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Notation

(2)X, if z; € R Vi, (r)Y, denotes the vector (zg,xq,...,zy)" € RV
z; € R Vi, (x)N, denotes the vector (zg,z1,...,2yx)" € ROVFD™

limg\ o, lim, »,  the limit from above/below

|- [l x norm on the Banach space X

|| norm in R™ usually the Euklidian norm

(") the scalar product in the respective space

Id identiy map, Id(z) = x

0,0 Landau symbols

I identity matrix

H Hamiltonian of an optimal control problem

im F' image of F'

ker F’ kernel of F

ess sup essential supremum

B, (z) open Ball with radius  and center z

F(X,Y) set of mappings from X to Y

L(X,Y) set of linear continuous mappings from X to Y

C(X,Y) continuous functions from X to Y

C"(X,Y) n-times continuously differentiable functions from X to Y

LP(X)Y) Lebesgue measurable functions from X to Y
with finite || - ||,-norm

Wri(X,Y) g-times weakly differentiable function with derivative in L?

@ the i-th derivative of the function f

11l (J f”(t)dt)(l/”i/

11l (Zollr®pz) ™

BV (la, b], R™) functions of bounded variation
NBV (la,b],R™) normed functions of bounded variation

TV (f,a,b) total variation of f on |a, b]

12 f(t)dat) Stieltjes Integral

H]t] abbreviated notation indicating that H is evaluated along
the optimal solution

L(X,Y) the space of linear continuous mappings from X to Y

X*=L(X,R) the dual space of X, i.e. the space of continuous linear
functionals from X to R

Fla the restriction of F': X — Y to Q C X

F'(z)(h) Fréchet derivative of F' at x in direction h

Fl(z,y)(hs) partial Fréchet of F' at (x,y) in direction h,






1. Introduction

Since the necessary optimality conditions for optimal control problems have been introduced
by Pontrjagin et. al., two different approaches have been developed for the numerical
solution of this class of problems. The direct approach, in which the optimal control
problem is discretized and then regarded as an optimal control problem in finite dimensional
spaces, has become popular, as it can be used for a broad class of problems without making
assumptions about the structure of the optimal control.

Indirect approaches that are based upon the optimality conditions for the original problem
often tried to solve the complementarity problem by finding solutions for different control
structures. This work focuses on another approach: The necessary optimality conditions
are rearranged as an operator equation in function spaces. In the next step, a Newton
method for function spaces is applied to the equation. An advantage of this procedure is
that the arising method can be used without knowledge about the structure of the optimal
solution. At the same time, theoretical problems emerge when applying the Newton
method in infinite dimensional spaces.

In Chapter 2, basics from functional analysis and control theory are introduced. This
helps to clarify the notation used in this work and provides the reader with examples and
theorems that are needed for the complete understanding the theory.

The necessary optimality conditions, also know as the minimum principle of optimal
control, is derived in Chapter 3. While most authors concentrate on problems with either
set constrained controls or problems with mixed control state constraints, we state the
principle for the generic case in which both types of constraints may appear and extend the
theory by introducing knowledge from control theory to this field. This helps to simplify
some assumptions needed to ensure the validity of the optimality conditions.

Chapter 4 presents an application of the minimum principle: It is used to prove convergence
results for the virtual control concept, a regularization technique that turns problems
with pure state constraints into problems with mixed control-state constraints. The main
advantage of this regularization in the context of this work is that the latter problem type
can be solved by an adequate indirect solution approach.

Solution techniques that make use of this approach are presented in Chapter 5. In order
to apply the Newton method to function spaces, the complementarity problem derived
in Chapter 3 are turned into an operator equation. As the operators are necessarily
nonsmooth, we regularize the equation, before algorithms based on the Newton method
are introduced.

The numerical realization of the Newton methods is shown and compared to the direct
discretization approach in Chapter 6.



1. Introduction

Finally, the algorithms and the regularizations are tested in Chapter 7 in the context of
Linear Quadratic Model Predictive Controllers. The virtual control concept in this case
has the advantage that all problems that may arise during the regulation are solvable, and
that the regulation is independent from the system of ordinary differential equations that
describes the physical system. This chapter is divided into examples with mixed control-
state constraints and examples with pure state constraints. This allows to independently
observe the influence of the regularization techniques in use.



2. Basics

The purpose of this chapter is to gather most fundamental definitions and statements in
one place, so as to improve the reading flow in later chapters. Also, some examples (e.g.
Example 2.20.1) are easy to prove, but hard to find in literature.

2.1. Analysis

The first lemma belongs to the cathegory "easy to prove but hard to find®“. It allows to
deduce the existence of a limes of function from the function’s Holder continuity. This
proves useful when a convergence result for a regularized complementarity problem is
derived in Theorem 5.14.

The definition of Hélder continuity can be found in [Dob06, p. 36]:

Definition 2.1 (Holder continuity)
Let X, Y be normed spaces and 2 C X. A function F : Q — Y is called Holder continuous
(with exponent a € (0,1)), if for all x1, x5 € Q it holds that

| F(21) — F(22)|ly < L-|lo1 — 29|

for some constant L that is independent of x1 and xs.

Lemma 2.2
Let X be a Banach space, and let a,b € R, such that a < b. Let F : [a,b] — X be Holder
continuous on (a,b]. Then limp , F(t) € X exists.

Proof.

Let (¢;);en be a sequence with lim ¢; = a, t; > a. Then
1— 00

HF<tn) - F(tmm <L- |tn - tm’a'
So (F(t;));ey is Cauchy and therefore converges. Now suppose the limit value was not
unique. Then let (;);eny and (£;);en be two sequences, such that lim ¢; = lim #; = a, but
1— 00 1— 00
lim F(t;)) = f # f = lim F(¢;). Now
1— 00 71— 00
1f = AN S NIf = F(ta) + F(Ea) = [+ Flt) = F(&)]|

<1 = FEIl + 1EE) = FIl + [1F(tn) — F(2)]],

where the right hand side vanishes for large n. U
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The concept of a normal cone (cf. [GV03, Definition 1.1]) is needed in order to derive
optimality conditions for optimality problems in infinite dimensions.

Definition 2.3 (Normal Cone)
Let U C R™ be a closed set, and 4. € U. Then v in R™ is normal to U at u if there exist
series (V;)ien, v;i — v and (u;)ien, u; — @ (in U ), such that for i

(v, u —u;) < o(|u —wyl).

The normal cone Ny (@) is the set of all normals to U in 4.

The Banach spaces in which the optimization problems are stated are Lebesgue spaces and
Sobolev spaces, that are presented in the following definitions. The variables in optimal
control problems can be chosen from these spaces (cf. [Ger06, Section 2.3]).

Definition 2.4 (Lebesgue and Sobolev Spaces and Their Respective Norms)
Let 1 < p < oo. The set of functions needed for the definition of LP(|a,b],R) is

LP([a,b],R) :=={f : [a,b] = R | f is measurable with || f||, < oo},

where
(1rwra)”™ ifp< oo

11l = 1 ess sup Nl ifp=o0’
a<t<b

Then the Lebesque space LP is the space of equivalence classes in LP with respect to the
|- ll-norm.

Let 1 < p,q < oo. The space WP ([a,b],R) consists of all absolutely continuous functions
f i [a,b] = R with absolutely continuous derivatives up to order ¢ — 1 and

1 llgp < o0,

where the norm || - ||, s defined by

AP
(S llF@L2) ™ i p < o0

0 fp=oo
mmax [| ]| if p= oo

[ fllgp :=

The spaces LP as well as WP with their respective norms are Banach spaces. The spaces
W%2([a,b],R) are Hilbert spaces with the scalar product

(fsg)waz == bf(")(t)g(")(t)dt.

i=0"%

Hoélder’s inequality (see [Alt06, Lemma 1.16, p. 51]) as well as the subsequent embedding
theorem are useful in some examples of linear and differential operators.
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Lemma 2.5 (Holder’s Inequality)
Letm € N and f; € LP/(R,R) fori=1,....,m with 1 < p; < o0, and 1 < g < oo with

LA | 1
D

i—=1 Pi q
Then the product 117, f; is in LY(R,R), and it holds

L2 fil| < T2 || fil| 2o

The following theorem [Alt06, Theorem 8.9, p. 328] covers embeddings of Sobolev spaces
and how their respective norms are associated.

Theorem 2.6 (Embeddings of Sobolev Spaces)

Let Q0 C R™ be open and bounded with Lipschitz boundary. Let my and mo be integers, and
1<p1 <o andl < py <oo. Then it holds:

2.6.1 If

n n
mp;— — > mg — —, as well as my > mo,

P1 P2
then the embedding
Id: WmPL(Q) — W™m2P2(Q))

exists and is continuous. For u € W™ P1(Q), there exists a constant depending on n, (2,
my, p1, Ma, P2, such that

HUHWWva(Q) < CHUHW””’“(Q)'

2.6.2 If

n n
mp —— > Moy — —, as well as my > meo,
b1 b2

then the embedding
Id: WmPL(Q) — W™m2P2(Q))

exists and is continuous and compact.

The following lemma is needed in the proof of the minimum principle. According to this
lemma, dual elements of functions with disjoint support can be investigated independent
from each others. The dual space of X is denoted by X*. The space of mappings
F: X —Y is denoted by F(X,Y).

Lemma 2.7 (Dual Space and Support of Functions)

Let S ¢ F(AUB,K), ANB = 0. Let y* € S*, such that y*z = 0 for all T with
z(t) =0 VYt e A. Then there exists an element y’y € (S|a)*, so that y*x = yhx|a for all
x€eS.

Proof.

For any subset X of AU B, let

) z(t) ifteX
T =
X 0 otherwise.

Then y*xr = y* (x4 + xp) = y*xa + y*xp = y*za, hence y* € S%. The assertion follows
since S4 and S|4 are isomorphic. O
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Another expression for the essence of this lemma is [F(A+ B,K)|" = [F(A, K)]* +
[F(B, K)]".

This lemma will be used later when an element of the dual space of a subset of L™ is
analyzed. The dual element will be written as a sum of two elements, each of which maps
functions with support A and B, respectively, to 0. The argument derived from this lemma
will be that the dual elements only need to be investigated on these respective time sets.

2.1.1. The Stieltjes integral and functions of Bounded Variation

The Stieltjes integral occurs naturally when optimal control problems with state constraints
are considered. One way to go without this tool would be to make regularity assumptions
on the control problems. As shown in [DH98, Lemma 3.11], Lipschitz continuity for the
state multiplier can be ensured under such assumptions. However, the said assumptions
involve uniform independence conditions ([DH98, p. 699]) that imply that the active state
constraints are of first order. Problems with higher order state constraints may have a
more complicated structure. As the formulae needed for the proofs in this work can be
applied for the Stieltjes integral, the notions necessary for its definition as well as basic
properties shall be introduced briefly. The definitions and properties gathered in this
section have been collected from [Wid46], [Nat75] and [Ger06].

Definition 2.8 (Subdivision)

A subdivision G of an interval [a,b] is an (n + 2)-tuple G = (t;)i=0...nt+1 Of points with
a =1ty < -+ <ty = b The coarseness § of a subdivision is defined by 6(G) =
max;—o,.n(tiy1 — ti).

The notion of a subdivision is needed for the definition of functions of bounded variation,
a function space of great significance in the theory of Stieltjes integration. The definition
is cited from [Ger06, p. 21] and [Ger06, p. 24]:

Definition 2.9 (Functions of Bounded Variation)
A function f : [a,b] — R is of bounded variation, if there exists a constant K, such that
for any partition
Gn :={a=t0<--- <tn+1:b}
of [a,b] it holds that

n+1

2 |f(t:) — f(tia] < K.

The total variation of f is

n+1

TV(f,a,b) :=sup Y _|f(t:) — f(tia)l.

X g=1

The space BV (|a,b],R) consists of all functions of bounded variation on |a,b]. The space
of normalized functions of bounded variation N BV ([a,b],R) consists of all functions f of
bounded variation that are continuous from the right on (a,b) and satisfy f(a) = 0.
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The following definition is cited from [Wid46, p. 4]:

Definition 2.10 (Stieltjes Integral)
If the limit

1 1 Z t’L )
é?iosz 1) — a(t)]
where

ti <7 < tipa (i=0,...,n),

exists independently of the choice of subdivision G and of the choice of the numbers T;, then
the limit is called the Stieltjes integral of f with respect to o from a to b and is denoted by

[ stoydatt

The existence of the Stieltjes integral can be shown if a continuous function is integrated
with respect to a function of bounded variation [Wid46, Th. 4a]:

Theorem 2.11 (Existence of the Stieltjes Integral)
If [ is continuous and « is of bounded variation in (a,b), then the Stieltjes integral of f
with respect to a from a to b exists.

Theorem 2.11 provides sufficient conditions for the existence of the Stieltjes integral that
are not necessarily fulfilled by f and « if the integral exists. Thus, the partial integration
rule is cited from [Nat75, p. 257, point 5], since it makes weaker assumptions than the
analog rule presented in [Wid46]:

Lemma 2.12 (Integration by Parts)
If one of the integrals [° f(t)dg(t) or [°g(t)df(t) exists, then so does the other, and it
holds:

/ab f(t)dg(t) + /abg(t)df(t) = [f()g(D)],

where

The following lemmata are cited from [Ger06, p. 22-23]. The first lemma deals with
Stieltjes integrals in which the function p is itself defined by a Stieltjes integral.

Lemma 2.13
Let g be continuous and h of bounded variation in [a,b]. Let

t
u(t) = / g(1)dh(r), a<c<ba<t<b,
then

/ab f)du(t) = /abf(t)g(t)dh(t)_

Consequently, one can ask how functions that are expressed in terms of a Lebesgue integral
behave if used in the Stieljes integral. In this case, the integral in question can also be
expressed as a Lebesgue integral.
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Lemma 2.14 (Stieltjes integral and Lebesgue integral)
If f is of bounded variation and p is absolutely continuous on |a, b, then

[ swaute) = [ s

where the integral on the right is a Lebesque integral.

