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Notation

(𝑥)𝑁
𝑖=0 if 𝑥𝑖 ∈ R ∀𝑖, (𝑥)𝑁

𝑖=0 denotes the vector (𝑥0, 𝑥1, . . . , 𝑥𝑁)⊤ ∈ R𝑁+1

𝑥𝑖 ∈ R𝑛 ∀𝑖, (𝑥)𝑁
𝑖=0 denotes the vector (𝑥0, 𝑥1, . . . , 𝑥𝑁)⊤ ∈ R(𝑁+1)·𝑛

lim𝑥↘𝑎, lim𝑥↗𝑎 the limit from above/below
‖ · ‖𝑋 norm on the Banach space 𝑋
| · | norm in R𝑛𝑥 , usually the Euklidian norm
⟨·, ·⟩ the scalar product in the respective space
𝐼𝑑 identiy map, 𝐼𝑑(𝑥) = 𝑥
𝑜, 𝒪 Landau symbols
𝐼 identity matrix
ℋ Hamiltonian of an optimal control problem
im 𝐹 image of 𝐹
ker 𝐹 kernel of 𝐹
ess sup essential supremum
𝐵𝑟(𝑥) open Ball with radius 𝑟 and center 𝑥
ℱ(𝑋, 𝑌 ) set of mappings from 𝑋 to 𝑌
ℒ(𝑋, 𝑌 ) set of linear continuous mappings from 𝑋 to 𝑌
𝒞(𝑋, 𝑌 ) continuous functions from 𝑋 to 𝑌
𝒞𝑛(𝑋, 𝑌 ) 𝑛-times continuously differentiable functions from 𝑋 to 𝑌
𝐿𝑝(𝑋, 𝑌 ) Lebesgue measurable functions from 𝑋 to 𝑌

with finite ‖ · ‖𝑝-norm
𝑊 𝑝,𝑞(𝑋, 𝑌 ) 𝑞-times weakly differentiable function with derivative in 𝐿𝑝

𝑓 (𝑖) the 𝑖-th derivative of the function 𝑓

‖𝑓‖𝑝 (
∫︀ 𝑏

𝑎 𝑓𝑝(𝑡)𝑑𝑡)(1/𝑝)

‖𝑓‖𝑞,𝑝

(︁∑︀𝑞
𝑖=0 ‖𝑓 (𝑖)‖𝑝

𝑝

)︁1/𝑝

𝐵𝑉 ([𝑎, 𝑏],R𝑛) functions of bounded variation
𝑁𝐵𝑉 ([𝑎, 𝑏],R𝑛) normed functions of bounded variation
𝑇𝑉 (𝑓, 𝑎, 𝑏) total variation of 𝑓 on [𝑎, 𝑏]∫︀ 𝑏

𝑎 𝑓(𝑡)𝑑𝛼(𝑡) Stieltjes Integral
ℋ[𝑡] abbreviated notation indicating that ℋ is evaluated along

the optimal solution
ℒ(𝑋, 𝑌 ) the space of linear continuous mappings from 𝑋 to 𝑌
𝑋* = ℒ(𝑋,R) the dual space of 𝑋, i.e. the space of continuous linear

functionals from 𝑋 to R
𝐹 |Ω the restriction of 𝐹 : 𝑋 → 𝑌 to Ω ⊂ 𝑋
𝐹 ′(𝑥)(ℎ) Fréchet derivative of 𝐹 at 𝑥 in direction ℎ
𝐹 ′

𝑥(𝑥, 𝑦)(ℎ𝑥) partial Fréchet of 𝐹 at (𝑥, 𝑦) in direction ℎ𝑥
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1. Introduction

Since the necessary optimality conditions for optimal control problems have been introduced
by Pontrjagin et. al., two different approaches have been developed for the numerical
solution of this class of problems. The direct approach, in which the optimal control
problem is discretized and then regarded as an optimal control problem in finite dimensional
spaces, has become popular, as it can be used for a broad class of problems without making
assumptions about the structure of the optimal control.

Indirect approaches that are based upon the optimality conditions for the original problem
often tried to solve the complementarity problem by finding solutions for different control
structures. This work focuses on another approach: The necessary optimality conditions
are rearranged as an operator equation in function spaces. In the next step, a Newton
method for function spaces is applied to the equation. An advantage of this procedure is
that the arising method can be used without knowledge about the structure of the optimal
solution. At the same time, theoretical problems emerge when applying the Newton
method in infinite dimensional spaces.

In Chapter 2, basics from functional analysis and control theory are introduced. This
helps to clarify the notation used in this work and provides the reader with examples and
theorems that are needed for the complete understanding the theory.

The necessary optimality conditions, also know as the minimum principle of optimal
control, is derived in Chapter 3. While most authors concentrate on problems with either
set constrained controls or problems with mixed control state constraints, we state the
principle for the generic case in which both types of constraints may appear and extend the
theory by introducing knowledge from control theory to this field. This helps to simplify
some assumptions needed to ensure the validity of the optimality conditions.

Chapter 4 presents an application of the minimum principle: It is used to prove convergence
results for the virtual control concept, a regularization technique that turns problems
with pure state constraints into problems with mixed control-state constraints. The main
advantage of this regularization in the context of this work is that the latter problem type
can be solved by an adequate indirect solution approach.

Solution techniques that make use of this approach are presented in Chapter 5. In order
to apply the Newton method to function spaces, the complementarity problem derived
in Chapter 3 are turned into an operator equation. As the operators are necessarily
nonsmooth, we regularize the equation, before algorithms based on the Newton method
are introduced.

The numerical realization of the Newton methods is shown and compared to the direct
discretization approach in Chapter 6.
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1. Introduction

Finally, the algorithms and the regularizations are tested in Chapter 7 in the context of
Linear Quadratic Model Predictive Controllers. The virtual control concept in this case
has the advantage that all problems that may arise during the regulation are solvable, and
that the regulation is independent from the system of ordinary differential equations that
describes the physical system. This chapter is divided into examples with mixed control-
state constraints and examples with pure state constraints. This allows to independently
observe the influence of the regularization techniques in use.
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2. Basics

The purpose of this chapter is to gather most fundamental definitions and statements in
one place, so as to improve the reading flow in later chapters. Also, some examples (e.g.
Example 2.20.1) are easy to prove, but hard to find in literature.

2.1. Analysis

The first lemma belongs to the cathegory ”easy to prove but hard to find“. It allows to
deduce the existence of a limes of function from the function’s Hölder continuity. This
proves useful when a convergence result for a regularized complementarity problem is
derived in Theorem 5.14.

The definition of Hölder continuity can be found in [Dob06, p. 36]:

Definition 2.1 (Hölder continuity)
Let 𝑋, 𝑌 be normed spaces and Ω ⊂ 𝑋. A function 𝐹 : Ω → 𝑌 is called Hölder continuous
(with exponent 𝛼 ∈ (0, 1)), if for all 𝑥1, 𝑥2 ∈ Ω it holds that

‖𝐹 (𝑥1) − 𝐹 (𝑥2)‖𝑌 ≤ 𝐿 · ‖𝑥1 − 𝑥2‖𝛼
𝑋

for some constant 𝐿 that is independent of 𝑥1 and 𝑥2.

Lemma 2.2
Let 𝑋 be a Banach space, and let 𝑎, 𝑏 ∈ R, such that 𝑎 < 𝑏. Let 𝐹 : [𝑎, 𝑏] → 𝑋 be Hölder
continuous on (𝑎, 𝑏]. Then lim𝑡↘𝑎 𝐹 (𝑡) ∈ 𝑋 exists.

Proof.
Let (𝑡𝑖)𝑖∈N be a sequence with lim

𝑖→∞
𝑡𝑖 = 𝑎, 𝑡𝑖 > 𝑎. Then

||𝐹 (𝑡𝑛) − 𝐹 (𝑡𝑚)|| ≤ 𝐿 · |𝑡𝑛 − 𝑡𝑚|𝛼.

So (𝐹 (𝑡𝑖))𝑖∈N is Cauchy and therefore converges. Now suppose the limit value was not
unique. Then let (𝑡𝑖)𝑖∈N and (𝑡𝑖)𝑖∈N be two sequences, such that lim

𝑖→∞
𝑡𝑖 = lim

𝑖→∞
𝑡𝑖 = 𝑎, but

lim
𝑖→∞

𝐹 (𝑡𝑖) = 𝑓 ̸= 𝑓 = lim
𝑖→∞

𝐹 (𝑡𝑖). Now

||𝑓 − 𝑓 || ≤ ||𝑓 − 𝐹 (𝑡𝑛) + 𝐹 (𝑡𝑛) − 𝑓 + 𝐹 (𝑡𝑛) − 𝐹 (𝑡𝑛)||
≤ ||𝑓 − 𝐹 (𝑡𝑛)|| + ||𝐹 (𝑡𝑛) − 𝑓 || + ||𝐹 (𝑡𝑛) − 𝐹 (𝑡𝑛)||,

where the right hand side vanishes for large 𝑛. �
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2. Basics

The concept of a normal cone (cf. [GV03, Definition 1.1]) is needed in order to derive
optimality conditions for optimality problems in infinite dimensions.

Definition 2.3 (Normal Cone)
Let 𝑈 ⊂ R𝑛 be a closed set, and �̂� ∈ 𝑈 . Then 𝑣 in R𝑛 is normal to 𝑈 at �̂� if there exist
series (𝑣𝑖)𝑖∈N, 𝑣𝑖 → 𝑣 and (𝑢𝑖)𝑖∈N, 𝑢𝑖 → �̂� (in 𝑈), such that for 𝑖

⟨𝑣𝑖, 𝑢 − 𝑢𝑖⟩ ≤ 𝑜(|𝑢 − 𝑢𝑖|).

The normal cone 𝑁𝑈(�̂�) is the set of all normals to 𝑈 in �̂�.

The Banach spaces in which the optimization problems are stated are Lebesgue spaces and
Sobolev spaces, that are presented in the following definitions. The variables in optimal
control problems can be chosen from these spaces (cf. [Ger06, Section 2.3]).

Definition 2.4 (Lebesgue and Sobolev Spaces and Their Respective Norms)
Let 1 ≤ 𝑝 ≤ ∞. The set of functions needed for the definition of 𝐿𝑝([𝑎, 𝑏],R) is

�̃�𝑝([𝑎, 𝑏],R) := {𝑓 : [𝑎, 𝑏] → R | 𝑓 is measurable with ‖𝑓‖𝑝 < ∞},

where

‖𝑓‖𝑝 :=

⎧⎪⎨⎪⎩
(︁∫︀ 𝑏

𝑎 |𝑓(𝑡)|𝑝𝑑𝑡
)︁1/𝑝

if 𝑝 < ∞
ess sup

𝑎≤𝑡≤𝑏
|𝑓(𝑡)| if 𝑝 = ∞ .

Then the Lebesgue space 𝐿𝑝 is the space of equivalence classes in �̃�𝑝 with respect to the
‖ · ‖𝑝-norm.

Let 1 ≤ 𝑝, 𝑞 ≤ ∞. The space 𝑊 𝑞,𝑝([𝑎, 𝑏],R) consists of all absolutely continuous functions
𝑓 : [𝑎, 𝑏] → R with absolutely continuous derivatives up to order 𝑞 − 1 and

‖𝑓‖𝑞,𝑝 < ∞,

where the norm ‖ · ‖𝑞,𝑝 is defined by

‖𝑓‖𝑞,𝑝 :=

⎧⎪⎨⎪⎩
(︁∑︀𝑞

𝑖=0 ‖𝑓 (𝑖)‖𝑝
𝑝

)︁1/𝑝
if 𝑝 < ∞

max
0≤𝑖≤𝑞

‖𝑓 (𝑖)‖∞ if 𝑝 = ∞
.

The spaces 𝐿𝑝 as well as 𝑊 𝑞,𝑝 with their respective norms are Banach spaces. The spaces
𝑊 𝑞,2([𝑎, 𝑏],R) are Hilbert spaces with the scalar product

⟨𝑓, 𝑔⟩𝑊 𝑞,2 :=
𝑞∑︁

𝑖=0

∫︁ 𝑏

𝑎
𝑓 (𝑖)(𝑡)𝑔(𝑖)(𝑡)𝑑𝑡.

Hölder’s inequality (see [Alt06, Lemma 1.16, p. 51]) as well as the subsequent embedding
theorem are useful in some examples of linear and differential operators.
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2.1. Analysis

Lemma 2.5 (Hölder’s Inequality)
Let 𝑚 ∈ N and 𝑓𝑖 ∈ 𝐿𝑝𝑖(R,R) for 𝑖 = 1, . . . , 𝑚 with 1 ≤ 𝑝𝑖 ≤ ∞, and 1 ≤ 𝑞 ≤ ∞ with

𝑚∑︁
𝑖=1

1
𝑝𝑖

= 1
𝑞

.

Then the product Π𝑚
𝑖=1𝑓𝑖 is in 𝐿𝑞(R,R), and it holds

‖Π𝑚
𝑖=1𝑓𝑖‖ ≤ Π𝑚

𝑖=1‖𝑓𝑖‖𝐿𝑝1

The following theorem [Alt06, Theorem 8.9, p. 328] covers embeddings of Sobolev spaces
and how their respective norms are associated.
Theorem 2.6 (Embeddings of Sobolev Spaces)
Let Ω ⊂ R𝑛 be open and bounded with Lipschitz boundary. Let 𝑚1 and 𝑚2 be integers, and
1 ≤ 𝑝1 ≤ ∞ and 1 ≤ 𝑝2 ≤ ∞. Then it holds:

2.6.1 If
𝑚1 − 𝑛

𝑝1
≥ 𝑚2 − 𝑛

𝑝2
, as well as 𝑚1 ≥ 𝑚2,

then the embedding
𝐼𝑑 : 𝑊 𝑚1,𝑝1(Ω) → 𝑊 𝑚2,𝑝2(Ω)

exists and is continuous. For 𝑢 ∈ 𝑊 𝑚1,𝑝1(Ω), there exists a constant depending on 𝑛, Ω,
𝑚1, 𝑝1, 𝑚2, 𝑝2, such that

‖𝑢‖𝑊 𝑚2,𝑝2 (Ω) ≤ 𝐶‖𝑢‖𝑊 𝑚1,𝑝1 (Ω).

2.6.2 If
𝑚1 − 𝑛

𝑝1
≥ 𝑚2 − 𝑛

𝑝2
, as well as 𝑚1 > 𝑚2,

then the embedding
𝐼𝑑 : 𝑊 𝑚1,𝑝1(Ω) → 𝑊 𝑚2,𝑝2(Ω)

exists and is continuous and compact.

The following lemma is needed in the proof of the minimum principle. According to this
lemma, dual elements of functions with disjoint support can be investigated independent
from each others. The dual space of 𝑋 is denoted by 𝑋*. The space of mappings
𝐹 : 𝑋 → 𝑌 is denoted by ℱ(𝑋, 𝑌 ).
Lemma 2.7 (Dual Space and Support of Functions)
Let 𝑆 ⊂ ℱ(𝐴 ∪ 𝐵, 𝐾), 𝐴 ∩ 𝐵 = ∅. Let 𝑦* ∈ 𝑆*, such that 𝑦*�̄� = 0 for all �̄� with
�̄�(𝑡) = 0 ∀𝑡 ∈ 𝐴. Then there exists an element 𝑦*

𝐴 ∈ (𝑆|𝐴)*, so that 𝑦*𝑥 = 𝑦*
𝐴𝑥|𝐴 for all

𝑥 ∈ 𝑆.
Proof.
For any subset 𝑋 of 𝐴 ∪ 𝐵, let

𝑥𝑋(𝑡) :=
⎧⎨⎩𝑥(𝑡) if 𝑡 ∈ 𝑋

0 otherwise.

Then 𝑦*𝑥 = 𝑦*(𝑥𝐴 + 𝑥𝐵) = 𝑦*𝑥𝐴 + 𝑦*𝑥𝐵 = 𝑦*𝑥𝐴, hence 𝑦* ∈ 𝑆*
𝐴. The assertion follows

since 𝑆𝐴 and 𝑆|𝐴 are isomorphic. �
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2. Basics

Another expression for the essence of this lemma is [ℱ(𝐴 + 𝐵, 𝐾)]* = [ℱ(𝐴, 𝐾)]* +
[ℱ(𝐵, 𝐾)]*.

This lemma will be used later when an element of the dual space of a subset of 𝐿∞ is
analyzed. The dual element will be written as a sum of two elements, each of which maps
functions with support 𝐴 and 𝐵, respectively, to 0. The argument derived from this lemma
will be that the dual elements only need to be investigated on these respective time sets.

2.1.1. The Stieltjes integral and functions of Bounded Variation

The Stieltjes integral occurs naturally when optimal control problems with state constraints
are considered. One way to go without this tool would be to make regularity assumptions
on the control problems. As shown in [DH98, Lemma 3.11], Lipschitz continuity for the
state multiplier can be ensured under such assumptions. However, the said assumptions
involve uniform independence conditions ([DH98, p. 699]) that imply that the active state
constraints are of first order. Problems with higher order state constraints may have a
more complicated structure. As the formulae needed for the proofs in this work can be
applied for the Stieltjes integral, the notions necessary for its definition as well as basic
properties shall be introduced briefly. The definitions and properties gathered in this
section have been collected from [Wid46], [Nat75] and [Ger06].

Definition 2.8 (Subdivision)
A subdivision G of an interval [𝑎, 𝑏] is an (𝑛 + 2)-tuple G = (𝑡𝑖)𝑖=0,...,𝑛+1 of points with
𝑎 = 𝑡0 < · · · < 𝑡𝑛+1 = 𝑏. The coarseness 𝛿 of a subdivision is defined by 𝛿(G) :=
max𝑖=0,...,𝑛(𝑡𝑖+1 − 𝑡𝑖).

The notion of a subdivision is needed for the definition of functions of bounded variation,
a function space of great significance in the theory of Stieltjes integration. The definition
is cited from [Ger06, p. 21] and [Ger06, p. 24]:

Definition 2.9 (Functions of Bounded Variation)
A function 𝑓 : [𝑎, 𝑏] → R is of bounded variation, if there exists a constant 𝐾, such that
for any partition

G𝑛 := {𝑎 = 𝑡0 < · · · < 𝑡𝑛+1 = 𝑏}

of [𝑎, 𝑏] it holds that
𝑛+1∑︁
𝑖=1

|𝑓(𝑡𝑖) − 𝑓(𝑡𝑖−1| ≤ 𝐾.

The total variation of 𝑓 is

𝑇𝑉 (𝑓, 𝑎, 𝑏) := sup
Gn

𝑛+1∑︁
𝑖=1

|𝑓(𝑡𝑖) − 𝑓(𝑡𝑖−1)|.

The space 𝐵𝑉 ([𝑎, 𝑏],R) consists of all functions of bounded variation on [𝑎, 𝑏]. The space
of normalized functions of bounded variation 𝑁𝐵𝑉 ([𝑎, 𝑏],R) consists of all functions 𝑓 of
bounded variation that are continuous from the right on (𝑎, 𝑏) and satisfy 𝑓(𝑎) = 0.
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The following definition is cited from [Wid46, p. 4]:
Definition 2.10 (Stieltjes Integral)
If the limit

lim
𝛿(G)→0

𝑛∑︁
𝑖=0

𝑓(𝜏𝑖)[𝛼(𝑡𝑖+1) − 𝛼(𝑡𝑖)],

where
𝑡𝑖 ≤ 𝜏𝑖 ≤ 𝑡𝑖+1 (𝑖 = 0, . . . , 𝑛),

exists independently of the choice of subdivision G and of the choice of the numbers 𝜏𝑖, then
the limit is called the Stieltjes integral of 𝑓 with respect to 𝛼 from 𝑎 to 𝑏 and is denoted by∫︁ 𝑏

𝑎
𝑓(𝑡)𝑑𝛼(𝑡).

The existence of the Stieltjes integral can be shown if a continuous function is integrated
with respect to a function of bounded variation [Wid46, Th. 4a]:
Theorem 2.11 (Existence of the Stieltjes Integral)
If 𝑓 is continuous and 𝛼 is of bounded variation in (𝑎, 𝑏), then the Stieltjes integral of 𝑓
with respect to 𝛼 from 𝑎 to 𝑏 exists.

Theorem 2.11 provides sufficient conditions for the existence of the Stieltjes integral that
are not necessarily fulfilled by 𝑓 and 𝛼 if the integral exists. Thus, the partial integration
rule is cited from [Nat75, p. 257, point 5], since it makes weaker assumptions than the
analog rule presented in [Wid46]:
Lemma 2.12 (Integration by Parts)
If one of the integrals

∫︀ 𝑏
𝑎 𝑓(𝑡)𝑑𝑔(𝑡) or

∫︀ 𝑏
𝑎 𝑔(𝑡)𝑑𝑓(𝑡) exists, then so does the other, and it

holds: ∫︁ 𝑏

𝑎
𝑓(𝑡)𝑑𝑔(𝑡) +

∫︁ 𝑏

𝑎
𝑔(𝑡)𝑑𝑓(𝑡) = [𝑓(𝑡)𝑔(𝑡)]𝑏𝑎,

where
[𝑓(𝑡)𝑔(𝑡)]𝑏𝑎 = 𝑓(𝑏)𝑔(𝑏) − 𝑓(𝑎)𝑔(𝑎).

The following lemmata are cited from [Ger06, p. 22-23]. The first lemma deals with
Stieltjes integrals in which the function 𝜇 is itself defined by a Stieltjes integral.
Lemma 2.13
Let 𝑔 be continuous and ℎ of bounded variation in [𝑎, 𝑏]. Let

𝜇(𝑡) =
∫︁ 𝑡

𝑐
𝑔(𝜏)𝑑ℎ(𝜏), 𝑎 ≤ 𝑐 ≤ 𝑏, 𝑎 ≤ 𝑡 ≤ 𝑏,

then ∫︁ 𝑏

𝑎
𝑓(𝑡)𝑑𝜇(𝑡) =

∫︁ 𝑏

𝑎
𝑓(𝑡)𝑔(𝑡)𝑑ℎ(𝑡).

Consequently, one can ask how functions that are expressed in terms of a Lebesgue integral
behave if used in the Stieljes integral. In this case, the integral in question can also be
expressed as a Lebesgue integral.
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Lemma 2.14 (Stieltjes integral and Lebesgue integral)
If 𝑓 is of bounded variation and 𝜇 is absolutely continuous on [𝑎, 𝑏], then

∫︁ 𝑏

𝑎
𝑓(𝑡)𝑑𝜇(𝑡) =

∫︁ 𝑏

𝑎
𝑓(𝑡)𝜇′(𝑡)𝑑𝑡,

where the integral on the right is a Lebesgue integral.

Riesz’ Theorem states that analogous to absolutely continuous functions that can be
expressed by means of the Lebesgue integral, continuous functions can be expressed by
the Stieltjes integral:

Theorem 2.15 (Riesz)
Let the functional 𝜙 : 𝒞([𝑎, 𝑏],R) → R be continuous. Then there exists a unique function
𝜇 ∈ 𝑁𝐵𝑉 ([𝑎, 𝑏]), such that

𝜙(𝑓) =
∫︁ 𝑏

𝑎
𝑓(𝑡)𝑑𝜇(𝑡) ∀𝑓 ∈ 𝒞([𝑎, 𝑏],R).

As a consequence of this theorem, dual elements of continuous functions can be expressed
using functions of bounded variation and the Stieltjes integral. This theorem provides a
natural representation of multipliers for state constraints in the minimum principle.

2.1.2. Linear Operators and Fréchet differentiability

The following definition provides a concept of differentiability on normed spaces as it is
needed in optimal control theory in infinite dimensional spaces. In this definition, the space
ℒ(𝑋, 𝑌 ) consists of all linear continuous functions from 𝑋 to 𝑌 . An equivalent definition
can be found in [Wer07, p. 113]. The equivalence is shown in [Wer07, Lem. III.5.2].

Definition 2.16 ((Continuous) Fréchet Differentiability)
Let (𝑋, ‖ · ‖𝑋) and (𝑌, ‖ · ‖𝑌 ) be normed spaces. The function 𝐹 : 𝑋 → 𝑌 is Fréchet
differentiable in 𝑥0, if there exists an operator 𝐹 ′(𝑥0) ∈ ℒ(𝑋, 𝑌 ), such that

𝐹 (𝑥0 + ℎ) = 𝐹 (𝑥0) + 𝐹 ′(𝑥0)(ℎ) + 𝑜(‖ℎ‖𝑋) (2.1)

for ℎ → 0. If it exists for all 𝑥0 ∈ 𝑈 ⊂ 𝑋, with 𝑈 an open subset of 𝑋, then

𝐹 ′ : 𝑈 → ℒ(𝑋, 𝑌 ), 𝑥 ↦→ 𝐹 ′(𝑥)

is called the Fréchet derivative of 𝐹 in 𝑈 .

𝐹 is continuously Fréchet differentiable in 𝑈 ⊂ 𝑋 if 𝐹 is differentiable and the derivative
is continuous.

One of the most important tools for calculations with Fréchet differentiability is the chain
rule (cf. [IT79, p. 27]), the assertion about continuous differentiability is an immediate
implication:
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2.1. Analysis

Lemma 2.17 (Chain Rule)
Let (𝑋, ‖ · ‖𝑋), (𝑌, ‖ · ‖𝑌 ) and (𝑍, ‖ · ‖𝑍) be Banach spaces. Let 𝑈 ⊂ 𝑋 and 𝑉 ⊂ 𝑌 be
open subsets of 𝑋 and 𝑌 , respectively. Let 𝐹 : 𝑈 → 𝑌 and 𝐺 : 𝑉 → 𝑍. Assume that there
exists a point 𝑥 ∈ 𝑈 , such that 𝐹 (𝑥) ∈ 𝑉 . If 𝐹 is Fréchet differentiable in 𝑥 and 𝐺 is
Fréchet differentiable in 𝐹 (𝑥), then the mapping 𝐻 := 𝐺 ∘ 𝐹 is Fréchet differentiable in 𝑥,
and

𝐻 ′(𝑥) = 𝐺′(𝐹 (𝑥)) ∘ 𝐹 ′(𝑥).
If 𝐹 is continuously differentiable on 𝑈 and 𝐺′ is continuous on 𝐹 (𝑈), then 𝐻 is continu-
ously differentiable on 𝑈 .

Differentiability is inherited by subspaces, as it is shown in the following lemma:
Lemma 2.18
Let (𝑋, ‖ · ‖𝑋) and (𝑌, ‖ · ‖𝑌 ) be normed spaces, and let 𝑇 : 𝑋 → 𝑌 . Let (𝑈, ‖ · ‖𝑈) be
a third normed space with 𝑈 ⊂ 𝑋, and suppose that there exists some 𝐶 > 0, such that
‖𝑢‖𝑈 ≥ 𝐶 · ‖𝑢‖𝑋 for 𝑢 ∈ 𝑈 . If 𝑇 is Fréchet differentiable in 𝑢0 with respect to (𝑋, ‖ · ‖𝑋),
then 𝑇 |𝑈 : 𝑈 → 𝑌 is Fréchet differentiable in 𝑢0 with respect to the ‖ · ‖𝑈 -norm, and the
derivative is inherited,

𝑇 |𝑈 ′(𝑢0) = (𝑇 ′(𝑢0))|𝑈 .

Proof.
1. The linearity of (𝑇 ′(𝑢0))|𝑈 is clear. The continuity is also easily shown, since for

ℎ ∈ 𝑈 , it holds:
‖𝑇 ′(𝑢0)(ℎ)‖𝑌 ≤ 𝐶𝑇 ‖ℎ‖𝑋 ≤ 𝐶𝑇 /𝐶 · ‖ℎ‖𝑈 ,

where 𝐶 is the constant mentioned in the assumptions of the lemma.

2. In order to show that (2.1) holds, the inequality

lim
‖ℎ‖𝑈 →0

‖𝑇 (𝑢0 + ℎ) − 𝑇 (𝑢0) − 𝑇 ′(𝑢0)(ℎ)‖𝑌

‖ℎ‖𝑈

≤ lim
ℎ∈𝑈

‖ℎ‖𝑋→0

‖𝑇 (𝑢0 + ℎ) − 𝑇 (𝑢0) − 𝑇 ′(𝑢0)(ℎ)‖𝑌

𝐶 · ‖ℎ‖𝑋

can be analyzed. Note that ‖ℎ‖𝑈 → 0 ⇒ ‖ℎ‖𝑋 → 0. Since 𝑇 is Fréchet differentiable
in (𝑋, ‖ · ‖𝑋), the right hand side equals 0, and hence so does the left hand side. �

Lemma 2.18 leads to an important finding: If an operator 𝑇 : 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛) → 𝑌 is
differentiable in some point 𝑥0, then 𝑇 |𝑊 1,∞([𝑡0,𝑡𝑓 ],R𝑛) is also differentiable, and

(𝑇 |𝑊 1,∞([𝑡0,𝑡𝑓 ],R𝑛))′ = 𝑇 ′|𝑊 1,∞([𝑡0,𝑡𝑓 ],R𝑛).

In other words, in order to calculate derivatives for operators that map 𝑊 1,∞ into some
space, it is sufficient to show that the operator that maps 𝐿∞ into the same space is
differentiable.
Example 2.19 (Examples: Linear Continuous Operators)
The following are examples of linear continuous operators. According to the definition of
differentiability, they remain invariant under differentiation.
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2.19.1 Let 𝑝 ∈ N∪{∞}, and let 𝑇 be the derivation operator for 𝑊 1,𝑝, i.e. 𝑇 : 𝑊 1,𝑝 → 𝐿𝑝,
𝑥 ↦→ �̇�. Then 𝑇 is linear and continuous since ‖𝑇 (𝑥) − 𝑇 (𝑦)‖𝑝 ≤ ‖𝑥 − 𝑦‖1,𝑝. Hence the
Fréchet derivative 𝑇 ′(𝑥0) is 𝑇 itself (compare [Wer07, p. 149]).

2.19.2 Let 𝑝 ∈ N ∪ {∞}, and 𝑇 : 𝐿𝑝([𝑡0, 𝑡𝑓 ],R𝑛) → 𝑊 1,𝑝([𝑡0, 𝑡𝑓 ],R𝑛), with 𝑇 (𝑓)(𝑡) :=∫︀ 𝑡
𝑡0

𝑓(𝜏)𝑑𝜏 . Then 𝑇 is linear and continuous since ‖𝑇 (𝑥 − 𝑦)‖∞ ≤
∫︀ 𝑡𝑓

𝑡0 |𝑥(𝑡) − 𝑦(𝑡)|𝑑𝑡 =
‖𝑥 − 𝑦‖1 ≤ 𝐶 · ‖𝑥 − 𝑦‖𝑝. Again, the Fréchet derivative 𝑇 ′(𝑥0) is 𝑇 itself.

2.19.3 Let 𝐹 𝜏 be the operator that evaluates a function in 𝑊 1,𝑝 at a given time 𝜏 , i.e.
𝐹 𝜏 : 𝑊 1,𝑝 → R𝑛, 𝑥 ↦→ 𝑥(𝜏). Then 𝐹 𝜏 is linear and differentiable with (𝐹 𝜏 )′(𝑥0) = 𝐹 𝜏 ,
since 𝐹 𝜏 is continuous with respect to this norm: Application of theorem 2.6 yields
‖𝐹 𝜏 (𝑥) − 𝐹 𝜏 (𝑦)‖ = ‖𝑥(𝜏) − 𝑦(𝜏)‖ ≤ ‖𝑥 − 𝑦‖∞ ≤ ‖𝑥 − 𝑦‖1,𝑝.

2.19.4 Let 𝑓 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R) and 𝐹 : 𝐿∞([𝑡0, 𝑡𝑓 ],R) → 𝐿∞([𝑡0, 𝑡𝑓 ],R), 𝑥(·) ↦→ 𝑓(·)𝑥(·).
Then 𝐹 is linear and continuous since

‖𝐹 (𝑦) − 𝐹 (𝑥)‖∞ = ‖𝑓(·)𝑦(·) − 𝑓(·)𝑥(·)‖∞ = ‖𝑓(·) [𝑦(·) − 𝑥(·)] ‖∞ ≤ ‖𝑓‖∞ · ‖𝑦 − 𝑥‖∞.

Example 2.20 (Examples: Differentiable operators)
2.20.1 Let 𝑛, 𝑚 ∈ N and 𝑓 : R × R𝑛 → R𝑚 such that 𝑓 is continuous and continuously
differentiable with respect to 𝑥. Then 𝑇 : 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛) → 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑚), defined by
𝑇 (𝑥)(𝑡) := 𝑓(𝑡, 𝑥(𝑡)), is continuously differentiable.

The Fréchet derivative is 𝑇 ′(𝑥0)(ℎ)(𝑡) = 𝑓 ′
𝑥(𝑡, 𝑥0(𝑡))ℎ(𝑡).

Proof.
2.20.1 Compare [KWW78, lemma 1.4a]. Obviously, 𝑇 ′(𝑥0) defined as

𝑇 ′(𝑥0)(ℎ)(𝑡) := 𝑓 ′
𝑥(𝑡, 𝑥0(𝑡))ℎ(𝑡)

is linear. It first remains to show that 𝑇 ′(𝑥0) is continuous with respect to ℎ, and
that (2.1) is satisfied. Finally, it is shown that the derivative is continuous (with
respect to 𝑥).

1. Continuity with respect to ℎ can be shown as follows:

‖𝑇 ′(𝑥0)(ℎ)‖∞ = ‖𝑓 ′
𝑥(·, 𝑥0(·))ℎ(·)‖∞

≤ ‖𝑓 ′
𝑥(·, 𝑥0(·))‖ℒ(𝐿∞,𝐿∞) · ‖ℎ‖∞

Now it holds that ‖𝑥0‖∞ ≤ 𝐶𝑥0 . Since 𝑓 ′
𝑥 is continuous, there exists a constant

𝐶𝑓 , such that |𝑓 ′
𝑥(𝑡, 𝑥)| ≤ 𝐶𝑓 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ], 𝑥 ≤ 𝐶𝑥0 , which yields:

‖𝑇 ′(𝑥0)(ℎ)‖∞ ≤ 𝐶𝑓‖ℎ‖∞

This shows that 𝑇 ′(𝑥0) is continuous.

