting V;"¥*"* = 0 into (2.6) yields

Dyr — Dy,

St [T’ U] - P, t [Ta U]

2.7)

Substituting this back into (2.6), we obtain the more usual expression for the
value of a payers swap,

V7 = BT, U|(S:[T, U] — K). (2.8)
The value of a receivers swap is, of course, —V;7 %",
As a final point on swaps, recall that we allow the floating and the fixed legs to
have different payment dates. It is easy to see from the arguments above that the
value of the floating leg, as given by (2.5), is independent of the floating payment
frequency. It is therefore only the fixed payment frequency that matters when
defining and valuing a forward swap.

2.5 Caps, floors and swaptions

Having introduced several interest rate products, we will now turn to derivatives
of these products. The simplest and most liquid of these derivatives are caps,
floors and swaptions.

2.5.1 Caps and floors

It is often the case that a customer is either making or receiving a series of floating
payments and does not wish to convert them into a series of fixed payments. This
may be because he believes future rate moves will be in his favor. However, he
is then exposed if rates move against him and would like to buy some protection
against this without removing the benefits of the move in rates he expects. The
solution in this case is for the customer to buy a cap or a floor.

Caps and floors are similar to swaps in that they are made up of an series of



36 CHAPTER 2. INTEREST RATE DERIVATIVES

payments on regularly spaced dates U;,7 = 1,...,n. On date U; the holder of a
cap receives a payment of amount

aj(LTj [TJ’ U]] - K)+’

where T} := U,_; is the setting time for the LIBOR which pays at time U; and
(K)* := max(K,0). A floor is similar except the payment amount is given by

(K — Ly [T}, U]) ™

The constant K in these expressions is part of the contract specification and is
known as the strike of the option.

A counterparty who is paying LIBOR on some unit notional amount and who
buys a cap (usually from a third party) has ensured that he will never pay more
than o; K at time Uj; one who is receiving LIBOR on some unit notional amount
and buys a floor (again, usually from a third party) will never receive less than
a; K. Each individual payment is usually referred to as a caplet or floorlet. At
any time ¢ < T, the amount o (Lg; [T}, U;] — K)* is referred to as the intrinsic
value of the caplet and, similarly, o (K — Lq; [T}, U;])" is referred to as the in-
trinsic value of the floorlet. In either case, if the intrinsic value is positive then
the option is said to be in the money, whereas if it is zero the option is said to
be out of the money. When Ly, [T}, U;] = K both options are said to be at the
money. Payoff profiles of caplets are floorlets are shown in Figures 2.4 and 2.5.
Since caps and floors are linear combinations of caplets and floorlets, it suffices
to price these single payments.

AV

Caplet value

Caplet payoff
K
>

K*

Figure 2.4: Caplet payoff profile and value
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Av

Floorlet value

Floorlet payoff

v=

K*

Figure 2.5: Floorlet payoff profile and value

2.5.2 Valuation of caps and floors
The payoff at some time S from a single caplet setting at time T is just
VS = (L [T, U] — K)*
and so its time-t value is given, dropping the [T, U] from the notation, by
VO = NyE zrla(Ly — K)TNGHF)], (2.9)

for some numeraire pair (N, N). To calculate this price we must choose a nu-
meraire N and a suitable model for L[T’, U] in the measure /. Suppose we choose
N; = Dg, the discount bond maturing on the payment date S. The correspond-
ing measure N is usually referred to as the forward measure and we denote it by
F. Using this measure has two important consequences. First, Ng = Dgg = 1
and so this disappears from the equation (2.9). Secondly, the forward LIBOR L,
which is of the form

Lt:

is a ratio of asset prices over the numeraire and so must be a martingale. As long
as we model L as a martingale (under F) we will have a model that is arbitrage-
free and the caplet value will be given by (2.9). Because interest rates are always
assumed to be positive, we will model L as a log-normal martingale,

dL, = oy Ly dWy, F,t € [0,T], Ly = &,



38 CHAPTER 2. INTEREST RATE DERIVATIVES

for some deterministic o, a Wiener process {Wy; ¢t € [0,7]} and £ > 0. This is
standard market practice and yields a solution

t 1 t
L, = Lyexp (/ 0, dW,, — —/ oﬁdu).
0 2 Jo

Substituting into (2.9) now yields after some lengthy computations

V-tCaplet — DtSE'f[a(LT—K)""fZV]

= DtSEf[a<Ltexp(/Touqu - %/Taidu) —K)JF‘JTZV}
t t

= aDs(L:®(di) — K®(dy)), (2.10)
where
log(Li/K) 1
dy = ===+ Ny VT — t,
1 Et;T T 2 4T
log(Li/K) 1
= —N/T —t, 2.11
R 1)
Sur = ' od
t;T.—T_t ) g, au.

This is Black’s formula for caplets and was first published in [Black 1976]. Of
course a cap, consisting of a series of caplets, may be valued accordingly.
Pricing of floorlets is identical and yields the usual put option formula,

V;Floo'rlet — OthSEf[(K _ LT)+|f};V]
= aDys(K®(—dy) — Li®(—dy)). (2.12)

Knowing the strike K and the volatility ¢ we can calculate the price V; of a
caplet or floorlet using Blacks’s formula (2.10) or (2.12). It is also possible to
invert Black’s formula and, given a market price V; and a strike K, to retrieve
the implied volatility. This may be done for a series of caplets of different strikes.
It then turns out that the volatility o depends not only on the time ¢, but also
on the strike K. The effect of the volatility depending on the strike is called a
volatility smile or volatility skew, depending on whether the volatility is increas-
ing when moving away from the at-the-money-strike (i.e., the strike equal to the
corresponding forward LIBOR, currently quoted in the market) or decreasing for
out-of-the-money strikes and increasing for in-the-money-strikes (or vice versa).

Since smile and skew effects can be observed in the market the distribution of
caplet and floorlet prices is not log-normal as initially assumed but has in fact
fatter tails (leptokurtosis). Modeling these effects is one of the most difficult
parts when setting up an interest rate model.
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. K
at-the-money strike >
Figure 2.6: Volatility smile
AG
K
>

at-the-money strike

Figure 2.7: Volatility skew
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2.5.3 Vanilla swaptions

Just as a caplet is an option on a ZCB, a swaption is an option on a swap. Swap-
tions are commonly traded in the market and are priced using Black’s formula.
There are two types of swaptions: receivers swaptions and payers swaptions . In
the first case, upon exercise the option holder enters a swap in which he receives
a fixed rate K, the swaption strike, and pays the floating rate; a payers swap is
the reverse. We refer to this as a vanilla swaption if the underlying swap is a
plain vanilla swap.

We now price a payers swaption. Let U[T, U] be the value at time ¢ of a vanilla
payers swap which starts on date 7' and makes fixed payments on the dates
S = (Uy,...,U,). The effective payoff to the option holder, who has the right
but not the obligation to enter the swap, is given at the option expiry 71" by

P Swaption
Vi = max(Ur, 0)

since he will only enter the swap if it is to his advantage to do so. The value at
time ¢ of the swaption is, by the usual valuation formula, given by

Y, P Swaption  _ NtEN[maX(UT’O)Nfllf};V]
= NtEN[PT(ST - K)+N;1|FXV]’ (2.13)

for some suitable numeraire pair (N, N'). The finally equality above follows by
substituting (2.8) for the value of a swap, where Pr, Sr and K are, as usual, the
PVBP and par swap rate at time 7" and the fixed rate for the underlying swap.
We usually refer to K as the swaption strike. At any time t < T we use the
terminology in the money, out of the money and at the money just as we did for
caplets and floorlets according to the sign of (S; — K).

To evaluate (2.13) we follow a procedure similar to that for the FRA. On this
occasion we choose P as the numeraire, is which case the corresponding mar-
tingale measure is called the swaption measure and will be denoted by S. This
reduces (2.13) to the form

V;PSwaption _ PtES[(ST _ K)+|~7:ZV]’

which should by now be quite familiar. We recall from (2.7) that the forward
swap rate is of the form

_ Dy — Dy,

=5 =

which is the ratio of asset prices over the numeraire, so must be a martingale
under §. Since we want interest rates to remain positive, we will model S to be
a log-normal martingale,

St

dS; = 0,5, dW,, S,t € [0,T], Sp =&,
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for some deterministic function o, a Wiener process {W;; t € [0,T]} and £ > 0.
This puts us in precisely the same framework as when we priced caplets and
floorlets and again yields Black’s formula for the price ,

V;PSwaption — Pt(St(I)(dl) _ K@(d2))’ (2.14)

where

The corresponding receivers valuation formula is just

V;RSwaption — Pt(K(b(—dg) o Stq)(_dl))

2.5.4 Flexible caps and Bermudan swaptions

Until now we discussed only so called European options, i.e., options that may
only be exercised on the maturity date S. It is possible to remove this restriction
and this results in Bermudan options.

Definition 2.8 (Bermudan options). An option, bought on a date T with
maturity S, S > T, that may be exercised only on some pre-agreed dates t €
{Th,...,T,},n € N, is called a Bermudan option. The set of exercise dates is as
always part of the contract specification.

Interesting about Bermudan swaptions is that they have a special feature com-
pared with Bermudan options on stocks. Assume we bought a Bermudan swap-
tion maturing on date S with a set of exercise dates {11, ...,T,}. Assume further
that we may only exercise on dates on that the underlying swap is resetting. Then
when exercising the option on date 7T; we enter a swap resetting on date 7; with
maturity date S. Contrary to options on stocks the underlying swap is a differ-
ent one with different maturity after each exercise date. This additional feature
makes Bermudan swaptions more difficult to value although the value may be
expressed by a variant of our usual pricing formula.

Let T be the set of all stopping times taking values in {71,...,7,}. Then the
value of a Bermudan swaption with strike K as described above at time ¢ is given
by

‘/tBermudan = sup NtEN[(ST _ K)+|f};‘/], (2.15)
TET
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under a numeraire pair (N,N). S; is for each T; € {T1,...,T,} the rate of a
swap resetting on 7; and maturing on S. Equation (2.15) describes a problem of
stochastic control theory. One will not try to find an analytical solution. Rather
the equation (2.15) is solved numerically in two steps. First the ezercise boundary
is approximated. This is some function b : [0, S] — R depending on time ¢ giving
the value of the swap rate for which it is optimal to exercise the option. When
running a Monte Carlo simulation it is easy to check whether at time ¢ S; > b(t)
holds. If this is the case the option is considered exercised and the simulation for
the current path is stopped. Approximating the exercise boundary, however, is
cumbersome.