Riesz’ Theorem states that analogous to absolutely continuous functions that can be
expressed by means of the Lebesgue integral, continuous functions can be expressed by
the Stieltjes integral:

Theorem 2.15 (Riesz)
Let the functional ¢ : C([a,b],R) — R be continuous. Then there exists a unique function
w e NBV([a,b]), such that

o) = [ Fante) i € Clab)R)

As a consequence of this theorem, dual elements of continuous functions can be expressed
using functions of bounded variation and the Stieltjes integral. This theorem provides a
natural representation of multipliers for state constraints in the minimum principle.

2.1.2. Linear Operators and Fréchet differentiability

The following definition provides a concept of differentiability on normed spaces as it is
needed in optimal control theory in infinite dimensional spaces. In this definition, the space
L(X,Y) consists of all linear continuous functions from X to Y. An equivalent definition
can be found in [Wer(07, p. 113]. The equivalence is shown in [Wer07, Lem. II1.5.2].

Definition 2.16 ((Continuous) Fréchet Differentiability)
Let (X, || - |lx) and (Y,|| - |ly) be normed spaces. The function F : X — Y is Fréchet
differentiable in o, if there exists an operator F'(xy) € L(X,Y), such that

for h — 0. If it exists for all xo € U C X, with U an open subset of X, then
F':U—= L(X)Y), z~ F'(x)

is called the Fréchet derivative of F' in U.

F' is continuously Fréchet differentiable in U C X if F' is differentiable and the derivative
18 continuous.

One of the most important tools for calculations with Fréchet differentiability is the chain
rule (cf. [IT79, p. 27]), the assertion about continuous differentiability is an immediate
implication:

10



2.1. Analysis

Lemma 2.17 (Chain Rule)

Let (X, - llx), Y, - |ly) and (Z,|| - ||z) be Banach spaces. Let U C X and V C Y be
open subsets of X and Y, respectively. Let F : U — Y and G :V — Z. Assume that there
exists a point x € U, such that F(x) € V. If F is Fréchet differentiable in x and G 1is
Fréchet differentiable in F(z), then the mapping H := G o F' is Fréchet differentiable in x,
and

H'(z) = G'(F(x)) o F'(x).

If F is continuously differentiable on U and G’ is continuous on F(U), then H is continu-
ously differentiable on U.

Differentiability is inherited by subspaces, as it is shown in the following lemma:

Lemma 2.18

Let (X, - |lx) and (Y, || - ||y) be normed spaces, and let T : X — Y. Let (U, | - ||v) be
a third normed space with U C X, and suppose that there exists some C' > 0, such that
lullg > C - ||u||x forwe U. If T is Fréchet differentiable in ug with respect to (X, | - ||x),
then T|y : U — Y is Fréchet differentiable in uy with respect to the || - ||y-norm, and the
derivative is inherited,

Ty (ug) = (T"(uo))|ov-

Proof.
1. The linearity of (7"(ug))|y is clear. The continuity is also easily shown, since for
h € U, it holds:
17" (uo)(R)ly < Crllh]|lx < Cr/C - [[hlu,

where C' is the constant mentioned in the assumptions of the lemma.

2. In order to show that (2.1) holds, the inequality

o 1T (o + h) = T(uo) — T'(uo) (h)ly
Il =0 e
< iy 700+ 1) = T(ug) — T (uo) (M)
e C - [hllx

[[hllx—0

can be analyzed. Note that ||h||y — 0 = ||h||x — 0. Since T is Fréchet differentiable
in (X,] - ||x), the right hand side equals 0, and hence so does the left hand side. O

Lemma 2.18 leads to an important finding: If an operator 17" : L*>([to,t¢],R") — Y is
differentiable in some point zg, then 7|y 1,00 (jz ¢ ;1.kn) s also differentiable, and

(T|W1,oo([t07tf}7Rn))/ = T/‘Wl,oo([t07tf]7Rn) .

In other words, in order to calculate derivatives for operators that map W' into some
space, it is sufficient to show that the operator that maps L into the same space is
differentiable.

Example 2.19 (Examples: Linear Continuous Operators)
The following are examples of linear continuous operators. According to the definition of
differentiability, they remain invariant under differentiation.

11
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2.19.1 Let p € NU{oo}, and let T be the derivation operator for WP d.e. T : WhP — [P,
x> &. Then T is linear and continuous since ||T'(x) — T(y)|l, < ||z — yl|l1p- Hence the
Fréchet derivative T'(xzy) is T itself (compare [Wer07, p. 149]).

2.19.2 Let p € NU {oo}, and T : LP([to,ts],R™) — W'P([to,t],R"), with T(f)(t )
It f(r)dr. Then T is linear and continuous since |T(z — y)||o < fttof |z(t) — y(t)|dt
lz =yl <C-|lz—yll, Again, the Fréchet derivative T'(x¢) is T itself.

2.19.3 Let F7 be the operator that evaluates a function in WP at a given time T, i.e.
FT: WY — R" x — z(7). Then F7 is linear and differentiable with (F7) (zo) = F7,
since F7 is continuous with respect to this morm: Application of theorem 2.6 yields
[E7(z) = F7(y)l| = llz(7) =yl < llz =yl < 1z = yll1p-

2.19.4 Let f € L*®([to,ts],R) and F : L>([to, tf],R) — L>([to,ts],R), () — f(-)z(-).
Then F' is linear and continuous since

1F(y) = F(@)lleo = [IF()y() = FOz()lloo = 1F () () = 2()] oo < I flloo - 1y = 2l c0-

Example 2.20 (Examples: Differentiable operators)

2.20.1 Letn,m € N and f : R x R" — R™ such that f is continuous and continuously
differentiable with respect to x. Then T : L®([to,tf],R") — L>([to,ts],R™), defined by
T(z)(t) == f(t,x(t)), is continuously differentiable.

The Fréchet derivative is T'(xq)(h)(t) = fL(t, xo(t))h(t).
Proof.
2.20.1 Compare [KWWT78, lemma 1.4a]. Obviously, 7"(x¢) defined as

T' (o) (h)(t) := fo(t, wo(t))(t)

is linear. It first remains to show that T"(x() is continuous with respect to h, and
that (2.1) is satisfied. Finally, it is shown that the derivative is continuous (with
respect to ).

1. Continuity with respect to A can be shown as follows:

17" (z0) (M) lloo = [1£2(> 20 (-))A()[loo
< Gzl lewee ooy - 1Alloo

Now it holds that ||zo||cc < Cy,. Since f. is continuous, there exists a constant
Cy, such that |f.(t,x)| < Cy for all t € [to, tf], x < Cy,, which yields:

17" (o) (M) lloe < CrllAlloo

This shows that T"(z) is continuous.

2. For (2.1), consider

|17 (o + h)(E) = T(w0)(t) — T" (o) (h) (t) [
= £t 2o (t) + h(t)) = f(t, 2o(t)) = fo(E, zo(8)) ()| m

12



2.1. Analysis

We use the mean value theorem to estimate the norm:
170+ B)(E) = Tau) ¢) = T'(o) WD)

= | [ w0+ hnnar - a0t

= [ e m00) + 70 = g3t z0(e)dr - )

< [ suteszote) + 7hie)) = £ttt

Rm

Rm™

e POl (2:2)

Let 7(t) be defined as

7(t) = arg max 1f2(E, xo(8) + Th()) = fo.(t, 2o ()| msm

and Z(t) := wzo(t) + Th(t), so that Z(t) € [zo(t),z0(t) + h(t)]. Therefore,
| Z(t) — zo(t)]] < ||h]|oo for all ¢ € [to, ts].

Applying the essential supremum on both sides of inequality (2.2) and dividing
by [|hlle yields

1T (20 + h) = T(x0) = T'(@0) (M) low - (I2lloc) ™" < 1£2( 2()) = £l 20( )l

For sufficiently small h, (¢,20(t)) and (¢,Z(t)) remain on the compact set
{(t,x)|t € [to, ts],||z(t) — xo(t)|| < 1}. According to Cantor’s theorem, f! is
uniformly continuous on this set, and it holds

which shows that

lim || 7' (o + h) = T'(x0) = T"(w0) (h) oo - (IBl]oc) " = 0.

3. For the continuity of 7" : L>® — L(L*, L*°), note that

17" (2) = T' W)l cweepey = sup [fo(2() = L0y oo

[[Alloo=1

< sup (1205 2() = ol y (D)oo - [1A0) oo

IFlloe=1
= 172G () = £2Cu ()l

Hence, application of Cantor’s theorem yields

lim | 7"(@) = T')llew,c) < T 1120 2() = Fy(Dlle =0

The theorem below is cited from [Ger06, Theorem 2.2.8] and later used in the same context:
The theorem gives conditions under which the image of an operator is closed. These
assumptions are therefore useful for the proof of normality of optimality problems.
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Theorem 2.21

Let X and Y be Banach spaces. Let F : X — Y x R"™ be defined by F(x) = (G(x), H(x)),
where G : X — Y is a linear, continuous and surjective operator and H : X — R" is
linear and continuous. Then im(F') is closed in' Y x R™.

The following is the implicit function theorem, which plays an important role for reg-
ularization of the complementarity systems as shown in chapter 5. The first part (the
existence) is cited from [Wer07, Theorem IIL.5.4]. The derivative of the implicitly defined
function g can be obtained from deriving the equality F(x,g(z)) = 0.

Theorem 2.22 (Implicit Function Theorem)
Let X, Y and Z be complete and F': X xY DU xV — Z continuously differentiable with
F(xo,y0) = 0. Let the derivative of y — F(xo,y) be an isomorphism of Y on Z. Then
there exist neighborhoods Uy of xo and Vi of yo, such that for all x € Uy, the equation
F(z,y) =0 has a unique solution y =: g(z) in Vg, and the so defined function g : Uy — Vj
is continuously differentiable with g, = —F;_IF;.

Carathéodory’s existence Theorem (cf. [Wal00, Theorem 18, p. 128]) ensures the existence
of solution to an initial value problem

T = f(t,x(t),u(t)), x(tg) = o (IVP)

Theorem 2.23 (Carathéodory’s Existence Theorem)
Let f : R x R"™ x R™ — R"™ be continuous and locally Lipschitz continuous in x, i.e. for
every R > 0 there exists a constant Ly > 0 such that

Hf(taxbu) - f(tax%u)“ <Lpg- ||371 - 332”

for all 1,22 € R™ and all u € R™ with ||z:|, ||z2||, |u]| < R, everywhere in [to,ty].
Then for any o € R™ and any control u € L*®([to,ts],R™) there exists a function
x € WE>([tg, ts], R™) that satisfies IVP for almost all t € [to,t;].

In the following lemma, we examine linear boundary value problems. A more general
version of this lemma (with application to Differential Algebraic Equations) can be found
in [Ger06, Lemma 4.1.6].

Lemma 2.24
Let A € L>([to, t¢], R™>*"), hy € L>®([to, t¢], R™), Co,Cy € R and hy € R". Consider
the linear boundary value problem

(t) = A(t)x(t) + hi(t)
2.24.1 If the given problem is an initial value problem, i.e. r = n,, Co =1 and Cy = 0,
then there is a unique solution for x, given by

() = (1) <h2 + tcp—l(T)hl(T)dT) |

to

Here, ® denotes the fundamental solution of the differential equation, i.e. ®(ty) = I,
d'(t) = A(t)P(t).

14



2.1. Analysis

9242 If
rank (Co®(to) + Cr@(ts)) =,

where ® again is the fundamental solution as above, then the boundary value problem has
a solution.

A parameter free version of the following lemma can be found in [Ger08]. This version
follows straightforwardly from the lemma since the estimate holds for each parameter.

Theorem 2.25 (boundary value problems)
Let P be some arbitrary parameter set. Consider the boundary value problem G(p)(§) = 0,
defined by the parameterized operator

G : P x W ([tg, 4], R") — L>®([to, t7],R") x R™,

where

&'(t) — B(p)(t)&(t)
G(p)(€) :< Eoé(to) +pE1§(tf) )

Let the following assumptions be satisfied.
1. There exists C such that for all p € P and a.e. in [to,ts] it holds ||B(p)(t)|| < C.
2. There exists k > 0 such that for all p € P and all { € R™ it holds

[ (Eobp(to) + Er0,(t7))CI| = wlIC]];
where 0, is a fundamental solution with 0),(t) = B(p)(t)0,(t), 0p(te) = 1.
Then the inverse operator G(p)~! exists and it holds ||G(p)~t|| < K for some constant K,

independent from the parameter p.

For the following lemma is taken from [K6n00, p. 103]. The proof remains the same:

Lemma 2.26
Let X, Y be Banach. A Fréchet differentiable function F': X — Y with ||[F'||zxy) < L

for some L > 0 is Lipschitz continuous, with

[F(z) = F(y)lly < L-|lz—yllx

Proof.
Let v(t) :=y +t(x —y). Fore e Rlet F; : [0,1] — R,

Fe(t) = |F(y(t) = F)lly —t- (L + &)z - yllx-

Assume that F.(1) > 0 for some € > 0. Since F' is continuous, so is F, and hence there
exists a time ¢y € (0, 1], such that F(tg) < F(t) for all ¢ € (¢, 1].

Hence %ﬁ}(to) > 0 for all ¢ € (¢, 1], and

15
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_FO@) = F@)lly = 1F(0) = F@)ly
t—t
< HF(v(t))t—_lZ(v(to))lly _(

(L+e)llz —ylx

L+e)lz—ylx,

which implies that

(L+e)||lz—y|x < }1\% IIF(V(t))t—_Z*;O(w(tO))||Y

At the same time, due to the definition of the derivative, it holds

th\fg |‘F<7<t))t__Ft’0(7(t0))HY _ ”F/(’Y(to))(

z=y)ly < Lz = yllx,

and the last to inequalities are inconsistent.

Summarizing, it holds F.(1) < 0 for all € > 0, which shows the assertion. U

2.2. Control Theory

The concept of controllability is used in various situations as a controllability assumption
is usually needed in order to assert regularity properties of the problem and its associated
multipliers. We will first briefly introduce the necessary concepts from control theory as
far as they are needed on the way to the definition of controllability.

The main merit of this introduction will be a weak regularity assumption for optimal
control problems that guarantees the validity of necessary optimal control conditions and
can even be checked in practice. The definitions and theorems can be found in [Son98§].

Definition 2.27 (Continuous-time Control System)
Let xg € R™ and f : R x R™ x R™ — R™ be continuous and continuously differentiable
with respect to x and u, i.e., its second and third argument. Let [to,tf] be an interval.