2. For (2.1), consider

‖𝑇 (𝑥0 + ℎ)(𝑡) − 𝑇 (𝑥0)(𝑡) − 𝑇 ′(𝑥0)(ℎ)(𝑡)‖R𝑚

= ‖𝑓(𝑡, 𝑥0(𝑡) + ℎ(𝑡)) − 𝑓(𝑡, 𝑥0(𝑡)) − 𝑓 ′
𝑥(𝑡, 𝑥0(𝑡))ℎ(𝑡)‖R𝑚
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We use the mean value theorem to estimate the norm:

‖𝑇 (𝑥0 + ℎ)(𝑡) − 𝑇 (𝑥0)(𝑡) − 𝑇 ′(𝑥0)(ℎ)(𝑡)‖R𝑚

=
⃦⃦⃦⃦∫︁ 1

0
𝑓 ′

𝑥(𝑡, 𝑥0(𝑡) + 𝜏ℎ(𝑡))ℎ(𝑡)𝑑𝜏 − 𝑓 ′
𝑥(𝑡, 𝑥0(𝑡))ℎ(𝑡)

⃦⃦⃦⃦
R𝑚

=
⃦⃦⃦⃦∫︁ 1

0
𝑓 ′

𝑥(𝑡, 𝑥0(𝑡) + 𝜏ℎ(𝑡)) − 𝑓 ′
𝑥(𝑡, 𝑥0(𝑡))𝑑𝜏 · ℎ(𝑡)

⃦⃦⃦⃦
R𝑚

≤
⃦⃦⃦⃦∫︁ 1

0
𝑓 ′

𝑥(𝑡, 𝑥0(𝑡) + 𝜏ℎ(𝑡)) − 𝑓 ′
𝑥(𝑡, 𝑥0(𝑡))𝑑𝜏

⃦⃦⃦⃦
R𝑛×𝑚

· ‖ℎ(𝑡)‖R𝑚 (2.2)

Let 𝜏(𝑡) be defined as

𝜏(𝑡) := arg max
𝜏∈[0,1]

‖𝑓 ′
𝑥(𝑡, 𝑥0(𝑡) + 𝜏ℎ(𝑡)) − 𝑓 ′

𝑥(𝑡, 𝑥0(𝑡))‖R𝑛×𝑚 ,

and �̃�(𝑡) := 𝑥0(𝑡) + 𝜏ℎ(𝑡), so that �̃�(𝑡) ∈ [𝑥0(𝑡), 𝑥0(𝑡) + ℎ(𝑡)]. Therefore,
‖�̃�(𝑡) − 𝑥0(𝑡)‖ ≤ ‖ℎ‖∞ for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

Applying the essential supremum on both sides of inequality (2.2) and dividing
by ‖ℎ‖∞ yields

‖𝑇 (𝑥0 + ℎ) − 𝑇 (𝑥0) − 𝑇 ′(𝑥0)(ℎ)‖∞ · (‖ℎ‖∞)−1 ≤ ‖𝑓 ′
𝑥(·, �̃�(·)) − 𝑓 ′

𝑥(·, 𝑥0(·))‖∞,

For sufficiently small ℎ, (𝑡, 𝑥0(𝑡)) and (𝑡, �̃�(𝑡)) remain on the compact set
{(𝑡, 𝑥)|𝑡 ∈ [𝑡0, 𝑡𝑓 ], ‖𝑥(𝑡) − 𝑥0(𝑡)‖ ≤ 1}. According to Cantor’s theorem, 𝑓 ′

𝑥 is
uniformly continuous on this set, and it holds

lim
ℎ→0

‖𝑓 ′
𝑥(·, �̃�(·)) − 𝑓 ′

𝑥(·, 𝑥0(·))‖∞ = 0,

which shows that

lim
ℎ→0

‖𝑇 (𝑥0 + ℎ) − 𝑇 (𝑥0) − 𝑇 ′(𝑥0)(ℎ)‖∞ · (‖ℎ‖∞)−1 = 0.

3. For the continuity of 𝑇 ′ : 𝐿∞ → ℒ(𝐿∞, 𝐿∞), note that

‖𝑇 ′(𝑥) − 𝑇 ′(𝑦)‖ℒ(𝐿∞,𝐿∞) = sup
‖ℎ‖∞=1

‖[𝑓 ′
𝑥(·, 𝑥(·)) − 𝑓 ′

𝑥(·, 𝑦(·))]ℎ(·)‖∞

≤ sup
‖ℎ‖∞=1

‖𝑓 ′
𝑥(·, 𝑥(·)) − 𝑓 ′

𝑥(·, 𝑦(·))‖∞ · ‖ℎ(·)‖∞

= ‖𝑓 ′
𝑥(·, 𝑥(·)) − 𝑓 ′

𝑥(·, 𝑦(·))‖∞.

Hence, application of Cantor’s theorem yields

lim
𝑥→𝑦

‖𝑇 ′(𝑥) − 𝑇 ′(𝑦)‖ℒ(𝐿∞,𝐿∞) ≤ lim
𝑥→𝑦

‖𝑓 ′
𝑥(·, 𝑥(·)) − 𝑓 ′

𝑥(·, 𝑦(·))‖∞ = 0. �

The theorem below is cited from [Ger06, Theorem 2.2.8] and later used in the same context:
The theorem gives conditions under which the image of an operator is closed. These
assumptions are therefore useful for the proof of normality of optimality problems.
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Theorem 2.21
Let 𝑋 and 𝑌 be Banach spaces. Let 𝐹 : 𝑋 → 𝑌 × R𝑛 be defined by 𝐹 (𝑥) = (𝐺(𝑥), 𝐻(𝑥)),
where 𝐺 : 𝑋 → 𝑌 is a linear, continuous and surjective operator and 𝐻 : 𝑋 → R𝑛 is
linear and continuous. Then im(𝐹 ) is closed in 𝑌 × R𝑛.

The following is the implicit function theorem, which plays an important role for reg-
ularization of the complementarity systems as shown in chapter 5. The first part (the
existence) is cited from [Wer07, Theorem III.5.4]. The derivative of the implicitly defined
function 𝑔 can be obtained from deriving the equality 𝐹 (𝑥, 𝑔(𝑥)) = 0.
Theorem 2.22 (Implicit Function Theorem)
Let 𝑋, 𝑌 and 𝑍 be complete and 𝐹 : 𝑋 × 𝑌 ⊃ 𝑈 × 𝑉 → 𝑍 continuously differentiable with
𝐹 (𝑥0, 𝑦0) = 0. Let the derivative of 𝑦 ↦→ 𝐹 (𝑥0, 𝑦) be an isomorphism of 𝑌 on 𝑍. Then
there exist neighborhoods 𝑈0 of 𝑥0 and 𝑉0 of 𝑦0, such that for all 𝑥 ∈ 𝑈0, the equation
𝐹 (𝑥, 𝑦) = 0 has a unique solution 𝑦 =: 𝑔(𝑥) in 𝑉0, and the so defined function 𝑔 : 𝑈0 → 𝑉0
is continuously differentiable with 𝑔′

𝑥 = −𝐹 ′
𝑦

−1𝐹 ′
𝑥.

Carathéodory’s existence Theorem (cf. [Wal00, Theorem 18, p. 128]) ensures the existence
of solution to an initial value problem

�̇� = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑥(𝑡0) = 𝑥0 : (IVP)

Theorem 2.23 (Carathéodory’s Existence Theorem)
Let 𝑓 : R × R𝑛𝑥 × R𝑛𝑢 → R𝑛𝑥 be continuous and locally Lipschitz continuous in 𝑥, i.e. for
every 𝑅 > 0 there exists a constant 𝐿𝑅 > 0 such that

‖𝑓(𝑡, 𝑥1, 𝑢) − 𝑓(𝑡, 𝑥2, 𝑢)‖ ≤ 𝐿𝑅 · ‖𝑥1 − 𝑥2‖

for all 𝑥1, 𝑥2 ∈ R𝑛𝑥 and all 𝑢 ∈ R𝑛𝑢 with ‖𝑥1‖, ‖𝑥2‖, ‖𝑢‖ < 𝑅, everywhere in [𝑡0, 𝑡𝑓 ].
Then for any 𝑥0 ∈ R𝑛𝑥 and any control 𝑢 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑢) there exists a function
𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) that satisfies IVP for almost all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

In the following lemma, we examine linear boundary value problems. A more general
version of this lemma (with application to Differential Algebraic Equations) can be found
in [Ger06, Lemma 4.1.6].
Lemma 2.24
Let 𝐴 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑥), ℎ1 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥), 𝐶0, 𝐶𝑓 ∈ R𝑟×𝑛𝑥 and ℎ2 ∈ R𝑟. Consider
the linear boundary value problem

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ℎ1(𝑡)
ℎ2 = 𝐶0𝑥(𝑡0) + 𝐶𝑓𝑥(𝑡𝑓 ).

2.24.1 If the given problem is an initial value problem, i.e. 𝑟 = 𝑛𝑥, 𝐶0 = 𝐼 and 𝐶𝑓 = 0,
then there is a unique solution for 𝑥, given by

𝑥(𝑡) = Φ(𝑡)
(︂

ℎ2 +
∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏

)︂
.

Here, Φ denotes the fundamental solution of the differential equation, i.e. Φ(𝑡0) = 𝐼,
Φ′(𝑡) = 𝐴(𝑡)Φ(𝑡).
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2.1. Analysis

2.24.2 If
rank (𝐶0Φ(𝑡0) + 𝐶𝑓Φ(𝑡𝑓 )) = 𝑟,

where Φ again is the fundamental solution as above, then the boundary value problem has
a solution.

A parameter free version of the following lemma can be found in [Ger08]. This version
follows straightforwardly from the lemma since the estimate holds for each parameter.

Theorem 2.25 (boundary value problems)
Let 𝑃 be some arbitrary parameter set. Consider the boundary value problem 𝐺(𝑝)(𝜉) = 0,
defined by the parameterized operator

𝐺 : 𝑃 × 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛) → 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛) × R𝑚,

where
𝐺(𝑝)(𝜉) =

(︃
𝜉′(𝑡) − 𝐵(𝑝)(𝑡)𝜉(𝑡)
𝐸0𝜉(𝑡0) + 𝐸1𝜉(𝑡𝑓 )

)︃
.

Let the following assumptions be satisfied.

1. There exists 𝐶 such that for all 𝑝 ∈ 𝑃 and a.e. in [𝑡0, 𝑡𝑓 ] it holds ||𝐵(𝑝)(𝑡)|| ≤ 𝐶.

2. There exists 𝜅 > 0 such that for all 𝑝 ∈ 𝑃 and all 𝜁 ∈ R𝑛 it holds

||(𝐸0𝜃𝑝(𝑡0) + 𝐸1𝜃𝑝(𝑡𝑓 ))𝜁|| ≥ 𝜅||𝜁||,

where 𝜃𝑝 is a fundamental solution with 𝜃′
𝑝(𝑡) = 𝐵(𝑝)(𝑡)𝜃𝑝(𝑡), 𝜃𝑝(𝑡0) = 𝐼.

Then the inverse operator 𝐺(𝑝)−1 exists and it holds ||𝐺(𝑝)−1|| ≤ 𝐾 for some constant 𝐾,
independent from the parameter 𝑝.

For the following lemma is taken from [Kön00, p. 103]. The proof remains the same:
Lemma 2.26
Let 𝑋, 𝑌 be Banach. A Fréchet differentiable function 𝐹 : 𝑋 → 𝑌 with ‖𝐹 ′‖ℒ(𝑋,𝑌 ) ≤ 𝐿
for some 𝐿 > 0 is Lipschitz continuous, with

‖𝐹 (𝑥) − 𝐹 (𝑦)‖𝑌 ≤ 𝐿 · ‖𝑥 − 𝑦‖𝑋

Proof.
Let 𝛾(𝑡) := 𝑦 + 𝑡(𝑥 − 𝑦). For 𝜀 ∈ R let 𝐹𝜀 : [0, 1] → R,

𝐹𝜀(𝑡) := ‖𝐹 (𝛾(𝑡)) − 𝐹 (𝑦)‖𝑌 − 𝑡 · (𝐿 + 𝜀)‖𝑥 − 𝑦‖𝑋 .

Assume that 𝐹𝜀(1) > 0 for some 𝜀 > 0. Since 𝐹 is continuous, so is 𝐹𝜀, and hence there
exists a time 𝑡0 ∈ (0, 1], such that 𝐹 (𝑡0) < 𝐹 (𝑡) for all 𝑡 ∈ (𝑡0, 1].

Hence 𝐹𝜀(𝑡)−𝐹𝜀(𝑡0)
𝑡−𝑡0

> 0 for all 𝑡 ∈ (𝑡0, 1], and

0 <
𝐹𝜀(𝑡) − 𝐹𝜀(𝑡0)

𝑡 − 𝑡0
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2. Basics

= ‖𝐹 (𝛾(𝑡)) − 𝐹 (𝑦)‖𝑌 − ‖𝐹 (𝛾(𝑡0)) − 𝐹 (𝑦)‖𝑌

𝑡 − 𝑡0
− (𝐿 + 𝜀)‖𝑥 − 𝑦‖𝑋

≤ ‖𝐹 (𝛾(𝑡)) − 𝐹 (𝛾(𝑡0))‖𝑌

𝑡 − 𝑡0
− (𝐿 + 𝜀)‖𝑥 − 𝑦‖𝑋 ,

which implies that

(𝐿 + 𝜀)‖𝑥 − 𝑦‖𝑋 ≤ lim
𝑡↘𝑡0

‖𝐹 (𝛾(𝑡)) − 𝐹 (𝛾(𝑡0))‖𝑌

𝑡 − 𝑡0

At the same time, due to the definition of the derivative, it holds

lim
𝑡↘𝑡0

‖𝐹 (𝛾(𝑡)) − 𝐹 (𝛾(𝑡0))‖𝑌

𝑡 − 𝑡0
= ‖𝐹 ′(𝛾(𝑡0))(𝑥 − 𝑦)‖𝑌 ≤ 𝐿‖𝑥 − 𝑦‖𝑋 ,

and the last to inequalities are inconsistent.

Summarizing, it holds 𝐹𝜀(1) ≤ 0 for all 𝜀 > 0, which shows the assertion. �

2.2. Control Theory

The concept of controllability is used in various situations as a controllability assumption
is usually needed in order to assert regularity properties of the problem and its associated
multipliers. We will first briefly introduce the necessary concepts from control theory as
far as they are needed on the way to the definition of controllability.

The main merit of this introduction will be a weak regularity assumption for optimal
control problems that guarantees the validity of necessary optimal control conditions and
can even be checked in practice. The definitions and theorems can be found in [Son98].

Definition 2.27 (Continuous-time Control System)
Let 𝑥0 ∈ R𝑛𝑥 and 𝑓 : R × R𝑛𝑥 × R𝑛𝑢 → R𝑛𝑥 be continuous and continuously differentiable
with respect to 𝑥 and 𝑢, i.e., its second and third argument. Let [𝑡0, 𝑡𝑓 ] be an interval.

Let 𝜉(·, 𝑡*, 𝑥*, 𝑢) denote the solution of the initial value problem

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)),
𝑥(𝑡*) = 𝑥*.

Then the Σ𝑓 := ([𝑡0, 𝑡𝑓 ],R𝑛𝑥 ,R𝑛𝑢 , 𝜉), which consists of the time set, the state and control
space and the solution mapping of the ordinary differential equation, is called a continuous-
time control system with the right hand side 𝑓 .

Definition 2.28 (Linear Continuous-time Control System)
Let Σ𝑓 be a continuous-time control system, where the right hand side 𝑓 is in the form

𝑓(𝑡, 𝑥, 𝑢) = 𝐴(𝑡)𝑥 + 𝐵(𝑡)𝑢

with 𝐴 ∈ 𝒞1([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑥), 𝐵 ∈ 𝒞1([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑢).
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2.2. Control Theory

The terms “event” and “reachability” make the definition of controllability easier. The defi-
nitions chosen for this work applies the more general definitions in [Son98, Definition 3.1.1]
to the case of continuous-time control systems:

Definition 2.29 (Event, Reachability)
Let Σ𝑓 = ([𝑡0, 𝑡𝑓 ],R𝑛𝑥 ,R𝑛𝑢 , 𝜉) be a continuous-time control system.

An event is a pair (𝑥, 𝑡) ∈ R𝑛𝑥 × [𝑡0, 𝑡𝑓 ].

The event (𝑧, 𝜏) can be reached from the event (𝑥, 𝜎) if there is a path of Σ𝑓 on [𝜎, 𝜏 ] whose
initial state is 𝑥 and final state is 𝑧, that is, if there exists a 𝑢 : [𝜎, 𝜏) → R𝑛𝑢, such that

𝑧 = 𝜉(𝜏, 𝜎, 𝑥, 𝑢).

Definition 2.30 (Controllability)
The control system Σ𝑓 = ([𝑡0, 𝑡𝑓 ],R𝑛𝑥 ,R𝑛𝑢 , 𝜉) is controllable on the interval [𝜎, 𝜏 ] if for
each 𝑥, 𝑧 ∈ R𝑛𝑥 it holds that (𝑧, 𝜏) can be reached from (𝑥, 𝜎).

The last definition (cited from [Son98, Definition 3.1.6]) together with the definition of
linear continuous-time control systems, leads to the question under which conditions these
are controllable on the interval [𝑡0, 𝑡𝑓 ], since this question is particularly interesting for
developing necessary optimality conditions under mild assumptions. The following theorem
sums up the results from Proposition 3.5.16 and Corollary 3.5.18 and Remark 3.5.19 in
[Son98, p. 113, p. 115].

Theorem 2.31
Let Σ𝑓 be a continuous-time linear system with right hand side

𝑓(𝑡, 𝑥, 𝑢) = 𝐴(𝑡)𝑥 + 𝐵(𝑡)𝑢.

Let 𝑘 > 0 be an integer, such that 𝐴 ∈ 𝒞𝑘([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑥) and 𝐵 ∈ 𝒞𝑘([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑢).

For 𝑖 = 0, . . . , 𝑘 − 1 let

𝐵0(𝑡) := 𝐵(𝑡)

𝐵𝑖+1(𝑡) := 𝐴(𝑡)𝐵𝑖(𝑡) − 𝑑

𝑑𝑡
𝐵𝑖(𝑡)

If there exists 𝜏 ∈ [𝑡0, 𝑡𝑓 ], for which

rank[𝐵0(𝜏), 𝐵1(𝜏), . . . , 𝐵𝑘(𝜏)] = 𝑛𝑥,

then Σ𝑓 is controllable on [𝑡0, 𝑡𝑓 ].
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3. The Minimum Principle

3.1. The Optimal Control Problem and Infinite
Dimensional Optimalization Problems

The most important tool for analyzing Optimal Control Problems are necessary optimality
conditions. The general idea for proving necessary conditions in terms of a maximum
principle was first invented by Pontrjagin et al. [PBGM64]. Later, the principle was
adapted to many classes of problems. An overview of adaptions can be found in [HSV95]. In
[Ger06], optimality principles were proved for problems with either control-state constraints
or control set constraints.

The necessary conditions, that are derived in this section, will be applied to Linear
Quadratic Optimal Control Problems with pure state constraints and to problems with
control-state and control set constraints. The assumption that makes the problem accessible
for an analysis analogous to the one found in [Ger06, Chap. 4] is that the control set
constraint refers to components of the control that do not occur in the mixed control state
constraints. We consider the following OCP:

Problem 3.1 (Optimal Control Problem (OCP))

min! 𝐽(𝑥, 𝑢, 𝑣) := 𝜙(𝑥(𝑡0), 𝑥(𝑡𝑓 )) +
∫︁ 𝑡𝑓

𝑡0
𝑓0(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡))𝑑𝑡

with respect to the state function 𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥)
and the control functions 𝑢 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑢)

and 𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣)

subject to the differential equation

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)) a.e. in [𝑡0, 𝑡𝑓 ],

boundary conditions
Ψ(𝑥(𝑡0), 𝑥(𝑡𝑓 )) = 0,

mixed control state constraints for 𝑣

𝑐(𝑡, 𝑥(𝑡), 𝑣(𝑡)) ≤ 0,

pure state constraints
𝑠(𝑡, 𝑥(𝑡)) ≤ 0

and set constraints for 𝑢

𝑢(𝑡) ∈ 𝑈(𝑡) ⊂ R𝑛𝑢 a.e. in [𝑡0, 𝑡𝑓 ]
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Necessary optimality conditions are derived from conditions for infinite optimization
problems. Therefore, the objective function as well as the constraints have to be embedded
into suitable spaces. For simplicity, the following set is defined:

𝑈𝑎𝑑 := {𝜈 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑢)|𝜈(𝑡) ∈ 𝑈(𝑡) a.e. on [𝑡0, 𝑡𝑓 ]}.

In order to exploit Fréchet differentiability of the corresponding functions when applying
the necessary optimality conditions for optimization problems, the following smoothness
assumptions will be made:
Assumption 3.2 (Smoothness)
3.2.1 The function 𝜙 : (R𝑛𝑥)2 → R is differentiable.

3.2.2 The mapping 𝑓0 : [𝑡0, 𝑡𝑓 ] × R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑣 → R is continuous and continuously
differentiable with respect to (𝑥, 𝑢, 𝑣).

3.2.3 The ODE defining function 𝑓 : [𝑡0, 𝑡𝑓 ] × R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑣 → R𝑛𝑥 is continuous and
continuously differentiable with respect to (𝑥, 𝑢, 𝑣).

3.2.4 The function Ψ : (R𝑛𝑥)2 → R𝑛Ψ that defines the boundary conditions is continuously
differentiable.

3.2.5 The control state constraint 𝑐 : R×R𝑛𝑥 ×R𝑛𝑣 → R𝑛𝑐 is continuous and continuously
differentiable with respect to (𝑥, 𝑣), and the state constraint 𝑠 : R×R𝑛𝑥 → R𝑛𝑠 is continuous
and continuously differentiable with respect to 𝑥.

3.2.6 There exists a function �̂� ∈ 𝑈𝑎𝑑, such that 𝑢 ∈ 𝑈𝑎𝑑 for all 𝑢 with ||𝑢 − �̂�||∞ ≤ 𝜀 for
some 𝜀 > 0. The set 𝑈𝑎𝑑 is closed and convex.

The following Banach spaces will be used throughout the remainder of this chapter:
Definition 3.3 (The spaces 𝑋, 𝑌 , 𝑍, the cone 𝐾 and the admissible set 𝑆)
3.3.1 The space 𝑋 denotes the space of optimization variables, i.e. (𝑥, 𝑢, 𝑣) ∈ 𝑋, with

𝑋 := 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) × 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑢) × 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣).

Together with the norm

‖(𝑥, 𝑢, 𝑣)‖𝑋 := max{‖𝑥‖1,∞, ‖𝑢‖∞, ‖𝑣‖∞},

the tuple (𝑋, ‖ · ‖𝑋) becomes a Banach space.

3.3.2 The space 𝑍 will be used as an image space for the equality constraints,

𝑍 := 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) × R𝑛Ψ .

The natural norm that makes (𝑍, ‖ · ‖𝑍) a Banach space is

‖(𝑧1, 𝑧2)‖𝑍 := max{‖𝑧1‖∞, ‖𝑧2‖}.

The equality constraints can be expressed as 𝐻(𝑥, 𝑢, 𝑣) = 0 with

𝐻 := (𝐻1, 𝐻2) : 𝑋 → 𝑍,

𝐻1(𝑥, 𝑢, 𝑣) := 𝑓(·, 𝑥(·), 𝑢(·), 𝑣(·)) − �̇�(·),
𝐻2(𝑥, 𝑢, 𝑣) := −Ψ(𝑥(𝑡0), 𝑥(𝑡𝑓 )).

20



3.1. The Optimal Control Problem and Infinite Dimensional Optimalization Problems

3.3.3 The inequality constraints can be handled in a similar manner as above, introducing
the space 𝑌 and the cone 𝐾. Let

𝑌 := 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐) × 𝒞([𝑡0, 𝑡𝑓 ],R𝑛𝑠),

which is a Banach space with

‖(𝑦1, 𝑦2)‖𝑌 := max{‖𝑦1‖∞, ‖𝑦2‖∞}.

Let

𝐺 := (𝐺1, 𝐺2) : 𝑋 → 𝑌

𝐺1(𝑥, 𝑢, 𝑣) := −𝑐(·, 𝑥(·), 𝑣(·))
𝐺2(𝑥, 𝑢, 𝑣) := −𝑠(·, 𝑥(·)).

Using the cone 𝐾, defined as

𝐾 := 𝐾1 × 𝐾2 ⊂ 𝑌

𝐾1 := {𝑧 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐)|𝑧(𝑡) ≥ 0𝑛𝑐 a.e. in [𝑡𝑜, 𝑡𝑓 ]}
𝐾2 := {𝑧 ∈ 𝒞([𝑡0, 𝑡𝑓 ],R𝑛𝑠)|𝑧(𝑡) ≥ 0𝑛𝑠 a.e. in [𝑡0, 𝑡𝑓 ]},

the inequality constraints are equivalent to

𝐺(𝑥, 𝑢, 𝑣) ∈ 𝐾.

3.3.4 The set 𝑆 of admissible optimization variables is

𝑆 := 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) × 𝑈𝑎𝑑 × 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣).

Lemma 3.4 (Properties)
3.4.1 The objective function 𝐽 : 𝑋 → R is Fréchet differentiable if the smoothness As-
sumptions 3.2.1 and 3.2.2 hold, with derivative

𝐽 ′(�̂�, �̂�, 𝑣)(𝑥, 𝑢, 𝑣) = 𝜙′
𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 ))𝑥(𝑡0) + 𝜙′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 ))𝑥(𝑡𝑓 )

+
∫︁ 𝑡𝑓

𝑡0
𝑓0

′
𝑥(𝑡, �̂�, �̂�, 𝑣)𝑥(𝑡) + 𝑓0

′
𝑢(𝑡, �̂�, �̂�, 𝑣)𝑢(𝑡) + 𝑓0

′
𝑣(𝑡, �̂�, �̂�, 𝑣)𝑣(𝑡)𝑑𝑡.

3.4.2 If Assumptions 3.2.3 and 3.2.4 hold, then 𝐻 is continuously Fréchet differentiable,
and 𝐻 ′ = (𝐻 ′

1, 𝐻 ′
2) with

𝐻 ′
1(�̂�, �̂�, 𝑣)(𝑥, 𝑢, 𝑣) =𝑓 ′

𝑥(·, �̂�(·), �̂�(·), 𝑣(·))𝑥(·) + 𝑓 ′
𝑢(·, �̂�(·), �̂�(·), 𝑣(·))𝑢(·)

+ 𝑓 ′
𝑣(·, �̂�(·), �̂�(·), 𝑣(·))𝑣(·) − �̇�(·)

𝐻 ′
2(�̂�, �̂�, 𝑣)(𝑥, 𝑢, 𝑣) = − Ψ′

𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 ))𝑥(𝑡0) − Ψ′
𝑥𝑓

(�̂�(𝑡0), �̂�(𝑡𝑓 ))𝑥(𝑡𝑓 ).

3.4.3 𝐺 is continuously Fréchet differentiable if Assumption 3.2.5 holds, with

𝐺′ = (𝐺′
1, 𝐺′

2),
𝐺′

1(�̂�, �̂�, 𝑣)(𝑥, 𝑢, 𝑣) = −𝑐′
𝑥(·, �̂�(·), 𝑣(·))𝑥(·) − 𝑐′

𝑣(·, �̂�(·), 𝑣(·))𝑣(·),
𝐺′

2(�̂�, �̂�, 𝑣)(𝑥, 𝑢, 𝑣) = −𝑠′
𝑥(·, �̂�(·))𝑥(·).
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3.4.4 If Assumption 3.2.6 holds, then int(𝑆) ̸= ∅.

3.4.5 Under Assumption 3.2.3, im(𝐻 ′) is closed.

Proof.
3.4.1 Let

𝐽1 : 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) → R2𝑛𝑥 𝑥 ↦→ (𝑥(𝑡0), 𝑥(𝑡𝑓 )),
𝐽2 : R2𝑛𝑥 → R (𝑥0, 𝑥𝑓 ) ↦→ 𝜙(𝑥0, 𝑥𝑓 ).
Furthermore, let
𝐽3 : 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥+𝑛𝑢+𝑛𝑣) → 𝐿∞([𝑡0, 𝑡𝑓 ],R)

(𝑥(·), 𝑢(·), 𝑣(·)) ↦→ 𝑓0(·, 𝑥(·), 𝑢(·), 𝑣(·)),
𝐽4 : 𝐿∞([𝑡0, 𝑡𝑓 ],R) → 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R) 𝑓 ↦→

∫︀ ·
𝑡0

𝑓(𝜏)𝑑𝜏,
𝐽5 : 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R) → R 𝑓 ↦→ 𝑓(𝑡𝑓 ).

Then 𝐽 can be seen as the composition and sum 𝐽 = 𝐽2 ∘ 𝐽1 + 𝐽5 ∘ 𝐽4 ∘ 𝐽3. Each
component is Fréchet differentiable according to Examples 2.20.1 (𝐽3), 2.19.3 (𝐽1, 𝐽5),
2.19.2 (𝐽4) and Lemma 2.18. The composition then is differentiable by Lemma 2.17.

The smoothness assertions in 3.4.2 and 3.4.3 follow analogously. The assertion 3.4.4 is
equivalent to Assumption 3.2.6.

Finally, Lemma 2.24.1 shows that 𝐻1 is surjective. Since 𝐻1 and 𝐻2 are linear and
continuous, Theorem 2.21 yields that im(𝐻 ′) is closed, as claimed in 3.4.5. �

The resulting optimization problem in infinite dimensional spaces (OP) reads

Problem 3.5 (OP)

min! 𝐹 (𝑥, 𝑢, 𝑣)

with respect to the variables (𝑥, 𝑢, 𝑣) ∈ 𝑋

subject to the conical constraints

𝐺(𝑥, 𝑢, 𝑣) ∈ 𝐾

equality constraints

𝐻(𝑥, 𝑢, 𝑣) = 0

and set constraints

(𝑥, 𝑢, 𝑣) ∈ 𝑆

The following necessary optimality conditions [Ger06, Th. 3.4.2] hold for infinite dimen-
sional optimization problems in the form of OP:
Theorem 3.6
Let 𝐹 : 𝑋 → R and 𝐺 : 𝑋 → 𝑌 be Fréchet differentiable and 𝐻 : 𝑋 → 𝑍 continuously
Fréchet differentiable. Let �̂� ∈ 𝑋 be a local minimum of OP, int(𝑆) ̸= ∅ and int(𝐾) ̸= ∅.
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3.2. Smoothness and representation of the multipliers

Let 𝑆 be a closed and convex set and 𝐾 a closed convex cone. Assume that im(𝐻 ′(�̂�)) is not
a proper dense subset of 𝑍. Then there exist nontrivial multipliers (𝑙0, 𝜆*, 𝜇*) ∈ R×𝑌 *×𝑍*,
(𝑙0, 𝜆*, 𝜇*) ̸= 0, such that

𝑙0 ≥ 0
𝜆* ∈ 𝐾+

𝜆*(𝐺(�̂�)) = 0
𝑙0𝐹

′(�̂�)(𝑑) − 𝜆*(𝐺(�̂�))(𝑑) − 𝜇*(𝐻(�̂�))(𝑑) ≥ 0 ∀𝑑 ∈ 𝑆 − {�̂�}

Using Definition 3.3, our aim is to derive necessary optimality conditions for Problem 3.1
from Theorem 3.6. According to Lemma 3.4, the differentiability assumptions as well as
the condition int(𝑆) ̸= ∅ are already satisfied if Assumption 3.2 holds.

Applying Theorem 3.6 to the spaces and operators defined in Definition 3.3 leads to the
corollary

Corollary 3.7
Let the smoothness Assumptions 3.2 hold for the OCP and int(𝐾) ̸= ∅. Let (�̂�, �̂�, 𝑣) ∈ 𝑋
be a local weak minimum.

Then there exist nontrivial multipliers 𝑙0 ∈ R, 𝜂* ∈ 𝑌 * and 𝜆* ∈ 𝑍*, such that

𝑙0 ≥ 0
𝜂* ∈ 𝐾+

𝜂*(𝐺(�̂�, �̂�, 𝑣)) = 0
𝑙0𝐹

′(�̂�, �̂�, 𝑣)(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)
−𝜂*(𝐺′(�̂�, �̂�, 𝑣)(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣))
−𝜆*(𝐻 ′(�̂�, �̂�, 𝑣)(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)) ≥ 0 ∀(𝑥, 𝑢, 𝑣) ∈ 𝑆.

3.2. Smoothness and representation of the
multipliers

In this section, representations for the multipliers from Corollary 3.7 as measurable
functions and functions of bounded variation are derived in contrast to their representation
as elements of the dual spaces 𝑌 * and 𝑍*.

Let an OCP in the form of Problem 3.1 be given, where all functions fulfill the smoothness
Assumptions 3.2. Let (�̂�, �̂�, 𝑣) ∈ 𝑋 be a weak local minimum, and let 𝑙0 ∈ R, 𝜂* ∈ 𝑌 * and
𝜆* ∈ 𝑍* be multipliers with

𝑙0 ≥ 0 (3.1)
𝜂* ∈ 𝐾+ (3.2)

𝜂*(𝐺(�̂�, �̂�, 𝑣)) = 0 (3.3)
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𝑙0𝐹
′(�̂�, �̂�, 𝑣)(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)

−𝜂*(𝐺′(�̂�, �̂�, 𝑣)(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣))
−𝜆*(𝐻 ′(�̂�, �̂�, 𝑣)(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)) ≥ 0 ∀(𝑥, 𝑢, 𝑣) ∈ 𝑆.

(3.4)

Riesz’ Theorem 2.15 yields another representation for the second component of the
multiplier 𝜂* ∈ 𝑌 * with 𝜂* = (𝜂*

1, 𝜂*
2) ∈ (𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐))* × (𝒞([𝑡0, 𝑡𝑓 ],R𝑛𝑠))*: According

to Theorem 2.15, there exist unique functions 𝜇𝑖 ∈ 𝑁𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R), 𝑖 = 1, ..., 𝑛𝑠 with

𝜂*
2(𝑓) =

𝑛𝑠∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑓𝑖(𝑡)𝑑𝜇𝑖(𝑡).

The second component of the multiplier 𝜆* ∈ 𝑍* also has a simple representation, since

𝜆* =: (𝜆*
𝑓 , 𝜎) ∈ (𝐿∞([𝑡𝑜, 𝑡𝑓 ],R𝑛𝑥))* × R𝑛Ψ .

If the inequality (3.4) is satisfied for all (𝑥, 𝑢, 𝑣) ∈ 𝑆, then by setting 𝑢 = �̂�, 𝑣 = 𝑣 it
follows:

𝑙0𝐹
′
𝑥(�̂�, �̂�, 𝑣)(𝑥 − �̂�) − 𝜂* (𝐺′

𝑥(�̂�, �̂�, 𝑣)(𝑥 − �̂�)) − 𝜆* (𝐻 ′
𝑥(�̂�, �̂�, 𝑣)(𝑥 − �̂�)) ≥ 0

∀𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥),

which is equivalent to

(𝑙0𝜙′
𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )))𝑥(𝑡0)
+(𝑙0𝜙′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )))𝑥(𝑡𝑓 )

+
∫︁ 𝑡𝑓

𝑡0
𝑙0𝑓0

′
𝑥(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡))𝑥(𝑡)𝑑𝑡 +

𝑛𝑠∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖

′
𝑥(𝑡, �̂�(𝑡))𝑥(𝑡)𝑑𝜇𝑖(𝑡)

+𝜂*
1 (𝑐′

𝑥(·, �̂�(·), 𝑣(·))𝑥) + 𝜆*
𝑓 (�̇� − 𝑓 ′

𝑥(·, �̂�(·), �̂�(·), 𝑣(·))𝑥) = 0 ∀𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥).