Similar to Bermudan swaptions, Flezible caps also have a kind of early exercise
feature. A Flexible cap consists of n, n € N, caplets just like a plain vanilla cap,
but only m < n, m € N, of those caplets may be exercised. Once all caplets have
been exercised the Flexible cap is worthless. It is up to the owner of the Felxible
cap to decide wether he wants to exercise a caplet or not, given the caplet is
in the money, of course. Bermudan swaptions and Flexible caps are prototypic
interest products that may be valued using Makov-functional models.

Before introducing the Markov-functional model we introduce one more type of
exotic options we will need later on.

2.6 Digital options

A digital option is one which pays either one or zero at some future date, de-
pending on the level of some index rate. The two most common examples are
digital caps and floors, and digital swaptions.

2.6.1 Digital caps and floors

Just as caps and floors are made up of a series of caplets and floorlets, so digital
caps and floors are made up of digital caplets and floorlets. A digital caplet is
an option which pays a unit amount at time S if at T" the LIBOR for the period
[T, U] is above some strike level K. A floorlet pays a unit amount if the LIBOR
is below the strike.

The value at S of a digital caplet given by
that

VSDigCaplet = 14,5k}, and so it follows

VO = NENr L g1y N3 FL .
Taking D,s as numeraire, as we did for caps and floors, and using the same
log-normal model, yields
VPO = DisEp(Lpsi|F)']
= DisF(Lr > K|F})
= DysP(ds), (2.16)
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where dj is defined as in (2.11). The analogous digital floorlet pricing formula is
then

V;DigFloorlet — DtSE.'F[l{LT<K}‘f};V]
= Dig®(—dy). (2.17)

Remark 2.9. What we have just done in (2.16) and (2.17) is to derive the price
of a digital caplet and floorlet using the same log-normal model as we did to
price a standard caplet and floorlet. Even when alternative models are used for
the forward LIBOR there is still a fundamental relationship between the prices
of caps and floors on the one hand and digital caps and floors on the other. The
relationship essentially follows from the identity

0

6—K(x — K)" = -1k,

which can be justified as follows. Set

B y Jz—-K ifz>K
(= — K) _{ 0 otherwise.

Taking derivatives (only from the left for x < K) yields

0 n -1 fz>K
a—K(x —K)T= { 0 otherwise} = ~Ll>xy-

The more general relationship will be exploited in Chapter 4.

2.6.2 Digital swaptions

Digital swaptions are less common than digital caps and floors, and they are also
more difficult to price. There are, once again, two types of digital swaptions,
payers and receivers. In the case of a digital payers swaption the options holder
receives a unit amount at some date M if the index swap rate, S, is above the
strike K on the setting date 7T'. For a digital receivers the option holder receives
the unit payment if the swap rate is below the strike K.

In the case of swaptions there is no obvious choice for the option payment date
M relative to the first setting date 7. Common choices are M =T or M = Uy,
the first payment date of the underlying swap. Considering the payers digital,
the value at time M is 1(s,> k) and so the time-¢ value of the option is

‘/tDigPayers — NtE_/\/’[]-{ST>K}N]\_/[1|f};V]
= NtEN[1{5T>K}DTMNfl‘FZV]’
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the last equality following by conditioning on .7-?/ . To value the digital con-
sistently with standard swaptions, we would like to take the same model as in
Section 2.5.3. Working in the swaption measure, we have

yPrebavers P,Eg[ls,>ryDru Pyt | FY]. (2.18)

Evaluation of the expectation on the right hand side of (2.18) presents us with a
new problem. The expectation involves three distinct random terms, namely Sr,
Dryr and Pp. We know that within our model St is a log-normal martingale,
but we have not yet specified a suitable model for the other two terms. This will
be done in the next chapter.



Chapter 3

A close relative: Market models

Before introducing (multi-dimensional) Markov-functional models we will first
have a look at another class of interest rate models that is closely related to
the Markov-functional model. Recently several authors including Brace, Gatarek
and Musiela [Brace, Gatarek, Musiela 1997] have studied a class of interest rate
models parametrized by forward LIBORs. Jamshidian [Jamshidian 1997] has ex-
tended this to models parametrized by general swap rates and they are collectively
known as ‘Market models‘. A good introduction is given in [Brigo, Mercurio 2001].
We have a closer look at the LIBOR market model, also known as BGM model.

3.1 One-dimensional LIBOR Market model

In the one-dimensional LIBOR market model LIBOR rates are taken to be log-
normal distributed in their respective measures. This results in a system of
stochastic differential equations having the form

L) = o L aw,, 89,1 € [0,T)), LY = L, (3-1)

where T' < To < ... < T, < Th11,T; € Ry =1,...,n+ 1. {Wytel0,T,]}is
a standard, one-dimensional Wiener process and at(i) : [0,T;] — R is a deter-
ministic, strictly positive function of time. It is not unusual to specify a set of n
Wiener processes {Wt(z); t€[0,T;]}, i =1,...,n, the i-th Wiener process driving
the the i-th SDE of the system (3.1), and a set of correlations p;; between those
processes, such that d(W® WU)) = p;;dt for i,j = 1,...,n. This approach
seems more general but it can be reduced to the system of SDEs 3.1 by changing
the volatility functions ng) appropriately (see [Kerkhof, Pelsser 2002]). It is thus
sufficient to work with the LIBOR market model specified by (3.1).

Usually one takes the pure discount bond D7, ., as a numeraire and the associated
measure S, the so-called terminal measure. Applying Girsanov’s theorem 1.71
to calculate the drift terms under the terminal measure the system of SDEs (3.1)

45
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becomes
dLf) = pi(t, LY, L)LY + o LYW, 8™t € [0, T LY = L (3.2)
for 1 <14 < n, where

AN SINONO

N D P

0 for i < m,
jeiqn 1+ oLy

pt =
(cf. [Brigo, Mercurio 2001], Proposition 6.3.1). The by now familiar application
of It6’s formula (1.7) yields the solution of (3.2),

t t
LY = 1Y exp ( / pi(s, LOHD L L) — %(agi))zds + / a@dWs).
0 0

Obviously the LIBOR market model calibrates automatically to the current LI-
BOR rates in the market, but at the price of state-dependent dynamics. Therefore
evaluation of these models requires a Monte Carlo simulation. Another problem
is the incorporation of non-log-normal dynamics to generate smiles or skews.
The swap market model is exactly the same but for one exception. Instead of
Dyr, ., one takes P;, the PVBP as defined in (2.4), as a numeraire and S™ is the
associated swap measure. Under these assumptions the swap market model can
be described by the same set of SDEs (3.1) as the LIBOR market model. Thus
all the statements made in the following section about the LIBOR market model
hold as well for the swap market model.

3.2 Two-dimensional LIBOR Market model

Of course, there is also a two-dimensional extension of the LIBOR market model
(equivalently of the swap market model). A two-dimensional model is useful,
even vital, when pricing more complex interest rate products. A more in-depth
explanation is given in the next section where the multi-dimensional Markov-
Functional model is introduced.

As before the LIBOR rates are taken to be log-normal distributed in their re-
spective measures,

2
dLy =3 " LPoWaw® s t e [0,T), LY = L;, 1<i<n. (3.3)

k=1
Ty,...,T,, T, are chosen as before. We extend our notation slightly, taking a

two-dimensional Wiener process {W; t € [0, 7,]} under the measure S for every
i. WO and W® are correlated,

d(WD, W) = pat.
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Again § @ is the measure associated with the numeraire Dyr,, . Similarly, o®k) .
[0,7;] - R, k = 1,2, are the volatility functions for the i-th forward LIBOR.

Under the numeraire Dyr,,, and the associated measure S™ the drift of the
SDEs (3.3) changes as follows. The proof of the following lemma is a generaliza-

tion of the one-dimensional case (see [Brigo, Mercurio 2001], Proposition 6.3.1).
Lemma 3.1 (Drift under change of numeraire). Let the two-dimensional
LIBOR Market model be defined by the system of SDEs (3.3) as above. Under

the measure S® | defined by the numeraire Dyr,.,, the i-th forward LIBOR has
the form

AL =it LY, LMY LY dt + 22: LM aw P 8O,
€ [0, min(T;, Ty)], Lo =L,
with drift term
k<i o+ pi(t, L L) =

(4)
oL ; ; i ; j
z it (0§2,1)0§J,1)+0t( 2) (J,)+p( (4, )0§J’2)+0§Z’2)0§J’D)),

k=1 : p'=0,
) ; i1
k>i : /ﬂ(t,L,SZ ),...,L,(t")) =
o, LY ; ; ; ; ; ; ;
_ Z e bt B (J (Z 1)Ut(1,1) +0t(z,2)0§m2) —l—p(at(z’l)at(J’Q) +0§Z’2)0§J’1)))-
j=i+1 1 + a]L

Proof. Fix some i € {1,...,n} and take k < i. The i-th forward rate is driftless
under the original numeraire Dy, ,. Following [Brigo, Mercurio 2001], Proposi-
tion 2.3.2, the drift term x* under the numeraire Dy, ., 18

pidt = d<ln L@,ln(%) >t (3.4)
T4

in differential notation, dropping the arguments from the drift term p’. Since
k < i we have
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Thus

d<ln LO, ln(g'Ti ) > <1n L Z ln 1+ ;L )>

Tk j=i+1

k
= Z d<ln L_(i),ln(l + ajL_(j))>t

j=i+1
k
=Y d(InL{)d(In(1 + o, L)),
j=i+1

Before proceeding we evaluate the two differentials using It6’s formula (1.7),

@y _ L o6 70
d(]nLt ) - ng) t (L(z )2 < >
1 [ 2 ,m m
:L(i)LQZag’ Yaw ™ — (.. )dt
t m=1

2
= "o maw™ — ()t

m=1
Q;

(4)
71 N a]L(J) ALy’ — (...)dt.

d(In(1 + a;LY)) =
In the equations above (...)dt denotes drift terms that have been ignored to

simplify calculations. Drift terms do not contribute to the calculation of (3.4),
therefore we omit them. Continue with

k k
> (L) d(n(1+0;L)) = Y ——d(in L{")dLY.
j=itl S 1+ oLy

Evaluating the last differential gives (ignoring drift terms)

2 2
A 1)aL? = (3ol aw™) (LY ofmaw™)
m=1 m=1
. 2 . 2 -
_ L:EJ) (Z O'tz’m)th(m)) (Z U,gj’m)th(m))
m=1 m=1

~ ¥ ((at(i’l) WO (VWD) + (68w ®) (69D aw V)
+(Ut(i,1)th(1)) (U(jﬂ)th(?)) + (U(iﬂ)th(?)) (Ogjﬂ)th(?)))