Let £(+, Ly, x4, u) denote the solution of the initial value problem
©(t) = f(t, z(t), u(t)),
z(ty) = ..

Then the Xy = ([to, ts], R™ , R™ &), which consists of the time set, the state and control
space and the solution mapping of the ordinary differential equation, is called a continuous-
time control system with the right hand side f.

Definition 2.28 (Linear Continuous-time Control System)
Let 3¢ be a continuous-time control system, where the right hand side f is in the form

flt,z,u) = A(t)z + B(t)u

with A € C'([to, 7], R"*"), B € C'([to, t], R">*™).
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The terms “event” and “reachability” make the definition of controllability easier. The defi-
nitions chosen for this work applies the more general definitions in [Son98, Definition 3.1.1]
to the case of continuous-time control systems:

Definition 2.29 (Event, Reachability)
Let ¢ = ([to, t¢], R™,R™ &) be a continuous-time control system.

An event is a pair (z,t) € R™ X [tg, t].

The event (z,7) can be reached from the event (x, o) if there is a path of ¥y on [0, T] whose
initial state is x and final state is z, that is, if there exists a u : [o,7) — R™, such that

z=&(1,0,z,u).

Definition 2.30 (Controllability)
The control system ¥¢ = ([to, t¢], R" R"™ &) is controllable on the interval [o, 7] if for
each x,z € R"™ it holds that (z,7) can be reached from (x,0).

The last definition (cited from [Son98, Definition 3.1.6]) together with the definition of
linear continuous-time control systems, leads to the question under which conditions these
are controllable on the interval [tg, ], since this question is particularly interesting for
developing necessary optimality conditions under mild assumptions. The following theorem
sums up the results from Proposition 3.5.16 and Corollary 3.5.18 and Remark 3.5.19 in
[Son98, p. 113, p. 115].

Theorem 2.31
Let 3¢ be a continuous-time linear system with right hand side

F(t,z,u) = A(t)z + B(t)u.

Let k> 0 be an integer, such that A € C*([to, t;], R™=*"=) and B € C*([tg,t;], R"=>").
Fori=0,....k—1 let

By(t) := B(t)

Biai(t) = A()Bi(t) — — Bi(t)

dt
If there exists T € [to,ty], for which
rank[By(7), B1(7), ..., Bp(T)] = ng,

then ¥ ¢ is controllable on [tg,y].
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3. The Minimum Principle

3.1. The Optimal Control Problem and Infinite
Dimensional Optimalization Problems

The most important tool for analyzing Optimal Control Problems are necessary optimality
conditions. The general idea for proving necessary conditions in terms of a maximum
principle was first invented by Pontrjagin et al. [PBGM64]. Later, the principle was
adapted to many classes of problems. An overview of adaptions can be found in [HSV95]. In
[Ger(6], optimality principles were proved for problems with either control-state constraints
or control set constraints.

The necessary conditions, that are derived in this section, will be applied to Linear
Quadratic Optimal Control Problems with pure state constraints and to problems with
control-state and control set constraints. The assumption that makes the problem accessible
for an analysis analogous to the one found in [Ger06, Chap. 4] is that the control set
constraint refers to components of the control that do not occur in the mixed control state
constraints. We consider the following OCP:

Problem 3.1 (Optimal Control Problem (OCP))
tr
min!  J(z,u,0) = p(z(to), z(t;)) + /t Folt, 2(t), u(t), v(t))dt

with respect to the state function x € Wh>([tg,t;],R™)
and the control functions w € L*>([to,t¢], R™)
and v € L>([to,ts], R™)

subject to the differential equation
(t) = f(t,z(t),u(t),v(t)) a.e. in [t ts],
boundary conditions
W(x(to), x(ty)) =0,
mized control state constraints for v
c(t, z(t),v(t)) <0,

pure state constraints
s(t,z(t)) <0

and set constraints for u

u(t) e U(t) CR™ a.e. in [to,ty]
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3. The Minimum Principle

Necessary optimality conditions are derived from conditions for infinite optimization
problems. Therefore, the objective function as well as the constraints have to be embedded
into suitable spaces. For simplicity, the following set is defined:

Uad = {v € L*=([to, t7],R™)|v(t) € U(t) a.e. on [to,ts]}.

In order to exploit Fréchet differentiability of the corresponding functions when applying
the necessary optimality conditions for optimization problems, the following smoothness
assumptions will be made:

Assumption 3.2 (Smoothness)
3.2.1 The function ¢ : (R™)* — R is differentiable.

3.2.2 The mapping fo : [to,ts] X R™ x R™ x R™ — R is continuous and continuously
differentiable with respect to (x,u,v).

3.2.3 The ODE defining function f : [to,tf] x R™ x R™ x R™ — R™ is continuous and
continuously differentiable with respect to (z,u,v).

3.2.4 The function W : (R"=)* — R™ that defines the boundary conditions is continuously
differentiable.

3.2.5 The control state constraint ¢ : R x R™ x R™ — R"™ 4s continuous and continuously
differentiable with respect to (x,v), and the state constraint s : RxR™ — R™ is continuous
and continuously differentiable with respect to x.

3.2.6 There exists a function @ € Uyg, such that u € Uyg for all u with ||u — 4| < e for
some € > 0. The set U,y s closed and convex.

The following Banach spaces will be used throughout the remainder of this chapter:

Definition 3.3 (The spaces X, Y, Z, the cone K and the admissible set S)
3.3.1 The space X denotes the space of optimization variables, i.e. (z,u,v) € X, with

X = W ([tg, 4], R™) x L=([to, ts], R™) x L®([to, 7], R™).
Together with the norm
[z, u, 0)||x 2= max{||z][1,00, [ulloc, [|V]lc}

the tuple (X,|| - ||x) becomes a Banach space.
3.3.2 The space Z will be used as an image space for the equality constraints,

Z = L*®([to, t¢], R"™) x R™.
The natural norm that makes (Z,| - ||z) a Banach space is

1(21, 22)[| z := max{{|z1[|oc, [| 221}
The equality constraints can be expressed as H(x,u,v) = 0 with
H:=(H,Hs): X = Z,

Hy(z,u,0) = f(a(),ul-),v() — (),
Hy(z,u,v) = =V(x(ty), z(ts)).
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3.3.3 The inequality constraints can be handled in a similar manner as above, introducing
the space Y and the cone K. Let

Y = L>([to, ts], R™) x C([to, t¢], R™),
which is a Banach space with

1y, y2)lly == max{ ||y |, [[42]loo }-

Let
Gi=(G,Go): X =Y
Gi(z,u,v) == —c(-,2(+),v(+))
Ga(x,u,v) == —s(-, z(+)).

Using the cone K, defined as
K=K\ xKyCY
Ky = {z € L*>([to, tf],R™)|2(t) > 0,,, a.e. in [t,,tf]}
Ky = {z € C([to, ty], R™)|2(t) > On, a.e. in [to, 1]},

the inequality constraints are equivalent to

G(z,u,v) € K.

3.3.4 The set S of admissible optimization variables is
S = Whe([tg, t7], R™) x Uyg x L= ([to, ], R™).

Lemma 3.4 (Properties)
3.4.1 The objective function J : X — R is Fréchet differentiable if the smoothness As-
sumptions 3.2.1 and 3.2.2 hold, with derivative

iy
+ / ol (82,2, )2 (t) + fol. (1,2, 8, 0)ult) + fol (£, 2, @, )v(t)dt.
to

3.4.2 If Assumptions 3.2.3 and 3.2.4 hold, then H is continuously Fréchet differentiable,
and H' = (Hy, H}) with
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3.4.4 If Assumption 3.2.6 holds, then int(S) # 0.
3.4.5 Under Assumption 3.2.3, im(H') is closed.

Proof.
3.4.1 Let
Jy W ([tg, ty], R™) — R*"= z — (z(to), z(ty)),
Jo i R — R (o, 2¢) = p(z0,Tf).
Furthermore, let
Jy o L2([to, tg], Rr=tmutme) — LTk, t4], R)
(@), u(-), v(-) = fol z(), u(-), v(-)),
Jy o L®([to, t¢],R) — Wl’oo([to,tf],R> J e ft.o f(r)dr,
Js : WEe([te, t4],R) = R f— f(ty).

Then J can be seen as the composition and sum J = Jy o0 J; + J5 0 Jy 0 J3. Each
component is Fréchet differentiable according to Examples 2.20.1 (J3), 2.19.3 (Jy, J5),
2.19.2 (J4) and Lemma 2.18. The composition then is differentiable by Lemma 2.17.

The smoothness assertions in 3.4.2 and 3.4.3 follow analogously. The assertion 3.4.4 is
equivalent to Assumption 3.2.6.

Finally, Lemma 2.24.1 shows that H; is surjective. Since H; and H, are linear and
continuous, Theorem 2.21 yields that im(H’) is closed, as claimed in 3.4.5. O

The resulting optimization problem in infinite dimensional spaces (OP) reads

Problem 3.5 (OP)

min!  F(z,u,v)

with respect to the variables (x,u,v) € X

subject to the conical constraints

G(z,u,v) € K
equality constraints
H(z,u,v) =0
and set constraints
(x,u,v) € S

The following necessary optimality conditions [Ger06, Th. 3.4.2] hold for infinite dimen-
sional optimization problems in the form of OP:

Theorem 3.6
Let FF: X - R and G : X =Y be Fréchet differentiable and H : X — Z continuously
Fréchet differentiable. Let & € X be a local minimum of OP, int(S) # 0 and int(K) # 0.
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Let S be a closed and convex set and K a closed convex cone. Assume that im(H'(Z)) is not
a proper dense subset of Z. Then there exist nontrivial multipliers (lo, \*, u*) € RxY* x Z*,
(lo, \*, u*) # 0, such that

lp >0
N e KT
A (G(2)) =0
loF'(2)(d) — A(G(2))(d) — p*(H(2))(d) 20 Vd € S — {2}

Using Definition 3.3, our aim is to derive necessary optimality conditions for Problem 3.1
from Theorem 3.6. According to Lemma 3.4, the differentiability assumptions as well as
the condition int(S) # 0 are already satisfied if Assumption 3.2 holds.

Applying Theorem 3.6 to the spaces and operators defined in Definition 3.3 leads to the
corollary

Corollary 3.7
Let the smoothness Assumptions 3.2 hold for the OCP and int(K) # 0. Let (z,1,9) € X
be a local weak minimum.

Then there exist nontrivial multipliers lo € R, n* € Y* and \* € Z*, such that

lo >0
n e Kt
n*(G(&,4,0)) =0

3.2. Smoothness and representation of the
multipliers

In this section, representations for the multipliers from Corollary 3.7 as measurable
functions and functions of bounded variation are derived in contrast to their representation
as elements of the dual spaces Y* and Z*.

Let an OCP in the form of Problem 3.1 be given, where all functions fulfill the smoothness
Assumptions 3.2. Let (#,4,0) € X be a weak local minimum, and let [, € R, n* € Y* and
A" € Z* be multipliers with

>0 (3.1)
nte Kt
n*(G(z,4,0)) =0
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loF'(2,0,0)(x — Z,u — Q,v — D)
_n*(G/(:ﬁv a7 @)(JI —L,U—UUv— @» (34)
—XN(H'(z,1,0)(x — &,u —t,v—10)) >0 V(z,u,v) €S.

Riesz” Theorem 2.15 yields another representation for the second component of the
multiplier n* € Y* with n* = (97, n3) € (L>([to, tr], R™))* x (C([to,ts],R™))*: According
to Theorem 2.15, there exist unique functions p; € NBV ([to,tf],R), i = 1, ..., n, with

* e ts
) =Y [ fdu(t)
i=17%
The second component of the multiplier A* € Z* also has a simple representation, since
N =t (Ap o) € (L2([to, tr], R™))" x R™.

If the inequality (3.4) is satisfied for all (z,u,v) € S, then by setting v = @, v = 0 it
follows:

F,(%,0,0)(x — 1) — 0" (G(%,0,0)(x — ) — A" (H(&,0,0)(x — 1)) >0
Vo € Wh([tg, 4], R™),

which is equivalent to

Analogously, setting x = z, u = 4 yields

lo /tjf fou(t, 2(t), a(t), o(t))v(t)dt +ny (d,(-,2(-),0(:))v) — ¥ (f. (- 2(),a(), 8(-))v) = 0
Yo € L>([to, t¢], R™), (3.6)

and finally, with = 2, v = ¥ it follows from (3.4) that

I~

ZO/: fol, (£, 2(8), a(t), d(8))u(t)dt — X3 (f2(-,2(-), a(-), 8(-))u) > 0 Vu € Upg — {ai}.
(3.7)

For further investigation of the smoothness of the multipliers, equation (3.5) is analyzed,
introducing = as the solution of the initial value problem

&= fltle+h(t),  a(to) =0 (3.8)
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with an arbitrary function hy € L*>([to, ts],R"*). Here, the expression f.[t] denotes the
function f, along the weak local minimum (Z,4,), i.e. fi[t] == fL(t,2(t),a(t),0(t)).
Analogous notations will from now on be used for f, s and c¢. Also, the dependence of ¢
and ¥ on variables will be omitted when they are evaluated in (Z(to), Z(ts)).