(3.5)

Analogously, setting 𝑥 = �̂�, 𝑢 = �̂� yields

𝑙0

∫︁ 𝑡𝑓

𝑡0
𝑓0

′
𝑣(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡))𝑣(𝑡)𝑑𝑡 + 𝜂*

1 (𝑐′
𝑣(·, �̂�(·), 𝑣(·))𝑣) − 𝜆*

𝑓 (𝑓 ′
𝑣(·, �̂�(·), �̂�(·), 𝑣(·))𝑣) = 0

∀𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣), (3.6)

and finally, with 𝑥 = �̂�, 𝑣 = 𝑣 it follows from (3.4) that

𝑙0

∫︁ 𝑡𝑓

𝑡0
𝑓0

′
𝑢(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡))𝑢(𝑡)𝑑𝑡 − 𝜆*

𝑓 (𝑓 ′
𝑢(·, �̂�(·), �̂�(·), 𝑣(·))𝑢) ≥ 0 ∀𝑢 ∈ 𝑈𝑎𝑑 − {�̂�}.

(3.7)

For further investigation of the smoothness of the multipliers, equation (3.5) is analyzed,
introducing �̄� as the solution of the initial value problem

�̇� = 𝑓 ′
𝑥[𝑡]𝑥 + ℎ1(𝑡), 𝑥(𝑡0) = 0 (3.8)

24



3.2. Smoothness and representation of the multipliers

with an arbitrary function ℎ1 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥). Here, the expression 𝑓 ′
𝑥[𝑡] denotes the

function 𝑓 ′
𝑥 along the weak local minimum (�̂�, �̂�, 𝑣), i.e. 𝑓 ′

𝑥[𝑡] := 𝑓 ′
𝑥(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡)).

Analogous notations will from now on be used for 𝑓 , 𝑠 and 𝑐. Also, the dependence of 𝜙
and Ψ on variables will be omitted when they are evaluated in (�̂�(𝑡0), �̂�(𝑡𝑓 )).

According to Lemma 2.24, the solution of (3.8) is

�̄�(𝑡) = Φ(𝑡)
∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏,

where Φ solves Φ(0) = 𝐼, Φ′(𝑡) = 𝑓 ′
𝑥[𝑡]Φ(𝑡).

Hence, substituting 𝑥 in (3.5) with �̄� yields

0 = (𝑙0𝜙′
𝑥𝑓

+ 𝜎⊤Ψ′
𝑥𝑓

)Φ(𝑡𝑓 )
∫︁ 𝑡𝑓

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏

+
∫︁ 𝑡𝑓

𝑡0
𝑙0𝑓0

′
𝑥[𝑡]Φ(𝑡)

∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏𝑑𝑡

+
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖

′
𝑥[𝑡]Φ(𝑡)

∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏𝑑𝜇𝑖(𝑡)

+ 𝜂*
1

(︂
𝑐′

𝑥Φ(·)
∫︁ ·

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏

)︂
+ 𝜆*

𝑓 (ℎ1) .

(3.9)

Integration by parts of the second term of the right hand side leads to∫︁ 𝑡𝑓

𝑡0
𝑙0𝑓0

′
𝑥[𝑡]Φ(𝑡)

(︂∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏

)︂
𝑑𝑡

=
[︂(︂∫︁ 𝑡

𝑡0
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏

)︂
·
(︂∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏

)︂]︂𝑡𝑓

𝑡0

−
∫︁ 𝑡𝑓

𝑡0

(︂∫︁ 𝑡

𝑡0
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏

)︂
Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

=
∫︁ 𝑡𝑓

𝑡0
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 ·

∫︁ 𝑡𝑓

𝑡0
Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0

∫︁ 𝑡

𝑡0
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 · Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

=
∫︁ 𝑡𝑓

𝑡0

∫︁ 𝑡𝑓

𝑡0
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 · Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0

∫︁ 𝑡

𝑡0
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 · Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

=
∫︁ 𝑡𝑓

𝑡0

∫︁ 𝑡𝑓

𝑡
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 · Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

For processing the third term
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖

′
𝑥[𝑡]Φ(𝑡)

∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏𝑑𝜇𝑖(𝑡),
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we first make the following general observation: For three arbitrary functions 𝑎, 𝑏 and 𝜇,
𝑎 ∈ 𝒞([𝑡0, 𝑡𝑓 ],R𝑛), 𝑏 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛), 𝜇 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ]), it holds∫︁ 𝑡𝑓

𝑡0
𝑎(𝑡)⊤𝑏(𝑡)𝑑𝜇(𝑡) =

∫︁ 𝑡𝑓

𝑡0

𝑛∑︁
𝑖=1

𝑎𝑖(𝑡)𝑏𝑖(𝑡)𝑑𝜇(𝑡)

=
𝑛∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑎𝑖(𝑡)𝑏𝑖(𝑡)𝑑𝜇(𝑡),

and by Lemma 2.13, we deduce:
∫︁ 𝑡𝑓

𝑡0
𝑎(𝑡)⊤𝑏(𝑡)𝑑𝜇(𝑡) =

𝑛∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑏𝑖(𝑡)𝑑

(︂∫︁ 𝑡

𝑡0
𝑎𝑖(𝜏)𝑑𝜇(𝜏)

)︂
.

Using integration by parts for the Stieltjes integral shows that:
∫︁ 𝑡𝑓

𝑡0
𝑎(𝑡)⊤𝑏(𝑡)𝑑𝜇(𝑡) =

𝑛∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑎𝑖(𝜏)𝑑𝜇(𝜏) · 𝑏𝑖(𝑡𝑓 ) −

𝑛∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0

(︂∫︁ 𝑡

𝑡0
𝑎𝑖(𝜏)𝑑𝜇(𝜏)

)︂
𝑑𝑏𝑖(𝑡)

=
(︂∫︁ 𝑡𝑓

𝑡0
𝑎(𝜏)⊤𝑑𝜇(𝜏)

)︂
· 𝑏(𝑡𝑓 ) −

∫︁ 𝑡𝑓

𝑡0

(︂∫︁ 𝑡

𝑡0
𝑎(𝜏)⊤𝑑𝜇(𝜏)

)︂
𝑏′(𝑡)𝑑𝑡.

Now, inserting

𝑎(𝑡) := (𝑠𝑖
′
𝑥[𝑡]Φ(𝑡))⊤

and 𝑏(𝑡) :=
∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏

into this formula yields:∫︁ 𝑡𝑓

𝑡0
𝑠𝑖

′
𝑥[𝑡]Φ(𝑡)

∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏𝑑𝜇𝑖(𝑡) =

(︂∫︁ 𝑡𝑓

𝑡0
𝑠𝑖

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜇𝑖(𝜏)

)︂
·
∫︁ 𝑡𝑓

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏

−
∫︁ 𝑡𝑓

𝑡0

(︂∫︁ 𝑡

𝑡0
𝑠𝑖

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜇𝑖(𝜏)

)︂
Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

=
∫︁ 𝑡𝑓

𝑡0

∫︁ 𝑡𝑓

𝑡
𝑠𝑖

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜇𝑖(𝜏)Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡.

Next, both substitutions are inserted in (3.9):

0 =(𝑙0𝜙′
𝑥𝑓

+ 𝜎⊤Ψ′
𝑥𝑓

)Φ(𝑡𝑓 )
∫︁ 𝑡𝑓

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏

+
∫︁ 𝑡𝑓

𝑡0

∫︁ 𝑡𝑓

𝑡
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 · Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

+
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0

∫︁ 𝑡𝑓

𝑡
𝑠𝑖

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜇𝑖(𝜏)Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

+ 𝜂*
1 (𝑐′

𝑥[·]�̄�(·)) + 𝜆*
𝑓 (ℎ1)

=
∫︁ 𝑡𝑓

𝑡0

[︃
(𝑙0𝜙′

𝑥𝑓
+ 𝜎⊤Ψ′

𝑥𝑓
)Φ(𝑡𝑓 ) +

∫︁ 𝑡𝑓

𝑡
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏

26



3.2. Smoothness and representation of the multipliers

+
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡
𝑠𝑖

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜇𝑖(𝜏)

]︃
· Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡

+ 𝜂*
1 (𝑐′

𝑥[·]�̄�(·)) + 𝜆*
𝑓 (ℎ1)

This can be written equivalently as∫︁ 𝑡𝑓

𝑡0
𝑝𝑓 (𝑡)⊤ℎ1(𝑡)𝑑𝑡 + 𝜂*

1 (𝑐′
𝑥[·]�̄�(·)) + 𝜆*

𝑓 (ℎ1) = 0, (3.10)

where

𝑝𝑓 (𝑡)⊤ :=
(︃

(𝑙0𝜙′
𝑥𝑓

+ 𝜎⊤Ψ′
𝑥𝑓

)Φ(𝑡𝑓 ) +
∫︁ 𝑡𝑓

𝑡
𝑙0𝑓0

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 +

𝑛𝑠∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡
𝑠𝑖

′
𝑥[𝜏 ]Φ(𝜏)𝑑𝜇𝑖(𝜏)

]︃
· Φ−1(𝑡).

Definition 3.8 (Pseudo Inverse)
The notation (·)+ is used for the pseudo inverse of a matrix, i.e. (𝐴)+ := 𝐴⊤(𝐴𝐴⊤)−1 for
𝐴 ∈ R𝑚×𝑛, if 𝐴𝐴⊤ is invertible.
Lemma 3.9 (Existence of the Pseudo Inverse)
Let 𝐴 : R → R𝑚×𝑛, 𝑛 ≥ 𝑚, and assume that there exists a constant 𝐶 ≥ 0, such that⃦⃦⃦

𝐴(𝑡)⊤𝑥
⃦⃦⃦

≥ 𝐶‖𝑥‖ ∀𝑡 ∈ R, 𝑥 ∈ R𝑚.

Then the pseudo inverse of 𝐴(𝑡) exists for all times 𝑡, and ‖(𝐴(𝑡))+‖ ≤ 𝐶2 for some
𝐶2 ∈ R.
Proof.
The fact that for any 𝑡 it holds

⃦⃦⃦
𝐴(𝑡)⊤𝑥

⃦⃦⃦2
= 𝑥⊤𝐴(𝑡)𝐴(𝑡)⊤𝑥 ≥ 𝐶2‖𝑥‖2 shows that the

minimal eigenvalue of 𝐴(𝑡)𝐴(𝑡)⊤ (which is a symmetric matrix) is 𝜆min ≥ 𝐶2, hence its
inverse exists and is bounded. �
Corollary 3.10
Let an OCP in the form of Problem 3.1 be given, where all functions fulfill the smoothness
Assumptions 3.2. Let (�̂�, �̂�, 𝑣) ∈ 𝑋 be a weak local minimum, let 𝑙0 ∈ R, 𝜂* ∈ 𝑌 * and
𝜆* ∈ 𝑍* be multipliers that solve (3.1)–(3.4). Further assume that the pseudo inverse (𝑐′

𝑣[𝑡])+

exists and that ‖(𝑐′
𝑣[𝑡])+‖ ≤ 𝐶 holds for some 𝐶 ∈ R for almost all times 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

Then there exist functions 𝑝𝑓 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑥) and 𝜂 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐) with

𝜂*
1(𝑘) =

∫︁ 𝑡𝑓

𝑡0
𝜂(𝑡)⊤𝑘(𝑡)𝑑𝑡 ∀𝑘 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐) (3.11)

𝜆*
𝑓 (ℎ1) = −

∫︁ 𝑡𝑓

𝑡0
𝑝𝑓 (𝑡)⊤ℎ1(𝑡)𝑑𝑡 ∀ℎ1 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥), (3.12)

where 𝜂*
1 and 𝜆*

𝑓 satisfy (3.5) and (3.6).
Proof.

1. Equation (3.10) holds for every ℎ1 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) and �̄� being the solution of the
initial value problem (3.8). Inserting ℎ1(𝑡) := 𝑓 ′

𝑣[𝑡]𝑣(𝑡) into this equation yields

0 = 𝜆*
𝑓 (𝑓 ′

𝑣[·]𝑣(·)) +
∫︁ 𝑡𝑓

𝑡0
𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡]𝑣(𝑡)𝑑𝑡 + 𝜂*
1 (𝑐′

𝑥[·]�̄�(·)) .
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Now insert the resulting expression for 𝜆*
𝑓 (𝑓 ′

𝑣[·]𝑣(·)) into (3.6):

0 =
∫︁ 𝑡𝑓

𝑡0
𝑙0𝑓0

′
𝑣[𝑡]𝑣(𝑡)𝑑𝑡 + 𝜂*

1(𝑐′
𝑣[·]𝑣(·) + 𝑐′

𝑥[·]�̄�(·)) +
∫︁ 𝑡𝑓

𝑡0
𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡]𝑣(𝑡)𝑑𝑡. (3.13)

Let 𝑘 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐) be arbitrary. The equation

𝑘(𝑡) = 𝑐′
𝑥[𝑡]�̄�(𝑡) + 𝑐′

𝑣[𝑡]𝑣(𝑡)

can be solved for 𝑣 due to the assumption that ‖(𝑐′
𝑣[𝑡])+‖ ≤ 𝐶: Let

𝑣(𝑡) := (𝑐′
𝑣[𝑡])+(𝑘(𝑡) − 𝑐′

𝑥[𝑡]�̄�(𝑡)).

Inserting 𝑣 into (3.13) yields

0 =
∫︁ 𝑡𝑓

𝑡0
(𝑙0𝑓0

′
𝑣[𝑡] + 𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡])(𝑐′
𝑣[𝑡])+(𝑘(𝑡) − 𝑐′

𝑥[𝑡]�̄�(𝑡))𝑑𝑡 + 𝜂*
1 (𝑘) . (3.14)

Finally, �̄� can also be expressed as a function dependent on 𝑘,

˙̄𝑥(𝑡) = 𝑓 ′
𝑥[𝑡]�̄�(𝑡) + 𝑓 ′

𝑣[𝑡]𝑣(𝑡)
= 𝑓 ′

𝑥[𝑡]�̄�(𝑡) + 𝑓 ′
𝑣[𝑡](𝑐′

𝑣[𝑡])+(𝑘(𝑡) − 𝑐′
𝑥[𝑡]�̄�(𝑡))

= (𝑓 ′
𝑥[𝑡] − 𝑓 ′

𝑣[𝑡](𝑐′
𝑣[𝑡])+𝑐′

𝑥[𝑡])�̄�(𝑡) + 𝑓 ′
𝑣[𝑡](𝑐′

𝑣[𝑡])+𝑘(𝑡)
= 𝑓𝑥(𝑡)�̄�(𝑡) + 𝑓𝑘(𝑡)𝑘(𝑡),

where 𝑓𝑥(𝑡) := 𝑓 ′
𝑥[𝑡] − 𝑓 ′

𝑣[𝑡](𝑐′
𝑣[𝑡])+𝑐′

𝑥[𝑡] and 𝑓𝑘(𝑡) := 𝑓 ′
𝑣[𝑡](𝑐′

𝑣[𝑡])+.

The solution �̄� of the initial value problem can be expressed depending on 𝑘 as

�̄�(𝑡) = Φ̂(𝑡)
∫︁ 𝑡

𝑡0
Φ̂−1(𝜏)𝑓𝑘(𝜏)𝑘(𝜏)𝑑𝜏

with Φ̂(0) = 𝐼, Φ̂′(𝑡) = 𝑓𝑥(𝑡)Φ̂(𝑡).

Inserting �̄� into (3.14) yields:

0 =
∫︁ 𝑡𝑓

𝑡0
(𝑙0𝑓0

′
𝑣[𝑡] + 𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡])(𝑐′
𝑣[𝑡])+

(︂
𝑘(𝑡) − 𝑐′

𝑥[𝑡]Φ̂(𝑡)
∫︁ 𝑡

𝑡0
Φ̂−1(𝜏)𝑓𝑘(𝜏)𝑘(𝜏)𝑑𝜏

)︂
𝑑𝑡

+ 𝜂*
1 (𝑘)

=
∫︁ 𝑡𝑓

𝑡0
(𝑙0𝑓0

′
𝑣[𝑡] + 𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡])(𝑐′
𝑣[𝑡])+𝑘(𝑡)𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
(𝑙0𝑓0

′
𝑣[𝑡] + 𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡])(𝑐′
𝑣[𝑡])+𝑐′

𝑥[𝑡]Φ̂(𝑡)
(︂∫︁ 𝑡

𝑡0
Φ̂−1(𝜏)𝑓𝑘(𝜏)𝑘(𝜏)𝑑𝜏

)︂
𝑑𝑡

+ 𝜂*
1 (𝑘) ,

integration by parts shows that:

0 =
∫︁ 𝑡𝑓

𝑡0
(𝑙0𝑓0

′
𝑣[𝑡] + 𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡])(𝑐′
𝑣[𝑡])+𝑘(𝑡)𝑑𝑡
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−
∫︁ 𝑡𝑓

𝑡0

(︂∫︁ 𝑡𝑓

𝑡
(𝑙0𝑓0

′
𝑣[𝜏 ] + 𝑝𝑓 (𝜏)⊤𝑓 ′

𝑣[𝜏 ])(𝑐′
𝑣[𝜏 ])+𝑐′

𝑥[𝜏 ]Φ̂(𝜏)𝑑𝜏
)︂

Φ̂−1(𝑡)𝑓𝑘(𝑡)𝑘(𝑡)𝑑𝑡

+ 𝜂*
1 (𝑘)

=
∫︁ 𝑡𝑓

𝑡0

⎡⎣(𝑙0𝑓0
′
𝑣[𝑡] + 𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡])(𝑐′
𝑣[𝑡])+

−
(︂∫︁ 𝑡𝑓

𝑡
(𝑙0𝑓0

′
𝑣[𝜏 ] + 𝑝𝑓 (𝜏)⊤𝑓 ′

𝑣[𝜏 ])(𝑐′
𝑣[𝜏 ])+𝑐′

𝑥[𝜏 ]Φ̂(𝜏)𝑑𝜏
)︂

Φ̂−1(𝑡)𝑓𝑘(𝑡)
⎤⎦𝑘(𝑡)𝑑𝑡

+ 𝜂*
1 (𝑘) .

Setting

𝜂(𝑡)⊤ := − (𝑙0𝑓0
′
𝑣[𝑡] + 𝑝𝑓 (𝑡)⊤𝑓 ′

𝑣[𝑡])(𝑐′
𝑣[𝑡])+

+
(︂∫︁ 𝑡𝑓

𝑡
(𝑙0𝑓0

′
𝑣[𝜏 ] + 𝑝𝑓 (𝜏)⊤𝑓 ′

𝑣[𝜏 ])(𝑐′
𝑣[𝜏 ])+𝑐′

𝑥[𝜏 ]Φ̂(𝜏)𝑑𝜏
)︂

Φ̂−1(𝑡)𝑓𝑘(𝑡),

the multiplier 𝜂*
1 possesses the representation

𝜂*
1(𝑘) =

∫︁ 𝑡𝑓

𝑡0
𝜂(𝑡)⊤𝑘(𝑡)𝑑𝑡

for all 𝑘 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐 , this is equation (3.11).

2. With the first assertion, 3.10 becomes:∫︁ 𝑡𝑓

𝑡0
𝑝𝑓 (𝑡)⊤ℎ1(𝑡)𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
𝜂(𝑡)⊤𝑐′

𝑥[𝑡]�̄�(𝑡)𝑑𝑡 + 𝜆*
𝑓 (ℎ1) = 0.

Again, this equation holds for general ℎ1 and �̄� satisfying

�̇�(𝑡) = 𝑓 ′
𝑥[𝑡]𝑥(𝑡) + ℎ1(𝑡), 𝑥(𝑡0) = 0.

The solution �̄� of this initial value problem is inserted:

0 =
∫︁ 𝑡𝑓

𝑡0
𝑝𝑓 (𝑡)⊤ℎ1(𝑡)𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
𝜂(𝑡)⊤𝑐′

𝑥[𝑡]Φ(𝑡)
∫︁ 𝑡

𝑡0
Φ−1(𝜏)ℎ1(𝜏)𝑑𝜏𝑑𝑡 + 𝜆*

𝑓 (ℎ1) ,

=
∫︁ 𝑡𝑓

𝑡0
𝑝𝑓 (𝑡)⊤ℎ1(𝑡)𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0

∫︁ 𝑡𝑓

𝑡
𝜂(𝜏)⊤𝑐′

𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 · Φ−1(𝑡)ℎ1(𝑡)𝑑𝑡 + 𝜆*
𝑓 (ℎ1)

=
∫︁ 𝑡𝑓

𝑡0

(︂
𝑝𝑓 (𝑡)⊤ +

∫︁ 𝑡𝑓

𝑡
𝜂(𝜏)⊤𝑐′

𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 · Φ−1(𝑡)
)︂

ℎ1(𝑡)𝑑𝑡 + 𝜆*
𝑓 (ℎ1)

This shows that

𝑝𝑓 (𝑡)⊤ :=𝑝𝑓 (𝑡)⊤ +
∫︁ 𝑡𝑓

𝑡
𝜂(𝜏)⊤𝑐′

𝑥[𝜏 ]Φ(𝜏)𝑑𝜏 · Φ−1(𝑡)

satisfies equation (3.12) for arbitrary ℎ1 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥), and since 𝑝𝑓 is of bounded
variation, so is 𝑝𝑓 . �
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3.3. Minimum principle for OCP

The smoothness results of Corollary 3.10, together with some variational deliberations,
lead to Theorem 3.15. The following lemma cited from [Ger06, section 2.8] are needed as
background for the proof:
Lemma 3.11
Let 𝑓, 𝑔 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R), 𝑠 ∈ 𝒞([𝑡0, 𝑡𝑓 ],R) and 𝜇 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R). If∫︁ 𝑡𝑓

𝑡0
𝑓(𝑡)ℎ(𝑡) + 𝑔(𝑡)ℎ̇(𝑡)𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
𝑠(𝑡)ℎ(𝑡)𝑑𝜇(𝑡) = 0

for every ℎ ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R) with ℎ(𝑡0) = ℎ(𝑡𝑓) = 0, then there exists a function 𝑔 ∈
𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R), such that 𝑔(𝑡) = 𝑔(𝑡) a.e. in [𝑡0, 𝑡𝑓 ] and 𝑔(𝑡) =

∫︀ 𝑡
𝑡0

𝑓(𝜏)𝑑𝜏 +
∫︀ 𝑡

𝑡0
𝑠(𝜏)𝑑𝜇(𝜏).

The proof of the next lemma makes use of Lusin’s Theorem. This can be found in [Alt, p.
210]:
Theorem 3.12 (Lusin’s theorem)
Let 𝜇 be a regular 𝜎-additive measure 𝑆 → R+ over a linear space 𝑆, and 𝑌 a Banach
space.

Every 𝜇- measurable function 𝑓 : 𝑆 → 𝑌 is 𝜇- almost continuous, i.e. for every 𝜇-
measurable set 𝐸 and every 𝜀 > 0 there is a compact set 𝐾 ⊂ 𝐸 with 𝜇(𝐸 ∖ 𝐾) ≤ 𝜀 such
that 𝑓 �𝐾 is continuous (on 𝐾).
Lemma 3.13
Let [𝑎, 𝑏] be an interval and 𝑓 ∈ 𝐿∞([𝑎, 𝑏],R𝑛). Let 𝑔 be a function 𝑔 ∈ 𝑈 ⊂ 𝐿∞([𝑎, 𝑏],R𝑛).

If
∫︀ 𝑏

𝑎 𝑓(𝑡)⊤(𝑔(𝑡) − 𝑔(𝑡))𝑑𝑡 ≥ 0 for all 𝑔 ∈ 𝑈 , then 𝑓(𝑡)⊤(𝑔(𝑡) − 𝑔(𝑡)) ≥ 0 a.e. on [𝑎, 𝑏].

The proof essentially follows [Lem72, p. 66].
Proof.
Let 𝜇 be the Lebesgue measure, and 𝐴1 ⊂ [𝑎, 𝑏], such that 𝜇(𝐴1) > 0 but 𝑓(𝑡)⊤(𝑔(𝑡) −
𝑔(𝑡)) < 0 a.e. on 𝐴1 with 𝑔 ∈ 𝑈 . According to Lusin’s Theorem, there are continuous
functions ℎ𝑓 , ℎ𝑔 : [𝑎, 𝑏] → R𝑛 that are equal to 𝑓 and 𝑔 − 𝑔, respectively, on 𝐴1 except for
small subsets of [𝑎, 𝑏], i.e.

ℎ𝑓 (𝑡) =𝑓(𝑡) a.e. on [𝑎, 𝑏] ∖ 𝐵𝑓 for some 𝐵𝑓 with 𝜇(𝐵𝑓 ) < 𝜇(𝐴1)/2
ℎ𝑔(𝑡) =𝑔(𝑡) − 𝑔(𝑡) a.e. on [𝑎, 𝑏] ∖ 𝐵𝑔 for some 𝐵𝑔 with 𝜇(𝐵𝑔) < 𝜇(𝐴1)/2

Now since 𝜇(𝐴1 ∖ (𝐵𝑓 ∪ 𝐵𝑔)) ≥ 𝜇(𝐴1) − 𝜇(𝐵𝑓) − 𝜇(𝐵𝑔) > 0, there must be some 𝑡0 with
𝑓(𝑡0)⊤(𝑔(𝑡0) − 𝑔(𝑡0)) =: −𝜀 < 0, so that the intersection of a neighborhood of 𝑡0 with the
set 𝐴1 ∖ (𝐵𝑓 ∪ 𝐵𝑔) is not a set of measure zero1:

𝜇((𝐴1 ∖ (𝐵𝑓 ∪ 𝐵𝑔)) ∩ [𝑡0 − 𝛿, 𝑡0 + 𝛿]) > 0 ∀𝛿 > 0
1Assume that this is not true. Then for each 𝑡0 ∈ [𝑎, 𝑏], there is an 𝜀 > 0, such that 𝜇((𝐴 ∖ (𝐵𝑓 ∪

𝐵𝑔)) ∩ [𝑡0 − 𝜀, 𝑡0 + 𝜀]) = 0. The family {(𝐴 ∖ (𝐵𝑓 ∪ 𝐵𝑔)) ∩ [𝑡0 − 𝜀(𝑡0), 𝑡0 + 𝜀(𝑡0)] : 𝑡0 ∈ Q} is a
countable cover of 𝐴 ∖ (𝐵𝑓 ∪ 𝐵𝑔). Since 𝜇 is 𝜎-additive, one can estimate 𝜇(𝐴 ∖ (𝐵𝑓 ∪ 𝐵𝑔)) ≤∑︀

𝑡0∈Q 𝜇((𝐴 ∖ (𝐵𝑓 ∪ 𝐵𝑔)) ∩ [𝑡0 − 𝜀(𝑡0), 𝑡0 + 𝜀(𝑡0)]) = 0.
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Since ℎ⊤
𝑓 ℎ𝑔 is continuous, there is a 𝛿 > 0, such that ℎ𝑓(𝑡)⊤ℎ𝑔(𝑡) < −𝜀/2 for all 𝑡 ∈

[𝑡0 − 𝛿, 𝑡0 + 𝛿]. Now we define

𝐴2 := (𝐴1 ∖ (𝐵𝑓 ∪ 𝐵𝑔) ∩ [𝑡0 − 𝛿, 𝑡0 + 𝛿])

Consider the function 𝑔 ∈ 𝑈 , defined by

𝑔(𝑡) :=
⎧⎨⎩𝑔(𝑡) 𝑡 ∈ 𝐴2

𝑔(𝑡) otherwise

The integral over 𝑓⊤(𝑔 − 𝑔) is negative:
∫︁ 𝑏

𝑎
𝑓(𝑡)⊤(𝑔(𝑡) − 𝑔(𝑡))𝑑𝑡 =

∫︁
𝐴2

𝑓(𝑡)⊤(𝑔(𝑡) − 𝑔(𝑡))𝑑𝑡

≤ − 𝜀/2 · 𝜇(𝐴2)
< 0 �

The (augmented) Hamilton function is introduced which allows characterization of the
minimum principle in a plain form:

Definition 3.14 (Hamilton function)
1. The Hamilton function ℋ : R × R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑣 × R𝑛𝑥 × R → R for a given OCP

is defined as

ℋ(𝑡, 𝑥, 𝑢, 𝑣, 𝜆, 𝑙0) := 𝑙0𝑓0(𝑡, 𝑥, 𝑢, 𝑣) + 𝜆⊤𝑓(𝑡, 𝑥, 𝑢, 𝑣).

2. The augmented Hamilton function ℋ̂ : R × R𝑛𝑥 × R𝑛𝑢 × R𝑛𝑣 × R𝑛𝑥 × R𝑛𝑐 × R → R
is defined as

ℋ̂(𝑡, 𝑥, 𝑢, 𝑣, 𝜆, 𝜂, 𝑙0) := ℋ(𝑡, 𝑥, 𝑢, 𝑣, 𝜆, 𝑙0) + 𝜂⊤𝑐(𝑡, 𝑥, 𝑣).

Theorem 3.15 (Minimum Principle for OCP)
Consider the OCP 3.1 where the problem defining functions 𝜙, 𝑓0, 𝑓 , Ψ, 𝑐, 𝑠 and 𝑈𝑎𝑑 fulfill
the smoothness Assumption 3.2. Let (�̂�, �̂�, 𝑣) be a weak local minimum of OCP. Assume
that the pseudo inverse (𝑐′

𝑣[𝑡])+ exists and that there exists a constant 𝐶 ∈ R, such that

‖(𝑐′
𝑣[𝑡])+‖ ≤ 𝐶 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

Then there exist multipliers

𝑙0 ∈ R, 𝜆 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑥), 𝜂 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐), 𝜇 ∈ 𝑁𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑠) and 𝜎 ∈ R𝑛Ψ

that satisfy the following conditions:

1. Nontriviality:

𝑙0 ≥ 0, (𝑙0, 𝜆, 𝜂, 𝜇, 𝜎) ̸= 0 (3.15)
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2. Adjoint equation:

𝜆(𝑡) = 𝜆(𝑡𝑓 ) +
∫︁ 𝑡𝑓

𝑡
ℋ̂′

𝑥(𝜏, �̂�(𝜏), �̂�(𝜏), 𝑣(𝜏), 𝜆(𝜏), 𝜂(𝜏), 𝑙0)⊤𝑑𝜏

+
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡
𝑠𝑖

′
𝑥(𝜏, �̂�(𝜏))⊤𝑑𝜇𝑖(𝜏) 𝑡 ∈ [𝑡0, 𝑡𝑓 ]

= 𝜆(𝑡0) −
∫︁ 𝑡

𝑡0
ℋ̂′

𝑥(𝜏, �̂�(𝜏), �̂�(𝜏), 𝑣(𝜏), 𝜆(𝜏), 𝜂(𝜏), 𝑙0)⊤𝑑𝜏

−
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡

𝑡0
𝑠𝑖

′
𝑥(𝜏, �̂�(𝜏))⊤𝑑𝜇𝑖(𝜏) 𝑡 ∈ [𝑡0, 𝑡𝑓 ]

(3.16)

3. Transversality conditions:

𝜆(𝑡0)⊤ = − (𝑙0𝜙′
𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 ))) (3.17)
𝜆(𝑡𝑓 )⊤ = 𝑙0𝜙

′
𝑥𝑓

(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′
𝑥𝑓

(�̂�(𝑡0), �̂�(𝑡𝑓 )) (3.18)

4. Optimality conditions:

ℋ̂′
𝑣(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡), 𝜆(𝑡), 𝑙0) = 0 a.e. in [𝑡0, 𝑡𝑓 ] (3.19)

ℋ′
𝑢(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡), 𝜆(𝑡), 𝑙0)(𝑢 − �̂�(𝑡)) ≥ 0 ∀𝑢 ∈ 𝑈(𝑡), a.e. in [𝑡0, 𝑡𝑓 ] (3.20)

5. Complementarity conditions:

𝜂(𝑡)⊤𝑐(𝑡, �̂�(𝑡), 𝑣(𝑡)) = 0, 𝜂(𝑡) ≥ 0 a.e. in [𝑡0, 𝑡𝑓 ]. (3.21)
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖(𝑡, �̂�(𝑡))𝑑𝜇𝑖(𝑡) = 0, (3.22)

and
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑧𝑖(𝑡)𝑑𝜇𝑖(𝑡) ≥ 0 for all 𝑧 ∈ 𝒞([𝑡0, 𝑡𝑓 ],R𝑛𝑠)

with 𝑧(𝑡) ≥ 0 for 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

Proof.
• By Corollary 3.10, there exist multipliers 𝜆 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ] and 𝜂 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐),

such that for all ℎ1 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) and all 𝑘 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐) it holds

𝜆*
𝑓 (ℎ1) = −

∫︁ 𝑡𝑓

𝑡0
𝑝𝑓 (𝑡)⊤ℎ1(𝑡)𝑑𝑡

𝜂*
1(𝑘) =

∫︁ 𝑡𝑓

𝑡0
𝜂(𝑡)⊤𝑘(𝑡)𝑑𝑡.

In view of this representation of the multipliers 𝜆*
𝑓 and 𝜂*

1, equation (3.5) implies
that for all 𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥):

0 = (𝑙0𝜙′
𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )))𝑥(𝑡0)
+ (𝑙0𝜙′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )))𝑥(𝑡𝑓 )
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+
∫︁ 𝑡𝑓

𝑡0
𝑙0𝑓0

′
𝑥[𝑡]𝑥(𝑡)𝑑𝑡 +

𝑛𝑠∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖

′
𝑥[𝑡]𝑥(𝑡)𝑑𝜇𝑖(𝑡)

+
∫︁ 𝑡𝑓

𝑡0
𝜂(𝑡)⊤𝑐′

𝑥[𝑡]𝑥(𝑡)𝑑𝑡 +
∫︁ 𝑡𝑓

𝑡0
𝜆(𝑡)⊤(𝑓 ′

𝑥[𝑡]𝑥(𝑡) − �̇�(𝑡))𝑑𝑡

= (𝑙0𝜙′
𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )))𝑥(𝑡0)
+ (𝑙0𝜙′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )))𝑥(𝑡𝑓 )

+
∫︁ 𝑡𝑓

𝑡0
ℋ̂′

𝑥[𝑡]𝑥(𝑡)𝑑𝑡 +
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖

′
𝑥[𝑡]𝑥(𝑡)𝑑𝜇𝑖(𝑡) −

∫︁ 𝑡𝑓

𝑡0
𝜆(𝑡)⊤�̇�(𝑡)𝑑𝑡

The last term is

−
∫︁ 𝑡𝑓

𝑡0
𝜆(𝑡)⊤�̇�(𝑡)𝑑𝑡 = −

∫︁ 𝑡𝑓

𝑡0
𝜆(𝑡)⊤𝑑𝑥(𝑡)

=
∫︁ 𝑡𝑓

𝑡0
𝑥(𝑡)⊤𝑑𝜆(𝑡) −

[︁
𝜆(𝑡)⊤𝑥(𝑡)

]︁𝑡𝑓

𝑡0

=
∫︁ 𝑡𝑓

𝑡0
𝑥(𝑡)⊤𝑑𝜆(𝑡) − 𝜆(𝑡𝑓 )⊤𝑥(𝑡𝑓 ) + 𝜆(𝑡0)⊤𝑥(𝑡0).