= Lj)(a

_ Lj)((7

1) (J’ dt + O'(Z 2) J’ dt + ,00(Z 2 t(j’Q)dt + pat(i’2)0§j’1)dt)

(s
t

(
¢
(
t
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Putting this together yields

. . /Dr
idt = d<1 L1 (—)>
a BT\ D )
k (4)
= Z ij t () (o.t(zyl)o.t(]:l) + o.t(za2)o.t(.712) + p(o.t( 71)0.t(.7a2) + O.t( :2)0.t(]71)))dt.
a1+ oL

Now take k£ > 7 and note that
D, 1
]“(&) =In| = o)
D Hj:i+1(1 + oy Ly")

k
= — Z ln(l +ajL§j)).

j=i+1

Performing the same calculations as above yields the asserted drift term. This
completes the proof. O

Applying 1t6’s formula (1.7) again finally yields the solution of (3.3)

. . t . 1, . , : 1, .
L' =LY exp (/ pi(s, LO+Y 0 LMy — (—(ogz’l))2 + poVg®D) 4 — (051’2))2) ds
0

2 2
2 t
(&) gy h)
+3 /0 o) gy )
k=1
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Chapter 4

Markov-functional Models

All interest rate models introduced here share some common assumptions. We
always suppose that the uncertainty in the economy can be modeled by a (usually
time-changed) Wiener process. This is the cornerstone of all models in this work.
The only further information we need are market prices of some products, for
example caps or swaptions, for a range of maturities and strikes. From these
market prices we derive the covariance function of the underlying Wiener process
by statistic methods and we use them to calibrate the model. This means that we
set some model parameters such that the market prices of the products in view
are replicated exactly. Therefore we may interpret an interest rate model not only
as a pricing tool, but rather as an extrapolation tool since we want to determine
the price of a given product relative to the prices of some other products traded
in the market.

Given market prices as a model input we receive the forward LIBOR or swap rates
as a model output. In case of the Markov-functional models we will not model
the LIBOR or swap rates directly, but rather a set of zero coupon bonds. The
corresponding LIBOR or swap rates may then be computed from these values as
shown in the last chapter.

4.1 One-dimensional Markov-Functional Mod-
els

Throughout this section we will be working in a single-currency economy £ com-
prising of a set of pure discount bonds D;r. It will be enough to consider a finite
number of bonds Dy, T € T, where T = {T;;1 < i <n}. We assume further
that the economy admits a numeraire pair (N, N), consisting of a numeraire N
and an equivalent martingale measure N/ ~ P. Thus the economy is arbitrage
free. Our products in view will share a common terminal time which we denote
by Tn—|—1-

The models we are working with throughout this chapter are numeraire models.

o1
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This means that the term structure is defined via
Dyr = NENNFY), T €T,

where N is the chosen numeraire and N the associated measure as mentioned
above. See also [Hunt, Kennedy 2000].

It then follows as already laid out in section 1.3 that since the economy & is
arbitrage free, the value V; of any derivative at time ¢t < T is given by

V, = NEpr[VeNpHFY]

Central to the approach of Markov-Functional models is the assumption, that the
uncertainty in the economy can be captured by a low-dimensional Markov process
{Xi; t €[0,T]} . This is reasonable if we assume that all information available
about an asset at some time ¢ is contained in the asset price at time ¢ (as it is
usually done in economics). The dimension of the Markov process determines
the dimension of the model. In this section we will work with a one-dimensional
Markov process {X;; ¢t € [0,T]} .

In the following definition we introduce the rather technical boundary curve. The
idea behind this is the following. We will not model the whole term structure
Dy, t <T,T €T, form beginning. Instead we will model just a small number of
bonds Dy for some 0 < t' <T" and recover the remaining ones by discounting.
The time 7" for which the bonds will be modeled is determined by the boundary
curve. The following explanations will shed some light on this remark.

Definition 4.1. Let {Xy; t € [0,T]} be a (time-inhomogeneous) Markov process
under the measure N'. Then the pure discount bond prices D are of the form

Dis = Dig(Xy), 0<t<0(5)<S

for some boundary curve 0 : [0,0*] — [0,0%],0* € R", and the numeraire, itself
a price process, is of the form

Nt:Nt(Xt)a OStSa*

Therefore the processes {Dys; t € [0,T]} and {Ny; t € [0,T]} are defined to be
functionals of {Xy; t € [0, T} .

The boundary curve ds : [0, 0*] — [0, 0*] will be chosen to be appropriate for the
particular pricing problem under consideration. In the examples we will discuss
later the products of interest share some common terminal time 7" and the curve

Os is taken to be
S if ST
9(S) = { T if S>T. (4.1)

For all practical applications our models will have a boundary curve given by (4.1).
From this it is clear that for a complete specification of the model it is sufficient
to know:
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A Maturity T

oS t=T

T__ZCB rate
calculated
+<«<— £ ZCB rate given

Time t

Figure 4.1: The boundary curve

(P.1) the distribution of the process {X;;t € [0,0*]} under N,

(P.2) the functional form of the discount factors Ds(sys(Xs(s)) on the boundary
a(S), S € [0, 0%,

(P.3) the functional form of the numeraire NV;(X;) for ¢ € [0, 0%].

From this we can recover the remaining discount bond prices via the martingale
property for numeraire rebased assets under N,

D X
Dis(2) = M) [ 2 S0 7 (42)

Now assume we want to price a multi-temporal exotic product, for instance a
Bermudan swaption, which depends on a set of forward swap rates or forward
LIBORs, each observed at a distinct time. From Chapter 2 it is known that both
forward rates can be recovered from pure discount bond prices. Therefore it is
sufficient to model the pure discount bonds and we may assume that a set of swap
rates S is given. One could also set up a model working with a set of forward
LIBORs L™ instead. This is also possible and works along the same lines as for
a set of swap rates S,

We will make two further assumptions before starting:

(P.4) the functional forms D, ¢ are known for 7,, < S and the choice of the
numeraire is such that Nz, (X7, ) can be inferred form the discount factors
on the boundary,
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(P.5) the i-th forward swap rate at time 7}, S(T?, is a strictly monotonic increasing
function of Xr, in the sense that Xr,(w) > Xr(w') = S(T? (X1, (w)) >
S(Ti_)(XTi(w’)) for some w,w' € Qandi=1,...,n.

We shall see soon that assumption (P.4) is not as restrictive as one would think .
The last assumption is a natural one since one wants the overall level of interest
rates respectively swap rates to depend on the level of {Xy; ¢t € [0,T]} . This is
crucial for the model to work and must be preserved when turning to the multi-
dimensional case.

In the remainder of this section we show how market prices of the calibrating
vanilla swaptions can be used to imply, numerically at least, the functional form
Np fori=1,...,n—1.

Equivalent to calibrating the model to vanilla swaptions is to calibrate it to the
inferred market prices of digital swaptions (cf. [Dupire 1994]). This has the fol-
lowing interesting consequence:

Choose the PV per basis point {P;;t € [0,T]} as a numeraire as before and de-
note the corresponding measure S. The price of a European payers swaption on
{SYT,, T,);t € [0,T;]} maturing on date T} with strike K is given by

%PayeTS(K) — POES[(S%) _ K)+]

Differentiating both sides with respect to K, taking only left-hand limits for
St < K, yields

OVo(K)
oK

= R(-Eg[lis,>xy]) = —RS(Sr > K),

which is the price of the corresponding digital swaption. Thus the swaption prices
have allowed us to recover the implied distribution for y; under the measure
S. This observation remains valid if the swaption prices are not log-normally
distributed and incorporate smile effects.

The digital swaption based on {St(’) [T;,T,];t € [0, T;]} with strike K has payoff
at time 7; of 0 0
V) = P10,
where Pg) denotes the accrual factor of the payoff. The price of the option at
time 0 is then given by

O(K) = No(Xo) Epr[ L2ty A
Vo (K) = No(Xo) Epr ml{s(ﬁﬂ(} (4.3)

To determine the functional form of Np,(Xr,) we work back iteratively from
the terminal time 7,,. Consider the i-th step of this procedure. Assume that
Nr,(X7,),k =i+ 1,...,n, have already been determined. We can also assume
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Dy, are known having been determined using (4.2) and the known conditional
distributions of Xr,,k =1,...,n.
Now consider S%) [T;,T,,] which can be written as
1-— DTiTn
PY(T,, T,
Nji' = Dy, Ny
[T, TN

ST, Ty =
(4.4)

since Dr,r, = 1. Rearranging equation (4.4) we get
1

NTi (XT ) = i i )
PYNZISY (Xg,) + Dryr, Nyt

3

dropping [T}, T,] from the notation. Thus to determine Nr,(Xr,) it is sufficient
to determine the functional form S(T? (X1,).
By assumption (P.5) there exists a unique value of K, say K (2*), such that the
set identity

{Xz, > 2"} = {5 (Xz) > KO (")} (4.5)
holds N-almost surely for every z* € R. The set identity (4.5) is the key to
implying the functional form S%) (X1;). Define

IO (@) = No(Xo)Epr [T71

For any given z* € R we can calculate Jéi) (z*) using the known distribution of
X7, under V. Further, using market prices of digital swaptions we can find the
value of K such that ' .