According to Lemma 2.24, the solution of (3.8) is

where @ solves ®(0) = I, ¢'(t) = fL[t]P(¢t).
Hence, substituting « in (3.5) with z yields

ty
0= (log, + 0 W )0(ty) [ 07 (T)h(r)dr
0

+ /t T fol D) tt O (7 )by (7)drdt

+ Z/:f Siy[t]D(1) tq)_l(T)fh(T)dein(t)

i=1"t to

o <c;<1>(.) | cpl(f)hl(T)dT) £ ().

to

Integration by parts of the second term of the right hand side leads to
t
iofi e ([ o7 om(rdr) de

[(/ tnfo,rl2(r)dr) - tjq)_l(T)hl(T)dTﬂ:

“ ( /to lofo;[T]CD(r)dr) O () hy (t)dt
:/:f lofol[71®(r)dr /tf O ()b (£) e

/ttf/ lofo, [7]®(r)dr - &7 (£)ha (t)dt

= lOfOz[] (T)dr - &~ (t)ha (t)dt

to to
ty

— leO;[T](I)(T)dT . (I)_l(t)hl(t>dt

to to

t t
[t dr - 07 ) h (0t
0 t
For processing the third term

Z / sl [t q> LYo () drdps(8),
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we first make the following general observation: For three arbitrary functions a, b and pu,
a € C([to, t7], R™), b € WH>([to, 4], R™), u € BV ([to,ty]), it holds

[ awr /5?2‘“
=3 [ et duo)
and by Lemma 2.13, we deduce:
[ oo waute) =3 [ o ([ arinte))
Using integration by parts for the Stieltjes integral shows that:
[ a7 oty =3 [ aute) it =3 [ ([ arutr) dno
([ a(T)Tdu(T)) blty) - / ([ ) (o)) vty

Now, inserting

into this formula yields:

]gfséjﬂ¢%ﬂ t:®_lﬁﬂh1@ﬁd7duxt)::(/ZfsékaD@Oduihﬁ) -Ltf®‘1@ﬁhlhﬂd7
- / (f si;[ﬂ@(ﬂdui(ﬂ) @ (6)h (1)de
[ [ stre )0 (e,

Next, both substitutions are inserted in (3.9):

=i, + T )00 /;f N
- / [ s e 7 @y
A?/ si[T1@(7)dpa(T) @ (t)ha (t)dt
+m(AJCD+Aﬂm)

ty
- [(Zogofrf + JT\I/;f)CI)(tf) —i—/t lofoo[T]®(T)dT

to
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+ Z /t ! Sib[T]®(T)dps(T) | - @ (t)ha(t)dt

This can be written equivalently as

[ o) (o)t i (¢,1170)) + Xy () = 0, (310)

to

where

07 = (sl + a0 )0(0) + [ lratar + 3 [*sipleau)] - 070,

Definition 3.8 (Pseudo Inverse)
The notation (-)T is used for the pseudo inverse of a matriz, i.e. (A)* = AT(AAT)™! for
AcR™" if AAT is invertible.

Lemma 3.9 (Existence of the Pseudo Inverse)
Let A: R — R"™"™ n >m, and assume that there exists a constant C' > 0, such that

|A®) | > Cllz|  VteRzeR™

Then the pseudo inverse of A(t) exists for all times t, and ||(A(t))T| < Cy for some
Cy € R.

Proof. )

The fact that for any ¢ it holds HA(t)T:cH = 2T A(t)A(t) "z > C?|z||? shows that the
minimal eigenvalue of A(t)A(t)" (which is a symmetric matrix) is Ay, > C2, hence its
inverse exists and is bounded. 4
Corollary 3.10

Let an OCP in the form of Problem 3.1 be given, where all functions fulfill the smoothness
Assumptions 3.2. Let (Z,1,0) € X be a weak local minimum, let ly € R, n* € Y* and
X € Z* be multipliers that solve (3.1)~(3.4). Further assume that the pseudo inverse (c,[t])"
ezists and that ||(c,[t])"]| < C holds for some C' € R for almost all times t € [to,ty].

Then there ezist functions py € BV ([to, t7],R"™) and n € L*®([to, t7],R"™) with
t
wk) = [T n@ k@Od ke L<(lto, 1], R™) (3.1)
to
ty
Ni(hy) = _/t Py Thi(t)dt  Yhy € L%([to, ], R™), (3.12)
0

where 0y and X} satisfy (3.5) and (3.6).

Proof.
1. Equation (3.10) holds for every hy € L>(

[to,t¢], R™) and Z being the solution of the
initial value problem (3.8). Inserting hy(t) := f/[t

Ju(t) into this equation yields
tr
0= A% (/f )+ ps(t

to

Liltlo@)dt + 7 (¢, []2()) -
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28

Now insert the resulting expression for A} (f,[-]v(-)) into (3.6):

0= / o fol [Ju(t)dt + (¢ +/ t. (3.13)

Let k € L>([to, tf], R™) be arbitrary. The equation
k(t) = c,[t]z(t) + & [t]o()
can be solved for v due to the assumption that ||(c,[t])T|| < C: Let
o(t) = ([t (k(t) — &, [6]2(2))-
Inserting v into (3.13) yields
0= [ (ol + py()T SN h(0) — RO+ 5 (). (3.14)

Finally, z can also be expressed as a function dependent on k,

x(t) = frlt)2(t) + filt]o(t)

F[002() + FLIE1(c )T (k(2) — 6] (2))
(falt] = o[t [E) * e [ E () + filt] (e, [t) Tk (2)
= [o(6)2() + Ok (1),

where f(t) := f1[t] = fi[t](<,[t]) T[] and fu(t) := f[H(, 1)

The solution z of the initial value problem can be expressed depending on k as

with — ®0) =1,  ¥'(t) = f(6)D(¢).

Inserting Z into (3.14) yields:

t .

0= / Yo follt] + pr () £ (k(t) AN

to to

+m; (k)
:/tof(lofoij[t] +pr ()T S (,[H]) T (t)dt

— [ oo+ ) R ) () (

to

+n7 (k)

L.

b1(r) fk(f)k(f)@ dt

to

integration by parts shows that:

0= [ tofutlt + o) L)L) (D)



3.2. Smoothness and representation of the multipliers

tf

- (/ffﬂofoé (] +pr(0) AT )T mémm) B2 (1) (L) k(1) dt

to

+ 7 (k)

-/ [uo Rt + ps &) £ ()

_ (/ttf(lofo'v[T] 4 (0T F(E [T

+my (k).

S0
—
\]
S—
Q.

\]
v
S0

L
—
~
S—
=
—
~
S—
| I
o
—
~
N—
QL
~

Setting

10T == (ofollt] + pr®) £ DT
+ ([ Wsob )+ pp () LD I (7)) 70 ),

the multiplier n] possesses the representation

i) = [ (o) k)

for all & € L*([to,tf], R™, this is equation (3.11).
. With the first assertion, 3.10 becomes:

/tf pf<t)Th1(t)dt—|— Y n(t)T ’[ ] ( )dt—l— )\* (hl) 0.

to to

Again, this equation holds for general h; and = satisfying

(1) = fultlo(t) + ha(t), x(to) = 0.

The solution = of this initial value problem is inserted:

t t t
0 :/fpf ()T ha(t) dt+/f?7 (7 0(E) [ @7 (7 (P)rdt + X5 ()
O

_/0 () Tha(t dt+/ / (7)dr - & (£)ha (£)dt + X% ()
:/to (pf / (7)dr - ® ()) ha(t)dt + N (hy)

This shows that
pr(®) " =ps )" + [ n() @ (r)dr - 7 1)

satisfies equation (3.12) for arbitrary hy € L>([to,ts], R"*), and since py is of bounded
variation, so is py. U
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3. The Minimum Principle

3.3. Minimum principle for OCP

The smoothness results of Corollary 3.10, together with some variational deliberations,
lead to Theorem 3.15. The following lemma cited from [Ger06, section 2.8] are needed as
background for the proof:

Lemma 3.11
Let f,g € L*®([to, t4],R), s € C([to, t¢],R) and p € BV ([to,ts],R). If

/ttf FORE) + g(t)h(t)dt + ttf s(t)h(t)du(t) = 0
for every h € Wh>([to, t;],R) with h(ty) = h(ty) = 0, then there exists a function § €
BV ([to,ts],R), such that §(t) = g(t) a.e. in [to,ts] and §(t) = fttO f(r)dr + fti) s(7)du(T).

The proof of the next lemma makes use of Lusin’s Theorem. This can be found in [Alt, p.
210]:

Theorem 3.12 (Lusin’s theorem)
Let i be a regular o-additive measure S — R over a linear space S, andY a Banach
space.

FEvery p- measurable function f : S — Y is u- almost continuous, i.e. for every p-
measurable set E and every € > 0 there is a compact set K C E with u(E \ K) < € such
that f Tk is continuous (on K ).

Lemma 3.13
Let [a,b] be an interval and f € L*([a,b],R™). Let § be a function g € U C L*([a,b], R™).

If fff(t)T(g(t) —g(t))dt >0 for all g € U, then f(t)"(g(t) — §(t)) > 0 a.e. on [a,b].

The proof essentially follows [Lem72, p. 66].

Proof.

Let i be the Lebesgue measure, and A; C [a,b], such that u(A4;) > 0 but f(t)"(g(t) —
g(t)) < 0a.e. on Ay with g € U. According to Lusin’s Theorem, there are continuous
functions hy, h, : [a,b] — R™ that are equal to f and g — g, respectively, on A; except for
small subsets of [a, ], i.e

he(t) =£(t) a.e. on [a,b] \ By  for some By with p(By) < pu(A;)/2

hy(t) =g(t) — g(t) a.e. on [a,b] \ B,  for some B, with p(B,) < u(A1)/2
Now since p1(Aq \ (By U By)) > u(Ay) — u(By) — p(Bgy) > 0, there must be some ¢, with
f(to)T(g(to) — g(to)) =: —e < 0, so that the intersection of a neighborhood of ¢y with the
set Ay \ (B U B,) is not a set of measure zero':

! Assume that this is not true. Then for each to € [a,b], there is an ¢ > 0, such that u((A4\ (By U
By)) N [to —e,to +¢]) = 0. The family {(A\ (B U By)) N [to — e(to),to + e(to)] : to € Q} is a
countable cover of A\ (By U B,). Since p is o-additive, one can estimate pu(A \ (Byf U By)) <
dotoeq H((AN\ (Bf U By)) N [to — &(to), to + &(to)]) = 0.

30



3.3. Minimum principle for OCP

Since h]hy is continuous, there is a & > 0, such that hy(t) hy(t) < —c/2 for all ¢ €
[to — 0,t0 + 0]. Now we define

Ay = (A \ (B U By) N [ty — 8,0 + d))
Consider the function g € U, defined by

mﬂ:{mwte&

g(t) otherwise

The integral over f' (g — §) is negative:

[ 50700~ atende = [ £ (o)~ (0t

2
< — /2 p(Ay)
<0 O

The (augmented) Hamilton function is introduced which allows characterization of the
minimum principle in a plain form:

Definition 3.14 (Hamilton function)
1. The Hamilton function H : R x R™ x R™ x R™ x R"™ x R — R for a given OCP
s defined as

H(t, x,u,v, N\ ) == lofot, z,u,v) + )\Tf(t, T, U,0).

2. The augmented Hamilton function H : R x R™ x R™ x R™ x R™ x R™ x R — R
is defined as

H(t,z,u, 0,1, 1) 1= H(t,x,u,0,\ 1) + 1 clt, z,v).

Theorem 3.15 (Minimum Principle for OCP)

Consider the OCP 3.1 where the problem defining functions ¢, fo, f, ¥, ¢, s and U,q fulfill
the smoothness Assumption 3.2. Let (&,0,0) be a weak local minimum of OCP. Assume
that the pseudo inverse (c,[t])T exists and that there exists a constant C' € R, such that

()T < C forallt € [to, ty).
Then there exist multipliers

lo e RN € BV ([to, tf], R™),n € L>([to, tf],R™), u € NBV ([to,ts],R"™) and o € R

that satisfy the following conditions:
1. Nontriviality:

lO > 07 (107 )\7 n, K, U) # 0 (315)
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3. The Minimum Principle

2. Adjoint equation:

MO = M)+ [ H 80, 8(07), 000, A7)0 o) T

+3 [Tshma @) dur) e ltoty
=t A (3.16)
= Aty) — /0 H (1, 2(7), 4(1),0(1), \(7),n(7), lo) " d7
S5 [ A ) 1€ oty
3. Transversality conditions:
Ato)" = — (Lo, (2(t), 2(ts)) + o W, (2(to), £(ty))) 3.17
Atp)" = oyl (&(to), 2(ty)) + o W (2(to), 2(ty)) (3.18)

4. Optimality conditions:

Tt 0 a.e. in [to, ty] (3.19)
H(t,2(8),a(t), 0(t), A\#),lo)(u —a(t)) >0  YueU(t), a.e. in [to,tf] (3.20)

5. Complementarity conditions:

n(t) e(t, 2(t),0(t)) =0,  n(t) =0 ae in[to,t]. (3.21)
i/t(jf si(t, &(t))dpi(t) = 0, (3.22)
and
S [ a0 20 for alt 2 € Cllto 1) RY)
P with z(t) > 0 for t € [to, /).
Proof.

« By Corollary 3.10, there exist multipliers A € BV ([to, ts] and n € L>([to,ts], R™),
such that for all hy € L>([to, ts], R™) and all k € L>([ty,ts],R™) it holds

Njln) == [ o) s )
(k) = /ttf ()T k(t)dt.

In view of this representation of the multipliers A} and 7;, equation (3.5) implies
that for all z € Wh([to, t¢], R"™):

0 = (ol ((t0), &(t1)) + 0T W, (2(t0), (t7)))a(to)
T (o, (#(to). 2(t)) + "W, (2(t0), 2(t1)))a(ty)
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3.3. Minimum principle for OCP

+ /”zofo; oyit+ 3 [ st ()

+/ dt+/ (t) — (t))dt

= (lo}, (2(to), 2 (t ))+0T‘1’;0(A( ),f?(tf)))x(t@
(low;f(A( 0), &(tg)) + oW, (2 (to), B(ty)))x(ty)
(¢

’H’ dt+z / o/ [ (t)dps(t) — /tf)\(t)Ti:(t)dt

to
The last term is
tr

RGO /th( 7T da(t)
— 7 e an®) - A0 2(0)]”

to to
tf

= [ 2®)TdAt) — Mty) T2 (ts) + Mto) "z (to).

to

Thus

0 = (lowl, (E(to), 2(ts)) + o W3, (2(t0), 2 (tr)) + A(to) ) (to)
+ (logl, (&(to), &(tp)) + 0 "0, (2(to), &(tg)) — Alts) ) (ty)

+/t:f H, [t dt+2/ sit [t (t)dp (t) + b 2(0)TdA(t)

= (loga, (2(t0), £(ty)) + UT‘I’;O(A( 0): &(t5)) + Ato) ")a(to)
+ (lowy, (2(to), (ty)) + 0 "W, (2(t0), 2(ty)) — Aty) )a(ty)

o a0 (o~ [ A= 35 [ sl )

for all z € W' ([tg, t7], R"). From the fact that z(fy) and x(t;) can be chosen
arbitrarily, the transversality conditions (3.17) and (3.18) follow. Lemma 3.11 implies
that there is a vector C, such that

C = \ty) — /”H’ TdT—Z/ st [7] T dpi(7),

which proves (3.16), since ¢t =ty shows that C' = A(¢).