Thus

0 = (𝑙0𝜙′
𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜆(𝑡0)⊤)𝑥(𝑡0)
+ (𝑙0𝜙′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )) − 𝜆(𝑡𝑓 )⊤)𝑥(𝑡𝑓 )

+
∫︁ 𝑡𝑓

𝑡0
ℋ̂′

𝑥[𝑡]𝑥(𝑡)𝑑𝑡 +
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖

′
𝑥[𝑡]𝑥(𝑡)𝑑𝜇𝑖(𝑡) +

∫︁ 𝑡𝑓

𝑡0
𝑥(𝑡)⊤𝑑𝜆(𝑡)

= (𝑙0𝜙′
𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥0(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜆(𝑡0)⊤)𝑥(𝑡0)
+ (𝑙0𝜙′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )) + 𝜎⊤Ψ′

𝑥𝑓
(�̂�(𝑡0), �̂�(𝑡𝑓 )) − 𝜆(𝑡𝑓 )⊤)𝑥(𝑡𝑓 )

+
∫︁ 𝑡𝑓

𝑡0
𝑥(𝑡)⊤𝑑

(︃
𝜆(𝑡) −

∫︁ 𝑡𝑓

𝑡
ℋ̂′

𝑥[𝜏 ]⊤𝑑𝜏 −
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡
𝑠𝑖

′
𝑥[𝜏 ]⊤𝑑𝜇𝑖(𝜏)

)︃

for all 𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥). From the fact that 𝑥(𝑡0) and 𝑥(𝑡𝑓) can be chosen
arbitrarily, the transversality conditions (3.17) and (3.18) follow. Lemma 3.11 implies
that there is a vector 𝐶, such that

𝐶 = 𝜆(𝑡𝑓 ) −
∫︁ 𝑡𝑓

𝑡
ℋ̂′

𝑥[𝜏 ]⊤𝑑𝜏 −
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡
𝑠𝑖

′
𝑥[𝜏 ]⊤𝑑𝜇𝑖(𝜏),

which proves (3.16), since 𝑡 = 𝑡𝑓 shows that 𝐶 = 𝜆(𝑡𝑓 ).

• In the next step, (3.6) and (3.7) are reformulated using the smooth multipliers 𝜆
and 𝜂1. This yields∫︁ 𝑡𝑓

𝑡0
ℋ̂′

𝑣[𝑡]𝑣(𝑡)𝑑𝑡 = 0 ∀𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣)

and ∫︁ 𝑡𝑓

𝑡0
ℋ̂′

𝑢[𝑡](𝑢(𝑡) − �̂�(𝑡))𝑑𝑡 ≥ 0 ∀𝑢 ∈ 𝑈𝑎𝑑.
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The first equation can be written equivalently as two inequalities, so that both
inequalities have to hold pointwise by Lemma 3.13.2 Summarizing both inequalities
then yields

ℋ̂′
𝑣[𝑡]𝑣(𝑡) = 0 a.e. in [𝑡0, 𝑡𝑓 ], ∀𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣)

and hence
ℋ̂′

𝑣[𝑡] = 0 a.e. in [𝑡0, 𝑡𝑓 ],

which proves the optimality condition for 𝑣, (3.19). The second inequality together
with Lemma 3.13 immediately shows (3.20).

• Since 𝜂* ∈ 𝐾, it follows ∫︁ 𝑡𝑓

𝑡0
𝜂(𝑡)⊤𝑧(𝑡)𝑑𝑡 ≥ 0

for all 𝑧 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐) with 𝑧(𝑡) ≥ 0 a.e. in [𝑡0, 𝑡𝑓 ]. Hence 𝜂(𝑡) ≥ 0 a.e. in
[𝑡0, 𝑡𝑓 ].

Also, 𝜂*(𝐺(�̂�, �̂�, 𝑣)) = 0, so
∫︀ 𝑡𝑓

𝑡0 𝜂(𝑡)⊤𝑐(𝑡, �̂�(𝑡), 𝑣(𝑡))𝑑𝑡 = 0. By Lemma 3.13, this yields
(3.21).

Similarly, it holds that 𝜂2 ∈ 𝐾2, so
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑧𝑖(𝑡)𝑑𝜇𝑖(𝑡) ≥ 0

for all 𝑧 ∈ 𝒞([𝑡0, 𝑡𝑓 ],R𝑛𝑠) with 𝑧(𝑡) ≥ 0 on [𝑡0, 𝑡𝑓 ]. This implies that

𝜂*
2 (𝑠(·, �̂�(·))) =

𝑛𝑠∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖(𝑡, �̂�(𝑡))𝑑𝜇𝑖(𝑡) = 0,

which completes the proof. �

The following lemmata (cf. [Ger06, Lemma 2.8.5 and Lemma 2.8.6]) are stated for the
sake of completeness. In [Ger06], the complementarity conditions for problems with state
constraints are stated in a different form.
Lemma 3.16
Let 𝜇 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R). If ∫︁ 𝑡𝑓

𝑡0
𝑓(𝑡)𝑑𝜇(𝑡) ≥ 0

holds for every non-negative function 𝑓 ∈ 𝒞([𝑡0, 𝑡𝑓 ],R), then 𝜇 is non-decreasing in [𝑡0, 𝑡𝑓 ].

Hence, the complementarity condition for the multiplier 𝜇 stated here implies the respective
complementarity condition in [Ger06].

2The equation
∫︀ 𝑡𝑓

𝑡0
ℋ̂′

𝑣[𝑡]𝑣(𝑡)𝑑𝑡=0 ∀𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣 ) implies that
∫︀ 𝑡𝑓

𝑡0
ℋ̂′

𝑣[𝑡]𝑣(𝑡)𝑑𝑡≥0 holds for all
𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣 ). Lemma 3.13 yields ℋ̂′

𝑣[𝑡]𝑣(𝑡) ≥ 0 a.e. on [𝑡0, 𝑡𝑓 ] ∀𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣 ). The
same reasoning yields that ℋ̂′

𝑣[𝑡]𝑣(𝑡)≤0 a.e. on [𝑡0, 𝑡𝑓 ] ∀𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣 ).
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Lemma 3.17
Let 𝜇 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R) be non-decreasing and 𝑓 ∈ 𝒞([𝑡0, 𝑡𝑓 ],R) non-positive. If∫︁ 𝑡𝑓

𝑡0
𝑓(𝑡)𝑑𝜇(𝑡) = 0

holds, then 𝜇 is constant on every interval [𝑎, 𝑏] ⊂ [𝑡0, 𝑡𝑓 ] with 𝑎 < 𝑏 and 𝑓(𝑡) < 0 in [𝑎, 𝑏].

Hence, the complementarity conditions (3.22) imply that for every 𝑖 = 1, . . . , 𝑛𝑠, the
multiplier is constant on every interval [𝑎, 𝑏] ⊆ [𝑡0, 𝑡𝑓 ] on which 𝑠𝑖[𝑡] < 0 holds.

It can be shown that this statement is equivalent to the formulation used here:

Lemma 3.18
Let 𝜇 : [𝑡0, 𝑡𝑓 ] → R and 𝑓 : [𝑡0, 𝑡𝑓 ] → R be any two functions for which the Stieltjes integral∫︀ 𝑡𝑓

𝑡0 𝑓(𝑡)𝑑𝜇(𝑡) exists. If 𝜇 is constant on every interval [𝑎, 𝑏] ⊂ [𝑡0, 𝑡𝑓 ] with 𝑎 < 𝑏 and
𝑓(𝑡) ̸= 0 in [𝑎, 𝑏], then it holds ∫︁ 𝑡𝑓

𝑡0
𝑓(𝑡)𝑑𝜇(𝑡) = 0.

Proof.
Let G = (𝑡𝑖)𝑖=0,...,𝑛+1 be any subdivision of the interval [𝑡0, 𝑡𝑓 ]. Let 𝑗0, . . . , 𝑗𝑚 denote the
indices for which a zero of 𝑓 exists in [𝑡𝑗𝑖

, 𝑡𝑗𝑖+1] for 𝑖 = 0, . . . , 𝑚 − 1, and define 𝜉𝑗𝑖
as

such a zero. Let 𝑗𝑚+1, . . . , 𝑗𝑛 denote the indices for which no zero of 𝑓 exists in [𝑡𝑗𝑖
, 𝑡𝑗𝑖+1],

𝑖 = 𝑚 + 1, . . . , 𝑛. On these intervals, 𝜇 is constant according to the assumptions. Let 𝜉𝑗𝑖

be arbitrary for 𝑖 = 𝑚 + 1, . . . , 𝑛. Then
𝑛∑︁

𝑖=0
𝑓(𝜉𝑖)[𝜇(𝑡𝑖+1) − 𝜇(𝑡𝑖)] =

𝑛∑︁
𝑖=0

𝑓(𝜉𝑗𝑖
)[𝜇(𝑡𝑗𝑖+1) − 𝜇(𝑡𝑗𝑖

)]

=
𝑚∑︁

𝑖=0
𝑓(𝜉𝑗𝑖

)⏟  ⏞  
=0

[𝜇(𝑡𝑗𝑖+1) − 𝜇(𝑡𝑗𝑖
)] +

𝑛∑︁
𝑖=𝑚+1

𝑓(𝜉𝑗𝑖
) [𝜇(𝑡𝑗𝑖+1) − 𝜇(𝑡𝑗𝑖

)]⏟  ⏞  
=0

= 0

This argument holds for any subdivision G and a particular choice of 𝜉. Hence, for this
choice of 𝜉, the limit lim𝛿(G)→0 equals zero. Since the limit exists and is equal for any
choice of G and 𝜉, the Stieltjes integral itself equals zero. �

3.3.1. Weaker assumptions for the control state constraints

One issue of Theorem 3.15 is the strong assumption that the pseudo inverse (𝑐′
𝑣[𝑡])+ exists

with
‖(𝑐′

𝑣[𝑡])+‖ ≤ 𝐶 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ]
for some constant 𝐶. This assumption is violated e.g. if box constraints of the form
𝑣min ≤ 𝑣 ≤ 𝑣max are included as mixed control state constraints.

However, a thought experiment shows that this assumption can be weakened: Note
that the local minimum under consideration does not change if the mixed control state
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constraints that are “plainly inactive” are altered. The same holds for the multipliers.
Consequently, it should be sufficient to postulate assumptions only for the 𝛼-active parts
of the constraints.

In this section, this idea shall be made concrete following ideas introduced in [Mal03].

Definition 3.19 (𝛼-active constraints)
Let (�̂�, �̂�, 𝑣) be a local minimum of Problem 3.1. For 𝛼 ≥ 0 and 𝑡 ∈ [𝑡0, 𝑡𝑓 ], define

𝐼𝛼(𝑡) := {𝑖 ∈ 1, . . . , 𝑛𝑐|𝑐𝑖(𝑡, �̂�(𝑡), 𝑣(𝑡)) ≥ −𝛼}

𝑐𝑖
𝛼(𝑡) :=

⎧⎨⎩0 if 𝑐𝑖(𝑡, �̂�(𝑡), 𝑣(𝑡)) ≥ −𝛼

−1 if 𝑐𝑖(𝑡, �̂�(𝑡), 𝑣(𝑡)) < −𝛼
, 𝑖 ∈ {1, . . . , 𝑛𝑐}

𝑆𝛼(𝑡) := diag
(︁
𝑐𝑖

𝛼(𝑡)
)︁𝑛𝑐

𝑖=1

Now, for a local minimizer (�̂�, �̂�, 𝑣) and 𝛼 ≥ 0, define the auxiliary problem (𝑃𝛼):

Problem 3.20 (𝑃𝛼(�̂�, �̂�, 𝑣))

min! 𝐽𝛼(𝑥, 𝑢, 𝑣, 𝜋) := 𝜙(𝑥(𝑡0), 𝑥(𝑡𝑓 )) +
∫︁ 𝑡𝑓

𝑡0
𝑓0(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡))𝑑𝑡 + 1

2‖𝜋‖2
2

with respect to the state function 𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥)
and the control functions 𝑢 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑢)

and 𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣)
and slack variables 𝜋 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐)

subject to the differential equation

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)) a.e. in [𝑡0, 𝑡𝑓 ],

boundary conditions
Ψ(𝑥(𝑡0), 𝑥(𝑡𝑓 )) = 0,

relaxed mixed control state constraints

𝑐(𝑡, 𝑥(𝑡), 𝑣(𝑡)) + 𝑆𝛼(𝑡)𝜋(𝑡) ≤ 0,

pure state constraints
𝑠(𝑡, 𝑥(𝑡)) ≤ 0

and set constraints for 𝑢

𝑢(𝑡) ∈ 𝑈(𝑡) ⊂ R𝑛𝑢 a.e. in [𝑡0, 𝑡𝑓 ]

Lemma 3.21
Let 𝑐1, 𝑐2 > 0. Then there exists some constant 𝑐3 > 0, such that for all 𝑎, 𝑏 ≥ 0 it holds:

max{𝑐1𝑎 − 𝑐2𝑏, 𝑏} ≥ 𝑐3 · max{𝑎, 𝑏}.
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Proof.
• 𝑏 ≥ 𝑎: In this case, max{𝑐1𝑎 − 𝑐2𝑏, 𝑏} ≥ 𝑏 = 1 · max{𝑎, 𝑏}.

• 𝑎 ≥ 𝑏 ∧ max{𝑐1𝑎 − 𝑐2𝑏, 𝑏} = 𝑐1𝑎 − 𝑐2𝑏: It holds

𝑐1𝑎 − 𝑐2𝑏 ≥ 𝑏 ⇒ 𝑏 ≤ 𝑎
𝑐1

1 + 𝑐2
.

Hence

𝑐1𝑎 − 𝑐2𝑏 ≥ 𝑐1𝑎 − 𝑐2
𝑐1

1 + 𝑐2
𝑎

= 𝑎
(︂

𝑐1

(︂
1 − 𝑐2

1 + 𝑐2

)︂)︂
= 𝑐1

(︂
1 − 𝑐2

1 + 𝑐2

)︂
· max{𝑎, 𝑏}.

• 𝑎 ≥ 𝑏 ∧ max{𝑐1𝑎 − 𝑐2𝑏, 𝑏} = 𝑏: Then, 𝑏 ≥ 𝑐1
1+𝑐2

𝑎, hence

max{𝑐1𝑎 − 𝑐2𝑏, 𝑏} ≥ 𝑐1

1 + 𝑐2
· max{𝑎, 𝑏}.

Thus, 𝑐3 := min
{︁
1, 𝑐1

(︁
1 − 𝑐2

1+𝑐2

)︁
, 𝑐1

1+𝑐2

}︁
satisfies the inequality. �

Remark 3.22 (Smoothness)
Note that Problem 𝑃𝛼(�̂�, �̂�, 𝑣) can be written in the form of Problem 3.1, but the smoothness
Assumption 3.2.5 will be violated. However, the operator 𝐺 that models the inequality
constraints is still continuously differentiable according to Example 2.19.4.

If ‖𝑐′
𝑣𝐼𝛼(𝑡)[𝑡]⊤𝜉‖ ≥ 𝐶 · ‖𝜉‖ for 𝜉 of appropriate dimension (i.e. #𝐼𝛼(𝑡)) and some 𝐶 > 0,

independent of 𝑡, then the linearization of the mixed control state constraints fulfills⃦⃦⃦⃦
⃦
(︃

𝑐′
𝑣[𝑡]⊤

𝑆𝛼(𝑡)⊤

)︃
𝜉

⃦⃦⃦⃦
⃦ =

⃦⃦⃦⃦
⃦
(︃

𝑐′
𝑣𝐼𝛼(𝑡)[𝑡]⊤𝜉𝐼𝛼(𝑡) + 𝑐′

𝑣𝐼𝑐
𝛼(𝑡)[𝑡]⊤𝜉𝐼𝑐

𝛼(𝑡)
−𝜉𝐼𝑐

𝛼(𝑡)

)︃⃦⃦⃦⃦
⃦

= max
{︁⃦⃦⃦

𝑐′
𝑣𝐼𝛼(𝑡)[𝑡]⊤𝜉𝐼𝛼(𝑡) + 𝑐′

𝑣𝐼𝑐
𝛼(𝑡)[𝑡]⊤𝜉𝐼𝑐

𝛼(𝑡)

⃦⃦⃦
,
⃦⃦⃦
𝜉𝐼𝑐

𝛼(𝑡)

⃦⃦⃦}︁
≥ max

{︁
𝐶
⃦⃦⃦
𝜉𝐼𝛼(𝑡)

⃦⃦⃦
− 𝐶2

⃦⃦⃦
𝜉𝐼𝑐

𝛼(𝑡)

⃦⃦⃦
,
⃦⃦⃦
𝜉𝐼𝑐

𝛼(𝑡)

⃦⃦⃦}︁
≥ 𝐶3‖𝜉‖

for some constant 𝐶3 > 0. The last step follows from Lemma 3.21. Hence, the precondition
of Lemma 3.9 is satisfied; the pseudo inverse is bounded.

Therefore, in a local minimum of Problem 3.20, all assertions of Theorem 3.15 hold.

The following lemma (cf. [Mal03, Lemma 3.3]) states the relation between the original
Problem 3.1 and the auxiliarity Problem 3.20:

Lemma 3.23
Let all functions of Problem 3.1 satisfy the smoothness Assumptions 3.2.
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3.23.1 Let (�̂�, �̂�, 𝑣) be a local minimizer of Problem 3.1. Then (�̂�, �̂�, 𝑣, 0) is a local minimizer
of Problem 3.20.

3.23.2 The elements (𝑙0, 𝜆, 𝜇, 𝜎) are multipliers for the local minimizer (�̂�, �̂�, 𝑣) of Prob-
lem 3.1 satisfying equations (3.15)-(3.22) if and only if they are multipliers for the local
minimizer (�̂�, �̂�, 𝑣, 0) of Problem 3.20.
Proof.

3.23.1 We show that if a point (𝑥, 𝑢, 𝑣, 𝜋) in a sufficiently small neighborhood of (�̂�, �̂�, 𝑣, 0)
is feasible for Problem 3.20, then (𝑥, 𝑢, 𝑣) is feasible for Problem 3.1:

The point (�̂�, �̂�, 𝑣, 0) is feasible for Problem 3.20.

Choose 𝛿 > 0 so small that

‖𝑐(·, 𝑥(·), 𝑣(·)) − 𝑐(·, �̂�(·), 𝑣(·))‖∞ ≤ 𝛼

for all (𝑥, 𝑢, 𝑣) with ‖(𝑥, 𝑢, 𝑣) − (�̂�, �̂�, 𝑣)‖𝑋 ≤ 𝛿. This is possible since 𝑐 is continuous
with respect to 𝑥, 𝑣 and 𝑡.

Then if (𝑥, 𝑢, 𝑣, 𝜋) is feasible for Problem 3.20, it holds for 𝑖 ∈ 𝐼𝛼(𝑡) that

0 ≥ 𝑐𝑖(𝑡, 𝑥(𝑡), 𝑣(𝑡)) + (𝑆𝛼(𝑡)𝜋(𝑡))𝑖 = 𝑐𝑖(𝑡, 𝑥(𝑡), 𝑣(𝑡)) + 𝑐𝑖
𝛼(𝑡)𝜋𝑖(𝑡) = 𝑐𝑖(𝑡, 𝑥(𝑡), 𝑣(𝑡)).

For 𝑖 /∈ 𝐼𝛼(𝑡), 𝑐𝑖(𝑡, �̂�(𝑡), 𝑣(𝑡)) < −𝛼, hence 𝑐𝑖(𝑡, 𝑥(𝑡), 𝑣(𝑡)) ≤ 0 according to the choice
of 𝛿.

Hence, if (𝑥, 𝑢, 𝑣, 𝜋) lies in this neighborhood of (�̂�, �̂�, 𝑣, 0), then (𝑥, 𝑢, 𝑣) is feasible
for Problem 3.1.

Suppose that (�̂�, �̂�, 𝑣) is a local minimum of Problem 3.1, but (�̂�, �̂�, 𝑣, 0) is not a local
minimum of Problem 3.20. Then for any neighborhood of (�̂�, �̂�, 𝑣, 0), there exists
a point (�̃�, �̃�, 𝑣, �̃�), such that 𝐽𝛼(�̃�, �̃�, 𝑣, �̃�) < 𝐽𝛼(�̂�, �̂�, 𝑣, 0). If the neighborhood is
small enough, then (�̃�, �̃�, 𝑣) is feasible for Problem 3.1, and it holds

𝐽(�̃�, �̃�, 𝑣) = 𝜙(�̃�(𝑡0), �̃�(𝑡𝑓 )) +
∫︁ 𝑡𝑓

𝑡0
𝑓0(𝑡, �̃�(𝑡), �̃�(𝑡), 𝑣(𝑡))𝑑𝑡

≤ 𝜙(�̃�(𝑡0), �̃�(𝑡𝑓 )) +
∫︁ 𝑡𝑓

𝑡0
𝑓0(𝑡, �̃�(𝑡), �̃�(𝑡), 𝑣(𝑡))𝑑𝑡 + 1

2‖�̃�‖2
2

= 𝐽𝛼(�̃�, �̃�, 𝑣, �̃�)
< 𝐽𝛼(�̂�, �̂�, 𝑣, 0)

= 𝜙(�̂�(𝑡0), �̂�(𝑡𝑓 )) +
∫︁ 𝑡𝑓

𝑡0
𝑓0(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡))𝑑𝑡

= 𝐽(�̂�, �̂�, 𝑣).

Hence 𝐽(�̃�, �̃�, 𝑣) < 𝐽(�̂�, �̂�, 𝑣) and (�̃�, �̃�, 𝑣) is feasible for 3.1, which contradicts the
assumption that (�̂�, �̂�, 𝑣) is a local minimum.

3.23.2 Let (𝑙0, 𝜆, 𝜇, 𝜎) be multipliers for a local minimum (�̂�, �̂�, 𝑣, 0) of Problem 3.20. This
means that (𝑙0, 𝜆, 𝜇, 𝜎) ̸= 0 with 𝑙0 ≥ 0, 𝜂(𝑡) ≥ 0 and 𝜇𝑖 monotonically increasing on
[𝑡0, 𝑡𝑓 ] satisfy

𝜆(𝑡) =𝜆(𝑡𝑓 ) +
∫︁ 𝑡𝑓

𝑡
𝑙0𝑓0

′
𝑥[𝜏 ]⊤ + 𝑓 ′

𝑥[𝜏 ]⊤𝜆(𝜏) + 𝑐′
𝑥[𝜏 ]⊤𝜂(𝜏)𝑑𝜏
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+
𝑛𝑠∑︁

𝑖=1

∫︁ 𝑡𝑓

𝑡
𝑠𝑖

′
𝑥[𝜏 ]⊤𝑑𝜇𝑖(𝜏) 𝑡 ∈ [𝑡0, 𝑡𝑓 ],

𝜆(𝑡0)⊤ = − (𝑙0𝜙′
𝑥0 + 𝜎⊤Ψ′

𝑥0),
𝜆(𝑡𝑓 )⊤ =𝑙0𝜙

′
𝑥𝑓

+ 𝜎⊤Ψ′
𝑥𝑓

,

𝑙0𝑓0
′
𝑣[𝑡] + 𝜆(𝑡)⊤𝑓 ′

𝑣[𝑡] + 𝜂(𝑡)⊤𝑐′
𝑣[𝑡] =0 a.e. in[𝑡0, 𝑡𝑓 ],

𝑆𝛼(𝑡)⊤𝜂(𝑡) =0 a.e. in[𝑡0, 𝑡𝑓 ], (3.23)
ℋ̂′

𝑢(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡), 𝜆(𝑡), 𝑙0)(𝑢 − �̂�(𝑡)) ≥0 ∀𝑢 ∈ 𝑈(𝑡), a.e. in [𝑡0, 𝑡𝑓 ],
𝜂(𝑡)⊤𝑐[𝑡] =0 a.e. in [𝑡0, 𝑡𝑓 ],

𝑛𝑠∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝑠𝑖(𝑡, �̂�(𝑡))𝑑𝜇𝑖(𝑡) =0.

These conditions coincide with the necessary optimality conditions (3.15)-(3.22),
apart from the supplementary condition (3.23).

It remains to show that multipliers (𝑙0, 𝜆, 𝜇, 𝜎) for a local minimum (�̂�, �̂�, 𝑣) of 3.1
satisfy equation (3.23).

This equation is satisfied, since:

(𝑆𝛼(𝑡))𝑖𝑖 ̸= 0 ⇔ 𝑐𝑖
𝛼(𝑡) ̸= 0

⇔ 𝑐𝑖[𝑡] < −𝛼,

so (𝑆𝛼(𝑡))𝑖𝑖 ̸= 0 implies that 𝜂𝑖(𝑡) = 0 due to the complementarity condition (3.21).�

Corollary 3.24
Let an OCP 3.1 be given, where 𝜙, 𝑓0, 𝑓 , Ψ, 𝑐, 𝑠 and 𝑈𝑎𝑑 satisfy the smoothness Assump-
tions 3.2. Let (�̂�, �̂�, 𝑣) be a weak local minimum of the OCP. Assume that the pseudo
inverse (𝑐′

𝑣𝐼𝛼(𝑡)[𝑡])+ exists and that there exists a constant 𝐶 ∈ R, such that

‖(𝑐′
𝑣𝐼𝛼(𝑡)[𝑡])+‖ ≤ 𝐶 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ]

for some 𝛼 ≥ 0. Then the assertions of Theorem 3.15 hold.

3.3.2. Normality of the multipliers

In many applications, it is useful to assume that there exist “normal multipliers” for the
OCP problem 3.1, i.e. multipliers with 𝑙0 = 1. In this section, we derive conditions under
which this can be asserted.

As in [Ger06, sections 3.5 and 4.1.3], the following corollary cited from [Ger06, Corollary
3.5.4] gives a condition under which normal multipliers exist. This condition is the
Mangasarian-Fromowitz Condition:

39



3. The Minimum Principle

Corollary 3.25
Let 𝐺 : 𝑋 → 𝑌 and 𝐻 : 𝑋 → 𝑍 be Fréchet differentiable at �̂�, 𝐾 ⊆ 𝑌 a closed convex
cone with vertex at zero and int(𝐾) ̸= ∅, 𝐺(�̂�) ∈ 𝐾, 𝐻(�̂�) = 0. Furthermore, let the
following conditions be fulfilled:

1. Let 𝐻 ′ be surjective.

2. Let there exist some 𝑑 ∈ int(𝑆 − {�̂�}) with

𝐻 ′(�̂�)(𝑑) = 0,

𝐺′(�̂�)(𝑑) ∈ int(𝐾 − {𝐺(�̂�)}).

Then the assertions of Theorem 3.6 hold with 𝑙0 = 1.

The following lemma states a condition under which 𝐻 ′ is surjective. The idea for the
proof was taken from [Mal03, proof of Lemma 4.1].

Lemma 3.26 (Surjectivity of 𝐻 ′)
Let (�̂�, �̂�, 𝑣) be a local minimum for Problem 3.1. Assume that for every vector 𝑔 ∈ R𝑛Ψ,
there exists a solution (𝑥, 𝑢, 𝑣) to the problem

�̇�(𝑡) = 𝑓 ′
𝑥[𝑡]𝑥(𝑡) + 𝑓 ′

𝑢[𝑡]𝑢(𝑡) + 𝑓 ′
𝑣[𝑡]𝑣(𝑡),

Ψ′
𝑥0𝑥(𝑡0) + Ψ′

𝑥𝑓
𝑥(𝑡𝑓 ) = 𝑔.

Then the linearized operator 𝐻 ′ of the equality constraints is surjective.

Proof.
Let ℎ1 be a function ℎ1 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥). According to Lemma 2.24.1, there exists a
solution 𝑤 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) to the initial value problem

�̇�(𝑡) = 𝑓 ′
𝑥[𝑡]𝑤(𝑡) − ℎ1(𝑡), 𝑤(𝑡0) = 0.

Let 𝑧, 𝑢, 𝑣 be a solution to

�̇�(𝑡) = 𝑓 ′
𝑥[𝑡]𝑧(𝑡) + 𝑓 ′

𝑢[𝑡]𝑢(𝑡) + 𝑓 ′
𝑣[𝑡]𝑣(𝑡), Ψ′

𝑥0𝑧(𝑡0) + Ψ′
𝑥𝑓

𝑧(𝑡𝑓 ) = ℎ2 − Ψ′
𝑥𝑓

𝑤(𝑡𝑓 ),

then with 𝑥 := 𝑧 + 𝑤, it holds

�̇�(𝑡) = (𝑧 + 𝑤)′(𝑡) = 𝑓 ′
𝑥[𝑡](𝑧 + 𝑤)(𝑡) + 𝑓 ′

𝑢[𝑡]𝑢(𝑡) + 𝑓 ′
𝑣[𝑡]𝑣(𝑡) − ℎ1(𝑡)

= 𝑓 ′
𝑥[𝑡]𝑥(𝑡) + 𝑓 ′

𝑢[𝑡]𝑢(𝑡) + 𝑓 ′
𝑣[𝑡]𝑣(𝑡) − ℎ1(𝑡),

and
Ψ′

𝑥0𝑥(𝑡0) + Ψ′
𝑥𝑓

𝑥(𝑡𝑓 ) = Ψ′
𝑥0𝑧(𝑡0) + Ψ′

𝑥𝑓
𝑧(𝑡𝑓 ) + Ψ′

𝑥𝑓
𝑤(𝑡𝑓 ) = ℎ2.

This shows that the equation 𝐻 ′(𝑥, 𝑢, 𝑣) = (ℎ1, ℎ2)⊤ is solvable for any ℎ1, ℎ2. �

Summarizing, these observations yield the following general conditions for normality (cf.
[Ger06, Theorem 4.1.15]):
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Theorem 3.27 (Normality I)
Let the functions 𝜙, 𝑓0, 𝑓 , Ψ, 𝑐, 𝑠 and 𝑈𝑎𝑑 fulfill the smoothness Assumptions 3.2. Let
(�̂�, �̂�, 𝑣) be a weak local minimum of the OCP and let the following conditions hold:

3.27.1 There exists a constant 𝐶 ∈ R, such that for some 𝛼 > 0, it holds

‖𝑐′
𝑣𝐼𝛼(𝑡)[𝑡]⊤𝜉‖ ≥ 𝐶‖𝜉‖ for all 𝜉 ∈ R|𝐼𝛼(𝑡)|, and almost all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

3.27.2 For every vector 𝑔 ∈ R𝑛Ψ, there exists a solution (𝑥, 𝑢, 𝑣) to the problem

�̇�(𝑡) = 𝑓 ′
𝑥[𝑡]𝑥(𝑡) + 𝑓 ′

𝑢[𝑡]𝑢(𝑡) + 𝑓 ′
𝑣[𝑡]𝑣(𝑡),

Ψ′
𝑥0𝑥(𝑡0) + Ψ′

𝑥𝑓
𝑥(𝑡𝑓 ) = 𝑔.

3.27.3 For some 𝜀 > 0, there exist functions 𝑥0 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) , 𝑢0 ∈ int(𝑈𝑎𝑑 − �̂�)
and 𝑣0 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣), such that a.e. in [𝑡0, 𝑡𝑓 ], it holds:

𝑐[𝑡] + 𝑐′
𝑥[𝑡]𝑥0 + 𝑐′

𝑣[𝑡]𝑣0 ≤ −𝜀𝑒

𝑠[𝑡] + 𝑠′
𝑥[𝑡]𝑥0 < 0,

�̇�0(𝑡) = 𝑓 ′
𝑥[𝑡]𝑥0 + 𝑓 ′

𝑢[𝑡]𝑢0 + 𝑓 ′
𝑣[𝑡]𝑣0,

Ψ′
𝑥0𝑥0(𝑡0) + Ψ′

𝑥𝑓
𝑥0(𝑡𝑓 ) = 0.

Then there exist multipliers

𝑙0 = 1, 𝜆 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑥), 𝜂 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐), 𝜇 ∈ 𝑁𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑠) and 𝜎 ∈ R𝑛Ψ ,

such that (3.15)-(3.22) are fulfilled.

The following corollary cites a condition analogous to [Ger06, Theorem 4.1.14] that is
sufficient for condition 3.27.2:
Corollary 3.28 (Normality II)
Let

rank
(︁
Ψ′

𝑥0Φ(𝑡0) + Ψ′
𝑥𝑓

Φ(𝑡𝑓 )
)︁

= 𝑛Ψ,

where Φ solves
Φ′(𝑡) = 𝑓 ′

𝑥[𝑡]Φ(𝑡), Φ(𝑡0) = 𝐼𝑛𝑥 .

Then condition 3.27.2 is fulfilled.

From Theorem 2.31, we can derive a different assumption under which this condition is
met:
Corollary 3.29 (Normality III)
Let the partial derivatives of 𝑓 be sufficiently smooth, i.e. let

𝑓 ′
𝑥[𝑡] ∈ 𝐶𝑘([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑥), 𝑓 ′

𝑢[𝑡] ∈ 𝐶𝑘([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑢) and 𝑓 ′
𝑣[𝑡] ∈ 𝐶𝑘([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑣)

for some integer 𝑘 > 0.
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Let
𝐵0(𝑡) := (𝑓 ′

𝑢[𝑡], 𝑓 ′
𝑣[𝑡]) , 𝐵𝑖+1(𝑡) := 𝑓 ′

𝑥[𝑡]𝐵𝑖(𝑡) − 𝑑

𝑑𝑡
𝐵𝑖(𝑡)

for 𝑖 = 0, . . . , 𝑘 − 1.

Assume that there exists a 𝜏 ∈ [𝑡0, 𝑡𝑓 ], for which

rank (𝐵0(𝜏), 𝐵1(𝜏), . . . , 𝐵𝑘(𝜏)) = 𝑛𝑥.

Let Ψ′
𝑥0 and Ψ′

𝑥𝑓
satisfy

rank
(︁
Ψ′

𝑥0 , Ψ′
𝑥𝑓

)︁
= 𝑛Ψ.

Then condition 3.27.2 is fulfilled.

Proof.
If the assumptions of corrollary 3.29 are satisfied, then the continuous-time linear system
with right hand side

𝑓 𝑙𝑖𝑛(𝑡, 𝑥, 𝑢, 𝑣) = 𝑓 ′
𝑥[𝑡]𝑥 + 𝑓 ′

𝑢,𝑣[𝑡](𝑢, 𝑣)⊤

is controllable. Hence, given any initial vector 𝑥0 and final vector 𝑥𝑓 , there exists a
trajectory (�̃�, �̃�, 𝑣) that satisfies the differential equation

˙̃𝑥(𝑡) = 𝑓 𝑙𝑖𝑛(𝑡, �̃�(𝑡), �̃�(𝑡), 𝑣(𝑡)) a.e. on [𝑡0, 𝑡𝑓 ] (3.24)

as well as the boundary conditions

�̃�(𝑡0) = 𝑥0, �̃�(𝑡𝑓 ) = 𝑥𝑓 .

Since rank
(︁
Ψ′

𝑥0 , Ψ′
𝑥𝑓

)︁
= 𝑛Ψ, the linear equation Ψ′

𝑥0𝑥0 + Ψ′
𝑥𝑓

𝑥𝑓 = 𝑔 admits a solution for
any right hand side 𝑔 ∈ R𝑛Ψ . With this solution (𝑥0, 𝑥𝑓), (�̃�, �̃�, 𝑣) satisfies (3.24) as well
as the boundary conditions. �

Remark 3.30 (Independence of Conditions)
Neither of the conditions stated in Corollaries 3.28 and 3.29 implies the other.