J§ (@) = Vg (K). (4.7)
Comparing (4.3) and (4.6) we can see that the value of K satisfying (4.7) is exactly
K®(z*). From (4.5) knowing K@ (z*) for any z* is equivalent to knowing the
functional form of S%,) (X1,) and we are done. We could have decided to calibrate
the model to vanilla swaptions instead of digital swaptions, but then it would not
be clear whether a simple set identity similar to (4.5) holds. Note that we did
not specify the functional form for times ¢ ¢ 7. This leaves enough freedom to
capture the distribution of the market prices.
It is common market practice to use Black’s formula to determine the swaption
prices V})(z) (K) but these techniques apply more generally. In particular smile
and skew effects which stem from a not-log-normal distribution in the market are
calibrated automatically. This is a major advantage compared to other interest
rate models.
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4.1.1 Market models and Markov-functional models

Market models present a general framework for modeling interest rate deriva-
tives and as such Markov-functional models are a subset thereof. At this level
Market models are just a different parametrization. However, Market models
make the additional assumption that the forward LIBOR respectively swap rates
are martingales in their respective measures. This assumption is stronger than
ours since we only assume the martingale property on the respective fixing dates.
This additional restriction in the Market models is what makes them difficult
because it yields the state-dependent dynamics and makes it impossible to char-
acterize them by a low-dimensional Markov process. Hunt and Kennedy showed
in [Hunt, Kennedy 2000] that it is not possible to characterize a Market model
consisting of n forward LIBORs by a one-dimensional Markov process. It is as-
sumed, yet not proved, that the same is true for any Markov process of dimension
less than n. However, when removing the state-dependency by the technique of
drift approximation the resulting model is no longer arbitrage-free (because the
resulting processes are in general no longer martingales in their respective mea-
sures), but can be characterized by a low-dimensional Markov process. These drift
approximations will be used when introducing multi-dimensional Markov func-
tional models as they approximate the LIBOR process, thus being a valuable
guideline in constructing these models.

4.1.2 One-dimensional LIBOR model

In this subsection and the next we introduce two example models which can be
used to value LIBOR and swap rate based interest rate derivatives.

Let {ng);t €10,7;]},i = 1,...,n, be a set of forward LIBORs. We model the
pure discount bonds D,r,,2 =1,...,n + 1, the assets in our economy and derive
the LIBORs using the known formula

with o denoting the appropriate daycount fraction. Taking Dyr, ., as a numeraire
we denote the corresponding equivalent measure by 8™ 8™ ~ P. Under this

measure the Dy, . -rebased assets { DtDTtTi :t € [0,T;]} are martingales and the
n+1

model is arbitrage free.

As laid out before we have to specify the properties (P.1)-(P.3). To be consistent
with Black’s formula for caplets (2.10) on L™ we assume that L™ is a log-normal
martingale under S™ e,

where W, is a standard Wiener process under 8™ and L, € R*. at(") : [0, T,,] —
R* is the volatility function and may be specified arbitrarily at the moment as
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long as equation (4.8) has a solution. It follows from (4.8) and an application of
It6’s formula (1.7) that

1 t
L\ = Lé") exp(—§/ (oi)2du + Xt),
0

where X, satisfies
dX, = o™ dW,, 8™ t € [0,T], X, = 0. (4.9)

{Xy;t €[0,T]} is therefore a deterministic time-change of the Wiener process.
Further, {Xy;t € [0,T]} is Markovian as stated by the following theorem. This
theorem and its proof may be seen as a supplement to [Hunt, Kennedy 2000},
where the Markov property of {X;;¢t € [0,7]} and the form of the transition
semigroup have been stated, yet not proved.

Theorem 4.2 (Markov property of X). Let o; : [0,T7] — R" be a deter-
ministic function of time, T € R*. Then for a one-dimensional Wiener process
{Wi;t € [0,T)} under some measure P the stochastic process {X;;t € [0,T]} given

by
dXt = O'tth,P,t € [O,T],X() = 0,

18 a Markov process with transition semigroup
(K5 D) = [ 6 =0 F0)aNG),
where
72

557)

$i(z) == (21D,) "2 exp(_

t
ot ::/(Uu)Qdu

for any non-negative Borel-measurable function f : R — R, f > 0.

Proof. 1t is known that <X>t = ([, 2dW> ft o2d(W > = fot o2du, since
<W>t =t for all t > 0. Hence llmt_>oo<X>t = oo. Further, {Xy;t € [0,7]} is a
continuous adapted martingale and we may apply Knight’s theorem 1.49. This
gives Xy = W_x-, for every t > 0. Set 7(t <X> Then
EplfoXi|F}] = Ep[fOWT(t)ITT(s)]
= (Pry—r(s)f) Wr(s))

holds for any s,t € [0,T],s < ¢, and Borel-measurable f : R — R, f > 0. Since
the transition semi-group of the one-dimensional Wiener process is given by

(K f)(z) = / oo — ) F ()N (W),

and

2

H(z) = 27Tt) p( ;t) for ¢t > 0,
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it follows that

( 7( T(S)f /¢T ’T(S )f( )d)‘l(y)

and

¢T(t)—7(s) (z) = (2n(7(t) - T(S)))ié P (_m)

From the definition of 7(¢) we have
¢
() — (s) = / o2du = T,y
Back in the original time-coordinates this gives

(K7 r(s) /) Wre) =t (K ) (Xy),

where the transition semi-group K;* is given by

(KX f)(2) = /w— (y)dA (),

d(z) = (2#20;,5)*5 exp(—ng.t).

This completes the proof. O

We take {X;;t € [0,T]} as the driving Markov process for our model and this
completes the specification of (P.1).

For this application we use the boundary curve (4.1). Thus the only functional
forms needed for pure discount bonds are D1, (Xr;),7 = 1,...,n, trivially the
unit map, and Dr,1,,, (Xr,), the numeraire. The latter follows from the rela-
tionship )

‘DTnTn I(XTn) = T ()
" 1+ anLgli )
which in turn yields

1

DTnTn+1 (XTn)
1+an 0 exp( fO“ 2du—|—XTn>

This completes (P.2).

It remains to find the remaining functional form of Nr,(X7,) = Dnr,,, (X1)
for: = 1,...,n — 1. For this we work inductively backward from Nz, to Np,
and apply the techniques of Section 4.1. Since we are constructing a model
of the forward LIBORs to value LIBOR based products we must choose some
appropriate products traded in the market to calibrate our model (setting the
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model parameters). Take the caplet on the forward LIBOR L with strike K
as calibrating instruments. The payoff of the corresponding ¢-th digital caplet
at time 7, (remember that the LIBOR L® resets on date 7; and the caplet
pays on date T;,4) is DTiTi+11{L§f?>K}- The digital caplet pays 1{L¥?>K} and this
value is discounted to time 7; since we receive the payment on date Ti+1, but
we need the present value on date 7;. Using the Fundamental Theorem of Asset
Pricing 1.74 the value of the i-th corresponding digital caplet with strike K at
time 0 is given by

[DTiTi+1 (XTZ)
|~ o1

(1) —
‘/E) (K) - NO(XO)E NT(XT) {L(T?(XTz’)>K}:|

S
Drr,,,(X1,)
= DOTn+1 (Xo)ES(n) [WI{L%)(XTJ>K}:| .

If we assume that the market price is given by Black’s formula (2.10) with volatil-

ity function at(i), the price at time zero for this digital is

Vo (K) = Doz, ., (Xo)®(da), (4.10)
where "
log(LL) 16
dy () £ _528;)%@
EOT 7
and

To determine the functional forms Dr7, ,(Xr,) for i < n we proceed as in Sec-
tion 4.1. Choose some z* € R. Evaluate by numerical integration

DTT (XT) ]

Jél)(x*) = DOTn+1(X0) S(n) [ml{XTi>w*}
n+1

DT T; (XT )
— Dop. (X . [ . [ i1 Tit1 i1 .FW]I e }
0T, +1( 0) 8( ) S( ) DT+1Tn+1 (XT+1) ‘ & {XT1> J

= DX [ [ s Km0 = 0] 1y 0)o
i+1 n+1

= Do, (Xo) / / —F K, (v — u)du} o, (v)dv
DT1+1Tn+1 )

where ¢, denotes the density function of Xy, given by

2

)y 1 X
dulz) = 272 exp (-5 ),
2EO;t
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and Kryr,,, (), the transition density function of Xy, when moving to Xy, ,, is

given by
i _1 $2
KTi;TH—l (.’13) = (QWETi;Ti+1) 2 eXp(_QET>’

TuT'L+1

where

Note that in the above calculations in the next to last step the Markov property
of {X;;t € [0,T]} has been applied. Note further that the integrand depends
only on Dy, 1,,,(X1;), which has been determined in the previous iteration.

The value of Dr,,1,,,(2*) can now be determined as follows. Recall from equa-
tion (4.4) that to determine Ny, (2*) = Dr,,1,,,(2*) it is sufficient to find the

functional form L%) (z*). From equations (4.5) and (4.7) it follows that
Ly (@%) = K9(),

where K@) (2*) solves
I (@) = Vi (KD (27)). (4.11)

We have just evaluated the left hand side of (4.11) and K (z*) can be obtained
from (4.11) by solving the resulting equation. Formally

L%)( ") = ng)exp( ! OTT 20)7“\/7(1) (Do:(aé))>>

Finally, use equation (4.4) to obtain the value of Dy, ., (2*).

4.1.3 One-dimensional Swap model

For the construction of a swap model we consider the special case of a swap for
which the i-th forward swap rate S®, which sets on date T}, has coupons precisely
on dates T, 1, ..., T,. In this case the last swap rate S™ is just the LIBOR L™
for the period [Ty, T541]. As in the LIBOR model we take Dy, ., as our numeraire
and assume that the forward measure S™ exists. The properties (P.1) and (P.2)
are specified exactly as in the LIBOR model. However, the functional form for
the numeraire Dy, ., at times Tj,2 = 1,...,n — 1, will need to be determined.
Analogous to the LIBOR model we construct the swap model for valuing swap
rate based products and must therefore choose some swap rate based, calibrating
instruments from the market. Here we take the digital swaption on the swap rate
S having strike K. This digital swaption has the payoff Pr1 (95K} and the

value at time 0 is thus given by (applying the Fundamental Theorem of Asset
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Pricing 1.74)

(4) — P (v t{st
Vo' (K) = DOTn+1(X0)ES(n) |:DTiTn+1(XTi) 1{5%)(XTi)>K} ’

where

PY(X,) = ZathT

denotes the PVBP. Note that Pt(z) is a linear combination of assets and therefore
an asset itself. If we assume the market value is given by Black’s formula (2.14),
the price at time zero of the digital swaption is

V() = PP (Xo)®(dy), (4.12)
where "
log(“&) 1.
2= G __ZO;Ti\/T
2V 2
and

Next choose some z* € R and evaluate by numerical integration

- P (Xz)
('L) * . T; T;
16 = P50 [ ]
P (Xr,,,)

= Do, (X0)E otn [ (n) [ s
" S S DT i+1Tn41 (XT +1

= DOTn+1(X0)/ [ K

7 (v—u du]
—o0 " —o0 DTi+1Tn+1 (u) T“TZ-H( )

1{v>x*}¢T ( )

= DOTn-l—l XO / / Dr. THI )KTi;Ti+1 (U - u)du] ¢T¢ (v)dv

+1Tn+1

) |f%/] 1{XTi >w*}]

pLo)

(w) . . . . .
i is strictly positive and the Markov property has been applied as in
Dryy 1Ty (W)

the LIBOR model. ¢;(z) and K71, ,(y) are also defined as before.
To calculate a value for Jéz) (z*) we need to evaluate Dy, 1;(2*) for j > i. These
will have already been determined in the previous iteration. Now proceed as in
Section 4.1.2 with .