In the next step, (3.6) and (3.7) are reformulated using the smooth multipliers A
and 7;. This yields

h
~
| |

0 Ve L¥([to,t;],R™)
and

t
/f —at)dt >0 Yu€ U

t
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3. The Minimum Principle

The first equation can be written equivalently as two inequalities, so that both
inequalities have to hold pointwise by Lemma 3.13.2 Summarizing both inequalities
then yields

H [tv(t) =0  a.e. in [to, L], Yo € L=([to, ts], R™)
and hence
H[t]=0  ae. in [t t],

which proves the optimality condition for v, (3.19). The second inequality together
with Lemma 3.13 immediately shows (3.20).

o Since n* € K, it follows

[t =t > 0

to
for all z € L>([to,ts],R™) with 2(¢) > 0 a.e. in [to,ts]. Hence n(t) > 0 a.e. in
[to, tr].
Also, n*(G(z,4,0)) =0, so fti)f n(t) e(t, 2(t),d(t))dt = 0. By Lemma 3.13, this yields
(3.21).

Similarly, it holds that ny € Kj, so

Z/ )dpi(t) > 0

for all z € C([to,tf], R™) with z(t) > 0 on [to, tf]. This implies that

Ns

B (0,300 =3 [ it 20)duat) =0,

i=1 7%

which completes the proof. O

The following lemmata (cf. [Ger06, Lemma 2.8.5 and Lemma 2.8.6]) are stated for the
sake of completeness. In [Ger06], the complementarity conditions for problems with state
constraints are stated in a different form.

Lemma 3.16
Let 1 € BV ([to, ts],R). If

[ 0dute) > 0

to

holds for every non-negative function f € C([to,t¢],R), then p is non-decreasing in [to,ty].

Hence, the complementarity condition for the multiplier x4 stated here implies the respective
complementarity condition in [Ger06].

2The equation j;tof H! [tJo(t)dt=0 Yo € L>®([to,t;],R™) implies that ftf H' [t]v(t)dt >0 holds for all
v € L>([to, ty],R™). Lemma 3.13 yields H/[tjv(t) >0 a.e. on [to,tf] Yo € L=([to,t],R™). The
same reasoning yields that H. [tJu(t) <0 a.e. on [to,tf] Yv € L®([to, 5], R™).
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3.3. Minimum principle for OCP

Lemma 3.17
Let v € BV ([to, ts],R) be non-decreasing and f € C([to,ts],R) non-positive. If

[ 0dutty =0

to

holds, then i is constant on every interval [a,b] C [to,tf] with a < b and f(t) <0 in [a,b].

Hence, the complementarity conditions (3.22) imply that for every i = 1,...,ng, the
multiplier is constant on every interval [a, b] C [to,tf] on which s;[t] < 0 holds.

It can be shown that this statement is equivalent to the formulation used here:

Lemma 3.18
Let pu: [to, tf] = R and f : [to, tf] = R be any two functions for which the Stieltjes integral

i)f f(t)du(t) exists. If p is constant on every interval [a,b] C [to,tf] with a < b and

f(t) #0 in [a,b], then it holds

ty

|7 fwan(t) =o.

0
Proof.
Let G = (;)i—0...n+1 be any subdivision of the interval [y, tf] Let jo, ..., Jm denote the
indices for which a zero of f exists in [t;,,t;,4+1] for i = 0,. — 1, and define ¢, as
such a zero. Let j,,11,...,J, denote the indices for which no zero of f exists in [t;,, t;,41],
i =m+1,...,n. On these intervals, ;1 is constant according to the assumptions. Let ¢,
be arbitrary for i =m +1,...,n. Then

Il
M=

i f 2+1 N(t2>]

=0

FE)tj0) — p(t;,)]

s
Il
)

f(fgz)[ (tj41) — mult5,)] + ‘_Zn: 1 F&G) [ty 1) — plts,)]

tnqs

<.
I
o

0

This argument holds for any subdivision G and a particular choice of &. Hence, for this
choice of &, the limit limsg)—o equals zero. Since the limit exists and is equal for any
choice of G and &, the Stieltjes integral itself equals zero. O

3.3.1. Weaker assumptions for the control state constraints

One issue of Theorem 3.15 is the strong assumption that the pseudo inverse (¢, [t])" exists
with
[(c,[t)T]| < C forall t € [to, ty]

for some constant C'. This assumption is violated e.g. if box constraints of the form
VUmin < U < Umax are included as mixed control state constraints.

However, a thought experiment shows that this assumption can be weakened: Note
that the local minimum under consideration does not change if the mixed control state
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3. The Minimum Principle

constraints that are “plainly inactive” are altered. The same holds for the multipliers.
Consequently, it should be sufficient to postulate assumptions only for the a-active parts
of the constraints.

In this section, this idea shall be made concrete following ideas introduced in [Mal03].

Definition 3.19 (a-active constraints)
Let (%,0,0) be a local minimum of Problem 3.1. For a > 0 and t € [ty,tf], define

L) == {i € 1,...,nei(t, &(t), () > —a}

I G 2o ) P
co(t) = {_1 if ci(t. 5(1).5(1)) < —a ie{l,...,n.}

Sa(t) = diag (C;(ﬂ)j:cl

Now, for a local minimizer (z,%, ) and o > 0, define the auxiliary problem (P, ):

Problem 3.20 (P, (&, i, ?))

min!  J, (2, u,v,7) = p(a(ty), z(ty)) + /t:f Jo(t, z(t),u(t),v(t))dt + ;kug

with respect to the state function € WhH([tg,ts], R"™)
and the control functions w € L*™([to,t], R™)
and v e L>®([to,ts],R™)

and slack variables m & L>([to, ts], R™)

subject to the differential equation

(t) = f(t,z(t),u(t),v(t)) a.e in [to,tf],

boundary conditions
W(x(to), z(ty)) = 0,

relaxed mized control state constraints

c(t, z(t), v(t)) + Sa(t)m(t) < 0,

pure state constraints
s(t, z(t)) <0

and set constraints for u
u(t) e U(t) CR™  a.e. in [to,tf]

Lemma 3.21
Let ¢i,co > 0. Then there exists some constant c3 > 0, such that for all a,b > 0 it holds:

max{cia — cob, b} > c3 - max{a, b}.
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3.3. Minimum principle for OCP

Proof.
e b > a: In this case, max{cia — c3b,b} > b =1-max{a, b}.

e a>bAmax{cia — c3b,b} = cra — ceb: Tt holds

c
cia—cb>b = b<a LI
+
Hence
c
c1a — cob > cia — ¢ L 4
1+Cg

=o( (- 155))

=c <1 ~ 7 f@) -max{a, b}.

e a>bAmax{cia — c3b,b} = b: Then, b > lfrlcz a, hence

max{cia — cab, b} > 146—102 - max{a, b}.

Thus, c3 := min {1 c1 (1 — } satisfies the inequality. U

1+62 ) ) 1+c

Remark 3.22 (Smoothness)

Note that Problem Pa(i, U, 0) can be written in the form of Problem 3.1, but the smoothness
Assumption 3.2.5 will be violated. However, the operator G that models the inequality
constraints is still continuously differentiable according to Fxample 2.19.4.

If s, (17|l = C - |[€]] for & of appropriate dimension (i.e. #1,(t)) and some C > 0,
independent of t, then the linearization of the mized control state constraints fulfills

(&) = | (o og o)

= max{ CUI [ N §rat) + CUIC [ " Eie a(t)H}
> max {C ‘fla(t)H — Hflg(t) t) ’}
> Cs|¢]]

for some constant C5 > 0. The last step follows from Lemma 3.21. Hence, the precondition
of Lemma 3.9 is satisfied; the pseudo inverse is bounded.

Therefore, in a local minimum of Problem 3.20, all assertions of Theorem 3.15 hold.

The following lemma (cf. [Mal03, Lemma 3.3]) states the relation between the original
Problem 3.1 and the auxiliarity Problem 3.20:

Lemma 3.23
Let all functions of Problem 3.1 satisfy the smoothness Assumptions 3.2.
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3. The Minimum Principle

3.23.1 Let (&,1,0) be a local minimizer of Problem 3.1. Then (Z, 4, 0,0) is a local minimizer
of Problem 3.20.

3.23.2 The elements (ly, \, i, o) are multipliers for the local minimizer (&,4,0) of Prob-
lem 3.1 satisfying equations (3.15)-(3.22) if and only if they are multipliers for the local
minimizer (Z,4,0,0) of Problem 3.20.

Proof.

3.23.1

3.23.2

38

We show that if a point (z,wu, v, 7) in a sufficiently small neighborhood of (z, @, 0, 0)
is feasible for Problem 3.20, then (z,u,v) is feasible for Problem 3.1:

The point (#,4,0,0) is feasible for Problem 3.20.
Choose 6 > 0 so small that

leC (), 0() = (-, 2(),0()) [0 < @
for all (x,u,v) with ||(x,u,v) — (Z,4,0)||x < J. This is possible since ¢ is continuous

with respect to x, v and ¢.
Then if (z,u,v, ) is feasible for Problem 3.20, it holds for i € I,(¢) that
0> ci(t,z(t),v(t) + (Sa()7(t))i = cilt, x(t), v(t)) + cu(O)mi(t) = cilt, x(t), v(t)).

For i ¢ 1,(t), c;(t, &(t),0(t)) < —a, hence ¢;(t, z(t),v(t)) < 0 according to the choice
of 4.

Hence, if (z,u, v, ) lies in this neighborhood of (Z, @, 0,0), then (x,u,v) is feasible
for Problem 3.1.

Suppose that (Z, 4, ?) is a local minimum of Problem 3.1, but (#, @, v, 0) is not a local
minimum of Problem 3.20. Then for any neighborhood of (Z, 1,0, 0), there exists
a point (Z,a,0,7), such that J,(Z,w,0,7) < Jo(Z,a,0,0). If the neighborhood is
small enough, then (Z,w, ) is feasible for Problem 3.1, and it holds

9@, 1.9) = (@) alt0) + [ folt.2(0), 7(0), 50

(@), 2(t7)) + [ olt, 50 5(0), 0(0))de + 51713

0

Hence J(z,4,0) < J(%,4,

,1,0) and (Z,,0) is feasible for 3.1, which contradicts the
assumption that (Z,4,0) i

a local minimum.

mt?>

Let (lo, A, pt, o) be multipliers for a local minimum (&, @, 9, 0) of Problem 3.20. This
means that (lo, \, p, o) # 0 with Iy > 0, n(t) > 0 and p; monotonically increasing on
[to, t¢] satisfy

MO =) + [ I+ SITAR) + ] ()



3.3. Minimum principle for OCP

Ns ty
+ Z/ Si;[T]Tdui(T) t € [to, ty],
i=17t
Ato)" == (logly, + "0, ),
T _ / T4/

$f7

lofout] + AW " filt] +n0(t) [t =0 a.e. infto, 1],

0 a.e. infto, t¢], (3.23)
>0  YueU(t), ae. in [to,t],
n(t)"clt] =0 a.e. in [to, tf],

3 [ stua)aiut) 0

These conditions coincide with the necessary optimality conditions (3.15)-(3.22),
apart from the supplementary condition (3.23).

It remains to show that multipliers (I, A, i, o) for a local minimum (2,4, 9) of 3.1
satisfy equation (3.23).

This equation is satisfied, since:

(Sa(t));; # 0 & c4(t) # 0

= Cl[t] < —q,
50 (Sa(t)),; # 0 implies that n;(t) = 0 due to the complementarity condition (3.21).00
Corollary 3.24
Let an OCP 3.1 be given, where @, fo, f, V, ¢, s and U,q satisfy the smoothness Assump-

tions 3.2. Let (Z,10,0) be a weak local minimum of the OCP. Assume that the pseudo
inverse (c,; »[t])" ezists and that there exists a constant C € R, such that

¢y, DTN < C for allt € [to, t]

for some a > 0. Then the assertions of Theorem 3.15 hold.

3.3.2. Normality of the multipliers

In many applications, it is useful to assume that there exist “normal multipliers” for the
OCP problem 3.1, i.e. multipliers with [, = 1. In this section, we derive conditions under
which this can be asserted.

As in [Ger06, sections 3.5 and 4.1.3], the following corollary cited from [Ger06, Corollary
3.5.4] gives a condition under which normal multipliers exist. This condition is the
Mangasarian-Fromowitz Condition:
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3. The Minimum Principle

Corollary 3.25

Let G : X =Y and H : X — Z be Fréchet differentiable at z, K CY a closed convex
cone with vertexr at zero and int(K) # 0, G(&) € K, H(z) = 0. Furthermore, let the
following conditions be fulfilled:

1. Let H' be surjective.
2. Let there exist some d € int(S — {2}) with

>

H'(@)(d) = 0

G'(2)(d) € int(K — {G(2)}).
Then the assertions of Theorem 3.6 hold with ly = 1.
The following lemma states a condition under which H’ is surjective. The idea for the

proof was taken from [Mal03, proof of Lemma 4.1].

Lemma 3.26 (Surjectivity of H’)
Let (%,1,0) be a local minimum for Problem 3.1. Assume that for every vector g € R™,
there exists a solution (x,u,v) to the problem

@(t) = fltle(t) + fultlu(t) + filtlo(®),
W@ (to) + W5 a(ty) = g.

Then the linearized operator H' of the equality constraints is surjective.

Proof.
Let hy be a function hy € L*([to, ts], R™). According to Lemma 2.24.1, there exists a
solution w € W'*([to, t;], R™) to the initial value problem

w(t) = fltho(t) —h(t),  wlto) =0.
Let z,u,v be a solution to
2(t) = fultlz=(t) + fltlu(t) + filtlo(t), o 2(te) + Wy, 2(ty) = ha — W, wity),
then with 2 := z 4w, it holds

#(t) = (z+w)'(t) = £[8(z + w) (@) + fultlu(t) + f[tlo(t) — ma(2)
= [oltlz(t) + fulthu(t) + filtlo(t) — ha(2),

and
W, x(to) + W5, x(ty) = Uy 2(to) + W5, 2(ty) + W, w(ty) = he.