Corollary 3.28 implies that any problem, where the boundary conditions take the form
of 𝑥(𝑡0) = 𝑥0, i.e. start conditions, satisfies 3.27.2. The rank assumption implies that
𝑛Ψ ≤ 𝑛𝑥.

Corollary 3.29 states that all problems where the linearization is controllable fulfill 3.27.2.
This implies 𝑛Ψ ≤ 2 · 𝑛𝑥.
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4. Linear Quadratic Optimal Control
Problems

An important part of this work is the investigation of Linear Quadratic Optimal Control
Problems (𝐿𝑄𝑂𝐶𝑃 ), for which, in section 4.2, we introduce a regularization concept, cf.
[GHed].

A Linear Quadratic OCP with control set constraints, mixed control state constraints and
pure state constraints is a problem of the form:

Problem 4.1 (𝐿𝑄𝑂𝐶𝑃 )

min! 𝐽𝐿𝑄𝑃 (𝑥, 𝑢, 𝑣) :=1
2𝑥(𝑡𝑓 )⊤𝑄𝑓𝑥(𝑡𝑓 )

+1
2

∫︁ 𝑡𝑓

𝑡0

(︁
𝑥(𝑡)⊤, 𝑢(𝑡)⊤, 𝑣(𝑡)⊤

)︁⎛⎜⎝ 𝑄(𝑡) 𝑅𝑢(𝑡) 𝑅𝑣(𝑡)
𝑅𝑢(𝑡)⊤ 𝑆𝑢(𝑡) 0
𝑅𝑣(𝑡)⊤ 0 𝑆𝑣(𝑡)

⎞⎟⎠
⎛⎜⎝𝑥(𝑡)

𝑢(𝑡)
𝑣(𝑡)

⎞⎟⎠ 𝑑𝑡

with respect to the state function 𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥)
and the control functions 𝑢 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑢)

and 𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣)

subject to the differential equation

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)
(︃

𝑢(𝑡)
𝑣(𝑡)

)︃
a.e. in [𝑡0, 𝑡𝑓 ],

boundary conditions
𝐸0𝑥(𝑡0) + 𝐸1𝑥(𝑡𝑓 ) = 𝑓,

mixed control state constraints

𝐺(𝑡)𝑥(𝑡) + 𝐻(𝑡)𝑣(𝑡) ≤ 𝑙(𝑡) a.e. in [𝑡0, 𝑡𝑓 ],

pure state constraints
𝐶(𝑡)𝑥(𝑡) ≤ 𝑑(𝑡) in [𝑡0, 𝑡𝑓 ],

and control set constraints

𝑢(𝑡) ∈ 𝑈(𝑡) ⊂ R𝑛𝑢 a.e. in [𝑡0, 𝑡𝑓 ].
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Let 𝐵 be partitioned, 𝐵(𝑡) = (𝐵𝑢(𝑡), 𝐵𝑣(𝑡)). The weighting matrix will be named 𝑊 :

𝑊 (𝑡) :=

⎛⎜⎝ 𝑄(𝑡) 𝑅𝑢(𝑡) 𝑅𝑣(𝑡)
𝑅𝑢(𝑡)⊤ 𝑆𝑢(𝑡) 0
𝑅𝑣(𝑡)⊤ 0 𝑆𝑣(𝑡)

⎞⎟⎠ .

For any positive semidefinite square Matrix 𝐴, ‖ · ‖𝐴 is defined as

‖𝑥‖𝐴 :=
√

𝑥⊤𝐴𝑥.

If 𝐴 is positive (semi-) definite, then ‖ · ‖𝐴 is a (half) norm.

Also, for any square matrix function 𝐴 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛×𝑛), ‖ · ‖𝐴 will denote

‖𝑥‖𝐴 :=
(︂∫︁ 𝑡𝑓

𝑡0
𝑥(𝑡)⊤𝐴(𝑡)𝑥(𝑡)𝑑𝑡

)︂ 1
2

.

The Hamilton function for Problem 4.1 reads

ℋ̂(𝑡, 𝑥, 𝑢, 𝑣, 𝜆, 𝜂, 𝑙0) := 1
2 𝑙0‖(𝑥, 𝑢, 𝑣)‖2

𝑊 (𝑡) + 𝜆⊤(𝐴(𝑡)𝑥 + 𝐵𝑢(𝑡)𝑢 + 𝐵𝑣(𝑡)𝑣)

+ 𝜂⊤(𝐺(𝑡)𝑥 + 𝐻(𝑡)𝑣 − 𝑙(𝑡)).

In the remainder of this work, the data of the problem will be assumed to satisfy the
following smoothness assumption:
Assumption 4.2 (Smoothness)
The matrix 𝑄𝑓 ∈ R𝑛𝑥×𝑛𝑥 as well as the matrix functions 𝑄 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑥×𝑛𝑥, 𝑆𝑢 :
[𝑡0, 𝑡𝑓 ] → R𝑛𝑢×𝑛𝑢 and 𝑆𝑣 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑣×𝑛𝑣 are symmetric. The matrix 𝑄𝑓 is positive
semidefinite, and the weighting matrix 𝑊 (𝑡) is positive semidefinite for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

All of the following functions are continuous:

4.2.1 𝑄 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑥×𝑛𝑥, 𝑅𝑢 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑥×𝑛𝑢, 𝑅𝑣 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑥×𝑛𝑣 , 𝑆𝑢 : [𝑡0, 𝑡𝑓 ] →
R𝑛𝑢×𝑛𝑢, 𝑆𝑣 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑣×𝑛𝑣

4.2.2 𝐴 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑥×𝑛𝑥, 𝐵𝑢 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑥×𝑛𝑢, 𝐵𝑣 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑥×𝑛𝑣 ,

4.2.3 𝐺 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑐×𝑛𝑥, 𝐻 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑐×𝑛𝑣 , 𝑙 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑐,

4.2.4 𝐶 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑠×𝑛𝑥 and 𝑑 : [𝑡0, 𝑡𝑓 ] → R𝑛𝑠.

4.1. Properties of the Problem

For the analysis of the problem, the existence of normal multipliers in the necessary
optimality conditions is essential. Hence, the assumption that guarantees normality is
stated in the form of Theorem 3.27:
Assumption 4.3 (LQOCP Normality)
Let the data of the Linear Quadratic Problem 4.1 satisfy the smoothness Assumption 4.2.
Let (�̂�, �̂�, 𝑣) be a local minimum and 𝛼 > 0, such that the following conditions are fulfilled:
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4.1. Properties of the Problem

4.3.1 The pseudo inverse (𝐻𝐼𝛼(𝑡)(𝑡))+ exists, and there exists a constant 𝐶 ∈ R, such that
‖(𝐻𝐼𝛼(𝑡)(𝑡))+‖ ≤ 𝐶 for all 𝑡 ∈ [𝑡0, 𝑡𝑓 ]

4.3.2 For any vector 𝑔 ∈ R𝑛Ψ, there exists a solution to the boundary value problem

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)
(︃

𝑢(𝑡)
𝑣(𝑡)

)︃
a.e. in [𝑡0, 𝑡𝑓 ]

𝐸0𝑥(𝑡0) + 𝐸1𝑥(𝑡𝑓 ) = 𝑔.

4.3.3 There exists an 𝜀 > 0 and a solution (𝑥0, 𝑢0, 𝑣0), where 𝑥0 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥),
𝑢0 ∈ int(𝑈𝑎𝑑 − �̂�), 𝑣0 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣), to the system

𝐺(𝑡)(�̂�(𝑡) + 𝑥0(𝑡)) + 𝐻(𝑡)(𝑣(𝑡) + 𝑣0(𝑡)) ≤ 𝑙(𝑡) − 𝜀𝑒𝑛𝑐 a.e. in [𝑡0, 𝑡𝑓 ],
𝐶(𝑡)(�̂�(𝑡) + 𝑥0(𝑡)) < 𝑑(𝑡) in [𝑡0, 𝑡𝑓 ],

�̇�0(𝑡) = 𝐴(𝑡)𝑥0(𝑡) + 𝐵(𝑡)
(︃

𝑢0(𝑡)
𝑣0(𝑡)

)︃
a.e. in [𝑡0, 𝑡𝑓 ],

𝐸0𝑥0(𝑡0) + 𝐸1𝑥0(𝑡𝑓 ) = 0.

Remark 4.4
Seemingly, part 4.3.3 of the normality conditions could be replaced by the following system
that is independent of the local minimum in investigation:

𝐺(𝑡)𝑥0(𝑡) + 𝐻(𝑡)𝑣0(𝑡) ≤ −𝜀𝑒 a.e. in [𝑡0, 𝑡𝑓 ],
𝐶(𝑡)𝑥0(𝑡) < 0 in [𝑡0, 𝑡𝑓 ],

�̇�0(𝑡) = 𝐴(𝑡)𝑥0(𝑡) + 𝐵(𝑡)
(︃

𝑢0(𝑡)
𝑣0(𝑡)

)︃
a.e. in [𝑡0, 𝑡𝑓 ],

𝐸0𝑥0(𝑡0) + 𝐸1𝑥0(𝑡𝑓 ) = 0. (4.1)

Indeed, if the above system is solvable, then Assumption 4.3.3 is satisfied. However, this
assumption is a lot stronger. Consider the case when 𝐸0 = 𝐼, 𝐸1 = 0, i.e. there exists a
specific start value for the system. Then for any 𝑥0 that satisfies the above system it holds
𝑥0(𝑡0) = 0 due to equation (4.1), so that 𝐶(𝑡0)𝑥0(𝑡0) = 0. Hence the above conditions are
violated if state constraints are present, while there still may be a solution to the system
in 4.3.3 if the state constraints are inactive in 𝑡0.

Unlike in [GHed], we consider mixed control state constraints instead of control set
constraints in this work, since the latter are usually modeled using mixed control state
constraints. The most common example of control set constraints are box constraints of the
form 𝑣min(𝑡) ≤ 𝑣(𝑡) ≤ 𝑣max(𝑡). Constraints of this type do satisfy the rank condition 4.3.1:
Lemma 4.5 (Box Constraints and the Rank Condition)
Assume that the mixed control state constraints are given in the form of(︃

𝐼
−𝐼

)︃
𝑣(𝑡) ≤

(︃
𝑣max(𝑡)
𝑣min(𝑡)

)︃
,

where 𝑣max(𝑡) − 𝑣min(𝑡) ≥ 𝜀 > 0 a.e. in [𝑡0, 𝑡𝑓 ]. Then it holds that (𝐻𝐼𝛼(𝑡)(𝑡)𝐻𝐼𝛼(𝑡)(𝑡)⊤) =
𝐼|𝐼𝛼(𝑡)| for some 𝛼 > 0.
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4. Linear Quadratic Optimal Control Problems

Proof.
Let 𝛼 := 𝜀/2, then for any control 𝑣, it is impossible for any index 𝑖 ∈ {1, . . . , 𝑛𝑣} that
𝑖 ∈ 𝐼𝛼(𝑡) and 𝑖 + 𝑛𝑣 ∈ 𝐼𝛼(𝑡) at the same time 𝑡 ∈ [𝑡0, 𝑡𝑓 ]. Therefore, each column of
𝐻𝐼𝛼(𝑡)(𝑡) contains at most one element in {−1, 1}. At the same time, each row in 𝐻𝐼𝛼(𝑡)(𝑡)
contains exactly one element in {−1, 1} (since the constraint described by this row is
𝛼-active). Hence there exists a permutation matrix 𝑃𝑐, such that 𝐻𝐼𝛼(𝑡)(𝑡) = (𝐽, 0)𝑃𝑐,
where 𝐽 = diag(𝑗𝑙)|𝐼𝛼(𝑡)|

𝑙=1 , with 𝑗𝑙 ∈ {−1, 1} for 𝑙 = 1, . . . , |𝐼𝛼(𝑡)|, and it holds

𝐻𝐼𝛼(𝑡)(𝑡)(𝐻𝐼𝛼(𝑡)(𝑡))⊤ =((𝐽, 0)𝑃𝑐)((𝐽, 0)𝑃𝑐)⊤

=(𝐽, 0)𝑃𝑐𝑃
⊤
𝑐 (𝐽, 0)⊤ = (𝐽, 0)(𝐽, 0)⊤ = 𝐼|𝐼𝛼(𝑡)|. �

In the linear quadratic case, it is often convenient to make use of Corollary 3.29, especially
if the matrices 𝐴 and 𝐵 are autonomous:
Lemma 4.6
4.6.1 Let 𝐴 ∈ 𝒞∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥×𝑛𝑥), 𝐵 ∈ 𝒞∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥×(𝑛𝑢+𝑛𝑣)). Let

𝐵0(𝑡) := 𝐵(𝑡), 𝐵𝑖+1(𝑡) := 𝐴(𝑡)𝐵𝑖(𝑡) − 𝑑

𝑑𝑡
𝐵𝑖(𝑡), for 𝑖 ∈ N.

Assume that there exist 𝜏 ∈ [𝑡0, 𝑡𝑓 ] and 𝑘 ∈ N, with

rank(𝐵0(𝜏), . . . , 𝐵𝑘(𝜏)) = 𝑛𝑥.

Let 𝐸0 and 𝐸1 satisfy
rank(𝐸0, 𝐸1) = 𝑛Ψ.

Then Assumption 4.3.2 holds.

4.6.2 Let 𝐴 and 𝐵 be constant. Assume that

rank(𝐵, 𝐴𝐵, . . . , 𝐴𝑛𝑥−1𝐵) = 𝑛𝑥

and
rank(𝐸0, 𝐸1) = 𝑛Ψ.

Then Assumption 4.3.2 holds.
Proof.
The assertion of Lemma 4.6.1 is a direct implication of Corollary 3.29. Lemma 4.6.2
includes the assertion that only the powers of 𝐴 up to 𝐴𝑛𝑥−1 need to be considered.

Observe that if a vector 𝐴𝑘+1𝐵𝑗 is linearly independent of (𝐴0𝐵, . . . , 𝐴𝑘𝐵), then 𝐴𝑘𝐵𝑗 is
linearly independent of (𝐴0𝐵, . . . , 𝐴𝑘−1𝐵).1 Hence, if

rank(𝐴0𝐵, . . . , 𝐴𝑘𝐵) = rank(𝐴0𝐵, . . . , 𝐴𝑘+1𝐵) = 𝑚

for some 𝑚, then rank(𝐴0𝐵, . . . , 𝐴𝑖𝐵) = 𝑚 for all 𝑖 ≥ 𝑘. Since the dimension of this
family of vectors cannot exceed 𝑛𝑥, this proves the assertion. �

1Otherwise let 𝐴𝑘𝐵𝑗 =
∑︀𝑘−1

𝑖=0 𝐴𝑖𝐵𝜆𝑖, where 𝜆𝑖 ∈ R𝑛𝑢+𝑛𝑣 , then 𝐴𝑘+1𝐵𝑗 =
∑︀𝑘−1

𝑖=0 𝐴𝐴𝑖𝐵𝜆𝑖 =∑︀𝑘
𝑖=1 𝐴𝑖𝐵𝜆𝑖−1 is a linear combination as well.
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4.1. Properties of the Problem

The implications of the minimum principle 3.24 and the regularity lead to several observa-
tions, e.g. uniqueness and continuity of solutions under appropriate assumptions.

Corollary 4.7 (Necessary Optimality Conditions for LQOCP)
Let (�̂�, �̂�, 𝑣) be a weak local minimum of LQOCP, satisfying Assumptions 4.2 and 4.3.

Then there exist multipliers 𝜆, 𝜂, 𝜇 and 𝜎, 𝜆 ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑥), 𝜂 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐),
𝜇 ∈ 𝑁𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑠) and 𝜎 ∈ R𝑛Ψ that satisfy

1. Adjoint equation:

𝜆(𝑡) = 𝜆(𝑡0) −
∫︁ 𝑡

𝑡0
𝑄(𝜏)�̂�(𝜏) + 𝑅𝑢(𝜏)�̂�(𝜏) + 𝑅𝑣(𝜏)𝑣(𝜏) + 𝐴(𝜏)⊤𝜆(𝜏) + 𝐺(𝜏)⊤𝜂(𝜏)𝑑𝜏

−
∫︁ 𝑡

𝑡0
𝐶(𝜏)⊤𝑑𝜇(𝜏) 𝑡 ∈ [𝑡0, 𝑡𝑓 ]

(4.2)

2. Transversality conditions:

𝜆(𝑡0) = − 𝐸⊤
0 𝜎 (4.3)

𝜆(𝑡𝑓 ) = 𝑄𝑓 �̂�(𝑡𝑓 ) + 𝐸⊤
1 𝜎 (4.4)

3. Optimality conditions:

0 = 𝑆𝑣(𝑡)𝑣(𝑡) + 𝑅𝑣(𝑡)⊤�̂�(𝑡) + 𝐵𝑣(𝑡)⊤𝜆(𝑡) + 𝐻(𝑡)⊤𝜂(𝑡) (4.5)
0 ≤

(︁
�̂�(𝑡)⊤𝑆𝑢(𝑡) + �̂�(𝑡)⊤𝑅𝑢(𝑡) + 𝜆(𝑡)⊤𝐵𝑢(𝑡)

)︁
(𝑢 − �̂�(𝑡)) ∀𝑢 ∈ 𝑈(𝑡) (4.6)

4. Complementarity conditions:

𝜂(𝑡)⊤(𝐺(𝑡)�̂�(𝑡) + 𝐻(𝑡)𝑣(𝑡) − 𝑙(𝑡)) = 0, 𝜂(𝑡) ≥ 0 a.e. in [𝑡0, 𝑡𝑓 ] (4.7)

The multipliers 𝜇 satisfy

0 ≤
∫︁ 𝑡𝑓

𝑡0
𝑧(𝑡)⊤𝑑𝜇(𝑡) ∀𝑧 ∈ {𝑧 ∈ 𝒞([𝑡0, 𝑡𝑓 ],R𝑛𝑠)|𝑧(·) ≥ 0} (4.8)

and ∫︁ 𝑡𝑓

𝑡0
(𝐶(𝑡)�̂�(𝑡) − 𝑑(𝑡))⊤ 𝑑𝜇(𝑡) = 0. (4.9)

Lemma 4.8 (Sufficiency of the Optimality Conditions)
Let (�̂�, �̂�, 𝑣) be a weak local minimum of LQP, satisfying Assumptions 4.2 and 4.3, and
let �̂� ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑥), 𝜂 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐), �̂� ∈ 𝑁𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑠) and �̂� ∈ R𝑛Ψ be the
associated multipliers as in Corollary 4.7. Let the matrix 𝑊 (𝑡) be positive semidefinite for
every 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

If (𝑥, 𝑢, 𝑣) ̸= (�̂�, �̂�, 𝑣) is a feasible point, then 𝐽𝐿𝑄𝑃 (𝑥, 𝑢, 𝑣) ≥ 𝐽𝐿𝑄𝑃 (�̂�, �̂�, 𝑣). If 𝑊 (𝑡) is
positive definite, then 𝐽𝐿𝑄𝑃 (𝑥, 𝑢, 𝑣) > 𝐽𝐿𝑄𝑃 (�̂�, �̂�, 𝑣).
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Proof.
Let (𝑥, 𝑢, 𝑣) ∈ 𝑊 1,∞ × 𝐿∞ × 𝐿∞ be feasible, i.e.

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵𝑢(𝑡)𝑢(𝑡) + 𝐵𝑣(𝑡)𝑣(𝑡) a.e. in [𝑡0, 𝑡𝑓 ],
𝐸0𝑥(𝑡0) + 𝐸1𝑥(𝑡𝑓 ) = 𝑓,

𝐺(𝑡)𝑥(𝑡) + 𝐻(𝑡)𝑣(𝑡) ≤ 𝑙(𝑡) a.e. in [𝑡0, 𝑡𝑓 ],
𝐶(𝑡)𝑥(𝑡) ≤ 𝑑(𝑡) in [𝑡0, 𝑡𝑓 ],
𝑢(𝑡) ∈ 𝑈(𝑡) a.e. in [𝑡0, 𝑡𝑓 ].

Then for the multipliers �̂�, 𝜂 as in Corollary 4.7 it holds:

𝐽𝐿𝑄𝑃 (𝑥, 𝑢, 𝑣) = 1
2𝑥(𝑡𝑓 )⊤𝑄𝑓𝑥(𝑡𝑓 )

+
𝑡𝑓∫︁

𝑡0

ℋ̂(𝑡, 𝑥, 𝑢, 𝑣, �̂�, 𝜂, 1) − �̂�⊤�̇� − 𝜂⊤(𝐺(𝑡)𝑥(𝑡) + 𝐻(𝑡)𝑣(𝑡) − 𝑙(𝑡))𝑑𝑡,

so that
𝐽𝐿𝑄𝑃 (𝑥, 𝑢, 𝑣) − 𝐽𝐿𝑄𝑃 (�̂�, �̂�, 𝑣)

𝑄𝑓 =𝑄⊤
𝑓= 1

2(𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 ))⊤𝑄𝑓 (𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 ))⏟  ⏞  
≥0, since 𝑄𝑓 ≥0

+ �̂�(𝑡𝑓 )⊤𝑄𝑓 (𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 ))

+
𝑡𝑓∫︁

𝑡0

ℋ̂(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡), �̂�(𝑡), 𝜂(𝑡), 1)

− ℋ̂(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡), �̂�(𝑡), 𝜂(𝑡), 1) − �̂�(𝑡)⊤(�̇�(𝑡) − ˙̂𝑥(𝑡))

− 𝜂(𝑡)⊤⏟  ⏞  
≥0

(𝐺(𝑡)𝑥(𝑡) + 𝐻(𝑡)𝑣(𝑡) − 𝑙(𝑡))⏟  ⏞  
≤0

+ 𝜂(𝑡)⊤(𝐺(𝑡)�̂�(𝑡) + 𝐻(𝑡)𝑣(𝑡) − 𝑙(𝑡))⏟  ⏞  
=0

𝑑𝑡

≥
𝑡𝑓∫︁

𝑡0

ℋ̂(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡), �̂�(𝑡), 𝜂(𝑡), 1)

− ℋ̂(𝑡, �̂�(𝑡), �̂�(𝑡), 𝑣(𝑡), �̂�(𝑡), 𝜂(𝑡), 1)𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
�̂�(𝑡)⊤(�̇�(𝑡) − ˙̂𝑥(𝑡))𝑑𝑡 + �̂�(𝑡𝑓 )⊤𝑄𝑓 (𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 )).

Partial integration of the term
∫︀ 𝑡𝑓

𝑡0 �̂�(𝑡)⊤(�̇�(𝑡) − ˙̂𝑥(𝑡))𝑑𝑡 yields∫︁ 𝑡𝑓

𝑡0
�̂�(𝑡)⊤(�̇�(𝑡) − ˙̂𝑥(𝑡))𝑑𝑡 = [�̂�⊤(𝑥 − �̂�)]𝑡𝑓

𝑡0 −
∫︁ 𝑡𝑓

𝑡0
(𝑥(𝑡) − �̂�(𝑡))⊤𝑑�̂�(𝑡),
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where

[�̂�⊤(𝑥 − �̂�)]𝑡𝑓

𝑡0 =(�̂�(𝑡𝑓 )⊤𝑄𝑓 + �̂�⊤𝐸1)(𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 )) + �̂�⊤𝐸0(𝑥(𝑡0) − �̂�(𝑡0))
=�̂�(𝑡𝑓 )⊤𝑄𝑓 (𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 ))

+ �̂�⊤(𝐸0𝑥(𝑡0) + 𝐸1𝑥(𝑡𝑓 )) − �̂�⊤(𝐸0�̂�(𝑡0) + 𝐸1�̂�(𝑡𝑓 ))
=�̂�(𝑡𝑓 )⊤𝑄𝑓 (𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 )) + �̂�(𝑓 − 𝑓)
=�̂�(𝑡𝑓 )⊤𝑄𝑓 (𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 ))

and ∫︁ 𝑡𝑓

𝑡0
(𝑥 − �̂�)⊤𝑑�̂�(𝑡) = −

∫︁ 𝑡𝑓

𝑡0
(𝑥 − �̂�)⊤

[︁
𝑄�̂� + 𝑅𝑢�̂� + 𝑅𝑣𝑣 + 𝐴⊤�̂� + 𝐺⊤𝜂

]︁
𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
(𝑥 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡)

= −
∫︁ 𝑡𝑓

𝑡0
(𝑥 − �̂�)⊤

[︁
𝑄�̂� + 𝑅𝑢�̂� + 𝑅𝑣𝑣 + 𝐴⊤�̂� + 𝐺⊤𝜂

]︁
𝑑𝑡

+
∫︁ 𝑡𝑓

𝑡0
(𝑑 − 𝐶𝑥)⏟  ⏞  

≥0

⊤𝑑�̂�(𝑡) +
∫︁ 𝑡𝑓

𝑡0
(𝐶�̂� − 𝑑)⊤𝑑�̂�(𝑡)⏟  ⏞  

=0

≥ −
∫︁ 𝑡𝑓

𝑡0
(𝑥 − �̂�)⊤

[︁
𝑄�̂� + 𝑅𝑢�̂� + 𝑅𝑣𝑣 + 𝐴⊤�̂� + 𝐺⊤𝜂

]︁
𝑑𝑡.

The difference of the Hamilton functions is∫︁ 𝑡𝑓

𝑡0
ℋ̂(𝑡, 𝑥, 𝑢, 𝑣, �̂�, 𝜂, 1) − ℋ̂(𝑡, �̂�, �̂�, 𝑣, �̂�, 𝜂, 1)𝑑𝑡

=1
2‖(𝑥, 𝑢, 𝑣)‖2

𝑊 − 1
2‖(�̂�, �̂�, 𝑣)‖2

𝑊

+
∫︁ 𝑡𝑓

𝑡0
�̂�⊤(𝐴(𝑥 − �̂�) + 𝐵𝑢(𝑢 − �̂�) + 𝐵𝑣(𝑣 − 𝑣)) + 𝜂⊤(𝐺(𝑥 − �̂�) + 𝐻(𝑣 − 𝑣))𝑑𝑡,

and for each 𝑡 ∈ [𝑡0, 𝑡𝑓 ] we get:

1
2‖(𝑥, 𝑢, 𝑣)‖2

𝑊 (𝑡) − 1
2‖(�̂�, �̂�, 𝑣)‖2

𝑊 (𝑡)

=1
2‖(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)‖2

𝑊 (𝑡) + (�̂�, �̂�, 𝑣)⊤𝑊 (𝑡)

⎛⎜⎝𝑥 − �̂�
𝑢 − �̂�
𝑣 − 𝑣

⎞⎟⎠
=1

2‖(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)‖2
𝑊 (𝑡) + (�̂�⊤𝑄 + �̂�⊤𝑅⊤

𝑢 + 𝑣⊤𝑅⊤
𝑣 )(𝑥 − �̂�)

+ (�̂�⊤𝑅𝑢 + �̂�⊤𝑆𝑢)(𝑢 − �̂�) + (�̂�⊤𝑅𝑣 + 𝑣⊤𝑆𝑣)(𝑣 − 𝑣).

Summarizing, we have

𝐽𝐿𝑄𝑃 (𝑥, 𝑢, 𝑣) − 𝐽𝐿𝑄𝑃 (�̂�, �̂�, 𝑣) ≥1
2‖(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)‖2

𝑊

+
∫︁ 𝑡𝑓

𝑡0

(︁
�̂�⊤𝑄 + �̂�⊤𝑅⊤

𝑢 + 𝑣⊤𝑅⊤
𝑣

)︁
(𝑥 − �̂�)
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+
(︁
�̂�⊤𝑅𝑢 + �̂�⊤𝑆𝑢

)︁
(𝑢 − �̂�) +

(︁
�̂�⊤𝑅𝑣 + 𝑣⊤𝑆𝑣

)︁
(𝑣 − 𝑣)𝑑𝑡

+
∫︁ 𝑡𝑓

𝑡𝑜

�̂�⊤ (𝐴(𝑥 − �̂�) + 𝐵𝑢(𝑢 − �̂�) + 𝐵𝑣(𝑣 − 𝑣))

+ 𝜂⊤ (𝐺(𝑥 − �̂�) + 𝐻(𝑣 − 𝑣)) 𝑑𝑡

+ �̂�(𝑡𝑓 )⊤𝑄(𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 )) − �̂�(𝑡𝑓 )⊤𝑄(𝑥(𝑡𝑓 ) − �̂�(𝑡𝑓 ))

−
∫︁ 𝑡𝑓

𝑡0
(𝑥 − �̂�)⊤

(︁
𝑄�̂� + 𝑅𝑢�̂� + 𝑅𝑣𝑣 + 𝐴⊤�̂� + 𝐺⊤𝜂

)︁
𝑑𝑡

=1
2‖(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)‖2

𝑊

+
∫︁ 𝑡𝑓

𝑡0

(︁
�̂�⊤𝑅𝑢 + �̂�⊤𝑆𝑢 + �̂�⊤𝐵𝑢

)︁
(𝑢 − �̂�)⏟  ⏞  

≥0 a.e. in [𝑡0,𝑡𝑓 ]

𝑑𝑡

+
∫︁ 𝑡𝑓

𝑡0

(︁
�̂�⊤𝑅𝑣 + 𝑣⊤𝑆𝑣 + �̂�⊤𝐵𝑣 + 𝜂⊤𝐻

)︁
⏟  ⏞  

=0

(𝑣 − 𝑣)𝑑𝑡

≥1
2‖(𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣)‖2

𝑊 .

This shows the assertions, since ‖(𝑥− �̂�, 𝑢− �̂�, 𝑣 −𝑣)‖2
𝑊 ≥ 0 and ‖(𝑥− �̂�, 𝑢− �̂�, 𝑣 −𝑣)‖2

𝑊 =
0 ⇔ (𝑥 − �̂�, 𝑢 − �̂�, 𝑣 − 𝑣) = 0 a.e. on [𝑡0, 𝑡𝑓 ], if 𝑊 (𝑡) is positive definite. �

In [Hag79], a theoretic result was introduced that became the basis of several investigations
about the continuity of optimal control functions, and a continuity result was presented
for a special class of problems. In this class, the constraints take the form of pure control
constraints and pure state constraints. Control set constraints are not present, and the
boundary conditions are initial conditions. The objective function does not include a
Mayer term, i.e. 𝑄𝑓 = 0. For unconstrained problems with boundary conditions 𝑥(𝑡0) = 𝑥0,
𝑥(𝑡𝑓 ) = 𝑥1, continuity has been investigated in [CV90]. Lemma 4.10 is taken from [GV03,
Theorem 3.1 and comment (c)].

Definition 4.9
The set 𝐽(𝑡, 𝑥) ⊂ {1, . . . , 𝑛𝑠} denotes the index set of active state constraints:

𝐽(𝑡, 𝑥) : [𝑡0, 𝑡𝑓 ] × R𝑛𝑥 → 2{1,...,𝑛𝑠}, (𝑡, 𝑥) ↦→ {𝑖 ∈ {1, . . . , 𝑛𝑠}|𝐶𝑖(𝑡)𝑥 = 𝑑𝑖(𝑡)}.

Lemma 4.10 (Continuity of Solutions)
Assume that in Problem 4.1 it holds 𝑛𝑣 = 0. Let 𝑈(𝑡) = 𝑈 ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ] for some closed
convex constant set 𝑈 , and assume that 𝐴 and 𝐵 are locally Lipschitz continuous, 𝐻
is differentiable with Lipschitz continuous gradient and 𝑆𝑢 is Lipschitz continuous and
positive definite. Let (�̂�, �̂�) be a local minimum of LQOCP, satisfying Assumptions 4.2
and 4.3. Moreover, assume that

𝐶(𝑡)𝐽(𝑡,�̂�(𝑡))𝐺(𝑡)𝜉 /∈ span 𝑁𝑈(�̂�)

for all 𝜉 ∈ R|𝐽(𝑡,�̂�(𝑡))|
+ . Then �̂� is Lipschitz continuous.
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4.2. Virtual Control as a Regularization Concept

In [GHed], a regularization concept that had been introduced for PDE constrained problems
in [KR08] and [CKR08] was applied to linear quadratic optimal control problems. This
concept allowed to treat pure state constraints as mixed control state constraints. So
far, we considered mixed control state constraints as well as control set constraints under
the assumption that the respective controls on which these constraints are imposed are
independent. Consequently, the regularization will be applied to this class of problems.

In the virtual control concept, the control of the problem under investigation is augmented
by as many control variables as there are state constraints. These new variables are
subtracted from the left hand side of the state constraints, such that a violation of the
state constraints can be compensated by these new controls. In order to encourage
compliance with these constraints, an 𝐿2 penalty term is added to the objective function.
The influence of the new controls on the constraints as well as the “cost” imposed on the
usage of them can be influenced by a regularization parameter 𝛼. It is also possible to
model influence on the differential equation.

As there are three possibilities of inserting the regularization in the problem, we introduce
three functions depending on the actual regularization parameter 𝛼:

𝛾 models the actual regularization, i.e. 𝛾(𝛼) · 𝑤𝑖, where 𝑤 is the virtual control, is
substracted from the left hand side of the state constraint. This way, it is made
easier to satisfy the constraint if 𝛾(𝛼) > 0 is satisfied.

𝜑 regulates the cost of the regularization. The factor 𝜑(𝛼)
2 ·

∫︀ 𝑡𝑓

𝑡0 ‖𝑤‖2
2𝑑𝑡 is added to the

objective function. This term makes it expensive to use the virtual control 𝑤 if
𝜑(𝛼) > 0 holds.

𝜅 can be used to make it easier for the system to satisfy the state constraints. The term
𝜅(𝛼) · ∑︀𝑛𝑠

𝑖=1 𝑤𝑖 is substracted from the right hand side of the differential equation.
This way, the growth of the state trajectory can be lowered. It is within the decision
of the user to make 𝜅(𝛼) greater or smaller than zero or even to set 𝜅(𝛼) = 0.