5§ (@) = KO (),
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where K@ (z*) solves
I (@) = Vi (KO (@), (4.13)

Having evaluated the left hand side of (4.13) numerically, K (z*) can be recov-
ered from (4.12). Formally we have

1)/ % i 1_4 ; ~ J(i) o
0 0

The value of Dr,z, ,(z*) can now be calculated using (4.4).

4.2 Multi-dimensional Markov-functional mod-
els

Having introduced one-dimensional Markov-functional models we come to the
core of this work, the Multi-dimensional Markov-functional models. The first
point to clarify if whether one would like to increase the dimension of the driving
Markov process and thus the dimension of the model.

When observing the daily changes of interest or swap rates three different main
effects contributing to the changes of the interest rate or swap rate curve can be
identified: parallel shift, rotation of the curve and twisting. A parallel shift raises
or lowers the overall level of rates, a rotation of the curve lowers the rates for the
shorter maturities and increases the rates for the longer maturities, twisting the
curve makes it steeper or flatter, possibly leading to an inverted term structure
for the longer maturities. These effects occur and must be modeled separately.
Simple products like caps and floors depend only on the overall level of interest
rates, therefore it is sufficient to price caps and floors with a one-factor model,
allowing only for parallel shifts of the curve. There are, however, more complex
products depends not only on the overall level of rates, but for example on the
steepness of the curve. To price these products correctly we must set up a model
comprising two or three factors to catch more aspects of the changes of interest
or swap rates. So far there is nothing that could not be done using some market
model, taking {f®(W,);t € [0, 7]} as the driving stochastic process for the i-th
LIBOR rate respectively swap rate, where {W;;t € [0,T]} is a two-dimensional
Wiener process under some probability measure P and f® : R> — R is a func-
tional still to be specified. However, this yields some difficulties.

First, as already lined out, it is in principle possible to value products with early-
exercise features like Bermudan swaptions but it is time-consuming and very
cumbersome. Before valuing the product the exercise boundary has to be ap-
proximated using non-recombining trees, which is computationally expensive. It
is possible to circumvent this problem and to use recombining trees, which are
computationally far less expensive, but the approximation will be less accurate.
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Second, there is no simple way to implement a non-lognormal distribution and
thus to allow for smile and skew effects. These effects, however, have a huge im-
pact on the option price, so one is very interested to consider these effects when
designing a model. The usual way to accomplish this is to set up an SDE having
the desired dynamics and to use a numerical scheme like the Euler- or Milstein-
Scheme to get a numerical approximation. The question is whether there is a
simpler yet computationally efficient way to construct a model with the desired
properties.

Having this in mind it seems reasonable to extend the one-dimensional Markov-
functional model in an appropriate way to allow for a higher-dimensional driving
Markov process. Of course, all other features of the model should be preserved
as there are:

e Automatic calibration to market data under consideration of non-lognormal
distributions of the market prices.

e Relatively simple valuation of early-exercise products
e Fast numerical implementation.

The last point is also of great importance since it is unacceptable for a trader
to wait several hours or even minutes when pricing an option. The numerical
evaluation must be done within a few seconds, the less, the better. The one-
dimensional Markov-functional model as proposed here allows for a fast numerical
implementation (use, for example, Gauss quadrature formulae).

Our goal is therefore to construct a multi-dimensional Markov-functional model
in such a way to preserve the three features mentioned above. This is done in the
following section. Especially the set identity (4.5), which is the key to the further
development, shall remain unchanged. Therefore we cannot simply choose an
n-dimensional driving Markov process {X;; ¢ € [0,T]} as the set identity (4.5)
would no longer hold. Instead, we choose a functional f : R* x R —+ R and
take {f(X3,t); t € [0,T]} as our driving process (which may not be Markovian
any more). The choice of the functional f will be closely related to the drift
approximations to Market models mentioned in the previous section.

The ideas presented in this section are based on a Markov process of dimension
two, which is the case with the highest practical importance. They may easily
be generalized to the case of higher dimensions.

Let {W;;t € [0,T]} be a standard two-dimensional Wiener process,

W(l)
W, = (Wt@)) S [OvT]v

t

where {Wt(l); t €[0,7]} and {Wt@); t € [0,T]} are two independent, standard one-
dimensional Wiener processes. Contrary to the one-dimensional case we are more
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limited in our choice of the volatility functions at . One more restriction has to
be imposed, separability.

Definition 4.3 (Separability). A set of n volatility functions c® : [0,T;] —
Riji=1,....,n,n,deN, T <Th<...<T, <T,T;, T €R", is called separable
if there exists a function o : [0,T] — R and vectors v; € R, i = 1,...,n, such
that '

o®(t) = vio ()
for0<t<T;,i=1,...,n
Assume we have chosen a set of separable R?-valued volatility functions o (t) as
in Def. 4.3. Equivalently, we may choose a function o : [0,7] — R and vectors
v; €ER?,i=1,...,n. Then the stochastic process

dZ; = diag(o(t),o(t))dW;, P,t € [0,T], Zy = 0, (4.14)
is Markovian and R%-valued.

Theorem 4.4 (Markov property of Z;). Let 0 : [0,7] - R, T € Rt and
v; €ER%,i=1,...,n, be a deterministic function of time and v; vectors, such that
o (t) := v;o(t) is a separable set of volatility functions. Then for a 2-dimensional
Wiener process {Wyt € [0, T]} under some measure P

dz, = diag(o(t),o(t))dWy, P, t € [0,T], Zy = 0, (4.15)
is a Markov process with transition semigroup (KZ)i>o,
KZf /qﬁt x — (y)dA\*(y)

for any non-negative function f : R? — R*.
¢4(z) is defined as

bi(x) = (27%0,) " exp(— ||$||2)

and

. t
Egzl :=/ o(u)?du.

Proof. Let {FZ;t € [0,T]} denote the o-field generated by {Z;;t € [0,T]} and
{F¥;t€[0,T]} the o-field generated by {Wt,t € [0,T]} as usual. Since dZ; =

diag(c(t), o (t))dW, it follows that Z") = fo dWé) for i = 1,2. As in the
proof of theorem 4.2 we have (Z >t fo )2d(W! > fo u)?du since
<W(i)>t =t forallt > 0and i€ {1,2}. {Wt(l);t € [0,T]} and {Wt 1t € (0,7}
are independent and thus <W(1), W(2)> , = 0 for all t > 0. Therefore

t
(70,79, = [ otupawe, we), <o
0
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Finally, {Z;;t € [0,T]} is a continuous adapted martingale and limt_,oo<Z (i)> .=
oo for 7 = 1,2. We apply Knight’s theorem 1.49 and have Zt(i) = Wg;(i)%
for t > 0 and i € {1,2}. Since (ZW) = (Z®P), for every ¢t € [0,T] we set

7(t) :=< ZM) >,. As before

Ep(fo Z|FI] = EplfoW.ylFX,)
= (Pry—r(s)f) Wr(s))

holds for any s,t € [0,T],s < ¢, and Borel-measurable f : R*> — R, f > 0. The
transition semi-group (K}")i>o of the two-dimensional Wiener process is given by
K@ = [ olo- i),

113
2

b(z) = (2mt)7! exp(— ) for t > 0,

Applying the time-change we get

(KW o f)(@) = / brttr (o) — 1) F () AN (),

where
et-rto(2) = ((r(t) — 7(e)) Vexp( 5 ALY
Again t
T(t) —7(s) = / o(u)?du =: Ygy.

and changing back in the original time-coordinates we have

(7)) ) (Wrs) =2 (KL, ) (Z6),
where the transition density function ¢;(z) of the transition semi-group (K7)i>o
is given by

2
oi(z) = (2%0,) exp(—g;—!i).

This completes the proof. O
We give two examples for possible choices of the function o here.

Example 1. 1. In the one-dimensional case d = 1 the function ¢ may be
specified via _
o) = a;exp(=b(T; — 1)), a;,b € R.

The constant b is usually referred to as the mean reversion parameter. It
may be readily seen that the above specified volatility structure is separable.
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A two-dimensional function o may be constructed in a similar way. Choose
for example

2. The following choice of o due to Rebonato is also popular amongst prac-
titioners. It combines the mean reversion form example 1 with a linear
growing term,

g§i) = (a(T; — t) + b) exp(—c(T; — t)) + d, a,b,c,d € R.

However, o is not separable and the stochastic process {Z;; ¢ € [0,T]} will
not, necessarily be Markovian.

Both choices for o, produce volatility structures similar to those observed in the
market including humps. Since the resulting process {Z;; t € [0,7]} derived
from example 2 may not be Markovian, we prefer working with functions o;
similar to example 1. Note that increasing the mean reversion parameter b re-
duces the correlation of the LIBORs (equivalently swap rates) of different times
(cf. [Hunt et al. 2000]).

When specifying the functional f giving us the driving process {f(Z;); t € [0, T]},
Zy will usually appear in the form Zt(l) -+ Zt(z) (modulo some time-dependent
coefficients). This has the following reason. First, derive the functional f using
a drift approximation to Market models described in Section 3. When working
with a 2-factor Market model one usually models the i-th forward LIBOR rate
L) (equivalently the i-th forward swap rate S®)) as

2
dLy) = O, i, L)LY dt+ Y LYo aw?, 8™t € [0, T, LY = L,
j=1

(4.16)
where {Wy;t € [0,T]} is a two-dimensional Wiener process under the measure
S™, d<Wt(1),Wt(2)>t = pdt as before and ¢@ : [0,T;] — R*, i = 1,...,n, are
such that a solution of each SDE of the system (4.16) exists. Applying Ité’s
formula (1.7) yields the solution of (4.16)

1 =) exp ([ WO, L6, 1) — (o) + oD+ 2 (0f7)) ds
0

t t
+ / oMaw® + / a§2>dW§2>).
0 0
(4.17)
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Having a look at the above equation it is tempting to reduce the driving stochas-
tic process fot oVaw + fot o Paw? to f(f \/(aﬁ”)2 + (ng))QdWS for some one-

dimensional Wiener process {W;;t € [0, T]}, hence reducing the model’s dimen-
sion to one although having two different parameters, Jt(l) and 0752). However,
this is only possible if p = 0. {W";t € [0,T]} and {W?;¢ € [0,T]} are then
uncorrelated, thus independent and evaluation of the model would be less cum-
bersome.