This shows that the equation H'(x,u,v) = (hy, hy)" is solvable for any hy, hs. O

Summarizing, these observations yield the following general conditions for normality (cf.
[Ger06, Theorem 4.1.15]):
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3.3. Minimum principle for OCP

Theorem 3.27 (Normality I)
Let the functions ¢, fo, f, VY, ¢, s and Uyy fulfill the smoothness Assumptions 3.2. Let
(%,4,0) be a weak local minimum of the OCP and let the following conditions hold:

3.27.1 There exists a constant C' € R, such that for some o > 0, it holds

||c;Ia(t)[t]T§|| > Clel - for all € € ROl and almost all t € [to, t;].

3.27.2 For every vector g € R™  there exists a solution (x,u,v) to the problem

#(t) = foltle(t) + foltlu®) + L[t (),
\IJ;OLL’@()) + \Il;fa:(tf) =4dg.

3.27.3 For some ¢ > 0, there exist functions xg € Wh([tg, t;],R™) , ug € int(Uyg — 4)
and vy € L>®([to, t¢], R™), such that a.e. in [to,ts], it holds:
clt] + & [t]zo + ¢, [tluy < —ee
s[t] + sl [t]zo < 0,
do(t) = filtlwo + fultluo + fi[t]vo,
W, @o(to) + W5, o(ty) = 0.

Then there exist multipliers
lo=1,A€ BV ([to,ts],R"),n € L=([to, ts],R"), u € NBV ([to,tf],R™) and o € R"?,

such that (3.15)-(3.22) are fulfilled.

The following corollary cites a condition analogous to [Ger06, Theorem 4.1.14] that is
sufficient for condition 3.27.2:

Corollary 3.28 (Normality IT)
Let

rank (\If;O(I)(to) - \I/;f@(tf)) = ny,

where O solves
Y(t) = f[H(E),  D(to) = I,

Then condition 3.27.2 is fulfilled.

From Theorem 2.31, we can derive a different assumption under which this condition is
met:

Corollary 3.29 (Normality IIT)
Let the partial derivatives of f be sufficiently smooth, i.e. let

2 € CH(lto, t7), R™™), Filt] € CM([to ], R™*") andd f1[1] € C*([to, 7], R"")

for some integer k > 0.
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3. The Minimum Principle

Let
Bo(t) := (fult], £ilt]) . Bina(t) := fi[t]Bi(t) —
fori=0,....k—1.

%Bi (1)

Assume that there exists a T € [to,ts], for which
rank (By(7), Bi(7), ..., Bi(T)) = ng.

Let W3, and V7, = satisfy
rank (\IJ;O, ‘Ijle> =ny.
Then condition 3.27.2 is fulfilled.

Proof.
If the assumptions of corrollary 3.29 are satisfied, then the continuous-time linear system
with right hand side

flm(tv*rﬂ u, U) = f;[t]x + f;,v[t](ua U)T

is controllable. Hence, given any initial vector xy and final vector z;, there exists a
trajectory (Z, 4, v) that satisfies the differential equation

Z(t) = f"(t, (), a(t), o(t)) a.e. on [to, /] (3.24)
as well as the boundary conditions

i‘(to) = Xy, Zf(tf) =xf.

Since rank (\Il’xo, \I/’xf) = ny, the linear equation ¥, zo + ¥} z; = g admits a solution for

any right hand side g € R™. With this solution (x¢,x), (Z, 4, ) satisfies (3.24) as well
as the boundary conditions. O

Remark 3.30 (Independence of Conditions)
Neither of the conditions stated in Corollaries 3.28 and 3.29 implies the other.

Corollary 3.28 implies that any problem, where the boundary conditions take the form
of (ty) = xg, i.e. start conditions, satisfies 3.27.2. The rank assumption implies that
nyg < ng.

Corollary 3.29 states that all problems where the linearization is controllable fulfill 3.27.2.
This implies ng < 2 - ny.
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4. Linear Quadratic Optimal Control
Problems

An important part of this work is the investigation of Linear Quadratic Optimal Control
Problems (LQOCP), for which, in section 4.2, we introduce a regularization concept, cf.

[GHed].
A Linear Quadratic OCP with control set constraints, mixed control state constraints and

pure state constraints is a problem of the form:

Problem 4.1 (LQOCP)

min!  JYP (2, u,v) ::;x(tf)TQfx(tf)
1t Q)  Ru(t) R.(1)\ (x(t)
+5 [ (@O @ e®T) [ Rt Sut) 0 | |ult) | dt
fo R,&)" 0 S,

with respect to the state function x € Wh([tg,t;],R™)
and the control functions w € L*>([to,ts], R™)
and v € L>([to, tf], R™)

subject to the differential equation

boundary conditions
E()ZL’(t()) + Elx(tf) = f,

mized control state constraints
G(t)z(t)+ H(t)v(t) <IU(t) a.e. in [to,ty],

pure state constraints
C(t)z(t) < d(t) in [to,ty],

and control set constraints

u(t) e U(t) CR™ a.e. in [to, ty].
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4. Linear Quadratic Optimal Control Problems

Let B be partitioned, B(t) = (B,(t), B,(t)). The weighting matrix will be named W:

Q(t)_ Ru(t) Ru(t)
W(t):=[R.(t)" S.t) 0
R,(t)" 0  Sy(t)
For any positive semidefinite square Matrix A, || - ||4 is defined as
|z]|a == VaT Ax.
If A is positive (semi-) definite, then || - || 4 is a (half) norm.
Also, for any square matrix function A € L*>([to, t¢], R™*"), || - |4 will denote

1
2

lzlla = (/ttf m(t)TA(t)x(t)dt>

The Hamilton function for Problem 4.1 reads

A

H(t, z,u,v, A\, n,ly) = ;ZOH(x, u, U)H%V(t) + AT (A(t)z + Bu(t)u + By(t)v)
+n" (G(t)x + H(t)v — I(1)).

In the remainder of this work, the data of the problem will be assumed to satisfy the
following smoothness assumption:

Assumption 4.2 (Smoothness)

The matriz Qy € R™*™ as well as the matriz functions Q : [to,ty] — R™*"= S, :
[to, tf] = R™ ™ and S, : [to,ts] = R™*™ are symmetric. The matriz Qs is positive
semidefinite, and the weighting matriz W (t) is positive semidefinite for all t € [to,ty].

All of the following functions are continuous:

4.2.1 Q : [to,tf] — Rnxxnx} R, : [to,tf] — Rnwxnu7 R, : [to,tf] — anxnu’ Syt [to,tf] —
R™™, S, : [fo, t] — Rrxm

4.2.2 A [to,ty] = R™=*" B, :[to, tg] — R™>™ B, : [to, tf] — R,
42.3 G [to, t;] — R H < [to,t;] — R™™ [« [to, t;] — R,
424 C:[to, ty] = R™*™ and d : [ty t;] = R".

4.1. Properties of the Problem

For the analysis of the problem, the existence of normal multipliers in the necessary
optimality conditions is essential. Hence, the assumption that guarantees normality is
stated in the form of Theorem 3.27:

Assumption 4.3 (LQOCP Normality)
Let the data of the Linear Quadratic Problem 4.1 satisfy the smoothness Assumption 4.2.
Let (Z,1,0) be a local minimum and o > 0, such that the following conditions are fulfilled:
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4.1. Properties of the Problem

4.3.1 The pseudo inverse (Hy, ) (t))" exists, and there exists a constant C' € R, such that
|y ()] < C for all t € [to,t5

4.3.2 For any vector g € R™, there exists a solution to the boundary value problem

¢@:A@mw+mﬂCﬁD ae. in [to, 1]

E(y’E(f()) + Ell‘(tf) =4d.

4.3.3 There exists an € > 0 and a solution (zg,ug,vo), where xg € Wh([tg,ts],R™),
up € int(Uyq — 1), vo € L>®([to, ts], R™), to the system
)

G(t)(2(t) + o(t) ( )(0(t )+UO( )) <U(t) —een,  a.e. in [to, tyl,
t) n [to, ty],

(
%@:A@m@+B@<%g>(mJMWWL
(

Remark 4.4
Seemingly, part 4.3.3 of the normality conditions could be replaced by the following system
that is independent of the local minimum in investigation:

G(t)xo(t) + H(t)vo(t) < —ee  a.e. in [to, ty],
C(t)xo(t) <0 in [to,ty],

%@:A@m@+3@<$8><mJMWQL
EoiL‘()(to) + Ell‘o(tf) =0. (41)

Indeed, if the above system is solvable, then Assumption 4.3.3 is satisfied. However, this
assumption is a lot stronger. Consider the case when Ey =1, Ey =0, i.e. there exists a
specific start value for the system. Then for any xq that satisfies the above system it holds
zo(to) = 0 due to equation (4.1), so that C(to)xo(ty) = 0. Hence the above conditions are
violated if state constraints are present, while there still may be a solution to the system
in 4.3.3 if the state constraints are inactive in tg.

Unlike in [GHed], we consider mixed control state constraints instead of control set
constraints in this work, since the latter are usually modeled using mixed control state
constraints. The most common example of control set constraints are box constraints of the
form vpin(t) < v(t) < Vmax(t). Constraints of this type do satisfy the rank condition 4.3.1:

Lemma 4.5 (Box Constraints and the Rank Condition)
Assume that the mized control state constraints are given in the form of

(Z)“”S(EXSD’

where Vmax(t) — Umin(t) > € > 0 a.e. in [to, ty]. Then it holds that (Hy,u(t)Hp,m(#)") =
I, ) for some a > 0.
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4. Linear Quadratic Optimal Control Problems

Proof.

Let o := /2, then for any control v, it is impossible for any index i € {1,...,n,} that
i € I,(t) and i + n, € I,(t) at the same time ¢ € [ty,t;]. Therefore, each column of
Hi,)(t) contains at most one element in {—1,1}. At the same time, each row in Hy, ) (t)
contains exactly one element in {—1,1} (since the constraint described by this row is
a-active). Hence there exists a permutation matrix P, such that Hy () = (J,0)F;,

where J = diag(j)=®!, with j, € {~1,1} for I =1,...,|I,(t)|, and it holds

Hy, () (Hp, (1) =((J, 0)P)((J,0)P.) "
=(J.0)P.P, (J,0)" = (J,0)(J,0)" = Ij1,0)- U

In the linear quadratic case, it is often convenient to make use of Corollary 3.29, especially
if the matrices A and B are autonomous:

Lemma 4.6
4.6.1 Let A € C*([to, ts], R™>*"=), B € C®([tg, t;], Rr=>(utno)) et

d

Bo(t):= B(t),  Bun(t) = A®)Bi(t) —

B;(t), forieN.

Assume that there exist T € [to, ts] and k € N, with
rank(Boy(7), ..., Bi(T)) = ng.

Let Ey and E; satisfy

rank(Fy, Fy) = ny.
Then Assumption 4.3.2 holds.
4.6.2 Let A and B be constant. Assume that

rank(B, AB, ..., A" 'B) = n,

and

rank(Ey, Ey) = ny.
Then Assumption 4.3.2 holds.

Proof.
The assertion of Lemma 4.6.1 is a direct implication of Corollary 3.29. Lemma 4.6.2
includes the assertion that only the powers of A up to A" ! need to be considered.

Observe that if a vector A¥*1B; is linearly independent of (A°B, ..., A*B), then A*B; is
linearly independent of (A°B, ..., A*"'B).} Hence, if

rank(A°B, ..., A*B) = rank(A°B, ..., A¥"'B) =m

for some m, then rank(A°B, ..., A'B) = m for all ¢ > k. Since the dimension of this
family of vectors cannot exceed n,, this proves the assertion. 0

IOtherwise let A¥B; = ¥ A'B);, where \; € R™*™  then A*1B; = Y"1 AAB), =
Zle A'B);_1 is a linear combination as well.

46



4.1. Properties of the Problem

The implications of the minimum principle 3.24 and the regularity lead to several observa-
tions, e.g. uniqueness and continuity of solutions under appropriate assumptions.

Corollary 4.7 (Necessary Optimality Conditions for LQOCP)
Let (2,0,0) be a weak local minimum of LQOCP, satisfying Assumptions 4.2 and 4.5.

Then there exist multipliers X\, n, p and o, X € BV ([to,tf],R™), n € L>®([to,ts], R™),
p € NBV ([to,tf],R™) and o € R™ that satisfy

1. Adjoint equation:

A®) = Ato) = [ Qa(r) + Rulr)a(r) + Ru(r)o(r) + A(D)AT) + G(r) n(r)dr

- / () Tdu(r)  teftot]

to

2. Transversality conditions:

Ato) = — EJ o (4.3)
AMty) = Qsi(ty) + Bl o

3. Optimality conditions:

0= S,(t)0(t) + Ry(t) "2 () + Bu(t) "A(t) + H(t) "n(t) (4.5)
0 < (@(t)"Su(t) + 2(t)"Ru(t) + A(t) " Bu(®)) (u—alt))  VueU(t) (4.6)

4. Complementarity conditions:

DT (GOZ(E) + HOOE) — 1) =0,  5t) =0  ae inltots] (4.7)

The multipliers p satisfy

0< v 2(t) Tdpu(t) Vz € {z € C([to, 4], R™)|z(-) > 0} (4.8)

to
and

[ i) —dte)" autn) =o. (4.9)

to

Lemma 4.8 (Sufficiency of the Optimality Conditions)

Let (%,1,0) be a weak local minimum of LQP, satisfying Assumptions 4.2 and 4.3, and
let A € BV ([to, ts],R™), nn € L®([to, ts],R™), i € NBV ([to, tf],R™) and 6 € R™ be the
associated multipliers as in Corollary 4.7. Let the matriz W (t) be positive semidefinite for
every t € [to,ty].