For Problem 4.1, the augmented problem LQOCP𝛼 reads:

Problem 4.11 (LQOCP𝛼)

min! 𝐽𝐿𝑄𝑃
𝛼 (𝑥, 𝑢, 𝑣, 𝑤) :=1

2𝑥(𝑡𝑓 )⊤𝑄𝑓𝑥(𝑡𝑓 )

+1
2

∫︁ 𝑡𝑓

𝑡0

(︁
𝑥(𝑡)⊤, 𝑢(𝑡)⊤, 𝑣(𝑡)⊤

)︁⎛⎜⎝ 𝑄(𝑡) 𝑅𝑢(𝑡) 𝑅𝑣(𝑡)
𝑅𝑢(𝑡)⊤ 𝑆𝑢(𝑡) 0
𝑅𝑣(𝑡)⊤ 0 𝑆𝑣(𝑡)

⎞⎟⎠
⎛⎜⎝𝑥(𝑡)

𝑢(𝑡)
𝑣(𝑡)

⎞⎟⎠ 𝑑𝑡

+𝜑(𝛼)
2

∫︁ 𝑡𝑓

𝑡0
‖𝑤(𝑡)‖2

2𝑑𝑡
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with respect to the state function 𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥),
the control functions 𝑢 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑢)

and 𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣)
and the virtual control 𝑤 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑠)

subject to the differential equation

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)
(︃

𝑢(𝑡)
𝑣(𝑡)

)︃
− 𝜅(𝛼)𝑒𝑛𝑥𝑒⊤

𝑛𝑠
𝑤(𝑡) a.e. in [𝑡0, 𝑡𝑓 ],

boundary conditions
𝐸0𝑥(𝑡0) + 𝐸1𝑥(𝑡𝑓 ) = 𝑓,

mixed control state constraints(︃
𝐺(𝑡)
𝐶(𝑡)

)︃
𝑥(𝑡) +

(︃
𝐻(𝑡) 0

0 −𝛾(𝛼)

)︃(︃
𝑣(𝑡)
𝑤(𝑡)

)︃
≤
(︃

𝑙(𝑡)
𝑑(𝑡)

)︃

and control set constraints

𝑢(𝑡) ∈ 𝑈(𝑡) ⊂ R𝑛𝑢 a.e. in [𝑡0, 𝑡𝑓 ]

The second mixed control state constraint 𝐶(𝑡)𝑥(𝑡) − 𝛾(𝛼)𝑤(𝑡) ≤ 𝑑(𝑡) fixes the value for
�̂�𝛼, as it is shown in the following lemma:
Lemma 4.12
Let 𝐶 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑠×𝑛𝑥) and 𝑑 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑠) and 𝛾(𝛼) > 0.
Let (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼) be a local minimum of Problem 4.11. Then it holds that �̂�𝛼 ∈
𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑠) (more precisely: there exists a representative of the class that is an
element of 𝑊 1,∞), and

𝛾(𝛼)�̂�𝛼(𝑡) = max {0, 𝐶(𝑡)�̂�𝛼(𝑡) − 𝑑(𝑡)} .

Proof.
It suffices to show the above equation. If the equation holds, then �̂�𝛼 belongs to 𝑊 1,∞,
since the maximum function is Lipschitz continuous and the composition operator of a
Lipschitz continuous function maps into 𝑊 1,∞, cf. [Mer91].

For any admissible (𝑥𝛼, 𝑢𝛼, 𝑣𝛼, 𝑤𝛼), it follows that 𝛾(𝛼)𝑤𝛼(𝑡) ≥ 𝐶(𝑡)𝑥𝛼(𝑡) − 𝑑(𝑡) holds a.e.
in [𝑡0, 𝑡𝑓 ]. Assume that (�̃�𝛼, �̃�𝛼, 𝑣𝛼, �̃�𝛼) is optimal for Problem 4.11, and that �̃�𝛼 does
disobey the above equation on a set with nonzero measure. Then (�̃�𝛼, �̃�𝛼, 𝑣𝛼, �̄�𝛼) with

�̄�𝛼 := 1
𝛾(𝛼) max {0, 𝐶(𝑡)�̃�𝛼(𝑡) − 𝑑(𝑡)}

is still admissible but further reduces the objective function value, since ‖�̄�𝛼‖2
2 < ‖�̃�𝛼‖2

2.
This contradiction shows the assertion. �

Remark 4.13
In the case 𝜅 ≡ 0, the virtual control regularization is equivalent to using the 𝐿2 penalty
term

𝜑(𝛼)
2𝛾2(𝛼)

∫︁ 𝑡𝑓

𝑡0
max{0, 𝐶(𝑡)𝑥(𝑡) − 𝑑(𝑡)}2𝑑𝑡.
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This follows directly from Lemma 4.12 by inserting the shown representation of �̂�𝛼 into
the penalty term 𝜑(𝛼)

2 ‖�̂�𝛼‖2
2. An advantage of the form of Problem 4.11 is that all data of

the problem remain twice differentiable.

A simple connection between the solutions of Problem 4.1 and 4.11 results directly from
the shape of the admissible sets, as shown in the following lemma [GHed, cf. Lemma 3]:
Lemma 4.14
Let the matrix 𝑊 be positive semidefinite almost everywhere in [𝑡0, 𝑡𝑓 ]. Let (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼)
be an optimal solution for Problem 4.11, and let (�̂�, �̂�, 𝑣) be optimal for Problem 4.1. Then
it holds that

𝜑(𝛼)
2 ‖�̂�𝛼‖2

2 ≤ 𝐽𝐿𝑄𝑃 (�̂�, �̂�, 𝑣).

If 𝜑(𝛼) ≥ 𝛿𝜑 for some 𝛿𝜑 > 0 independent of 𝛼, then the optimal virtual control �̂�𝛼 remains
bounded with respect to the ‖ · ‖2-norm, independent of 𝛼.

If 𝜑(𝛼) → ∞ for 𝛼 → 0, then lim𝛼→0 ‖�̂�𝛼‖2 = 0.
Proof.
Let (�̂�, �̂�, 𝑣) be admissible for Problem 4.1, i.e., let (�̂�, �̂�, 𝑣) satisfy all constraints. Then
(�̂�, �̂�, 𝑣, 0) is admissible for Problem 4.11, for any 𝛼. Hence,

𝐽𝐿𝑄𝑃
𝛼 (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼) = 1

2‖�̂�𝛼(𝑡𝑓 )‖2
𝑄𝑓

+ 1
2‖(�̂�𝛼, �̂�𝛼, 𝑣𝛼)‖2

𝑊 + 𝜑(𝛼)
2 ‖�̂�𝛼‖2

2

≤ 𝐽𝐿𝑄𝑃 (�̂�, �̂�, 𝑣).

The rest follows directly from this inequality. �

The error analysis between the optimal solutions for Problem 4.1 and Problem 4.11 relies
on the normality of the multipliers. The smoothness assumption, together with appropriate
normality conditions ensure the existence of normal multipliers for both problems according
to Theorem 3.15, Theorem 3.27 and Corollary 3.29 (compare [GHed, Lemmas 1 and 2]):
Lemma 4.15
Let 𝐿𝑄𝑂𝐶𝑃 be a problem where the given data satisfy the smoothness assumptions 4.2,
and let (�̂�, �̂�, 𝑣) be a local minimum that satisfies the LQOCP normality conditions 4.3.
Furthermore, let (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼) be a local minimum for LQOCP𝛼, such that there exists a
𝛿 > 0 and a constant 𝐶𝐻 > 0, so that (𝐻(𝑡)𝐼𝛿(𝑡))+ exists with ‖(𝐻(𝑡)𝐼𝛿(𝑡))+‖ ≤ 𝐶𝐻 . Then:

4.15.1 There exist multipliers

�̂� ∈ 𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑥), 𝜂 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐), �̂� ∈ 𝑁𝐵𝑉 ([𝑡0, 𝑡𝑓 ],R𝑛𝑠) and �̂� ∈ R𝑛Ψ

that satisfy (4.2)-(4.9) for the local minimum (�̂�, �̂�, 𝑣).

4.15.2 There exist multipliers

�̂�𝛼 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥), 𝜂𝛼 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐), 𝜈𝛼 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑠) and �̂�𝛼 ∈ R𝑛Ψ ,

such that
˙̂
𝜆𝛼(𝑡) = − (𝑄(𝑡)�̂�𝛼(𝑡) + 𝑅𝑢(𝑡)�̂�𝛼(𝑡) + 𝑅𝑣(𝑡)𝑣𝛼(𝑡)
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+𝐴(𝑡)⊤�̂�𝛼(𝑡) + 𝐺(𝑡)⊤𝜂𝛼(𝑡) + 𝐶(𝑡)⊤𝜈𝛼(𝑡)
)︁

(4.10)

�̂�𝛼(𝑡0) = − 𝐸⊤
0 �̂�𝛼 (4.11)

�̂�𝛼(𝑡𝑓 ) =𝑄𝑓 �̂�𝛼(𝑡𝑓 ) + 𝐸⊤
1 �̂�𝛼

0 =𝑆𝑣(𝑡)𝑣𝛼(𝑡) + 𝑅𝑣(𝑡)⊤�̂�𝛼(𝑡) + 𝐵𝑣(𝑡)⊤�̂�𝛼(𝑡) + 𝐻(𝑡)⊤𝜂𝛼(𝑡) (4.12)
0 ≤

(︁
�̂�𝛼(𝑡)⊤𝑆𝑢(𝑡) + �̂�𝛼(𝑡)⊤𝑅𝑢(𝑡) + �̂�𝛼(𝑡)⊤𝐵𝑢(𝑡)

)︁
(𝑢 − �̂�𝛼(𝑡)) (4.13)

0 =𝜑(𝛼)�̂�𝛼(𝑡) − 𝜅(𝛼)𝑒𝑛𝑠𝑒
⊤
𝑛𝑥

�̂�𝛼(𝑡) − 𝛾(𝛼)𝜈𝛼(𝑡) (4.14)
0 ≤𝜂𝛼(𝑡) ⊥ 𝑙(𝑡) − 𝐺(𝑡)�̂�𝛼(𝑡) − 𝐻(𝑡)𝑣𝛼(𝑡) ≥ 0 (4.15)
0 ≤𝜈𝛼(𝑡) ⊥ 𝑑(𝑡) − 𝐶(𝑡)�̂�𝛼(𝑡) + 𝛾(𝛼)�̂�𝛼(𝑡) ≥ 0 (4.16)

Proof.
Problem 4.11 can be rewritten in the form of Problem 4.1. It remains to show that the
normality conditions 4.3 of the original problem are sufficient for the respective normality
conditions of the new problem.

The normality conditions 4.3.1 and 4.3.2 are obviously satisfied. A solution for the system
in 4.3.3 is given by 𝑥𝛼0 := 1

2(�̂� + 𝑥0) − 1
2 �̂�𝛼, 𝑢𝛼0 := 1

2(�̂� + 𝑢0) − 1
2 �̂�𝛼, 𝑣𝛼0 := 1

2(𝑣 + 𝑣0) − 1
2𝑣𝛼

and 𝑤𝛼0 = 0, where (𝑥0, 𝑢0, 𝑣0) with �̂� + 𝑢0 ∈ int 𝑈𝑎𝑑 solves the respective system for
Problem 4.1, since

�̂�𝛼 + 𝑢0 is an interior point:2

�̂�𝛼 + 𝑢𝛼0 = 1
2𝑢𝛼 + 1

2(�̂� + 𝑢0) ∈ int(𝑈𝑎𝑑)
and

𝐺(𝑡) (�̂�𝛼(𝑡) + 𝑥𝛼0(𝑡)) + 𝐻(𝑡) (𝑣𝛼(𝑡) + 𝑣𝛼0(𝑡)) ≤ 𝑙(𝑡) − 1
2𝜀𝑒𝑛𝑐

𝐶(𝑡) (�̂�𝛼(𝑡) + 𝑥𝛼0(𝑡)) = 1
2𝐶(𝑡)�̂�𝛼(𝑡) + 1

2𝐶(𝑡) (�̂�(𝑡) + 𝑥0(𝑡)) < 𝑑(𝑡),
which implies

𝐶(𝑡) (�̂�𝛼(𝑡) + 𝑥𝛼0(𝑡)) ≤ 𝑑(𝑡) − 𝜀2𝑒𝑛𝑠

for some 𝜀 > 0, since the left hand side is continuous.

Due to the linearity of the differential equations for �̂�, �̂�𝛼 and 𝑥0, it holds

�̇�𝛼0(𝑡) = 𝐴(𝑡)𝑥𝛼0(𝑡) + 𝐵(𝑡)
(︃

𝑢𝛼0
𝑣𝛼0

)︃

and

𝐸0𝑥𝛼0(𝑡0) + 𝐸1𝑥𝛼0(𝑡𝑓 ) = 𝐸0

(︂1
2(�̂�(𝑡0) + 𝑥0(𝑡0)) − 1

2 �̂�𝛼(𝑡0)
)︂

+ 𝐸1

(︂1
2(�̂�(𝑡𝑓 ) + 𝑥0(𝑡𝑓 )) − 1

2 �̂�𝛼(𝑡𝑓 )
)︂

2This argument is explained in more detail in Lemma A.1 in the appendix.
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= 1
2 (𝐸0𝑥0(𝑡0) + 𝐸1𝑥0(𝑡𝑓 ))

+ 1
2 (𝐸0�̂�(𝑡0) + 𝐸1�̂�(𝑡𝑓 ))

− 1
2 (𝐸0�̂�𝛼(𝑡0) + 𝐸1�̂�𝛼(𝑡𝑓 ))

= 0. �

Lemma 4.15 can be used to derive a first estimation for the deviation ‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 −
𝑣)‖2

𝑊 , which leads to the main result of this section:

Lemma 4.16
Let (�̂�, �̂�, 𝑣) and (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼) be local minima of Problems 4.1 and 4.11, respectively,
that satisfy the assumptions of Lemma 4.15. Then the following estimation holds:

‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2
𝑊 ≤ −

∫︁ 𝑡𝑓

𝑡0
(𝜂𝛼 − 𝜂)⊤ (𝐺(�̂�𝛼 − �̂�) + 𝐻(𝜂𝛼 − 𝜂)) 𝑑𝑡

− 𝜅(𝛼)
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝜈𝛼𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡)

Proof.
As in [GHed], the dependence of all functions on 𝑡 is omitted in this proof.

Partial integration for the Stieltjes integral (cf. Lemma 2.12) yields∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝑑(�̂�𝛼 − �̂�) +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝑑(�̂�𝛼 − �̂�) (4.17)

= (�̂�𝛼(𝑡𝑓 ) − �̂�(𝑡𝑓 ))⊤(�̂�𝛼(𝑡𝑓 ) − �̂�(𝑡𝑓 )) − (�̂�𝛼(𝑡0) − �̂�(𝑡0))⊤(�̂�𝛼(𝑡0) − �̂�(𝑡0))
(4.3),(4.11)= (�̂�𝛼(𝑡𝑓 ) − �̂�(𝑡𝑓 ))⊤(𝐸⊤

1 �̂�𝛼 − 𝐸⊤
1 �̂� + 𝑄𝑓 �̂�𝛼(𝑡𝑓 ) − 𝑄𝑓 �̂�(𝑡𝑓 ))

+(�̂�𝛼(𝑡0) − �̂�(𝑡0))⊤(𝐸⊤
0 �̂�𝛼 − 𝐸⊤

0 �̂�)

= (𝐸0�̂�𝛼(𝑡0) + 𝐸1�̂�𝛼(𝑡𝑓 ))⊤(�̂�𝛼 − �̂�)
−(𝐸0�̂�(𝑡0) + 𝐸1�̂�(𝑡𝑓 ))⊤(�̂�𝛼 − �̂�)
+(�̂�𝛼(𝑡𝑓 ) − �̂�(𝑡𝑓 ))⊤𝑄𝑓 (�̂�𝛼(𝑡𝑓 ) − �̂�(𝑡𝑓 ))

= 𝑓⊤(�̂�𝛼 − �̂�) − 𝑓⊤(�̂�𝛼 − �̂�) + (�̂�𝛼(𝑡𝑓 ) − �̂�(𝑡𝑓 ))⊤𝑄𝑓 (�̂�𝛼(𝑡𝑓 ) − �̂�(𝑡𝑓 ))

≥ 0.

Applying equations (4.2) and (4.10) on the terms of the left hand side shows that∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝑑(�̂�𝛼 − �̂�)

=
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤(−𝑄(�̂�𝛼 − �̂�) − 𝑅𝑢(�̂�𝛼 − �̂�) − 𝑅𝑣(𝑣𝛼 − 𝑣) − 𝐴⊤(�̂�𝛼 − �̂�) − 𝐺⊤(𝜂𝛼 − 𝜂))𝑑𝑡
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−
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝜈𝛼𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡)

and∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝑑(�̂�𝛼 − �̂�)

=
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤

(︁
𝐴(�̂�𝛼 − �̂�) + 𝐵𝑢(�̂�𝛼 − �̂�) + 𝐵𝑣(𝑣𝛼 − 𝑣) − 𝜅(𝛼)𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼

)︁
𝑑𝑡.

Summarizing these results, (4.17) becomes

0 ≤ −
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤

(︁
𝑄(�̂�𝛼 − �̂�) + 𝑅𝑢(�̂�𝛼 − �̂�) + 𝑅𝑣(𝑣𝛼 − 𝑣) + 𝐺⊤(𝜂𝛼 − 𝜂)

)︁
𝑑𝑡

+
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤

(︁
𝐵𝑢(�̂�𝛼 − �̂�) + 𝐵𝑣(𝑣𝛼 − 𝑣) − 𝜅(𝛼)𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼

)︁
𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝜈𝛼𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡),

which can be solved for
∫︀ 𝑡𝑓

𝑡0 (�̂� − �̂�𝛼)⊤𝐵𝑢(�̂�𝛼 − �̂�)𝑑𝑡:∫︁ 𝑡𝑓

𝑡0
(�̂� − �̂�𝛼)⊤𝐵𝑢(�̂�𝛼 − �̂�)𝑑𝑡 (4.18)

≤ −
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤

(︁
𝑄(�̂�𝛼 − �̂�) + 𝑅𝑢(�̂�𝛼 − �̂�) + 𝑅𝑣(𝑣𝛼 − 𝑣) + 𝐺⊤(𝜂𝛼 − 𝜂)

)︁
𝑑𝑡

+
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤

(︁
𝐵𝑣(𝑣𝛼 − 𝑣) − 𝜅(𝛼)𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼

)︁
𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝜈𝛼𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡).

From the optimality conditions for 𝑣, (4.5), and 𝑣𝛼, (4.12), we derive

0 = (𝑣𝛼 − 𝑣)⊤𝑆⊤
𝑣 + (�̂�𝛼 − �̂�)⊤𝑅𝑣 + (�̂�𝛼 − �̂�)⊤𝐵𝑣 + (𝜂𝛼 − 𝜂)⊤𝐻,

so (4.18) becomes∫︁ 𝑡𝑓

𝑡0
(�̂� − �̂�𝛼)⊤𝐵𝑢(�̂�𝛼 − �̂�)𝑑𝑡 (4.19)

≤ −
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤

(︁
𝑄(�̂�𝛼 − �̂�) + 𝑅𝑢(�̂�𝛼 − �̂�) + 2𝑅𝑣(𝑣𝛼 − 𝑣) + 𝐺⊤(𝜂𝛼 − 𝜂)

)︁
𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
(𝑣𝛼 − 𝑣)⊤ (𝑆𝑣(𝑣𝛼 − 𝑣) + 𝐻⊤(𝜂𝛼 − 𝜂))𝑑𝑡

− 𝜅(𝛼)
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝜈𝛼𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡).

Inserting the optimal control �̂�𝛼 for Problem 4.11 into the optimality condition (4.6) for
Problem 4.1 and vice versa for inequality (4.13) yields

0 ≤
∫︁ 𝑡𝑓

𝑡0

(︁
𝑆⊤

𝑢 (�̂� − �̂�𝛼) + 𝑅⊤
𝑢 (�̂� − �̂�𝛼) + 𝐵⊤

𝑢 (�̂� − �̂�𝛼)
)︁⊤

(�̂�𝛼 − �̂�)𝑑𝑡.
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Substituting
∫︀ 𝑡𝑓

𝑡0 (�̂� − �̂�𝛼)⊤𝐵𝑢(�̂�𝛼 − �̂�)𝑑𝑡 in this expression according to (4.19) leads to∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝑄(�̂�𝛼 − �̂�) + 2(�̂�𝛼 − �̂�)⊤𝑅𝑢(�̂�𝛼 − �̂�) + 2(�̂�𝛼 − �̂�)⊤𝑅𝑣(𝑣𝛼 − 𝑣)

+ (�̂�𝛼 − �̂�)⊤𝑆𝑢(�̂�𝛼 − �̂�) + (𝑣𝛼 − 𝑣)⊤𝑆𝑣(𝑣𝛼 − 𝑣)𝑑𝑡

≤ −
∫︁ 𝑡𝑓

𝑡0
(𝜂𝛼 − 𝜂)⊤ (𝐺(�̂�𝛼 − �̂�) + 𝐻(𝑣𝛼 − 𝑣)) 𝑑𝑡

− 𝜅(𝛼)
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼𝑑𝑡

−
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝜈𝛼𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡).

This proves the assertion of Lemma 4.16. �

Analogue to [GHed, Theorem 2], we can further simplify the right hand side of the
estimation in Lemma 4.16, using the complementarity conditions (4.7), (4.8), (4.15)
and (4.16).
Lemma 4.17
Let (�̂�, �̂�, 𝑣) and (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼) be defined as in Lemma 4.16. Then then following
inequalities hold:

−
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝜈𝛼𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡) − 𝜅(𝛼)

∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑒𝑛𝑥𝑒⊤
𝑛𝑠

�̂�𝛼𝑑𝑡

≤ − 𝜑(𝛼) ‖�̂�𝛼‖2
2 + 𝛾(𝛼)

∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑑�̂�(𝑡),
(4.20)

0 ≥ −
∫︁ 𝑡𝑓

𝑡0
(𝜂𝛼 − 𝜂)⊤ (𝐺(�̂�𝛼 − �̂�) + 𝐻(𝑣𝛼 − 𝑣)) 𝑑𝑡 (4.21)

Proof.
The complementarity conditions (4.7), (4.8), (4.15) and (4.16), together with the optimality
condition (4.14) yield:

(4.20):

−
∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝜈𝛼𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡0
(�̂�𝛼 − �̂�)⊤𝐶⊤𝑑�̂�(𝑡) − 𝜅(𝛼)

∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑒𝑛𝑥𝑒⊤
𝑛𝑠

�̂�𝛼𝑑𝑡

= −
∫︁ 𝑡𝑓

𝑡0
(𝐶�̂�𝛼 − 𝛾(𝛼)�̂�𝛼 − 𝑑)⊤𝜈𝛼⏟  ⏞  

(4.16)
= 0

𝑑𝑡 +
∫︁ 𝑡𝑓

𝑡0
(𝐶�̂� − 𝑑)⏟  ⏞  

≤0

⊤ 𝜈𝛼⏟ ⏞ 
≥0

𝑑𝑡

+
∫︁ 𝑡𝑓

𝑡0
(𝐶�̂�𝛼 − 𝛾(𝛼)�̂�𝛼 − 𝑑)⊤𝑑�̂�(𝑡)⏟  ⏞  

≤0, �̂�𝛼 continuous

−
∫︁ 𝑡𝑓

𝑡0
(𝐶�̂� − 𝑑)⊤𝑑�̂�(𝑡)⏟  ⏞  

(4.9)
= 0

− 𝜅(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑒𝑛𝑥𝑒⊤
𝑛𝑠

�̂�𝛼𝑑𝑡 − 𝛾(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝜈𝛼𝑑𝑡 + 𝛾(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑑�̂�(𝑡)

≤ − 𝜅(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑒𝑛𝑥𝑒⊤
𝑛𝑠

�̂�𝛼𝑑𝑡 − 𝛾(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝜈𝛼𝑑𝑡 + 𝛾(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑑�̂�(𝑡)

(4.14)= − 𝜑(𝛼) ‖�̂�𝛼‖2
2 + 𝛾(𝛼)

∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑑�̂�(𝑡),
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(4.21):

−
∫︁ 𝑡𝑓

𝑡0
(𝜂𝛼 − 𝜂)⊤ (𝐺(�̂�𝛼 − �̂�) + 𝐻(𝑣𝛼 − 𝑣)) 𝑑𝑡

= −
∫︁ 𝑡𝑓

𝑡0
𝜂⊤

𝛼 (𝐺�̂�𝛼 + 𝐻𝑣𝛼 − 𝑙)⏟  ⏞  
(4.15)

= 0

𝑑𝑡 −
∫︁ 𝑡𝑓

𝑡0
𝜂⊤(𝐺�̂� + 𝐻𝑣 − 𝑙)⏟  ⏞  

(4.7)
= 0

𝑑𝑡

+
∫︁ 𝑡𝑓

𝑡0
𝜂⊤

𝛼⏟ ⏞ 
≥0

(𝐺�̂� + 𝐻𝑣 − 𝑙)⏟  ⏞  
≤0

𝑑𝑡 +
∫︁ 𝑡𝑓

𝑡0
𝜂⊤⏟ ⏞ 
≥0

(𝐺�̂�𝛼 + 𝐻𝑣𝛼 − 𝑙)⏟  ⏞  
≤0

𝑑𝑡

≤ 0.

�

Theorem 4.18 sums up the results from Lemma 4.16 and Lemma 4.17:

Theorem 4.18
Let (�̂�, �̂�, 𝑣) and (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼) be local minima of the Problems 4.1 and 4.11, respectively,
that satisfy the assumptions of Lemma 4.15 for any 𝛼 > 0. Then it holds:

‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2
𝑊 + 𝜑(𝛼)‖�̂�𝛼‖2

2

≤𝛾(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑑�̂�(𝑡) + 𝜅(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼𝑑𝑡.

The conclusions that can be drawn from Theorem 4.18 depend on the smoothness of �̂�
and the problem data. The simplest case is �̂� ∈ 𝑊 1,2:

Theorem 4.19
Let (�̂�, �̂�, 𝑣) and (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼) be defined as in Theorem 4.18, and assume that �̂� ∈
𝑊 1,2([𝑡0, 𝑡𝑓 ],R𝑛𝑠).

If lim𝛼→0
𝛾(𝛼)+𝜅(𝛼)

𝜑(𝛼) = 0, then lim𝛼→0 ‖�̂�𝛼‖2 = 0. If additionally 𝜅(𝛼) ≤ 𝐶𝑅 and 𝛾(𝛼) ≤ 𝐶𝑅

for some 𝐶𝑅 ∈ R, independent of 𝛼, then lim𝛼→0 ‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2
𝑊 = 0.

Proof.
According to Theorem 4.18, it holds that

‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2
𝑊 + 𝜑(𝛼)‖�̂�𝛼‖2

2

≤ 𝛾(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑑�̂�(𝑡) + 𝜅(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼𝑑𝑡

≤ 𝛾(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼
˙̂𝜇𝑑𝑡 + 𝜅(𝛼)

∫︁ 𝑡𝑓

𝑡0
𝐶𝜆𝑒⊤

𝑛𝑠
�̂�𝛼𝑑𝑡

≤ 𝛾(𝛼)‖�̂�𝛼‖2‖ ˙̂𝜇‖2 + 𝜅(𝛼)𝐶𝜆‖�̂�𝛼‖2

≤ 𝐶𝑀‖�̂�𝛼‖2(𝛾(𝛼) + 𝜅(𝛼)),

which particularly implies

𝜑(𝛼)‖�̂�𝛼‖2
2 ≤ 𝐶𝑀‖�̂�𝛼‖2(𝛾(𝛼) + 𝜅(𝛼)),
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and therefore
‖�̂�𝛼‖2 ≤ 𝐶𝑀

𝛾(𝛼) + 𝜅(𝛼)
𝜑(𝛼) ,

which proves the first assertion.

If 𝜅(𝛼) ≤ 𝐶𝑅 and 𝛾(𝛼) ≤ 𝐶𝑅, then

‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2
𝑊 ≤ 2 · 𝐶𝑀 · 𝐶𝑅 · ‖�̂�𝛼‖2

according to the first inequality. Since ‖�̂�𝛼‖2 → 0 for 𝛼 → 0, this completes the proof.�

If 𝜇 does not comply with the smoothness assumption, then it can be replaced by the
assumption that �̂�𝛼 remains bounded with respect to the ‖ · ‖∞ norm.
Theorem 4.20
Let (�̂�, �̂�, 𝑣) and (�̂�𝛼, �̂�𝛼, 𝑣𝛼, �̂�𝛼) be defined as in Theorem 4.18. Assume that ‖�̂�𝛼‖∞ ≤ 𝐶𝑤∞
for some constant 𝐶𝑤∞.

If lim𝛼→0
𝛾(𝛼)+𝜅(𝛼)

𝜑(𝛼) = 0, then lim𝛼→0 ‖�̂�𝛼‖2 = 0. If additionally lim𝛼→0 𝜅(𝛼) = 0 and
lim𝛼→0 𝛾(𝛼) = 0, then lim𝛼→0 ‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2

𝑊 = 0.
Proof.
Theorem 4.18 again assures that

‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2
𝑊 + 𝜑(𝛼)‖�̂�𝛼‖2

2

≤ 𝛾(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤

𝛼 𝑑�̂�(𝑡) + 𝜅(𝛼)
∫︁ 𝑡𝑓

𝑡0
�̂�⊤𝑒𝑛𝑥𝑒⊤

𝑛𝑠
�̂�𝛼𝑑𝑡

≤ 𝛾(𝛼) · ‖�̂�𝛼‖∞ · 𝑇𝑉 (�̂�, [𝑡0, 𝑡𝑓 ]) + 𝜅(𝛼)𝐶𝜆‖�̂�𝛼‖2

≤ 𝛾(𝛼) · ‖�̂�𝛼‖∞ · 𝑇𝑉 (�̂�, [𝑡0, 𝑡𝑓 ]) + 𝜅(𝛼)𝐶𝜆‖�̂�𝛼‖∞

≤ 𝐶(𝛾(𝛼) + 𝜅(𝛼)).

The first assertion follows analogly to the proof of Theorem 4.19, as the right hand side in
‖�̂�𝛼‖2

2 ≤ 𝐶 𝛾(𝛼)+𝜅(𝛼)
𝜑(𝛼) vanishes. The second assertion follows directly from

‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2
𝑊 ≤ 𝐶(𝛾(𝛼) + 𝜅(𝛼)). �

Remark 4.21
Theorems 4.19 and 4.20 yield convergence properties in the ‖·‖𝑊 (half) norm. Consequently,
if 𝑊 is uniformly positive definite, i.e. (𝑥, 𝑢, 𝑣)⊤𝑊 (𝑡)(𝑥, 𝑢, 𝑣) ≥ 𝛿‖(𝑥, 𝑢, 𝑣)⊤‖2

2 for any
vector (𝑥, 𝑢, 𝑣) ∈ R𝑛𝑥+𝑛𝑢+𝑛𝑣 , independent of 𝑡 ∈ [𝑡0, 𝑡𝑓 ], then

lim
𝛼→0

‖(�̂�𝛼 − �̂�, �̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2 = 0.

Otherwise, if 𝑊 is only positive semidefinite with either

• (𝑥, 𝑢, 𝑣)⊤𝑊 (𝑡)(𝑥, 𝑢, 𝑣) ≥ 𝛿‖𝑥‖2
2, then lim𝛼→0 ‖�̂�𝛼−�̂�‖2 = 0, that is, the state deviation

vanishes (with respect to the ‖ · ‖2 norm) for decreasing 𝛼, or

• (𝑥, 𝑢, 𝑣)⊤𝑊 (𝑡)(𝑥, 𝑢, 𝑣) ≥ 𝛿‖(𝑢, 𝑣)‖2
2, then lim𝛼→0 ‖(�̂�𝛼 − �̂�, 𝑣𝛼 − 𝑣)‖2 = 0, and the

control deviation vanishes (again with respect to the ‖ · ‖2 norm).
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4.3. Examples

The solutions to the following examples have been calculated using the combined Newton
method described in chapter 5. Numerical results based on the globalized semismooth
Newton method (cf. [Ger08]) have been presented in [GHed]. The parameter functions
were set to

𝜅(𝛼) := 0, 𝜙(𝛼) := 1, 𝛾(𝛼) := 𝛼.

For both problems, the solutions were calculated on an equidistant grid consisting of 501
grid points. This fineness has been chosen in order to eliminate effects that originate from
the discretization.

4.3.1. Minimum Energy Problem

The Minimum Energy Problem (cf. [BH75, p. 120], [GHed]) is a linear quadratic optimal
control problem with a second order state constraint.

The task is to find the form of a homogenous stick under tension. Both ends of the
stick are attached to the ground in a given angle of 𝜋/4. The time coordinate 𝑡 in this
case represents the first space dimension in which the stick expands. The height of the
stick at a given point in the first space dimension is represented by the first state 𝑥. Its
derivative, the slope of the stick, is the second state 𝑦. The fact that the stick is attached
to the ground at the two points 𝑡0 = 0 and 𝑡𝑓 = 1 translates to the boundary conditions
𝑥(0) = 𝑥(1) = 0, and the angle conditions can be expressed as 𝑦(0) = −𝑦(1) = tan(𝜋/4).

The control 𝑢 describes the derivative of the slope 𝑦, i.e. the bend of the stick. The
integral of its square is to be minimized. The state constraint models a height restriction.
The linear quadratic optimal control problem reads:

Problem 4.22 (Minimum Energy Problem)

min! 1
2

∫︁ 1

0
𝑢(𝑡)2𝑑𝑡

subject to

�̇�(𝑡) = 𝑦(𝑡), 𝑥(0) = 𝑥(1) = 0,

�̇�(𝑡) = 𝑢(𝑡), 𝑦(0) = −𝑦(1) = 1

and
𝑥(𝑡) ≤ 1

9 .

The regularized optimal control problem with regularization parameters as above reads
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𝛼 ‖𝑤𝛼‖2 ‖𝑤𝛼‖∞ ‖𝐹 (𝑧)‖𝑌 ∞

1𝐸 − 1 7.312𝐸 − 01 1.158𝐸 + 00 1.903𝐸 − 06
1𝐸 − 2 4.433𝐸 − 01 7.216𝐸 − 01 2.234𝐸 − 06
1𝐸 − 3 8.508𝐸 − 02 2.684𝐸 − 01 3.908𝐸 − 07
1𝐸 − 4 1.541𝐸 − 02 8.687𝐸 − 02 1.129𝐸 − 06
1𝐸 − 5 2.714𝐸 − 03 2.682𝐸 − 02 3.640𝐸 − 07
1𝐸 − 6 3.929𝐸 − 04 5.254𝐸 − 03 3.343𝐸 − 06
1𝐸 − 7 4.233𝐸 − 05 6.073𝐸 − 04 6.103𝐸 − 06

Table 4.1.: Norms of 𝑤𝛼 for the Minimum Energy Problem

Problem 4.23 (Regularized Minimum Energy Problem)

min! 1
2

∫︁ 1

0
𝑢(𝑡)2𝑑𝑡 + 1

2

∫︁ 1

0
𝑤𝛼(𝑡)2𝑑𝑡

subject to

�̇�(𝑡) = 𝑦(𝑡) 𝑥(0) = 𝑥(1) = 0
�̇�(𝑡) = 𝑢(𝑡) 𝑦(0) = −𝑦(1) = 1

and
𝑥(𝑡) − 𝛼 · 𝑤𝛼(𝑡) ≤ 1

9 .

Figure 4.1 shows the plots of solutions to the regularized problem for different values of 𝛼.
Additionally, table 4.1 lists the norms of the virtual control as well as the residua ‖𝐹 (𝑧)‖∞
of the calculations.

Both Table 4.1 and Figure 4.1 confirm the convergence results of Theorem 4.20 and show
that the virtual control vanishes even in the ‖ · ‖∞-norm. At the same time, the multiplier
𝜂𝛼 explodes. This effect is due to the fact that 𝜂𝛼 is an approximation for �̇� in the original
problem, and 𝜇 is piecewise continuous.