Unfortunately, the case p = 0 is not of great practical importance. The various
(random) effects influencing the shape of the interest or swap rate curve like par-
allel shifts, rotations or twistings are not occurring independently of each other
but are correlated in some way.

To summarize, we have different means of controlling the correlation of the differ-
ent rates. First of all, we may change the parameter p to control the instantaneous
correlation of the rates directly. Further, when choosing volatility functions o;
as in example 1 above the choice of the mean reversion parameter affects the
correlation of the rates, too. A higher mean reversion parameter will lead to a
lower correlation and vice versa.

Note further that since (4.14) is a deterministic time-change of Brownian motion
the choice of o also affects the distribution of Z, for ¢t ¢ 7. Evaluating our
model, we will not be interested in the process {Z;; t € [0,T]} for times t ¢ T
but this gives us control of what is happening at these times.

We now define the class of functionals f that will be suitable for our purposes.

Definition 4.5. A functional f : R* X R - R (z,t) — f(z,t) is called admissi-
ble, if f is strictly monotonic increasing in x in the sense of Definition 1.12 and
Borel-measurable.

Note that also functionals of the form f(z,t) = ") are included in our definition.
We will need them later.

Again we have to establish the properties (P.1)-(P.3) for a complete specification
of the model. Property (P.1), however, is no longer valid in this form and will be
substituted by

(P.1’) The set of admissible functionals f,i =1,...,n,
fO:R* xR =R, (z,t) — fO(x,1)

and the distribution of the Markov process {Z;; t € [0,7]} under N are
known.

Assume now we already found a set of admissible functionals f®. Continue then
by choosing a one-dimensional process {X;; t € [0,T]|} = {Xu(Z);t € [0,T]}
such that o )

o f ! Ztut ) t S T
Xi(Zi) = {arbitrary, t¢T.
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Then it follows under the same assumptions as before that
{X, > 2"} = {S7) (Xz) > KO (a")}.

By virtue of this set identity each f is assigned to the corresponding swap
rate S®. Again define the numeraire via Nr,(X7,) :== Dy, (X1;) and the pure
discount bond prices via

Dy = NEpfINT' | FY ), T €T, (4.18)

under the equivalent martingale measure N associated with the numeraire N.
{F}V;t €[0,T]} is the filtration generated by {W;; t € [0,7]}. It can easily be
seen that Dprr = 1 and Dyr > 0 holds for T" € 7. By construction the relative
asset price {DTttT; t € [0,7T]} is a martingale for every 7" and the model is arbitrage
free. Define

1{s$<XTi)>K<”<w*)}}

1{XT1 >$*}] .

We can calculate J{ (z*) for any given z* using the fact that Xp, = f@(Zr,T})
and the known distribution of Z7, under N. Using market prices of the corre-
sponding digital swaptions we can find the value of K such that

I (z*) = VEU(K).

As before K = K (z*) and knowing K@ (z*) for all z* is equivalent to knowing
the functional form of S%) (X1;). Having this we are done.

Note that the two-dimensional Markov-functional model defined here is truly
a generalization of the one-dimensional Markov-functional model presented in
Section 4.1. To check this simply set f®(z,#) = 2(!). When evaluating the
two-dimensional Markov-functional model using these functionals one will end
up with the one-dimensional Markov-functional model.

The following example shows a two-dimensional LIBOR Markov-functional model.
A swap model could be constructed along the same lines except for the different
accrual factor, which would be Pr, instead of Dr7, ., ,. For the sake of brevity we
will restrict ourselves to the two-dimensional LIBOR Markov-functional model.

4.2.1 Two-dimensional LIBOR model

We start again specifying the properties (P.1°)-(P.3).
Assume we already found a set of n admissible functionals f® : R2 x R — R, i =
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1,...,n, as described above. Define the driving process {Z;;t € [0,T]} as in
Section 4.2. This completes the specification of (P.1). As before we assume than
L™ is a log-normal martingale under S™ the equivalent measure associated
with the numeraire Dyr,,, i.e.,

2
dLf" =" LM omRaw®) 8™ ¢ € [0, T, L§” = L.
k=1

ok . [0,T] — R* is a separable set of volatility functions, o\"® = v(k)a(t)

fori=1,...,n,k = 1,2, such that the above SDE admits a solution. Further,
{Wy;t e [0, Tn]} is a two-dimensional Wiener process with d(W®), W(2)>t = pdt.
By virtue of 1t6’s formula (1.7),

t 2 2 t
n n 1 n n n
L§ ) = L(() )exp<—/ Z§(O'§ ’k))Q + poH gD ds +Z/ ok
") exp / Mo s)) + pvl! )ds + Zv(k / (s)dw k) )
—

(4.19)

Since W and W® are correlated we cannot proceed immediately. First we
rewrite the above stochastic integrals as follows.

Suppose {W;;t € [0,T,]} is a standard, two-dimensional Wiener process. Define
a new stochastic process {Wy;t € [0,7,]} by

w = W, (4.20)
w® = oW+ /1= 2P (4.21)
for some p € [—-1,1] and all ¢ € [0,T,,]. It is a simple calculation to check that
1 1 2 2
d<W( ),W( )>t — d<W( ),W( )>t = dt,
dWO, W) = pat.

Hence {Wy;t € [0,T,]} is a two-dimensional Wiener process with the desired cor-
relation structure. Substituting (4.20) into equation (4.19) yields

L = Lf exp / os)) + poVvP o (s)2ds+
0 4= 2
-
0
t 2
—Lo exp( /Z
k=1

0

(o + ) 2V + /1= p U7(12)Zt(2))'

Mo(s))” + poo@o(s)?ds+

l\Dl'—‘
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We only need to define the functional form of the numeraire Dr,1, ., to specify
(P.1’) as the pure discount bonds Dr,7;(Xr;) are trivially the unit map. Dr,1,,,
is given via

1

DTnT (n)
1+ anLy,

n+1 =

or equivalently

t 2

1

Dyr,yy = <1 + anL(()") exp (—/0 E 5(’07(119)0'(8))2 + pv,(zl)vg)a(s)stJF
k=1

—1
(v + pu?) 2 + /1 - vaﬁf)Zt(z)) :

As before it remains to find the functional form of Ny, (Xr,) = Dr,1,,,(X7;) for
1=1,...,n— 1. This will be accomplished using backward induction.
Taking the caplets on the forward LIBORs L(®) as calibrating instruments we

may calculate the price of the corresponding digital caplet with strike K by
[DTiTi+1 (X7,) 1 . ]
™ NTi (XTZ) {L(T%i) (Xr;)>K}

B DTiTi+1 (XTz)
= DOTn-}-l (XO)ES(n) [WI{L%J)(XTZ)>K}:| .

Vil(K) = No(Xo)Eg

Assuming that the market value is given by Black’s formula for digital caplets (2.16)

with volatility a,gi), the price at time zero for this digital is

Vi (K) = Dor, ., (Xo)®(dS"),

where
(1)
]Og( Lo’ ) 1 (3) Y
E((),)Tz \/7_11 2 ’
and

To determine the functional forms Dy, ,(Xr,) for i < n we proceed as in Sec-
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tion 4.1.2. Choose some z* € R. Evaluate by numerical integration
[ DTiTi+1 (XTz) 1 }
'DTiTn+1 (XTz) W >e}

‘DTi+1Ti+1 (XTi+1)

DTi+1Tn+1 (XT¢+1 )
r 1

- D XEnEn[ FW}I,x*}

0Tn+1( 0) 8()_ S™ DTi+1Tn+1(XT¢)| T; | H{ X1, >z*}

Jél) ({E*) = DOTn+1 (X())Es(n)

= Dog, ., (X0) Egm Eg(n)[ \ﬂﬂ 1{XTl.>w*}i|

KZ .. (u)
= Dor.. (X i dX*(u
0T + ( 0) /]Rz[ R2 DTi+1Tn+1(f(Z+1)(U — U, Ti"'l)) ( )]

L4 (o) >a) 01 (0)dX? (0)
= Do, ,,(Xo) /

{7 (0,T1)>2*}

K%’;Tu-l (U)
[ & Dryy 1y (FOTD (0 — w, Tiyq)) d\? (y)} o, (U)d/\Q(U),

where ¢;(z) is defined by
x
Qst(x) = (271'20;15)71 exp(_w>

and K%, Ty, DY
D\ 113
K%,;THI = (2#2&3;%“) ! eXp(_T2>7

where

Note that Dr,,,7,,, (f®(Xr,,, Ti+1)) is a strictly positive functional depending
on the Markov process {Z;; t € [0,7]}. Note further that due to the Borel-
measureability of f® the set {x € R?; f@(x,T;) > z*} is also Borel-measurable.
It now remains to specify the functionals f such that {z € R?; f®(z,T;) > z*},
the set we are integrating, has a ’simple’ structure to ease integration. Some

proposals for the choice of £ will be made in the next section.

4.3 On the choice of the functionals f (2)

All functionals f® discussed in this section are based on drift approximations
to the LIBOR market model. Drift approximation means simply that the path-
dependent drift terms p‘,7 = 1,...,n — 1, in the LIBOR Market model (un-
der the measure S(")) are substituted by ’simpler’ drift terms fi that are not
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path-dependent anymore and easier to evaluate. The reason for the use of drift
approximations has been outlined in Section 3. The three drift approximations
presented below are ordered by an increasing level of sophistication. We start
with the simplest approximation possible.