If (z,u,v) # (2,0,9) is a feasible point, then JXOF (x, u,v) > JLOP (2 4,0). If W(t) is
positive definite, then JLOF (x, u,v) > JLRF (2, 4,0).
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4. Linear Quadratic Optimal Control Problems

Proof.
Let (z,u,v) € Wh* x L% x L™ be feasible, i.e.
(t) = A(t)x(t) + Bu(t)u(t) + B,(t)v(t) a.e. in [to, ty],
Eoz(to) + Erx(ty) = f,
G(t)x(t) + H(t)v(t) <I(t) a.e. in [to,ty],

C(t)z(t) <d(t) in [to,1y],

u(t) e U(t) a.e. in [to,ts].
Then for the multipliers 5\, 7 as in Corollary 4.7 it holds:

JRP (3, u,0) = ;x(tf)TQfx(tf)

+ / Tt 0,0, 0,0, 1) — Ni — AT (G)a(t) + H(E)o(t) — 1(t))dt,

so that
JERP (2, u,v) — JERP (&, 4, 0)
Qr=Q; 1 o T A
= Slalty) = 2(ty)) Qrla(ty) — 2(ty))

>0, since Q>0
+2(tr) " Qp(a(ty) — 2(ty))

A~

+/ﬁ(t,x(t),u(t),v(t),A(t),ﬁ(t),1)
- 7:[<t7 ‘%<t>’ ﬁ(t% ﬁ<t>7 S‘(t)v ﬁ<t>’ 1) - /A\(t>—r(x<t) - j(ﬂ)

—i(t) (G(t)e(t) + H(t)o(t) —U(1))

— H(t, 2(), a(t), 0(t), \(t), H(t), 1)dt

A

— [730 @) - #0)dt +2(t)TQlalty) — 2(t)).

to

Partial integration of the term fti)f MO T (&(t) — 2(t))dt yields

7A@ @) - bt = 3@ - )~ [ ale) - 20)Tako),

0
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4.1. Properties of the Problem

where
AN = 2)) =(2(t)" Qs + 6" E)(w(ty) — 2(ty)) + 6" Eo(x(te) — £(to))
=2(tr) " Qsla(ty) — 2(ty))
+6 " (Eox(to) + Era(ty)) — 6 ' (Eok(to) + Eri(ty))
=2(tp) " Qp(a(ty) — 2(tp)) +0(f — f)
=2(tr) " Qsla(ty) — 2(ty))
and

t N t ~
/t "o —2)TdA\(t) = — /t (@ —2)" [Qé + R,a+ R+ ATA+ G dt
0 0
t
— [T —#)"CTdp()
to
t A~
= ["(@—2)7[Q2 + Rya+ R+ ATA+ G dt

to

Y (d—Cz) " dp(t) + tf(cac —d)"dp(t)

1) N——— to
>0
=0
t A~
> [M(@— )7 [Q2 + Rya+ R+ AT+ G d.

to

The difference of the Hamilton functions is

t A A A A
/fH(t,a:,u,v, MA1) — H(t 2, 0,0, 5,9, 1)dt

to

@, 0)[liy

>

=Wuuvm@—yw

YAT(A(x — 2) + Bu(u— ) + Bo(v — ) + 7T (Glx — #) + H(v — 0))dt,

to

and for each t € [ty,tf] we get:

1 Lo
@ w0y = 511@ @ 9l

1 T — 1
:§|y(x—§;,u—a,v—@)||§v(t)+(:z:,a,@)TW(t) u—1

v—19
*II( —U,v— )Iliv@)+(@TQ+ﬁTRI+@TRI)($—i")

(ATRU + uTSu)(u — )+ (@ R, +07S,) (v — D).
Summarizing, we have
JECP (1w, v) — JFP (2,4, 0) fH(a: —&u—0,v—0)|3

ty
+ (a: Q+i R} +0'R)) (v — i)

to
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4. Linear Quadratic Optimal Control Problems

+ (& Ry + 07 8,) (w—1) + (2T Ry +978,) (v—)dt
U7 (Ax — )+ Bu(u — a) + Bu(v — 0))

—l—ﬁTo (Gx —2)+ H(v—10))dt
+ 2(tr) T Qx(ty) — 2(tp)) — 2(tr) T Q(a(ty) — 2(tf))
~ [T (Qi + R+ Ro+ ATA+ G dt

to

=5l =2u—0,0- o)}

t ~
+ [T (TR, 4+ @78, + ATB,) (u—a)dt

to

>0 a.e. in [to,tf]

t A~
+ [T (TR, +07S, + ATB, + 4T H) (v — 0)dt

to

=0

ziH(:U—aA:,u—ﬁ,v —@)H%,V

This shows the assertions, since ||(z — 2, u—4,v—0)||%, > 0 and ||(z — 2, u—1a,v—9)||}
0 (x—Z,u—a,v—0)=0 ae. on [ty,ts],if W(t) is positive definite.

oo

In [Hag79], a theoretic result was introduced that became the basis of several investigations
about the continuity of optimal control functions, and a continuity result was presented
for a special class of problems. In this class, the constraints take the form of pure control
constraints and pure state constraints. Control set constraints are not present, and the
boundary conditions are initial conditions. The objective function does not include a
Mayer term, i.e. (); = 0. For unconstrained problems with boundary conditions z(ty) = o,
x(ts) = x1, continuity has been investigated in [CV90]. Lemma 4.10 is taken from [GV03,
Theorem 3.1 and comment (c)].

Definition 4.9
The set J(t,x) C {1,...,ns} denotes the index set of active state constraints:

J(t,@) ¢ [tosty] x R — 2tbnsk (¢ 2) s (i € {1,...,n,}|CH(t)z = dy(t)}.

Lemma 4.10 (Continuity of Solutions)

Assume that in Problem 4.1 it holds n, = 0. Let U(t) = U Vt € [to,ts] for some closed
convex constant set U, and assume that A and B are locally Lipschitz continuous, H
1s differentiable with Lipschitz continuous gradient and S, is Lipschitz continuous and
positive definite. Let (&,1) be a local minimum of LQOCP, satisfying Assumptions 4.2
and 4.3. Moreover, assume that

Ct)s(ta)G(t)€ ¢ span Ny (i)

for all £ € ler](t’f(t))‘. Then 1 s Lipschitz continuous.
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4.2. Virtual Control as a Regularization Concept

4.2. Virtual Control as a Regularization Concept

In [GHed], a regularization concept that had been introduced for PDE constrained problems
in [KRO8] and [CKRO08] was applied to linear quadratic optimal control problems. This
concept allowed to treat pure state constraints as mixed control state constraints. So
far, we considered mixed control state constraints as well as control set constraints under
the assumption that the respective controls on which these constraints are imposed are
independent. Consequently, the regularization will be applied to this class of problems.

In the virtual control concept, the control of the problem under investigation is augmented
by as many control variables as there are state constraints. These new variables are
subtracted from the left hand side of the state constraints, such that a violation of the
state constraints can be compensated by these new controls. In order to encourage
compliance with these constraints, an L, penalty term is added to the objective function.
The influence of the new controls on the constraints as well as the “cost” imposed on the
usage of them can be influenced by a regularization parameter «. It is also possible to
model influence on the differential equation.

As there are three possibilities of inserting the regularization in the problem, we introduce
three functions depending on the actual regularization parameter «a:

~v models the actual regularization, i.e. y(«) - w;, where w is the virtual control, is
substracted from the left hand side of the state constraint. This way, it is made
easier to satisfy the constraint if y(a) > 0 is satisfied.

¢ regulates the cost of the regularization. The factor ). Jif lwl|2dt is added to the
objective function. This term makes it expensive to use the virtual control w if

¢(a) > 0 holds.

k can be used to make it easier for the system to satisfy the state constraints. The term
k() - Yo, w; is substracted from the right hand side of the differential equation.
This way, the growth of the state trajectory can be lowered. It is within the decision
of the user to make r(a) greater or smaller than zero or even to set k() = 0.

For Problem 4.1, the augmented problem LQOCP,, reads:

Problem 4.11 (LQOCP,)

min T2 (e, 0,0) = 2(t) Qpalty)
1 tr Q(t)  Ru(t) R,(1) ()
3, 5

+ 29 1 o)
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4. Linear Quadratic Optimal Control Problems

with respect to the state function x € Wh>([tg,t;],R™),
the control functions w € L*®([ty,ts],R™)
and v € L>([to, tf],R™)
and the virtual control w € L®([ty,ts],R"™)

subject to the differential equation

() = A()z(t) + B®) (:}‘8) — K(@emelw(t) ac. in [fot],

boundary conditions
E01’<t0) + Ell’(tf) = f,

mized control state constraints

€)=+ (%7 ) () = ()

and control set constraints

u(t) e U(t) CR™  a.e. in [to,tf]

The second mixed control state constraint C'(¢)z(t) — v(a)w(t) < d(t) fixes the value for
We, as it is shown in the following lemma:

Lemma 4.12
Let C € Wh>([tg, t¢], R"*"=) and d € W' ([to, 7], R™) and v(a) > 0.
Let (24, Ua, Vo, We) be a local minimum of Problem 4.11. Then it holds that b, €

Wtee([to, tf],R™) (more precisely: there exists a representative of the class that is an
element of W), and

y()iba (t) = max {0, C(£)Ea(t) — d(t)}.

Proof.

It suffices to show the above equation. If the equation holds, then @, belongs to W1,
since the maximum function is Lipschitz continuous and the composition operator of a
Lipschitz continuous function maps into W, cf. [Mer91].

For any admissible (Zq, s, Va, Wa), it follows that y(a)w,(t) > C(t)xa(t) — d(t) holds a.e.
in [tg,tf]. Assume that (Z,, lUa, Ua, Ws) is optimal for Problem 4.11, and that @, does
disobey the above equation on a set with nonzero measure. Then (Z,, @y, U, Ws) With

B = —— max {0, C(t)ia(t) — d(t)}

(@)
is still admissible but further reduces the objective function value, since |[w,||3 < ||wa||3.
This contradiction shows the assertion. O
Remark 4.13

In the case k = 0, the virtual control regularization is equivalent to using the Lo penalty

term
P(ar) s o
272(a) / max{0, C(t)z(¢) — d(t)}"dt.
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4.2. Virtual Control as a Regularization Concept

This follows directly from Lemma 4.12 by inserting the shown representation of w, into
the penalty term @Hwang An advantage of the form of Problem 4.11 is that all data of
the problem remain twice differentiable.

A simple connection between the solutions of Problem 4.1 and 4.11 results directly from
the shape of the admissible sets, as shown in the following lemma [GHed, cf. Lemma 3]:

Lemma 4.14
Let the matriz W be positive semidefinite almost everywhere in [to,ts]. Let (Zo, s Doy Wa)
be an optimal solution for Problem 4.11, and let (&,4,0) be optimal for Problem 4.1. Then
it holds that

¢(a)

THwaHg S JLQP(:i‘: ﬂ? ﬁ)

If p(a) > 6 for some 64 > 0 independent of o, then the optimal virtual control b, remains
bounded with respect to the || - ||2-norm, independent of c.

If p(a) — oo for a — 0, then lim,_ |[Wal|2 = 0.

Proof
Let (&,4,0) be admissible for Problem 4.1, i.e., let (Z,1,0) satisfy all constraints. Then
(%,1,0,0) is admissible for Problem 4.11, for any «. Hence,
TE (B ) = 5 1l + 51 s ) + 2 i 2
< JERP (3 4, 9).
The rest follows directly from this inequality. O

The error analysis between the optimal solutions for Problem 4.1 and Problem 4.11 relies
on the normality of the multipliers. The smoothness assumption, together with appropriate
normality conditions ensure the existence of normal multipliers for both problems according
to Theorem 3.15, Theorem 3.27 and Corollary 3.29 (compare [GHed, Lemmas 1 and 2]):

Lemma 4.15

Let LQOCP be a problem where the given data satisfy the smoothness assumptions 4.2,
and let (£,4,0) be a local minimum that satisfies the LQOCP normality conditions 4.3.
Furthermore, let (24, Ua, Vo, Wa) be a local minimum for LQOCP,, such that there exists a
6 >0 and a constant Cy > 0, so that (H(t)r,))" exists with ||(H(t)1,0))" || < Cu. Then:

4.15.1 There exist multipliers
X € BV ([to, ], R™), 5 € L*®([to, 7], R™), i € NBV ([to, t;],R™) and 6 € R™
that satisfy (4.2)-(4.9) for the local minimum (&, 4, 0).
4.15.2 There exist multipliers
Ao € WE([to, tf],R™), Al € L([to, ], R™), D € L=([to, ts],R™) and 64 € R™,
such that
Aalt) = = (Q()2a(t) + Ru(t)ia(t) + Ro(t)0a(2)
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4. Linear Quadratic Optimal Control Problems

+A®) " Aa(t) + G(1) Ta(t) + C(1) () (4.10)

Ao(to) = — EJ 64 (4.11)
Aalty) =Qfalts) + B/ 64

0 =5,(t)0a(t) + Ry(t) " 2a(t) + Bu(t) " Au(t) + H(t) " u(t) (4.12)

0 < (it (t)"Su(t) + 2a(t) " Ru(t) + Aa(t) Bu(t)) (u — da(t)) (4.13)

0 =¢(a)da(t) — K(@)en,en, Aalt) = 7()Pal(t) (4.14)

0 <Aa(t) LU(t) — G(t)2a(t) — H(t)da(t) >0 (4.15)

0 <Du(t) L d(t) — C(1)Ea(t) + v(a)da(t) > 0 (4.16)

Proof.

Problem 4.11 can be rewritten in the form of Problem 4.1. It remains to show that the
normality conditions 4.3 of the original problem are sufficient for the respective normality
conditions of the new problem.

The normality conditions 4.3.1 and 4.3.2 are obviously satisfied. A solution for the system
in 4.3.3 is given by a0 := 5(2 + x0) — 3&a, Uao = 5(A+ uo) — 30a, Vao = 5(0 + Vo) — 504
and wyo = 0, where (g, ug,vg) with 4@ 4+ uy € int U,y solves the respective system for
Problem 4.1, since

Qo + uo is an interior point:?

U + Ugo = ;ua + ;(ﬁ + up) € int(Uyq)
and
G(t) (Za(t) + 2a0(1)) + H (1) (0a(t) + vao(t)) < U(t) — ;é?enc
C(1) (2alt) + e0lt) = S COR(E) + 5 C0) (G0 + 7o(t)) < (1),

which implies
C(t) (Za(t) + zao(t)) < d(t) — ezen,

for some € > 0, since the left hand side is continuous.