On the other hand, this example shows that the uniform convergence (i.e. convergence
in the 𝐿∞ sense) result cannot be transferred to the multipliers: The first adjoints 𝜆1 of
the regularized problems are continuous. Uniform convergence of continuous functions
would imply that their limit function, which is the adjoint of the original problem, was
continuous, which is not the case.

4.3.2. Simplified Trolley Problem

This example is a simplified model of a trolley crane (cf. [Kim02, p. 18], [GHed]). A weight
is attached to the crane by means of a string. The task in this example is to carry the
weight over a unified distance. The first state 𝑥1 represents position of the trolley on the
track, and 𝑥2 is its velocity. The acceleration of the trolley is the control variable 𝑢. The
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Figure 4.1.: Solutions of LQR𝛼 for the Minimum Energy Problem for different values of 𝛼

62



4.3. Examples

displacement of the weight is described by 𝑥3, and its derivative 𝑥4 is also influenced by
the acceleration 𝑢 of the trolley.

Here, we assume that the weight does not itself accelerate the trolley. This assumption
is justifiable for small attached weights (or heavy trolleys, respectively), and it has the
advantage that the model together with an adequate objective function results in a linear
quadratic optimal controls problem. In chapter 7, a more sophisticated model that does
not fit in this form is investigated. The numbers used at this point are not fitted to the
physical interpretation, but are chosen to construct a problem with a second order state
constraint3. This example is stated in the following

Problem 4.24 (Simplified Trolley Problem)

min! 1
2

∫︁ 1

0
‖𝑥(𝑡)‖2

2 + ‖𝑢(𝑡)‖2
2𝑑𝑡

subject to

�̇�1(𝑡) = 𝑥2(𝑡), 𝑥1(0) = 0, 𝑥1(1) = 1,

�̇�2(𝑡) = 𝑢(𝑡), 𝑥2(0) = 0, 𝑥2(1) = 0,

�̇�3(𝑡) = 𝑥4(𝑡), 𝑥3(0) = 0, 𝑥3(1) = 0,

�̇�4(𝑡) = 𝑢(𝑡) − 𝑥3(𝑡), 𝑥4(0) = 0, 𝑥4(1) = 0

and
𝑥1(𝑡) ≤ 5.

This leads to the regularized version of the Trolley Problem:

Problem 4.25 (Regularized Simplified Trolley Problem)

min! 1
2

∫︁ 1

0
‖𝑥(𝑡)‖2

2 + ‖𝑢(𝑡)‖2
2𝑑𝑡 + 1

2

∫︁ 1

0
𝑤𝛼(𝑡)2𝑑𝑡

subject to

�̇�1(𝑡) = 𝑥2(𝑡), 𝑥1(0) = 0, 𝑥1(1) = 1,

�̇�2(𝑡) = 𝑢(𝑡), 𝑥2(0) = 0, 𝑥2(1) = 0,

�̇�3(𝑡) = 𝑥4(𝑡), 𝑥3(0) = 0, 𝑥3(1) = 0,

�̇�4(𝑡) = 𝑢(𝑡) − 𝑥3(𝑡), 𝑥4(0) = 0, 𝑥4(0) = 0

and
𝑥1(𝑡) − 𝛼 · 𝑤𝛼(𝑡) ≤ 5.

3In this case, a bound on the first state corresponds to the requirement that the trolley should not move
further than a given mark. For physically justifiable numbers however, the first state can be expected
to stay inside the interval [0, 1]. Therefore, the small end time in this example enforces an extreme
movement of the trolley, so that the second order state constraint becomes active.
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𝛼 ‖𝑤𝛼‖2 ‖𝑤𝛼‖∞ ‖𝐹 (𝑧)‖𝑌 ∞

1𝐸 − 1 9.358𝐸 + 00 2.602𝐸 + 01 2.714𝐸 − 08
1𝐸 − 2 8.384𝐸 + 01 2.321𝐸 + 02 2.434𝐸 − 10
1𝐸 − 3 7.935𝐸 + 01 2.244𝐸 + 02 3.296𝐸 − 08
1𝐸 − 4 1.161𝐸 + 01 6.218𝐸 + 01 4.223𝐸 − 08
1𝐸 − 5 1.416𝐸 + 00 1.068𝐸 + 01 5.511𝐸 − 06
1𝐸 − 6 1.420𝐸 − 01 1.074𝐸 + 00 9.424𝐸 − 06
1𝐸 − 7 1.420𝐸 − 02 1.074𝐸 − 01 4.799𝑒 − 06

Table 4.2.: Norms of 𝑤𝛼 for the Simplified Trolley Problem

Again, the plots in figure 4.2 as well as the values in table 4.2 show that the virtual control
vanishes in both the ‖ · ‖2-norm and the ‖ · ‖∞-norm. The numerical difficulties in this
example do not allow for the solutions to the regularized problem with 𝛼 = 1𝐸 − 7 to
be calculated using the combined Newton method as the condition of the matrix for the
linear equation becomes too large.

This example illustrates that the convergence is not necessarily uniform: Note that in all
plots, the solutions for 𝛼 = 10−2 and 𝛼 = 10−3 are separated by a huge gap that does not
occur between e.g. 𝛼 = 10−1 and 𝛼 = 10−2.

As in the Minimum Energy Problem, the multiplier 𝜂𝛼 explodes for vanishing values of
the parameter 𝛼.
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Figure 4.2.: Solutions of LQR𝛼 for the Simplified Trolley Problem for different values of 𝛼
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5. Solving Optimal Control
Problems

In this chapter, we address the problem of finding numerical solutions to the Optimal
Control Problem. The first goal is the introduction of a local Newton method in appropriate
function spaces. It can be used for finding a solution to the necessary optimality conditions
from chapter 3. As a direct application however leads to theoretical problems, we start by
developing a regularization for the complementarity problem. We conclude the chapter
proposing two globalization approaches for the method.

5.1. Regularizing the Complementarity Problem

In this chapter, we introduce an algorithm for solving linear quadratic optimal control
problems of the form 4.1 numerically, with the restriction that we assume 𝑛𝑢 = 𝑛𝑠 = 0.
Applying the necessary optimality conditions from corollary 4.7, the problem of finding an
optimal control and state trajectory is transformed to solving a complementarity problem.
In finite dimensions, several approaches for this class of problems have been investigated,
see [FK98] for a survey.

Problem 5.1 (LQOCP𝑠)

min! 𝐽𝐿𝑄𝑃𝑠(𝑥, 𝑣) :=1
2𝑥(𝑡𝑓 )⊤𝑄𝑓𝑥(𝑡𝑓 )

+1
2

∫︁ 𝑡𝑓

𝑡0

(︁
𝑥(𝑡)⊤, 𝑣(𝑡)⊤

)︁(︃ 𝑄(𝑡) 𝑅𝑣(𝑡)
𝑅𝑣(𝑡)⊤ 𝑆(𝑡)

)︃(︃
𝑥(𝑡)
𝑣(𝑡)

)︃
𝑑𝑡

with respect to the state function 𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥)
and the control function 𝑣 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣)

subject to the differential equation

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵𝑣(𝑡)𝑣(𝑡) a.e. in [𝑡0, 𝑡𝑓 ],

boundary conditions
𝐸0𝑥(𝑡0) + 𝐸1𝑥(𝑡𝑓 ) = 𝑓

and mixed control state constraints

𝐺(𝑡)𝑥(𝑡) + 𝐻(𝑡)𝑣(𝑡) ≤ 𝑙(𝑡).
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A plausible approach for solving this problem is to transform the necessary optimality
conditions from Corollary 4.7 into an operator equation which then can be solved using
numerical methods (in this case, we choose the Newton method). Since state constraints
(of higher order than one) lead to the multiplier 𝜆 merely being of bounded variation, which
in turn is intricate to model numerically, we will assume that no pure state constraints are
involved, i.e. 𝑛𝑠 = 0. In the previous chapter, a method for regularizing state constrained
problems was introduced, so that problems with state constraints can be approximated.
We assume that no control set constraints occur, i.e. 𝑛𝑢 = 0, also for computational
reasons.

In order to find an equation equivalent to 4.7, the complementarity conditions (4.7) can
be transferred using an NCP function:

Definition 5.2 (NCP function)
An NCP function is a function 𝜚 : R2 → R, satisfying

𝜚(𝑎, 𝑏) = 0 ⇐⇒ 𝑎 ≥ 0 ∧ 𝑏 ≥ 0 ∧ 𝑎𝑏 = 0.

The following are examples of NCP functions.

1. The min function 𝜚min: 𝜚min(𝑎, 𝑏) := min(𝑎, 𝑏)

2. The Fischer-Burmeister function 𝜚FB: 𝜚FB(𝑎, 𝑏) :=
√

𝑎2 + 𝑏2 − 𝑎 − 𝑏

The function 𝜚min was investigated in e.g. [HIK03] (more precisely, the equivalent max-
function 𝜚max(𝑎, 𝑏) = 𝑎 − max(0, 𝑎 − 𝑏) = min(𝑎, 𝑏) = 𝜚min(𝑎, 𝑏) was analyzed).

Given an NCP function 𝜚, we define the NCP operator 𝜔 (induced by 𝜚):

Definition 5.3 (NCP Operator)
For an NCP function 𝜚, the NCP operator 𝜔 for an LQP on the interval [0, 𝑡𝑓 ] with 𝑛𝑐

mixed control-state constraints is defined as the mapping

𝜔 : (𝐿∞([0, 𝑡𝑓 ],R𝑛𝑐))2 → 𝐿∞([0, 𝑡𝑓 ],R𝑛𝑐), (𝑎, 𝑏)(·) ↦→ (𝜚(𝑎𝑖(·), 𝑏𝑖(·)))𝑖=1,...,𝑛𝑐
.

Both NCP functions used here suffer from their lack of smoothness. However, this
is a general problem of NCP functions: If an NCP function 𝜚 is differentiable, then
𝜚′(0, 0) = 0 (cf. [Kun06, Proposition 2.18]), which is disadvantageous if combined with
the Newton method, since the inverse of the Jacobian in this algorithm is supposed to be
uniformly bounded. On the other hand, weaker properties like semismoothness or slant
differentiability are generally not inherited by the superposition operator 𝜔 : (𝐿∞)2 → 𝐿∞.
In [HIK03, Proposition 4.1], it was shown that 𝜔min is only semismooth as an operator
𝐿𝑞 → 𝐿𝑝, where 𝑞 > 𝑝. The necessity of this norm gap was shown for 𝜔FB in [Ulb03,
Example 5.11].

This motivates using a regularized NCP function. The following regularization for the
Fischer-Burmeister function (cf. [Ulb03, p. 808]) will be used in the remainder of this
work:
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Definition 5.4 (Regularized Fischer-Burmeister Function)
Let 𝛽 > 0. The regularized Fischer-Burmeister function 𝜚𝛽 : R × R → R is defined by

𝜚𝛽(𝑎, 𝑏) :=
√︁

(𝑎2 + 𝑏2 + 𝛽) − 𝑎 − 𝑏.

The regularized NCP operator 𝜔𝛽 is the mapping

𝜔𝛽 : (𝐿∞([0, 𝑡𝑓 ],R𝑛𝑐))2 → 𝐿∞([0, 𝑡𝑓 ],R𝑛𝑐), (𝑎, 𝑏)(·) ↦→
(︁
𝜚𝛽(𝑎𝑖(·), 𝑏𝑖(·))

)︁
𝑖=1,...,𝑛𝑐

.

Using definition 5.4, the necessary optimality conditions can be stated as an equation.
Firstly, the definition space 𝑋∞ and image space 𝑌∞ are defined, then we define the
operator 𝐹𝛽:

Definition 5.5 (The spaces 𝑋∞ and 𝑌∞ and the operator 𝐹𝛽)
Let the spaces 𝑋∞ and 𝑌∞ be defined as

𝑋∞ :=
(︁
𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥)

)︁2
× 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣) × 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐) × R𝑛𝑐

𝑌∞ :=
(︁
𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥)

)︁2
× R𝑛𝐸 × R𝑛𝑥 × R𝑛𝑥 × 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑣) × 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑐).

Together with the norms

‖(𝑥, 𝜆, 𝑣, 𝜂, 𝜎)‖𝑋 := max{‖𝑥‖1,∞, ‖𝜆‖1,∞, ‖𝑣‖∞, ‖𝜂‖∞, |𝜎|}
and

‖(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7)‖𝑌 := max{‖𝑦1‖∞, ‖𝑦2‖∞, |𝑦3|, |𝑦4|, |𝑦5|, ‖𝑦6‖∞, ‖𝑦7‖∞},

(𝑋∞, ‖ · ‖𝑋) and (𝑌∞, ‖ · ‖𝑌 ) become Banach spaces.

Let 𝐹𝛽 : 𝑋∞ → 𝑌∞ be the operator, defined by

𝐹𝛽(𝑥, 𝜆, 𝑣, 𝜂, 𝜎) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇�(·) − 𝐴(·)𝑥(·) − 𝐵𝑣(·)𝑣(·)
�̇�(·) + 𝑄(·)𝑥(·) + 𝑅𝑣(·)𝑣(·) + 𝐴(·)⊤𝜆(·) + 𝐺(·)⊤𝜂(·)

𝐸0𝑥(𝑡0) + 𝐸1𝑥(𝑡𝑓 ) − 𝑓
𝜆(𝑡0) + 𝐸⊤

0 𝜎
𝜆(𝑡𝑓 ) − 𝑄𝑓𝑥(𝑡𝑓 ) − 𝐸⊤

1 𝜎
𝑆𝑣(·)𝑣(·) + 𝑅𝑣(·)⊤𝑥(·) + 𝐵𝑣(·)⊤𝜆(·) + 𝐻(·)⊤𝜂(·)

𝜔𝛽(𝜂, 𝑙 − 𝐺𝑥 − 𝐻𝑣)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As 𝜔𝛽 is continuously differentiable for any 𝛽 > 0, the operator 𝐹𝛽 is continuously Fréchet
differentiable with respect to 𝑧 := (𝑥, 𝜆, 𝑣, 𝜂, 𝜎) (cf. example 2.20.1).

For any 𝛽 ≥ 0, 𝐹𝛽 is Lipschitz continuous. In fact, we will show in Lemma 5.18, that the
Lipschitz continuity is uniform, i.e. the Lipschitz constant does not depend on 𝛽.

Let

𝑟𝑖(·) := 𝜚𝛽 ′
𝑎(𝜂(·), 𝑙(·) − 𝐺(·)𝑥(·) − 𝐻(·)𝑣(·)), r := diag(𝑟1, . . . , 𝑟𝑛𝑐),

𝑠𝑖(·) := 𝜚𝛽 ′
𝑏(𝜂(·), 𝑙(·) − 𝐺(·)𝑥(·) − 𝐻(·)𝑣(·)), s := diag(𝑠1, . . . , 𝑠𝑛𝑐),
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then the equation

𝐹𝛽
′
𝑧(𝑥, 𝜆, 𝑣, 𝜂, 𝜎)(ℎ𝑥, ℎ𝜆, ℎ𝑣, ℎ𝜂, ℎ𝜎) = (𝑑𝑦1 , 𝑑𝑦2 , 𝑑𝑦3 , 𝑑𝑦4 , 𝑑𝑦5 , 𝑑𝑦6 , 𝑑𝑦7)⊤

reads (︃
ℎ̇𝑥

ℎ̇𝜆

)︃
=
(︃

𝐴 0
−𝑄 −𝐴⊤

)︃(︃
ℎ𝑥

ℎ𝜆

)︃
+
(︃

𝐵𝑣 0
−𝑅𝑣 −𝐺⊤

)︃(︃
ℎ𝑣

ℎ𝜂

)︃
+
(︃

𝑑𝑦1

𝑑𝑦2

)︃
(5.1)

𝐸0ℎ𝑥(𝑡0) + 𝐸1ℎ𝑥(𝑡𝑓 ) = 𝑑𝑦3 (5.2)
ℎ𝜆(𝑡0) + 𝐸⊤

0 ℎ𝜎 = 𝑑𝑦4 (5.3)
ℎ𝜆(𝑡𝑓 ) − 𝑄𝑓ℎ𝑥(𝑡𝑓 ) − 𝐸⊤

1 ℎ𝜎 = 𝑑𝑦5 (5.4)(︃
𝑆𝑣 𝐻⊤

−s𝐻 r

)︃(︃
ℎ𝑣

ℎ𝜂

)︃
=
(︃

−𝑅⊤
𝑣 −𝐵⊤

𝑣

s𝐺 0

)︃(︃
ℎ𝑥

ℎ𝜆

)︃
+
(︃

𝑑𝑦6

𝑑𝑦7

)︃
. (5.5)

Given that 𝒜𝛽 is invertible with ‖𝒜−1
𝛽 ‖ℒ(𝑌∞,𝑋∞) ≤ 𝐶𝛽, where

𝒜𝛽 :=
(︃

𝑆𝑣 𝐻⊤

−s𝐻 r

)︃
𝒜−1

𝛽 :=
(︃

𝒱11 𝒱12
𝒱21 𝒱22

)︃
, (5.6)

equation (5.5) can be solved for (ℎ𝑣, ℎ𝜂):(︃
ℎ𝑣

ℎ𝜂

)︃
=
(︃

−𝒱11𝑅
⊤
𝑣 + 𝒱12s𝐺 −𝒱11𝐵

⊤
𝑣

−𝒱21𝑅
⊤
𝑣 + 𝒱22s𝐺 −𝒱21𝐵

⊤
𝑣

)︃(︃
ℎ𝑥

ℎ𝜆

)︃
+
(︃

𝒱11𝑑𝑦6 + 𝒱12𝑑𝑦7

𝒱21𝑑𝑦6 + 𝒱22𝑑𝑦7

)︃
. (5.7)

Conditions for the boundedness of 𝒜−1
𝛽 can be derived in the same way as in [Ger08,

Theorem 3.2]. For this result, we need another index set, since the assumptions on the
linear independence of the control space constraints will have to be connected to the
multiplier 𝜂:

Assumption 5.6
Let 𝑧 = (𝑥, 𝜆, 𝑣, 𝜂, 𝜎) ∈ 𝑋∞, and

𝐽𝛾(𝑡) := {𝑖 ∈ {1, . . . , 𝑛𝑐}| |𝐺𝑖(𝑡)𝑥(𝑡) + 𝐻𝑖(𝑡)𝑣(𝑡) − 𝑙𝑖(𝑡)| ≤ 𝛾𝜂𝑖(𝑡), 𝜂𝑖(𝑡) ≥ 0}.

There exist 𝛾 > 0 and 𝛿 > 0, such that ‖𝐻𝐽𝛾(𝑡)(𝑡)⊤𝜉‖ ≥ 𝛿‖𝜉‖ for all 𝜉 ∈ R|𝐽𝛾(𝑡)(𝑡)|, for all
times 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

Lemma 5.7
Let the data of the LQOCP𝑠 satisfy the smoothness conditions 4.2, as well as the normality
conditions 4.3. Let 𝑆𝑣 be bounded and uniformly positive definite. Furthermore, assume
that assumption 5.6 is satisfied.

Then for 𝜚𝛽
FB, it holds that

‖𝒜−1
𝛽 ‖ℒ(𝑌∞,𝑋∞) ≤ 𝐶,

independent from the regularization parameter 𝛽.
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Proof.
Analog to definition 3.19, let 𝐼𝜀(𝑡) := {𝑖 ∈ {1, . . . , 𝑛𝑐}|𝑟𝑖 ≥ −𝜀}. The time 𝑡 will be omitted
for convenience in the remainder of this proof.

The function 𝜚𝛽
FB is symmetric, i.e. 𝜚𝛽

FB(𝑎, 𝑏) = 𝜚𝛽
FB(𝑏, 𝑎), and if 𝛽 > 0 then 𝜚𝛽

FB is
continuously differentiable with

𝜚𝛽
FB

′
𝑎(𝑎, 𝑏) = 𝑎√

𝑎2 + 𝑏2 + 𝛽
− 1,

so that (𝑟𝑖 + 1)2 + (𝑠𝑖 + 1)2 = 1 − 𝛽 for all 𝑖 = 1, . . . , 𝑛𝑐 and it holds that −2 ≤ 𝑠𝑖 ≤ 0 and
−2 ≤ 𝑟𝑖 ≤ 0, independent from 𝛽.

For 𝑖 ∈ 𝐼𝜀, it holds that −𝜀 ≤ 𝑟𝑖 ≤ 0, and (𝑠𝑖 + 1)2 ≤ 1 − (𝑟𝑖 + 1)2 yields

(𝑠𝑖 + 1)2 ≤ 1 − (1 − 𝜀)2 = 𝜀(2 − 𝜀),

hence |𝑠𝑖 + 1| ≤
√︁

𝜀(2 − 𝜀).

Summarizing, it holds that

‖r𝐼𝜀‖ ≤ 𝜀, 𝜀 ≤ ‖r𝐼𝐶
𝜀

‖ ≤ 2,
1
2 ≤ ‖r−1

𝐼𝐶
𝜀

‖ ≤ 1
𝜀

,

0 ≤ ‖s𝐼𝐶
𝜀

‖ ≤ 2, 1 −
√︁

𝜀(2 − 𝜀) ≤ ‖s𝐼𝜀‖ ≤ 2,
1
2‖s−1

𝐼𝜀
‖ ≤ 1

1 −
√︁

𝜀(2 − 𝜀)
,

and the same reasoning as in the proof of [Ger08, Theorem 3.2] can be applied. This
shows the boundedness of 𝒜−1

𝛽 for the regularized Fischer-Burmeister function. �

For the sake of completeness, the form of 𝒜−1 can be explicitely stated. The Schur
complement turns out to be useful here. Its definition is taken from [BV04, Appendix C.4.1].
In [HJ85, Section 0.8.5], the notion Schur complement has been defined for more general
index sets.
Definition 5.8
Let the matrix 𝑀 ∈ R𝑛+𝑚×𝑛+𝑚 be partitioned as

𝑀 =
(︃

𝑀11 𝑀12
𝑀21 𝑀22

)︃

with 𝑀11 ∈ R𝑛×𝑛, 𝑀12 ∈ R𝑛×𝑚, 𝑀21 ∈ R𝑚×𝑛 and 𝑀22 ∈ R𝑚×𝑚.

If det 𝑀11 ̸= 0, then
𝐾 := 𝑀22 − 𝑀21𝑀

−1
11 𝑀12

is called the Schur complement of 𝑀11 in 𝑀 .

Using the Schur complement, the inverse of a block matrix can be expressed as (cf. [BV04,
Appendix C.4.1]):
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Lemma 5.9
Let 𝑀 be as in definition 5.8, with det 𝑀11 ̸= 0. Then the Schur complement 𝐾 of 𝑀11 is
nonsingular if and only if 𝑀 is nonsingular.

If 𝑀 is nonsingular, then 𝑀−1 takes the form

𝑀−1 =
(︃

𝑀−1
11 + 𝑀−1

11 𝑀12𝐾
−1𝑀21𝑀

−1
11 −𝑀−1

11 𝑀12𝐾
−1

−𝐾−1𝑀21𝑀
−1
11 𝐾−1

)︃
.

Lemma 5.9 leads to the conclusion that if 𝒜 as in (5.6) is invertible, then it holds that

𝒜−1 =
(︃

𝒱11 𝒱12
𝒱21 𝒱22

)︃
=
(︃

𝑆−1
𝑣 − 𝑆−1

𝑣 𝐻⊤𝐾−1s𝐻𝑆−1
𝑣 −𝑆−1

𝑣 𝐻⊤𝐾−1

𝐾−1s𝐻𝑆−1
𝑣 𝐾−1

)︃
,

where 𝐾 = r + s𝐻𝑆−1
𝑣 𝐻⊤. Here, 𝑆−1

𝑣 exists, since 𝑆𝑣 was assumed to be symmetric and
positive definite.

Lemma 5.7, together with theorem 2.25 paves the way for the proof of the first intermediate
result: Under suitable conditions, ‖𝐹 ′

𝛽
−1‖ is bounded, independent from 𝛽. In order to

formulate the assumptions necessary for this estimate, we introduce the operators that are
needed to transform the system (5.1)-(5.5):

Definition 5.10
The operator ℬ, the function c, the matrices ℰ0 and ℰ1 and the vector f are defined as
follows:

ℬ :=

⎛⎜⎝ 𝐴 0 0
−𝑄 −𝐴⊤ 0
0 0 0

⎞⎟⎠+

⎛⎜⎝ 0 0
−𝑅𝑣 −𝐺⊤

0 0

⎞⎟⎠(︃−𝒱11𝑅
⊤
𝑣 + 𝒱12s𝐺 −𝒱11𝐵

⊤
𝑣

−𝒱21𝑅
⊤
𝑣 + 𝒱22s𝐺 −𝒱21𝐵

⊤
𝑣

)︃
,

c :=

⎛⎜⎝ 0 0
−𝑅𝑣 −𝐺⊤

0 0

⎞⎟⎠(︃𝒱11𝑑𝑦6 + 𝒱12𝑑𝑦7

𝒱21𝑑𝑦6 + 𝒱22𝑑𝑦7

)︃
+

⎛⎜⎝𝑑𝑦1

𝑑𝑦2

0

⎞⎟⎠ ,

ℰ0 :=

⎛⎜⎝𝐸0 0 0
0 𝐼 𝐸⊤

0
0 0 −𝐼

⎞⎟⎠ , ℰ1 :=

⎛⎜⎝ 𝐸1 0 0
0 0 0

−𝑄𝑓 𝐼 −𝐸⊤
1

⎞⎟⎠ , f :=

⎛⎜⎝𝑑𝑦3

𝑑𝑦4

𝑑𝑦5

⎞⎟⎠ .

In terms of definition 5.10, we can formulate the assumption that ensures that solutions of
system (5.1)-(5.5) remain bounded (theorem 2.25):

Assumption 5.11
Let ℬ, ℰ0 and ℰ1 be defined as in definition 5.10. Let there exist a constant 𝐶 > 0 such
that ‖ℬ(𝑡)‖ ≤ 𝐶, a.e. in [𝑡0, 𝑡𝑓 ].

Let there exist 𝜅 > 0 independent from 𝛽, such that for all 𝜉 ∈ R𝑛𝑥 it holds that

‖(ℰ0Θ(𝑡0) + ℰ1Θ(𝑡𝑓 ))𝜉‖ ≥ 𝜅‖𝜉‖,

where Θ solves Θ̇(𝑡) = ℬ(𝑡)Θ(𝑡), Θ(𝑡0) = 𝐼.
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5.1. Regularizing the Complementarity Problem

Lemma 5.12
Let the data of the LQOCP𝑠 satisfy the smoothness conditions 4.2, the normality con-
ditions 4.3 and the connected rank assumptions 5.6. Let 𝑆𝑣 be bounded and uniformly
positive definite, and let assumption 5.11 be satisfied.

Then it holds that
‖𝐹𝛽

′
𝑧

−1‖ℒ(𝑌∞,𝑋∞) ≤ 𝐶𝐹

for some constant 𝐶𝐹 > 0.

Proof.
According to lemma 5.7, the operator 𝒜𝛽 can be inverted, and its inverse remains bounded
with respect to the operator norm.

The system (5.1)-(5.5) can therefore be transformed into a linear boundary value problem
using equation (5.7), if ℎ𝜎 is interpreted as a constant function. The new system reads⎛⎜⎝ℎ̇𝑥

ℎ̇𝜆

ℎ̇𝜎

⎞⎟⎠ = ℬ

⎛⎜⎝ℎ𝑥

ℎ𝜆

ℎ𝜎

⎞⎟⎠+ c ℰ0

⎛⎜⎝ℎ𝑥(𝑡0)
ℎ𝜆(𝑡0)
ℎ𝜎(𝑡0)

⎞⎟⎠+ ℰ1

⎛⎜⎝ℎ𝑥(𝑡𝑓 )
ℎ𝜆(𝑡𝑓 )
ℎ𝜎(𝑡𝑓 )

⎞⎟⎠ = f ,

using the notation from definition 5.10. Theorem 2.25 ensures that the solution (ℎ𝑥, ℎ𝜆, ℎ𝜎)
exists, and its norm is bounded linearly by the norm of c and f , i.e.

‖(ℎ𝑥, ℎ𝜆, ℎ𝜎)‖ ≤ 𝐾 · ‖(c, f)‖

for some constant 𝐾. As ‖𝒜−1‖ℒ(𝑌∞,𝑥∞) ≤ 𝐶𝐴 for some 𝐶𝐴 > 0, this implies that there
exists a constant 𝐶𝐹 , such that

‖(ℎ𝑥, ℎ𝜆, ℎ𝑣, ℎ𝜂, ℎ𝜎)‖𝑋∞ ≤ 𝐶𝐹 · ‖(𝑑𝑦1 , 𝑑𝑦2 , 𝑑𝑦3 , 𝑑𝑦4 , 𝑑𝑦5 , 𝑑𝑦6 , 𝑑𝑦7)‖𝑋∞ ,

which was the claim of lemma 5.12. �

The next step is to apply theorem 2.22 to the equation

𝐹𝛽(𝑧) = 0

in order to derive a formula for the dependence of a solution 𝑧 ∈ 𝑋∞ on the regularization
parameter 𝛽.

Lemma 5.13
Let the data of the LQOCP𝑠 satisfy the smoothness conditions 4.2, the normality con-
ditions 4.3 and the connected rank assumptions 5.6. Let 𝑆𝑣 be bounded and uniformly
positive definite, and let assumption 5.11 be satisfied for all 𝛽 ∈ (0, 𝛿), with 𝛿 > 0.

Then the solution 𝑔(𝛽) of 𝐹𝛽(𝑔(𝛽)) = 0 depends Hölder continuously on 𝛽 for 𝛽 ∈ (0, 𝛿).
There exists a constant 𝐶𝑔, such that for 𝛽1, 𝛽2 the estimation

‖𝑔(𝛽1) − 𝑔(𝛽2)‖𝑋∞ ≤ 𝐶𝑔 · |𝛽1 − 𝛽2|
1
2

holds.
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5. Solving Optimal Control Problems

Proof.
In the scope of this proof, let 𝐹 : 𝑋∞ × (0, 𝛿) → 𝑌∞, (𝑧, 𝛽) ↦→ 𝐹𝛽(𝑧), with the norm
‖(𝑧, 𝛽)‖𝑋∞×R := ‖𝑧‖ + |𝛽|. Then 𝐹 is continuously differentiable, and the derivative of
𝑧 ↦→ 𝐹 (𝑧, 𝛽0) in 𝑧0, i.e. 𝐹 ′

𝑧(𝑧0, 𝛽0) : 𝑋∞ → 𝑌∞, is an isomorphism, as shown in lemma 5.12.

The derivative of 𝜚𝛽 with respect to 𝛽 is 𝜚𝛽
′
𝛽(𝑎, 𝑏) = 1

2
√

𝑎2+𝑏2+𝛽
. This means that 𝐹 is

continuously differentiable on (0, 𝛿), with derivative

𝐹 ′
𝛽(𝑧, 𝛽) =

(︂
0, 0, 0, 0, 0, 0,

(︁
1
2((𝜂𝑖)2 + (𝑙 − 𝐺𝑥 − 𝐻𝑣)2

𝑖 + 𝛽)− 1
2
)︁

𝑖=1,...,𝑛𝑐

)︂⊤
.

As we see, the inequality

‖𝐹 ′
𝛽(𝑧, 𝛽)‖ℒ((0,𝛿),𝑌∞) ≤ 𝐶𝛽 · 𝛽− 1

2

holds on the interval (0, 𝛿), independent of 𝑧. At the same time, Lemma 5.12 assures that
𝐹 ′−1

𝑧 is also bounded, independent of 𝛽.

Consequently Theorem 2.22 assures that there exist neighborhoods 𝑈0 of 𝑧0 and 𝑉0 of 𝛽0,
such that for any 𝑧 ∈ 𝑈0, the equation 𝐹 (𝑧, 𝛽) = 0 admits a unique solution 𝑧 =: 𝑔(𝛽) ∈ 𝑉0,
where 𝑔′

𝛽(𝛽) = (𝐹 ′
𝑧(𝑧, 𝛽))−1𝐹 ′

𝛽(𝑧, 𝛽).

Hence

‖𝑔′
𝛽(𝛽)‖ℒ((0,𝛿),𝑋∞) = ‖(𝐹 ′

𝑧(𝑧, 𝛽))−1𝐹 ′
𝛽(𝑧, 𝛽)‖ℒ((0,𝛿),𝑋∞)

≤ ‖(𝐹 ′
𝑧(𝑧, 𝛽))−1‖ℒ(𝑌∞,𝑋∞) · ‖𝐹 ′

𝛽(𝑧, 𝛽)‖ℒ((0,𝛿),𝑌∞)

≤ 𝐶𝐹 · 𝐶𝛽 · 𝛽− 1
2 .

Now it holds

‖𝑔(𝛽1) − 𝑔(𝛽2)‖𝑋∞ ≤
∫︁ 𝛽2

𝛽1
‖𝑔′

𝛽(𝛽)‖𝑋∞𝑑𝛽

≤
∫︁ 𝛽2

𝛽1
‖(𝐹 ′

𝑧(𝑧, 𝛽))−1‖ℒ(𝑌∞,𝑋∞) · ‖𝐹 ′
𝛽(𝑧, 𝛽)‖ℒ((0,𝛿),𝑌∞)𝑑𝛽

≤ 𝐶𝐹 · 𝐶𝛽 · |𝛽1 − 𝛽2|
1
2 ,

so 𝑔 is Hölder continuous. �

Together with Lemma 2.2, Lemma 5.13 proves the main result of this section:

Theorem 5.14
Let the data of the LQOCP𝑠 satisfy the smoothness conditions 4.2, the normality con-
ditions 4.3 and the connected rank assumptions 5.6. Let 𝑆𝑣 be bounded and uniformly
positive definite, and let assumption 5.11 be satisfied for all 𝛽 ∈ (0, 𝛿) with 𝛿 > 0.

Let 𝑔(𝛽) : (0, 𝛿) → 𝑋∞ be implicitly defined by 𝐹𝛽(𝑔(𝛽)) = 0. Then 𝑧 := lim𝛽↘0 𝑔(𝛽) exists
and 𝐹0(𝑧) = 0. The function 𝑔 is Hölder continuous on [0, 𝛿).
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5.2. Solving the Regularized Problem

Proof.
The existence is the direct consequence of lemma 2.2 and lemma 5.13. The limit 𝑧 solves
𝐹0(𝑧) = 0 since 𝐹0 is continuous, so that 𝐹0(𝑧) = lim𝛽↘0 𝐹0(𝑔(𝛽)) = 0.

With 𝑔(0) := lim𝛽↘0 𝑔(𝛽), 𝑔 is continuous on [0, 𝛿), and for 𝛽 ∈ (0, 𝛿) and sufficiently small
𝛽, it holds that

‖𝑔(0) − 𝑔(𝛽)‖ ≤ ‖𝑔(0) − 𝑔(𝛽)‖ + ‖𝑔(𝛽) − 𝑔(𝛽)‖

≤ 𝜀 +
√︁

𝛽 − 𝛽

≤ 𝜀 +
√︁

𝛽.