4.3.1 Freezing the drift

When examining the stochastic differential equations of the two-dimensional LI-
BOR market model (and equivalently the Swap market model), assuming a sep-

arable set of volatility functions U,g’ ) = U(])O'( t),i=1,...,n,7 =1,2, we have

2
dLy) = pi(t, LV, L)LY dt+ Y LYo aw ), 8™ 1 € [0, T, LY = L,

j=1
where
n (4)
iy 7@+ (n)y _ oLy
u'(t, L yoooy L = — —t
( t t ) jzi;l 1+ ajL(])

(0§ 1 (y,>+0< 2502 | (500502 4 562) 5(i1)))

-y

Jj=i+1 1 + aJL(j)
(08 + 0P + p(vPP + 0PuiD)) o (1)? for i < n,

and d<W(1),W(2)>t = pdt. Obviously the simplest drift approximation is to
'freeze the drift’. This means that u‘(, Ly L§")) is substituted by

7+ (n) i o; Ly
g, LY L)y = - S
jmirr 1+ ajL(J)

(v; M ( ) 4+ v(z) (2) + p(v( )U(Q) + U(Q) (1 )))a(t)z for i < n.
This new system of stochastic differential equations admits the solution
L = LW exp ( / P, LS LMY —
0

(;(vfl)U(S))2+%(v§Z)0( )+ oo Moo(s)?)ds (422)

t
+ / v (s)dw® + / v§2>o(s)dw§2>).
0 0

We substitute the correlated Wiener process by an uncorrelated one as shown in
the last section.
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Suppose {W;;t € [0,T,]} is a standard, two-dimensional Wiener process. Define
{Wt €10, T,]} by

for some p € [—1,1] and all ¢ € [0,7,]. Substituting those equations into the
stochastic integral terms above yields

¢ ¢
/ Ugl)a(s)dWS(l) + / U§2)O'(S)dWS(2)
0 0

t t
[ otgai + / OV + T )
0 0
_/((1)4—,01)() /\/l—pv o(s)dW®.
0

We rewrite (4.22) as

i OV 1 1
=L exp (/ PR, LG, L) — (E(Uz(l))Q + 5(1)1@)2 + ,ovgl)vf))o(sfds
0
+ (v§1) + pva))dZt(l) +41—0p U( )dZ(Q)),

where

dZ, = diag(o(t), o(t))dW,

is our driving Markov process for some standard, two-dimensional Wiener process
{Wy;t € [0,T,]}. Therefore we take

fO(z,t) = L(()Z exp(fO i (t, Lo Lén))—
(3(v ) (vz(2 )2 + pv v ) (s)%ds+ (4.23)
(v Z( ) + ,ov( ))x(l) +4/1—p UZ@)Z‘(Q))

as a choice of our functional f. For simplification we write
19(,1) = L§ exp(9(0) + (o + pof)al) + /1= 0?2 ),

where ¢(t) is chosen obviously.
We still don’t know whether the functionals f®) are admissible. The answer is
given by the following lemma.
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Lemma 4.6. The functionals % as defined by equation (4.23) are admissible,
if v; is component wise strictly positive for alli=1,...,n and p € [0,1].

Proof. Clearly f®(x,t) is continuous in x and ¢, therefore Borel-measurable.
Fix some z() € R. Then the map I). : R - Rz — (vfl) + ,ovz@))ac(l) +
(2)

is z — L exp (g(t) + (U(l) + pv?))x(l) + 1 - p2v(2)x) for some fixed ¢t € R.

) ]

1 — p?v;”x is strictly monotonic increasing if UZ-(2) > 0 and p € [0,1] and so

Remember that Léi) > 0. The same holds when fixing some z(?) € R and verify-
ing the map z — (vi(l) + p'UZ@))x +4/1- p20§2)x(2). Therefore f@(z,t) is strictly
monotonic increasing in x, hence admissible, if v; is component wise strictly pos-

itive and p € [0, 1]. O

The extra requirement that v; should be component wise strictly positive is no
severe limitation for practical purposes. For example, when choosing a mean
reverting volatility structure as proposed in example 1, the constants a; and as
will be positive real numbers, otherwise the volatility oéz) would be negative for
all ¢ and this is not desirable. Therefore the vectors v; will be strictly positive,
too. '

When calculating Jéz) (z*) during the construction of the two-dimensional LIBOR
model in Section 4.2.1 we ended up with the term

1
Do, ;1 (Xo) / KZ.p. (u)d)\2(u)

{fO,T;)>a*} [ R? DTi+1Tn+1 (f(i+1)(v — 1, Tiy1))
ér.(v)dN*(v). (4.24)

Having now specified f®)(z,t) we may continue evaluating the integral

/ h(v)r, (0)dN(v),
{fDw,T;)>z*}

where h is chosen obviously. Since
R D, T) > 2"} ={z e R LV ex )+ v e o) >t
{z e R /00, T0) > 2"} = {2 € R LY exp(g(T) + vz +02®) > o7}
we may restrict ourselves to values z* € R*. Choose some z* € R™. Then

{z € R LY exp(g(T;) + vV2® + 2@ > 27}
={z € R% Uzil)g;(l) + Uz'(Q)x(Z) > log(;i)) —9(T7)}.
0

(4.25)

Set ¢ := log(;(;)
0

determine

) — g(T;). The set (4.25) is a plane in R?, thus it suffices to

{r € R% vz(l):r(l) + vz@x@) = ¢}. (4.26)
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Integrating over the sets
{z e R%0Vz® 402 > &}
and
{z € R% vi(l)x(l) + UZ@):U(Z) > ¢}
is equivalent since the difference set
{z € R?; 1}( Iz 4 0(2)$( ) = ¢}
has Lebesgue-measure zero.
The equation specifying (4.26) can be written in the form
(1)
(2)

(1) + x(Q) = ﬁ = C. (427)

—~

BN

The graph of (4.27) is a strictly monotonic decreasing line with gradient angle v

e
()x(l) + 23 =c} can

oD
given by tan) = (2) Using a rotation, the set {z € R?;

be transformed into R x {z® > c}.

A A

> >

Figure 4.2: The plane integrated before and after rotation

Set
R ( cos(—1) sin(—lﬁ)) B <cosw —sin 1/1)
" \—sin(—¢) cos(—v¢))  \siny cosy |-
It is straightforward to check that R is a C'-Diffeomorphism and that the map-
ping R : R? — R?, 2z — Rz provides the desired rotation. Further the Lebesgue-
measure ) is invariant under C'-Diffeomorphisms as stated by the following the-
orem.
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Theorem 4.7. Let G,G’ be two open subsets of R",n € N and ¢ : G — G a
C'-Diffeomorphism. An extended function f' defined on G' is \"-integrable over
G' iff the function f'o ¢ |detDg| is \*-integrable over G. Then

fAr = / [ o ¢|det Dg|d\".
el G
Proof. See [Bauer 1991], Theorem 19.4. O

Therefore the integral (4.24) becomes

1
Dor,,, (X / : K7.r.
OTn+1( 0) Rx{w(2)>c}[ R? DTi+1Tn+1(f(Z+1)(U',T;'+1)) Tl
b (R0)dN(v), (4.28)

(Rv — u)d)\*(u)

since det R = 1. Numerical integration of (4.28) now gives Jéi) and one may
proceed as before by calculating L%) (z*) via

i i | e i I (@
L) = 1 exp (~ 3250 T~ S T~ (Z200)) - (aag)
2 D0T¢+1(x0)

Naturally freezing the drift is the simplest, but also the crudest approxima-
tlon possible since the only piece of information retained about the processes
{L!P;t € [0,T;]} is the start value L, which is taken as a mean value over the
whole time interval. One possible way to retain some more information about
the processes {ng); t € [0,T;]} is the following mean value drift approximation.

4.3.2 Mean value drift approximation

The idea is the same as for freezing the drift but instead of discarding every-
thing but the value L(()Z) and taking it as a mean value we approximate the drift

(2 Lgiﬂ)a e ,L§”)) by using the expected value of each ng ),

P, LD LMy =
0y E g [ L]

- Wy 4 @Dy (1)@ 4 @), (1) 2
— —(v; v + 070 4 p(v v v 0y ))o(t)
j=it1 1+ OijS(n) [ng)] J Yj J

for ©+ < n. This yields another problem, namely the calculation of the functions

mgj) = Egwm [ng)]. Using backward induction we start with j = n:

!
E g [L{™] =L{™ exp(—/ (5(7’7(3))2 +5 (vn2))2 + pvv(zl)%(f))a(syds)
0

B gon [exp( /0 Do ()W + /0 W@o(s aw®)].



4.3. ON THE CHOICE OF THE FUNCTIONALS F{!) 7

Applying the same technique as in the last section we write

¢ ¢
X ::/ oMo (s)dw ) +/ v@ o (s)dW?
0 0

t t
:/ () + p@a(s)dWw V) + / V1= p2vPo(s)dW®,
0 0

where {Wy;t € [0,7,]} is defined as before. This is the sum of two independent
Gaussian random variables, being Gaussian itself with probability distribution

X~ N(O, ((v,(ll) + pv,(f))2 + ( 1- p2v7(12))2) Eo;t>,

where X, := fot o(u)?du. This is a well known result for independent Gaussian
random variables. Further,

2

Y ~N(8,7°) = Eplexp(Y)] = exp (ﬁ + %)

under some probability measure P as stated in Lemma 1.32. Therefore
t t
E g [exp(/ vWo(s)dW ) +/ vg)a(s)de))]
0 0

= x5 (040 + )" + (VT2 50,)')

and

n n ' 1 1
m? =1 exp(= [ (G007 + 5062 + 0 )a(s)2ds)
0

Our new SDE for the (n — 1)-th forward rate

2
AT = 0 m)E 4 YT Vol Paw®
k=1
8™ te0,T, 4], L¢ " =LY,

now admits the solution

. t (n)
Bn _pn- eXp(_/O QM - (o_(n,l)o_(nfl,l) 4 o2 gn-12) |

S S S
1+ a,ms
p(om o124 0_§n,2)o_§n—1,1))>

_ (%(Ugnl,l))Q 4 %(Jgnm))? +p0_§n71,1)0_§n71,2))d8

t t
+/ oMo (s)dw V) +/ vf)o(s)dWs@))
0 0
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which may serve as a functional for j = n — 1. Formally

(n)

1 (n—1) K QpMs 1) (1) 2) (2)
f(n_ )(.’1?, t) :LO eXp( / 1 + (n) (U( ) Un—1 + U7(z )Un—1+
0 a,m

(v l)v )+ 0@ () ))0(5)2
(vr

v ) (7(zl—)1) +PU7(11)1U7(1)1>U(5)2d3

=

<1
2
(

+ (Unl—)l + PU,@l)x( ) 4+/1—-p v( ) $(2))

Assume the approximations mgk), k=14+1,...,n, have already been calculated.
The k-th approximated drift term has the form

g, LY m{Y L mMy =

(i)
aly” w0, @@ ONCINCNS 2
- ~(v; v, v vy + ey v+ o(s)
1+oziL§’)( k (v )
n (9)
;1
- E S A S 5 (vj(l)v,g)—i-v( )v()—i-p(v(l)v,(c)—i-v( )v(l))) ().