Due to the linearity of the differential equations for z, Z, and xg, it holds

Tao(t) = A(t)aao(t) + B(1) (“a())

Vao

and
Eol’ao(to) + Elmao(tf) = Fo (;(fﬁ(tO) + xo(to)) - ;fa(t0)>

+ B (;(:ﬁ(tf) +2o(ty)) — ;@a(ff))

2This argument is explained in more detail in Lemma A.1 in the appendix.
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4.2. Virtual Control as a Regularization Concept

= ; (Eoxo(to) + Erzo(ty))

—_

+ 5 (EoZ(to) + Exd(ty))

DN — DN

— — (EoZa(to) + ErZalty))
= 0. O

A A A A

Lemma 4.15 can be used to derive a first estimation for the deviation ||(Z, — Z, i — U, 0o —
)||%,, which leads to the main result of this section:

Lemma 4.16
Let (2,1,0) and (Zq, Ua, Vo, We) be local minima of Problems 4.1 and 4.11, respectively,
that satisfy the assumptions of Lemma 4.15. Then the following estimation holds:

(G0 = .0 = 50 = O}y < = [ (o =) (Gl — ) + Hlita = 7))
0
ty o a
— k() / f()\a —A) e, €, Wedt
to
b AT AT A b
— | (8o —2) C Dodt +

to to

(Za — )" Cdp(t)

Proof.
As in [GHed], the dependence of all functions on ¢ is omitted in this proof.

Partial integration for the Stieltjes integral (cf. Lemma 2.12) yields

Ao — N) (g — &) (4.17)

= (Zalty) — 2(ts)) T alty) = A(ty) = (2alto) — 2(t0)) " (Aalto) — Alto))
UL Gaty) — 2(t0) T (BY 60 — B 6 + Qrialty) — Qrilty))
+(Za(to) — 2(t0)) " (B 60 — Ey 6)
= (Eotalto) + E12a(ts) (64 — 6)

= [T(6a—06)— [T (6a—06)+ (Ralty) — 2(ts) Qr(Zalty) — £(ty))
0

>
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4. Linear Quadratic Optimal Control Problems

t t
= 2)TCTrpdt + [ (80 — 2)TCTdR()

to to

|
<
~
Q
>
S~—
_‘
—~
P
=>
Q
|
=
+
oy
IS
>
Q
|
>
S~—
_|_
o
<
=
o)
|
>
S~—
|
=N
—~
2
D
S
8
Q)
3
=
o)
~—
IS
~

Summarizing these results, (4.17) becomes

t
t "(@a— ) (Q#a — &) + Rulfia — 0) + Ry(00 — 0) + G (7 — 1)) dt
0
ly ~
+ [T = 2T (Buliia — @) + By(6a — 0) — wla)en, e ) dt
t
?ff ty
— | (#q —2)TCT Ot + | (20 — 2)TCT (L),

to

0<~

to

which can be solved for [,/ (A — A\,)T B, (iiq — 0)dt:

ty . ~
/ "3 = 3T Bulie — )t (4.18)

to

t
<- /t "(@a— ) (QFa — &) + Rullla — 0) + Ry(00 — 0) + G (7 — 1)) dt
0

ly o ~
+ [ Ga = VT (Bu(ta — 0) — wla)en, e, @) dt
to

t t
_ /t NG — 2)TC Dodt + | N(3a — 2)TCTda(t).
0 0

From the optimality conditions for 0, (4.5), and 0,, (4.12), we derive
0= (0o —0)"S, + (fa —2) Ry + (Aa = \) "By + (fla — ) " H,

so (4.18) becomes
(4.19)

Y (o= )7 (Q(0 — ) + Rulfla — ) + 2Ry (8 — 0) + G (R0 — 7))

A

t
[ (00— )T (Sl — 0) + H (o — 0))dt
tr . ~
— k(a) / f()\a — )\)Tenzelsuﬁadt
t

4 t
- / "Ga—2)TCT0udt + [ (30 — 2)TCTdp(t).
to to
Inserting the optimal control 4, for Problem 4.11 into the optimality condition (4.6) for

Problem 4.1 and vice versa for inequality (4.13) yields
YolaTin  a Tia A TS 5V (n s
0< / (S (@ — ) + R (& — &) + BI (A = Aa)) (@ — ).

to
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4.2. Virtual Control as a Regularization Concept

Substituting fti)f (A = Aa) T Bu(fiq — @)dt in this expression according to (4.19) leads to
¢
[ G0 = 8) Q0 — &) + 2i0 — ) Rulita — ) + 20 — 2) Ry(8 — 0)
to
+ (lig — @) TSy (li — 1) + (D0 — D) TS, (00 — D)t
ty
<= [M =) (Glaa =) + H(oa = 0) ds

iy ~
— k() / f(/\a — N e, e adt
to

Ns

t t
-/ "G — 2)TC Dadt + | "G — 2)TCTdp(t).
0 0
This proves the assertion of Lemma 4.16. U

Analogue to [GHed, Theorem 2], we can further simplify the right hand side of the
estimation in Lemma 4.16, using the complementarity conditions (4.7), (4.8), (4.15)
and (4.16).

Lemma 4.17
Let (2,0,0) and (%4, lia, Vo, Ws) be defined as in Lemma 4.16. Then then following
inequalities hold:

t t ty
[ Ea—2) CT0ndt + [ (0 — 2)TCTd(t) — #(a) / "Nl en el wadt
to to to )
2 o (4.20)
< = 0(@) liall3 + () [ "0 di(t),
t,
0>~ [ (A=) (C(da — ) + H(6a — 0))dt (4.21)

to

Proof.
The complementarity conditions (4.7), (4.8), (4.15) and (4.16), together with the optimality
condition (4.14) yield:

(4.20):
ty 7] ly A
— N0 = ) CTpdt + [ (30 — 2)TCTd(t) — r(a) / Al en el ot
to to to
tf R R T tf R T .
= — / (Co — y()g — d) ' Dy dt + / (Ct—d) D, dt
to 10 “— =~
Mémo <0 >0
b N T i~ b T s~
+ [ (Coa = Aa)ita — &) dit) ~ [ (€3 @) dp()
to to
<0, wq continuous (if)o
tr o ty ty
= w(a) [ Menel adt =) [l oudt + () [ ildp()
to to to

tr . t t
< =) [ New et =1(0) [ i vdt+ () [ 0]did)
0

to
(4.14)

2 — o(@) liall3 + () [ 07 dce),

0
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(4.21):
7 o = )T (Gl — ) + H (0o — 0)) dt

to

t t
—— fﬁg(Gaza+H@a—Z)dt—/fﬁT(G@+H@—1)dt
to to

(4.15) ",

tf tf
+ | o (GE+HO—D)di+ | 7" (GRo+ Hig —1)dt
lo ~~ to ~~
>0 <0 >0 <0

<0.

Theorem 4.18 sums up the results from Lemma 4.16 and Lemma 4.17:

Theorem 4.18
Let (Z,1,0) and (%4, Gia, Vo, W) be local minima of the Problems 4.1 and 4.11, respectively,
that satisfy the assumptions of Lemma 4.15 for any o > 0. Then it holds:

[(Ea = 2,1 — @, 0a — 0)||f + ¢(a)[|@all3

t ty o
<~(a) /t "ol dp(t) + w(a) /t AT en, el dgdt.
0 0

The conclusions that can be drawn from Theorem 4.18 depend on the smoothness of [
and the problem data. The simplest case is ji € W12

Theorem 4.19
Let (%,1,0) and (2, U, Vo, Wa) be defined as in Theorem 4.18, and assume that ji €
WA ([t 1], R™).

If lim,_.q % =0, then lim,_q |42 = 0. If additionally k(o) < Cgr and y(a) < Cgr

for some Cr € R, independent of o, then lim, o ||(24 — 2, g — 4, 9o — 0)||% = 0.

Proof.
According to Theorem 4.18, it holds that

(& = &, o — @, Do = D) [y + &) a3
¢ ty .
< () / ! W) df(t) + k() / ! Aen, e, Wedt
t ¢ ‘
(;f . th
< (@) / o] fdt + k(0) [ Crel iadt
to to

< (@)l allzl|All2 + r(@)Crlldall2
< Cull@all2(v(e) + K(@)),

which particularly implies

p(a)llallz < Crrlliball2(v(a) + (),
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4.2. Virtual Control as a Regularization Concept

and therefore

(@) + K(e)
o)

a2 < Cu

which proves the first assertion.

If k(o) < Cr and y(a) < Cg, then

A A~ A A A~ 2 |

(2o — 2,10 — U, 00 — 0)|[iy < 2-Chry - Cr - ||a]|2

according to the first inequality. Since ||i,||2 — 0 for a — 0, this completes the proof.

If p+ does not comply with the smoothness assumption, then it can be replaced by the
assumption that 0, remains bounded with respect to the || - ||o norm.

Theorem 4.20
Let (2,1,0) and (Z4, U, Do, Wa) be defined as in Theorem 4.18. Assume that [|[s]|co < Croo
for some constant C .

If lim,_ % = 0, then lim,_ |||l = 0. If additionally lim, 0 k() = 0 and

limg o y() =0, then lim, o ||(Za — 2, e — 0,00 — D) |3 = 0.
Proof.
Theorem 4.18 again assures that

H(:%a - i‘yﬁa - ﬂ @a - @)H%/V + gb(OJ)HIDa”g

< fy(a) wldﬂ(t) + k() /tf Alen, e) wqdt
<7(@)- HwaHoo TV (i, [to, ts]) + w(@)Crllall2
< () - [[@alloe - TV (R, [to, t5]) + (@) Cx|[a]] o
< C(v(@) + w(a)).

The first assertion follows analogly to the proof of Theorem 4.19, as the right hand side in
|[0a]3 < C % vanishes. The second assertion follows directly from

1(Fa = 2, 0 — @, 00 — 0) [ < C(v(@) + r(a)). O

Remark 4.21

Theorems 4.19 and 4.20 yield convergence properties in the ||-||w (half) norm. Consequently,
if W is uniformly positive definite, i.e. (x,u,v)" W (t)(z,u,v) > §||(z,u,v)"||3 for any
vector (z,u,v) € Rt independent of t € [to,ts], then

lim [|(a = &, o — @, 80 = 8)]l2 = 0

Otherwise, if W is only positive semidefinite with either

o (z,u,v)TW(t)(z,u,v) > d||z||3, thenlim, o ||Za—2|2 = 0, that is, the state deviation

vanishes (with respect to the || - || morm) for decreasing o, or
o (2,u,v)"W(t)(z,u,v) > 6||(u,v)||3, then limy 5o ||(ia — @, 00 — 0)||2 = 0, and the
control deviation vanishes (again with respect to the || - |2 norm).
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4. Linear Quadratic Optimal Control Problems

4.3. Examples

The solutions to the following examples have been calculated using the combined Newton
method described in chapter 5. Numerical results based on the globalized semismooth
Newton method (cf. [Ger08]) have been presented in [GHed]. The parameter functions
were set to

k() =0, ola) =1, (@) == a.

For both problems, the solutions were calculated on an equidistant grid consisting of 501
grid points. This fineness has been chosen in order to eliminate effects that originate from
the discretization.

4.3.1. Minimum Energy Problem

The Minimum Energy Problem (cf. [BH75, p. 120], [GHed]) is a linear quadratic optimal
control problem with a second order state constraint.

The task is to find the form of a homogenous stick under tension. Both ends of the
stick are attached to the ground in a given angle of 7/4. The time coordinate ¢ in this
case represents the first space dimension in which the stick expands. The height of the
stick at a given point in the first space dimension is represented by the first state z. Its
derivative, the slope of the stick, is the second state y. The fact that the stick is attached
to the ground at the two points t; = 0 and ¢y = 1 translates to the boundary conditions
x(0) = z(1) = 0, and the angle conditions can be expressed as y(0) = —y(1) = tan(w/4).

The control u describes the derivative of the slope y, i.e. the bend of the stick. The
integral of its square is to be minimized. The state constraint models a height restriction.
The linear quadratic optimal control problem reads:

Problem 4.22 (Minimum Energy Problem)

. Lot o
min! 7/ u(t)“dt
2 Jo

subject to

and

z(t) <

Q|

The regularized optimal control problem with regularization parameters as above reads

60



4.3. Examples

a [wal2 w0 |£(2)]y=
1E—1 7.312E 01 1158E+00 1.903E — 06
1E —2 4433F 01 T7.216E—01 2.234F — 06
1E—3 85085 —02 2.684E —01 3.908E — 07
1E—4 1.541F — 02 8.687E —02 1.129E — 06
1E—5 2714E — 03 2.682E — 02 3.640E — 07
1E—6 3.929F — 04 5254E —03 3.343E — 06
1E—7 4.233E-05 6.07T3E—04 6.103E — 06

Table 4.1.: Norms of w, for the Minimum Energy Problem

Problem 4.23 (Regularized Minimum Energy Problem)

1 /1 1 /!
- / w(t)?dt + - / we(t)2dt
2 Jo 2 Jo

min!
subject to
(t) = y(t z(0)= =z(1)=0
y(t) = uft y(0) = —y(1) =
and 1
x(t) — a-wu(t) < g

Figure 4.1 shows the plots of solutions to the regularized problem for different values of a.
Additionally, table 4.1 lists the norms of the virtual control as well as the residua || F(2)||o
of the calculations.

Both Table 4.1 and Figure 4.1 confirm the convergence results of Theorem 4.20 and show
that the virtual control vanishes even in the || - ||oo-norm. At the same time, the multiplier
Mo explodes. This effect is due to the fact that 7, is an approximation for f in the original
problem, and pu is piecewise continuous.

On the other hand, this example shows that the uniform convergence (i.e. convergence
in the L> sense) result cannot be transferred to the multipliers: The first adjoints A; of
the regularized problems are continuous. Uniform convergence of continuous functions
would imply that their limit function, which is the adjoint of the original problem, was
continuous, which is not the case.

4.3.2. Simplified Trolley Problem

This example is a simplified model of a trolley crane (cf. [Kim02, p. 18], [GHed]). A weight
is attached to the crane by means of a string. The task in this ex