The missing term

can be approximated as above. This yields the functional

(7)
FOt) = L exp(= [y S 220 (o) + o0+
p(v(l)v,(f) +U(2) (2)))0(3)2
(o))" + 37’ +pv,£”v,£’) (s)%ds

1
2
(v;i” + oo a® 4 /1= pPo? )x@))

Now we can proceed as in the previous section.

The mean value drift approximation presented here is clearly an improvement
Compared with the simple freezing-the-drift approximation, since not only the
values L have been used but also the expected value of the LIBORs in the
drift term. Now observe the following. When working backward 1nduct1vely and
computing an approximation L() for Lg), the approximate LIBORs LJ have
already been evaluated for j > i using equation (4.29). When making use of
these values, too, one ends up with the Brownian bridge drift approximation.



4.3. ON THE CHOICE OF THE FUNCTIONALS F{!) 79

4.3.3 Brownian bridge drift approximation

Drift approximation using the Brownian bridge is in some sense the end of the
road we traveled so far. The Brownian bridge exploits the fact that when working

backward inductively one needs to know L(ZH) ey Lg") when evaluating the i-th

drift term. Remember the SDEs (3.2) descrlbmg the LIBOR market model under
the terminal measure S™. The last forward rate L(™ may be determined exactly

since
2

dL™ = (™ Z R g ® 8™ ¢ e [0,T,], L = Ly,
k=
is fully determlned by the value of 22:1 fot a§"”“)dvl/§f“). Assume that the forward
rates L\, j = i+1,...,n, have been estimated by LY j=i+1,...,n. As before
an estimation of the forward rate L§Z) requires us to approximate the drift terms

t ()

/ a;Ls = (Ul 1 66D 662 4 p(oUoD) 1 gD 6D} -

0o 1+a;L¢ (4.30)
1, e 1,
(5((’9’”) +§(0§a,2)) + poli gl 2))d3

for j =1+1,...,n. Here the values of L(J ) are known and the values of ng ) have

been estimated by ng . Ignoring the drift term in L") one obtains the following
approximating process

dfgj) Zg(y, S™ ¢ e 0,1}, L(J) Léj),Z(T) _ L( 7) (4.31)

Proceeding as in the last sections we set

2 t
Y=Y [ oliaw
k=10
2 t
:Z/ v](-k)a(s)dWs(k)

t
_/ (08 + poi) o (s )dW§1>+/ 1— p2o Mo (s)dW®

0 0
to see that

XtNN(o (( M 4+ o) 4 (V1= ppo®)? )zs;t).

We may therefore take {W;;t € [0,7};]} to be some standard, one-dimensional
Wiener process and write (4.31) as

dfﬁ”:fﬁj)\/(( W 4 @) 4 (1o pv<2>)) (5)dW P,

s™.te, 1), I) = LY Y = Y.
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fij) follows a generalized Brownian bridge. We will replace any term ng ) oceur-

ring in the integral (4.30) with the mean mgj ) of Zﬁ”. The procedure is therefore

similar to the mean value drift approximation presented in the section before.

Let us calculate the mean mij ) of Zﬁ” at time ¢,

j ()70 _ 70
m{) = Egm[L;" Ly, = LY)).
To ease notation let us first determine the mean at time ¢ of the process
dY; = 0,Y,dW;, 8™, t € [0, T;], Yo = vo, Yz, = s, (4.32)

where {W;;t € [0,T}]} is a standard, one-dimensional Wiener process under S™
and o : [0, Tj] — R" is some function, such that the SDE (4.32) admits a solution.
Also yo, y; € RT. The solution of (4.32) when dropping the additional condition

Y1, = y; is given by
1 [t t
Yt:yoexp(——/ afds+/ ades).
2 Jo 0

As usual set g, 1= f: o2du and X, := fot osdW; for t € [0,T;]. Further , note
that

; 1
0

and set x; := Xg;. {Xy;t € [0,7}]} is a Wiener process according to the Knight’s
theorem 1.49. The time change 7 is defined by

7(s) := inf{t > 0; </ USdW5> > s}
0 ¢
= inf{t > 0; Xo,; > s}.
Working in the time changed coordinates

dXor) = XoydWiery, S™, t € [0,7(T))], Xo = 0, Xo(1y) = 25,

is a standard Brownian bridge for any z; € R and so, by virtue of Theorem and
Definition 1.41
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Using this we may evaluate the mean mgj

Yr, = yj,

) of Y, under the additional condition

m{) = s [Ye|Yr; = yj]
ES(") [ oeXP( =X + Xt) |XT]- = x]}

2 0;t> S™ [GXP( )|XT] :l"j}

=yoexp(— )Y
1 Yo 1 ¥2,
~3 %) exp )
5 >0it ) €XP %EOT +2 0;t S,
1
Sy
2

;T

J exp<

= Yo eXp(
(

Zo;¢ ;
(EO;TJ - EO;t)>

0;t
() e (2 (5, 0)
yo(yo 7 exp ZZOT( 0;1; Ot) 5

applying as before Lemma 1.32

0;t> exp(z;)

2

X ~ N(8,7%) = Egolexp(X)] = exp (8 + )

and the definition of z;,

log( ) + EOt
Yo 2

()

Substituting L, yields
)
+(i) it )
A RN ) X :
() G) (2T \ =or 0t (4) @)
my = Lg (_ j ) o XP( 5 ( 05T, _EO;t))
22 S

where .
Eg;'t) ::/ ((v](.l) —|—pv§-2))2 + (V1-0p ’0(2)) ) (s)%ds.

Again this yields an approximation for the drift term p that is time-dependent
but not state-dependent. We may therefore proceed as in the previous sections
to derive the functional forms.
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Zusammenfassung

In der vorliegenden Arbeit wird ein Mehrfaktormodell zur Bewertung von Zins-
derivaten entwickelt. Ausgangspunkt ist dabei das eindimensionale Markov-
Funktional Modell von Hunt und Kennedy.
Grundlegend in diesen Modellen ist die Annahme, dass das zufillige Verhalten
eines Marktes durch einen R-wertigen Markovprozess {X;;t € [0,7]} auf einen
Wahrscheinlichkeitsraum (2, S, P) fiir festes 77 > 0 modelliert werden kann.
Weiterhin wird angenommen, dass die Preise der modellierten Wirtschaftsgiiter
Funktionale von {X};t € [0,T]} und strikt monoton wachsend als Funktion von
{X};t € [0,T]} sind. Bezeichne L (x) den Preis des i-ten Wirtschaftsgutes als
Funktional von z, so gilt _ .

L () < LY (a')
fiir r < 2'. Aufgrund dieser Annahmen existiert fiir alle z* € R ein eindeutiger
Wert K@ (2*) € R, so dass die Mengengleichung

(X, > 2"} = {LP (X)) > K9(z)} (4.33)

P-fast sicher gilt. Aufgrund von (4.33) ist die Kenntnis von K® (z*) fiir alle z*
equivalent zur Kenntnis des Funktionals Lﬁi), wodurch das Modell spezifiert ware.
Der genaue Zusammenhang zwischen K (2*) und 2* kann durch Marktpreise fiir
entsprechende digitale Optionen hergeleitet werden.
Dieses Modell wird nun erweitert, indem der R-wertige Markovprozess durch
einen R"-wertigen Markovprozess {Z;;t € [0,T]} ersetzt wird, n € N. Um die
Giiltigkeit der Gleichung (4.33) zu erhalten, wird zusétzlich ein B(R") ® B(R)-
B(R)-messbares Funktional f : R* x R — R gewéhlt und die modifizierte Gle-
ichung _

{1(Z1) > 2"} = {1 (f(Z0,1)) > KO (")} (434)

betrachtet. Zusétzlich zur Messbarkeit muss f im ersten Argument strikt mono-
ton wachsend sei, wobei der Begriff der stirkten Monotonie in R" entsprechend
definiert wird. Aufgrund dieser Voraussetzungen befinden wir uns in der gleichen
Situation wie im eindimensionalen Fall und die Form des Funktionals Ltz) kann
aus der Kenntnis von K®(z*) fiir alle * € R hergeleitet werden. Somit wiire
das Modell vollstandig spezifiziert.

Zur konkreten Wahl des Funktionals f werden mehrere Vorschlige gemacht.

83
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Grundlage sind dabei immer Driftapproximationen an Marktmodelle wie das
Libor-Marktmodell oder das Swap-Marktmodell. Da Marktmodelle eine Ober-
menge der Markov-Funktional Modelle darstellen ist diese Vorgehensweise sin-
nvoll und liefert entsprechende Funktionale. Nachdem das Funktional f gew&hlt
ist, kann das resultierende Modell durch numerische Integration ausgewertet wer-
den.
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digital, 42 martingale, 12
flexible, 42 square-integrable, 12
caplet, 36 sub-, 12
conditional expectation, 10 mean vector function, 9
covariance matrix function, 9 measure
cross-variation, 14 o-finite, 10

absolutely continous, 10
equivalent, 10
equivalent martingale, 26

daycount fraction, 30
density function, 9

deposit, 29
diffeomorphism, 5 numeraire, 26
discount factor, 33
option, 27

economy, 25 at-the-money, 36
expected value, see random variable, Bermudan, 41

expected value European, 41
extended function, 6 in-the-money, 36

_ out-of-the-money, 36
filtration, 7 payoff, 27
floor, 35 strike, 36
digital, 42

floorlet, 36 present value per basis point, 34

process, see stochastic process

implied volatility, 38 progressively measurable, 18

interest rate swap (IRS), 31
[to-Integral, 19 quadratic variation, 13

kernel, 15 Radon-Nikodymderivative, 10
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random variable, 6
distribution, 8
expected value, 8
log-normally distributed, 9
normally distributed, 9

separability, 64
stochastic process, 6
(sample) path, 7
adapted, 7
stopping time, 11
strictly monotonic increasing, 5
swaption, 40
Bermudan, 41
digital, 43

the usual conditions, 7
trading strategy, 26
transition kernel, see kernel
transition semi-group
see kernels, semi-group of, 16

volatility skew, 38
volatility smile, 38

Wiener measure, 11

Wiener process, 11
transtition semi-group, 18

Wiener space, 6

zero coupon bond (ZCB), 32
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