Taking the limit for 𝜀 → 0 shows the Hölder continuity of 𝑔 on [0, 𝛿). �

Remark 5.15 (Property: Feasibility of Solutions)
An important property of the regularized Fischer-Burmeister function is its effect on the
feasibility of solutions. Note that for 𝛽 > 0 and 𝑎, 𝑏 ∈ R, it holds√︁

𝑎2 + 𝑏2 + 𝛽 − 𝑎 − 𝑏 = 0 ⇔ 𝑎 > 0, 𝑏 > 0, 2𝑎𝑏 = 𝛽.

Therefore, all solutions of the regularized problem with 𝛽 > 0 are strictly feasible (a.e. on
[𝑡0, 𝑡𝑓 ]).

5.2. Solving the Regularized Problem

In this step, the regularized problem 𝐹𝛽(𝑧) = 0 with 𝐹𝛽 : 𝑋∞ → 𝑌∞ as in definition 5.5 is
solved by the means of the Newton method for fixed 𝛽 > 0. The convergence results of
the local method are based on the results in [Wan99], [Wan00] and [WL03].

5.2.1. The Newton method and its convergence radius

We write 𝜔𝛽(𝑧) synonymous for 𝜔𝛽(𝜂, 𝑙 − 𝐺𝑥 − 𝐻𝑣), where 𝑧 = (𝑥, 𝜆, 𝑣, 𝜂, 𝜎) ∈ 𝑋∞.

The local Newton method reads

Algorithm 5.16 (Local Newton Method)

1. Choose 𝑧0 ∈ 𝑋∞, 𝛽 > 0 and 𝜖 > 0. Let 𝑘 = 0.

2. If ‖𝐹𝛽(𝑧𝑘)‖𝑌∞ ≤ 𝜖, stop.

3. Compute the search direction 𝑑𝑘 as

𝑑𝑘 = −𝐹𝛽
′
𝑧(𝑧𝑘)−1𝐹𝛽(𝑧𝑘). (5.8)

4. Set 𝑧𝑘+1 := 𝑧𝑘 + 𝑑𝑘, 𝑘 := 𝑘 + 1, and go to step 2
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5. Solving Optimal Control Problems

The following Theorem is cited from [TW79, Theorem 2.1], since it answers the two most
important questions:

• What assumptions are needed to guarantee that 𝐹𝛽
′(𝑧𝑘) is invertible?

• What is the convergence radius for the algorithm?

Theorem 5.17
Let 𝑋, 𝑌 be Banach spaces and 𝐹𝛽 be a mapping 𝐹𝛽 : 𝑋 → 𝑌 . Let 𝛿 > 0 and 𝑥𝛽 be a
simple zero of 𝐹𝛽. Assume that 𝐹𝛽

′ exists in 𝐵𝛿(𝑥𝛽) with

𝐴2 = 𝐴2(𝛿) = sup
𝑥,𝑦∈𝐵𝛿(𝑥𝛽)

‖𝐹𝛽
′(𝑥𝛽)−1 [𝐹𝛽

′(𝑥) − 𝐹𝛽
′(𝑦)]‖ℒ(𝑋,𝑋)

2 ‖𝑥 − 𝑦‖𝑋

,

and let 𝐴2𝛿 ≤ 𝑞
1+2𝑞

for some 0 < 𝑞 < 1. Then the Newton iterations are well defined for
any start value 𝑥0 ∈ 𝐵𝛿(𝑥𝛽), with

lim
𝑖→∞

𝑥𝑖 = 𝑥𝛽, ‖𝑥𝑖+1 − 𝑥𝛽‖𝑋 ≤ 𝑞 · ‖𝑥𝑖 − 𝑥𝛽‖𝑋 ∀𝑖

and ‖𝑥𝑖+1 − 𝑥𝛽‖𝑋 ≤ 𝐶𝑖‖𝑥𝑖 − 𝑥𝛽‖2
𝑋 ∀𝑖, with 𝐶𝑖 := 𝐴2/(1 − 2𝐴2‖𝑥𝑖 − 𝑥𝛽‖𝑋).

It first remains to find appropriate estimates for the bound 𝐴2. Since we restrict our
investigation to linear quadratic problems, the derivative of one part of the operator does
not depend on the point in which it is evaluated. In order to exploit this fact, we divide
the operator in two parts:

𝐹𝛽 =(𝐹𝛽1, 𝐹𝛽2)
⊤ : 𝑋∞ → 𝑌 ∞

1 × 𝑌 ∞
2 , (5.9)

𝐹𝛽1(𝑧) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇�(·) − 𝐴(·)𝑥(·) − 𝐵𝑣(·)𝑣(·)
�̇�(·) + 𝑄(·)𝑥(·) + 𝑅𝑣(·)𝑣(·) + 𝐴(·)⊤𝜆(·) + 𝐺(·)⊤𝜂(·)

𝐸0𝑥(𝑡0) + 𝐸1𝑥(𝑡𝑓 ) − 𝑓
𝜆(𝑡0) + 𝐸⊤

0 𝜎
𝜆(𝑡𝑓 ) − 𝑄𝑓𝑥(𝑡𝑓 ) − 𝐸⊤

1 𝜎
𝑆𝑣(·)𝑣(·) + 𝑅𝑣(·)⊤𝑥(·) + 𝐵𝑣(·)⊤𝜆(·) + 𝐻(·)⊤𝜂(·)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.10)

𝐹𝛽2(𝑧) =𝜔𝛽(𝜂, 𝑙 − 𝐺𝑥 − 𝐻𝑣). (5.11)

This notation turns out to be very handy when examining the properties of the operator.
Firstly, we note that 𝐹𝛽 is uniformly Lipschitz continuous:

Lemma 5.18
Let the smoothness Assumptions 4.2 be satisfied. Then the regularized operator 𝐹𝛽 is
uniformly Lipschitz continuous, i.e. the Lipschitz constant does not depend on 𝛽.

Proof.
We note that 𝐹𝛽1 is since it is linear and bounded, so that the (bounded) derivative does
not depend on 𝑧. Hence, according to Lemma 2.26, 𝐹𝛽1 is Lipschitz continuous. Naturally,
the Lipschitz constant is independent from 𝛽, as the parameter does not appear in the
function.
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5.2. Solving the Regularized Problem

The following consideration enables us to exploit this property: Consider a function
𝑓 : 𝑋 → 𝑌1 × 𝑌2, 𝑥 ↦→ (𝑓1(𝑥), 𝑓2(𝑥)), where 𝑋, 𝑌1 and 𝑌2 are Banach spaces and
‖(𝑦1, 𝑦2)‖𝑌 := max(‖𝑦1‖𝑌1 , ‖𝑦2‖𝑌2). If 𝑓1 and 𝑓2 are both Lipschitz continuous with
Lipschitz constants 𝐿1 and 𝐿2, respectively, then 𝑓 is also Lipschitz continuous with
Lipschitz constant 𝐿𝑓 := max(𝐿1, 𝐿2):

Let 𝑥1, 𝑥2 ∈ 𝑋. Then it holds that

‖𝑓(𝑥1) − 𝑓(𝑥2)‖𝑌 = max(‖𝑓1(𝑥1) − 𝑓1(𝑥2)‖𝑌1 , ‖𝑓2(𝑥1) − 𝑓2(𝑥2)‖𝑌2)
≤ max(𝐿1 · ‖𝑥1 − 𝑥2‖𝑋 , 𝐿2 · ‖𝑥1 − 𝑥2‖𝑋)
= max(𝐿1, 𝐿2) · ‖𝑥1 − 𝑥2‖𝑋 .

Hence, it only remains to show that 𝐹𝛽2 is Lipschitz continuous as well. For 𝑎1, 𝑏1, 𝑎2, 𝑏2 ∈ R
and 𝛽 ≥ 0 it holds that⃒⃒⃒⃒√︁

𝑎2
1 + 𝑏2

1 + 𝛽 −
√︁

𝑎2
2 + 𝑏2

2 + 𝛽

⃒⃒⃒⃒
≤
⃒⃒⃒⃒√︁

𝑎2
1 + 𝑏2

1 −
√︁

𝑎2
2 + 𝑏2

2

⃒⃒⃒⃒
≤
√︁

|𝑎2
1 − 𝑎2

2| + |𝑏2
1 − 𝑏2

2|
≤

√
2 · max(|𝑎1 − 𝑎2|, |𝑏1 − 𝑏2|)

due to the triangle inequalities in R2 and R3 and the equivalence of norms in R2.

Let 𝛽 ≥ 0. For any 𝑧1, 𝑧2 ∈ 𝑋∞, 𝑧1 = (𝑥1, 𝜆1, 𝑣1, 𝜂1, 𝜎1), 𝑧2 = (𝑥2, 𝜆2, 𝑣2, 𝜂2, 𝜎2), it holds

‖𝐹𝛽2(𝑧1) − 𝐹𝛽2(𝑧2)‖𝑌∞

= ‖𝜔𝛽(𝜂1, 𝑙 − 𝐺𝑥1 − 𝐻𝑣1) − 𝜔𝛽(𝜂2, 𝑙 − 𝐺𝑥2 − 𝐻𝑣2)‖𝑌∞

= max
𝑖

ess sup
𝑡

⃒⃒⃒⃒√︁
𝜂1

2
𝑖 + (𝑙 − 𝐺𝑖𝑥1 − 𝐻 𝑖𝑣1)2 + 𝛽 − 𝜂1𝑖 − (𝑙 − 𝐺𝑖𝑥1 − 𝐻 𝑖𝑣1)

−
√︁

𝜂2
2
𝑖 + (𝑙 − 𝐺𝑖𝑥2 − 𝐻 𝑖𝑣2)2 + 𝛽 − 𝜂2𝑖 − (𝑙 − 𝐺𝑖𝑥2 − 𝐻 𝑖𝑣2)

⃒⃒⃒⃒
≤ max

𝑖
ess sup

𝑡

⃒⃒⃒√
2 · max

(︁
|𝜂1𝑖 − 𝜂2𝑖|, |𝐺𝑖(𝑥1 − 𝑥2) + 𝐻 𝑖(𝑣1 − 𝑣2)|

)︁
+ |𝜂1𝑖 − 𝜂2𝑖| + |𝐺𝑖(𝑥1 − 𝑥2) + 𝐻 𝑖(𝑣1 − 𝑣2)|

⃒⃒⃒⃒
,

and finally, there exists a constant 𝐶 > 0, such that 𝐶 · ‖𝑧1 − 𝑧2‖ yields an upper estimate
for the right hand side. �

Obviously, 𝐹𝛽1
′(𝑧1) − 𝐹𝛽1

′(𝑧2) = 0 for any two 𝑧1, 𝑧2 ∈ 𝑋∞, as the derivative does not
depend on the point in which it is evaluated. The second part can be estimated:
Lemma 5.19
Let 𝐹𝛽 = (𝐹𝛽1, 𝐹𝛽2)⊤. Assume that the LQOCP𝑠 satisfies the smoothness conditions 4.2,
the normality conditions 4.3 and the connected rank assumptions 5.6. Let 𝑆𝑣 be bounded
and uniformly positive definite, let assumption 5.11 be satisfied and let ‖𝑧𝛽‖𝑋∞ be bounded
for all 𝛽. Then there exists a constant 𝐶𝐿 ∈ R independent of 𝑧1 and 𝑧2, such that⃦⃦⃦

𝐹𝛽
′(𝑧𝛽)−1 (𝐹𝛽

′(𝑧1) − 𝐹𝛽
′(𝑧2))

⃦⃦⃦
ℒ(𝑋∞,𝑋∞)

≤ 𝐶𝐿 · ‖𝑧1 − 𝑧2‖𝑋∞ · 𝛽− 1
2

for all 𝑧1, 𝑧2 ∈ 𝑋∞.
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5. Solving Optimal Control Problems

Proof.
Note that

‖𝐹𝛽
′(𝑧𝛽)−1 (𝐹𝛽

′(𝑧1) − 𝐹𝛽
′(𝑧2)) ‖ℒ(𝑋∞,𝑋∞)

≤‖𝐹𝛽
′(𝑧𝛽)−1‖ℒ(𝑌∞,𝑋∞) · ‖𝐹𝛽

′(𝑧1) − 𝐹𝛽
′(𝑧2)‖ℒ(𝑋∞,𝑌∞)

=‖𝐹𝛽
′(𝑧𝛽)−1‖ℒ(𝑌∞,𝑋∞) · ‖𝐹𝛽2

′(𝑧1) − 𝐹𝛽2
′(𝑧2)‖ℒ(𝑋∞,𝑌 2

∞),

where 𝑌 2
∞ denotes the image space of 𝐹𝛽2.

Deriving 𝐹𝛽2 in the direction of ℎ𝑧 = (ℎ𝑥, ℎ𝜆, ℎ𝑣, ℎ𝜂, ℎ𝜎) ∈ 𝑋∞ yields⃦⃦⃦(︁
𝐹𝛽2𝑖

′(𝑧1) − 𝐹𝛽2𝑖
′(𝑧2)

)︁
(ℎ𝑧)

⃦⃦⃦
𝑌 2

∞𝑖

=
⃦⃦⃦⃦
⃦⃦
⎛⎝ 𝜂1𝑖√︁

𝜂1
2
𝑖 + (𝑙𝑖 − 𝐺𝑖𝑥1 − 𝐻 𝑖𝑣1)2 + 𝛽

− 𝜂2𝑖√︁
𝜂2

2
𝑖 + (𝑙𝑖 − 𝐺𝑖𝑥2 − 𝐻 𝑖𝑣2)2 + 𝛽

⎞⎠ℎ𝜂𝑖

+
⎛⎝ 𝑙𝑖 − 𝐺𝑖𝑥2 − 𝐻 𝑖𝑣2√︁

𝜂2
2
𝑖 + (𝑙𝑖 − 𝐺𝑖𝑥2 − 𝐻 𝑖𝑣2)2 + 𝛽

− 𝑙𝑖 − 𝐺𝑖𝑥1 − 𝐻 𝑖𝑣1√︁
𝜂1

2
𝑖 + (𝑙𝑖 − 𝐺𝑖𝑥1 − 𝐻 𝑖𝑣1)2 + 𝛽

⎞⎠
· (𝐺𝑖ℎ𝑥 + 𝐻 𝑖ℎ𝑣)

⃦⃦⃦⃦
⃦⃦

𝑌2∞
𝑖

. (5.12)

Let 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ R, then it holds that⃒⃒⃒⃒
⃒⃒ 𝑎1√︁

𝑎2
1 + 𝑏2

1 + 𝛽
− 𝑎2√︁

𝑎2
2 + 𝑏2

2 + 𝛽

⃒⃒⃒⃒
⃒⃒ ≤ |𝑎1 − 𝑎2| + |𝑏1 − 𝑏2|√

𝛽
.

This inequality is derived in the Appendix in Lemma A.2. Applying this formula to
equation (5.12) yields⃦⃦⃦(︁

𝐹𝛽2𝑖
′(𝑧1) − 𝐹𝛽2𝑖

′(𝑧2)
)︁

(ℎ𝑧)
⃦⃦⃦

𝑌 2
∞𝑖

≤
⃦⃦⃦(︁

|𝜂1𝑖 − 𝜂2𝑖| · ℎ𝜂𝑖 +
⃒⃒⃒
𝐺𝑖(𝑥1 − 𝑥2) + 𝐻 𝑖(𝑣1 − 𝑣2)

⃒⃒⃒
· (𝐺𝑖ℎ𝑥 + 𝐻 𝑖ℎ𝑣)

)︁
· 𝛽− 1

2
⃦⃦⃦

𝑌 2
∞𝑖

.

The assertion follows by taking the essential supremum of 𝑧1 − 𝑧2 and ℎ𝑧. �

Lemma 5.19, together with Theorem 5.17 allows a qualitative estimate of the convergence
radius of the Newton method in dependence on 𝛽:
Corollary 5.20
Assume that the LQOCP𝑠 satisfies the smoothness conditions 4.2, the normality condi-
tions 4.3 and the connected rank assumptions 5.6. Let 𝑆𝑣 be bounded and uniformly positive
definite, let assumption 5.11 be satisfied and assume that 𝑧𝛽 remains bounded for small
𝛽. Then there exists a constant 𝐶𝛿 > 0 independent of 𝛽, such that the sequence (𝑧𝑖)𝑖∈N
generated by the Newton method with the initial value 𝑧0 converges quadratically towards
the solution 𝑧𝛽 of 𝐹𝛽(𝑧𝛽) = 0, if 𝑧0 ∈ 𝐵𝛿(𝑧𝛽), where 𝛿 satisfies

𝛿 < 𝐶𝛿 · 𝛽
1
2 .
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5.2. Solving the Regularized Problem

Proof.
According to Lemma 5.19, 𝐴2 in Theorem 5.17 is bounded by

𝐴2(𝛿) = sup
𝑧1,𝑧2∈𝐵𝛿(𝑧𝛽)

‖𝐹𝛽
′(𝑧𝛽)−1 [𝐹𝛽

′(𝑧1) − 𝐹𝛽
′(𝑧2)]‖ℒ(𝑋∞,𝑋∞)

2 ‖𝑧1 − 𝑧2‖𝑋∞

≤𝐶𝐿

2 𝛽− 1
2 .

The condition for convergence is then fulfilled if

𝐶𝐿

2 · 𝛽− 1
2 · 𝛿 <

1
3

since then the inequality 𝐶𝐿

2 · 𝛽− 1
2 · 𝛿 < 𝑞

1+2𝑞
admits a solution. Solving this inequality for

𝛿 yields the assertion with 𝐶𝛿 := 2
3𝐶𝐿

. �

Corollary 5.20 leads to some important observations:

Remark 5.21 (Convergence of the Newton method for different values of 𝛽)
5.21.1 The estimation for the convergence radius of the Newton method depends linearly
on

√
𝛽.

5.21.2 If 𝛽 > 0, then there exists a radius 𝛿 > 0, such that the method converges if started
with some initial value 𝑧0 ∈ 𝐵𝛿(𝑧𝛽). For this result, no assumption about the behaviour of
the iterations has to be made.

5.21.3 For a given initial value 𝑧0, it is always possible to find a 𝛽, such that the Newton
method converges, as long as the solutions 𝑧𝛽 remain uniformly bounded.

Finally, it should be mentioned that all convergence results also hold for the residual values
‖𝐹𝛽‖∞. The proof is analogous to the proof of [Ger08, Theorem 2.3]:

Corollary 5.22
Let the assumptions of Corollary 5.20 be satisfied. If the sequence (𝑧𝑖)𝑖∈N generated by the
Newton method converges quadratically towards the solution 𝑧𝛽 of 𝐹𝛽(𝑧𝛽) = 0, then either
the resiual values also converge quadratically:

‖𝐹𝛽(𝑧𝑘+1)‖𝑌∞

‖𝐹𝛽(𝑧𝑘)‖2
𝑌∞

≤ 𝐶 ∀𝑖

or vanish in finite time, i.e. 𝐹𝛽(𝑧𝑖) = 0 for some 𝑖 ∈ N.

For sufficiently large 𝑖 ∈ N, there exists a constant 𝐶𝑟, such that

‖𝑧𝑖 − 𝑧𝛽‖𝑋∞ ≤ 𝐶𝑟‖𝐹𝛽(𝑧𝑖)‖𝑌∞

holds, so that ‖𝐹𝛽(𝑧𝑖)‖𝑌∞ provides an estimate for the distance of the current iterate from
the solution.
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5. Solving Optimal Control Problems

Proof.
It is assumed that (𝑧𝑖)𝑖∈N converges quadratically towards 𝑧𝛽, i.e.

‖𝑧𝑖+1 − 𝑧𝛽‖𝑋∞

‖𝑧𝑖 − 𝑧𝛽‖2
𝑋∞

≤ 𝑞 ∀𝑖

with 𝑞 < 1. The convergence of the residuals therefore follows from the continuity of 𝐹𝛽.
Due to the assumptions, it holds that ‖𝐹𝛽

′
𝑧(𝑧𝑖)−1‖ℒ(𝑌∞,𝑋∞) ≤ 𝐶𝐹 for some constant 𝐶𝐹 .

Therefore,

‖𝑧𝑖+1−𝑧𝑖‖𝑋∞ = ‖𝐹𝛽
′
𝑧(𝑧𝑖)−1𝐹𝛽(𝑧𝑖)‖𝑋∞ ≤ ‖𝐹𝛽

′
𝑧(𝑧𝑖)−1‖ℒ(𝑌∞,𝑋∞)·‖𝐹𝛽(𝑧𝑖)‖𝑌∞ ≤ 𝐶𝐹 ‖𝐹𝛽(𝑧𝑖)‖𝑌∞

and as 𝑧𝑖 converges to 𝑧𝛽 at more than superlinear rate, it holds for sufficiently large 𝑖 ∈ N:

‖𝑧𝑖 − 𝑧𝛽‖𝑋∞ ≤‖𝑧𝑖+1 − 𝑧𝑖‖𝑋∞ + ‖𝑧𝑖+1 − 𝑧𝛽‖𝑋∞

≤𝐶𝐹 ‖𝐹𝛽(𝑧𝑖)‖𝑌∞ + 𝜖‖𝑧𝑖 − 𝑧𝛽‖𝑋∞ ,

hence
‖𝑧𝑖 − 𝑧𝛽‖𝑋∞ ≤ 𝐶𝐹

1 − 𝜖
‖𝐹𝛽(𝑧𝑖)‖𝑌∞ ,

where the right hand side remains bounded for small values of 𝜖. This proves the inequality.

The above consideration, together with the fact that 𝐹𝛽 is uniformly Lipschitz continuous
(according to Lemma 5.18) yields

‖𝐹𝛽(𝑧𝑖+1)‖𝑋∞ = ‖𝐹𝛽(𝑧𝑖+1) − 𝐹𝛽(𝑧𝛽)‖𝑋∞

≤ 𝐿𝐹 ‖𝑧𝑖+1 − 𝑧𝛽‖𝑋∞

≤ 𝑞𝐿𝐹 ‖𝑧𝑖 − 𝑧𝛽‖2
𝑋∞

≤ 𝑞𝐿𝐹 𝐶2
𝐹

(1 − 𝜖)2 ‖𝐹𝛽(𝑧𝑖)‖2
𝑌∞ .

As the right hand side remains bounded for small 𝜖, this shows the assertion. �

5.2.2. Example: Regularized Minimum Energy Problem

The following numerical example shows the fast convergence of the local Newton method.
At the same time, it becomes evident that the convergence radius is limited. This motivates
the derivation of a global method in Section 5.3.

This example is the regularized Minimum Energy Problem 4.23, with parameters

𝜅(𝛼) = 0, 𝜙(𝛼) = 1, 𝛾(𝛼) = 𝛼 := 10−5, 𝛽 = 10−2, 𝜖 = 10−9.

The plots and tables have been calculated for 501 time steps. Table 5.1a and Figure 5.1
show the first iterations of the local Newton method that has been started in 𝑧0 = 0. The
lighter grey lines are plots of earlier iterations, and the black line indicates the last iteration.
Apparently, the start value lies outside of the convergence radius, as the iterations seem to
diverge. However, this sequence does find the numerical solution after 25 iterations.
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5.3. Synthesis: Newton Method for the Unregularized Problem

#It ‖𝐹𝛽(𝑧𝑘)‖∞ ‖𝑑𝑘‖∞

0 1.00000𝐸 + 00 2.01940𝐸 + 00
1 2.35475𝐸 − 01 4.81094𝐸 − 01
2 1.61896𝐸 − 01 3.81774𝐸 + 00
3 1.33029𝐸 − 01 5.09223𝐸 + 01
4 3.51663𝐸 − 02 1.86798𝐸 + 02
5 1.43450𝐸 + 02 4.70267𝐸 + 02
6 7.11620𝐸 + 02 1.14120𝐸 + 03
7 1.42233𝐸 + 03 1.35245𝐸 + 03

. . .
(a) Iterations and errors for 𝑧0 = 0

#It ‖𝐹𝛽(𝑧𝑘)‖∞ ‖𝑑𝑘‖∞

0 8.00000𝐸 − 01 1.21596𝐸 + 03
1 2.51245𝐸 − 02 8.58279𝐸 + 02
2 9.32281𝐸 − 03 5.47601𝐸 + 02
3 2.97069𝐸 − 03 2.65740𝐸 + 02
4 6.55716𝐸 − 04 3.48458𝐸 + 01
5 6.49627𝐸 − 05 2.51709𝐸 + 00
6 1.10786𝐸 − 06 3.42440𝐸 − 02
7 4.76022𝐸 − 10
(b) Iterations and errors for 𝑧0 = 0.2 · 𝑧

Table 5.1.: Iterations for the Minimum Energy Problem: divergence and convergence

The second Table 5.1b and Figure 5.2 show the iterations for the algorithm for 𝑧0 = 0.2 · 𝑧,
where 𝑧 is a numerical solution (up to a residual error of 10−9). The algorithm shows the
expected fast convergence1. The figure suggests that the components of 𝑧𝑘 that slow down
the convergence are the multiplier 𝜂 and the virtual control. The fact that these variables
are in a way closely related to the regularization parameter supports the results in [GHed,
Ex. 4.1]. There, the numerical experiments with a related globalized Newton method
showed that the number of iterations grew with decreasing regularization parameter 𝛼.

5.3. Synthesis: Newton Method for the
Unregularized Problem

So far, Corollary 5.20 gives a result about the convergence radius of the Newton method
for the regularized problem. In certain applications, this may be sufficient, cf. Chapter 7.
As the examples illustrate, a globally convergent algorithm is needed. This can easily be
derived in combination with Theorem 5.14.

The obvious approach is to choose an initial regularization parameter and let the Newton
method converge up to a given tolerance. Afterwards, both the parameter and the tolerance
are decreased, and the procedure starts over again. The residua ‖𝐹 (𝑧𝑘)‖𝑌∞ and ‖𝐹𝛽(𝑧𝑘)‖𝑌∞

in this context serve as measurements for ‖𝑧𝑘 − 𝑧0‖𝑋∞ and ‖𝑧𝑘 − 𝑧𝛽‖𝑋∞ , respectively.

Algorithm 5.23 (Combined Newton Method)

1. Choose 𝑧0 ∈ 𝑋∞, 𝛽0 := 𝛽 > 0, 𝐶𝑡𝑜𝑙 > 0, 𝑐𝛽 ∈ (0, 1) and 𝜖 > 0.

2. If ‖𝐹 (𝑧𝑘)‖𝑌∞ ≤ 𝜖, stop.
1Due to the small regularization parameter however, the radius of quadratic convergence is very small,

so that the convergence rate increases quite late.
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Figure 5.1.: Iterations for the regularized Minimum Energy Problem with 𝑧0 = 0
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Figure 5.2.: Iterations for the regularized Minimum Energy Problem with 𝑧0 = 0.2 · 𝑧
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3. If ‖𝐹𝛽𝑘−1(𝑧𝑘)‖𝑌∞ ≤ 𝐶𝑡𝑜𝑙 ·
√

𝛽𝑘−1 set 𝛽𝑘 := 𝛽𝑘−1 · 𝑐𝛽, otherwise set 𝛽𝑘 := 𝛽𝑘−1.

4. Compute the search direction 𝑑𝑘 = −𝐹𝛽𝑘

′(𝑧𝑘)−1𝐹𝛽𝑘
(𝑧𝑘).

5. Set 𝑧𝑘+1 := 𝑧𝑘 + 𝑑𝑘, 𝑘 := 𝑘 + 1 and go to step 2.

Theorem 5.24 (Convergence of the Combined Newton Method)
Assume that the LQOCP𝑠 satisfies the smoothness conditions 4.2, the normality condi-
tions 4.3 and the connected rank assumptions 5.6. Let 𝑆𝑣 be bounded and uniformly positive
definite, let assumption 5.11 be satisfied and assume that 𝑧𝛽 remains bounded.

If 𝑧0 lies in a sufficiently small neighborhood of the solution 𝑧𝛽0 of 𝐹𝛽0(𝑧) = 0, the Combined
Newton Method stops in finite time. The final iterate 𝑧𝑘 lies in a neighborhood of the
solution 𝑧 of 𝐹0(𝑧) = 0.

Proof.
First note that steps 4 and 5 form the local Newton method for the regularized problem.
We assume that the first iterate under consideration, 𝑧𝑙 fulfills ‖𝑧𝑙 − 𝑧𝛽𝑙

‖ < 𝐶𝛿 ·
√

𝛽𝑙,
where 𝐶𝛿 is the constant from Corollary 5.20. The algorithm will converge quadratically
towards 𝑧𝛽𝑙

, until ‖𝐹𝛽𝑙
(𝑧𝑚)‖𝑌∞ < 𝐶𝑡𝑜𝑙 ·

√
𝛽𝑙 holds for some 𝑚 ∈ N. In this situation, 𝛽 will

be updated to 𝛽𝑚 := 𝛽𝑙 · 𝑐𝛽. It remains to show that the first iterate that satisfies this
condition, 𝑧𝑚, lies in the convergence radius of the new problem. The distance between
the solutions 𝑧𝛽𝑙

and 𝑧𝛽𝑚 can be estimated using the inequality of Lemma 5.13:

‖𝑧𝛽𝑙
− 𝑧𝛽𝑚‖𝑋∞ ≤

√︁
𝛽𝑙 − 𝛽𝑚 · 𝐶𝑔,

hence

‖𝑧𝑚 − 𝑧𝛽𝑚‖𝑋∞ ≤ ‖𝑧𝑚 − 𝑧𝛽𝑙
‖𝑋∞ + ‖𝑧𝛽𝑙

− 𝑧𝛽𝑚‖𝑋∞

< 𝐶𝑡𝑜𝑙

√︁
𝛽𝑙 +

√︁
𝛽𝑙 − 𝛽𝑚 · 𝐶𝑔

= 𝐶𝑡𝑜𝑙

√︁
𝑐−1

𝛽

√︁
𝛽𝑚 + 𝐶𝑔

√︁
𝑐−1

𝛽 − 1
√︁

𝛽𝑚

=
(︂

𝐶𝑡𝑜𝑙

√︁
𝑐−1

𝛽 + 𝐶𝑔

√︁
𝑐−1

𝛽 − 1
)︂

·
√︁

𝛽𝑚

If 𝐶𝑡𝑜𝑙 and 𝑐𝛽 are chosen appropriately (i.e. 𝑐𝛽 sufficiently close to 1 and 𝐶𝑡𝑜𝑙 sufficiently
small), the right hand side satisfies

(𝐶𝑡𝑜𝑙

√︁
𝑐−1

𝛽 + 𝐶𝑔

√︁
𝑐−1

𝛽 − 1) ·
√︁

𝛽 < 𝐶𝛿 ·
√︁

𝛽𝑚.

If that is the case, the first iterate that satisfies the condition in step 3 lies in the convergence
radius of the Newton method for the decreased parameter 𝛽𝑚. �

Remark 5.25
For the convergence result of Theorem 5.24, the assumption is made that 𝑧0 lies in a
neighborhood of 𝑧𝛽0. If on the other hand the solutions 𝑧𝛽 of the equation 𝐹𝛽(𝑧𝛽) remain
bounded independent from 𝛽, then 𝑧0 will eventually lie in a sufficiently small neighborhood
if 𝛽0 is chosen large enough as the convergence radius of the local Newton method increases.
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5.4. Alternative: A Globalized Approach

#IT 𝛽𝑘 ‖𝐹𝛽(𝑧𝑘)‖𝑌 ∞ ‖𝐹0(𝑧𝑘)‖𝑌 ∞ ‖𝐹𝛽(𝑧𝑘)||𝑌 2 ‖𝐹0(𝑧𝑘)‖𝑌 2

0 5.0000𝐸 − 01 1.0000𝐸 + 00 1.0000𝐸 + 00 1.4773𝐸 + 00 1.4142𝐸 + 00
1 2.5000𝐸 − 01 4.0970𝐸 − 01 1.4826𝐸 − 01 1.5679𝐸 − 01 6.8559𝐸 − 02
2 1.2500𝐸 − 01 1.8327𝐸 − 01 1.3611𝐸 − 01 7.6128𝐸 − 02 6.4080𝐸 − 02
3 6.2500𝐸 − 02 1.1197𝐸 − 01 1.0800𝐸 − 01 5.0453𝐸 − 02 5.2440𝐸 − 02
4 6.2500𝐸 − 02 1.7143𝐸 + 00 1.6785𝐸 + 00 3.3872𝐸 − 01 3.2406𝐸 − 01
5 6.2500𝐸 − 02 1.2925𝐸 + 01 1.2920𝐸 + 01 1.6761𝐸 + 00 1.6733𝐸 + 00
6 3.1250𝐸 − 02 2.4467𝐸 − 01 8.9959𝐸 − 02 3.8394𝐸 − 02 2.1185𝐸 − 02
7 1.5625𝐸 − 02 1.3198𝐸 − 01 5.5248𝐸 − 02 1.4071𝐸 − 02 1.6275𝐸 − 02

. . .
61 8.8818𝐸 − 16 7.2672𝐸 − 09 1.0591𝐸 − 08 2.8217𝐸 − 10 7.4474𝐸 − 10
62 4.4409𝐸 − 16 1.1384𝐸 − 10 1.0324𝐸 − 08 2.5895𝐸 − 10 5.4729𝐸 − 10
63 2.2204𝐸 − 16 5.2358𝐸 − 09 5.8675𝐸 − 09 7.6201𝐸 − 11 2.9929𝐸 − 10
64 1.1102𝐸 − 16 1.2620𝐸 − 11 6.0590𝐸 − 09 1.2960𝐸 − 10 2.8104𝐸 − 10
65 5.5511𝐸 − 17 6.8183𝐸 − 10 3.0895𝐸 − 09 5.2056𝐸 − 11 1.4291𝐸 − 10
66 2.7756𝐸 − 17 6.6370𝐸 − 11 1.9847𝐸 − 09 4.2054𝐸 − 11 9.0331𝐸 − 11
67 1.3878𝐸 − 17 4.3615𝐸 − 11 1.0321𝐸 − 09 2.2026𝐸 − 11 4.6892𝐸 − 11
68 1.3878𝐸 − 17 1.0714𝐸 − 11 5.3982𝐸 − 10 4.7196𝐸 − 13 2.4470𝐸 − 11

Table 5.2.: Errors of the combined method for the regularized Problem

5.3.1. Example: Regularized Minimum Energy Problem

The Regularized Minimum Energy Problem from Section 5.2.2 can now be solved using
the Combined Newton method 5.23. The algorithm was started with the following
parameters:

𝛽0 = 1, 𝜖 = 10−9, 𝐶𝑡𝑜𝑙 = 1, 𝑐𝛽 = 0.5

and with 𝑧0 = 0.

The plots in Figure 5.3 show the convergence of the iterates. Table 5.2 lists the errors of
the iterates in the ‖ · ‖∞-norm as well as the ‖ · ‖2-norm. On one hand, the convergence
seems to be quite slow. Also, at some of the iterates, the error increases significantly
(e.g. 4). On the other hand, the differential equations for the system becomes stiff as the
regularization parameter for the state constraints is 𝛼 = 10−4, which is rather small. For
the unregularized problem, the iterations cannot converge at all in the ‖ · ‖∞-norm sense,
as the first adjoint 𝜆1 is discontinuous and all iterates are continuous. Bearing this in
mind, it is remarkable that the iterations remain smoother than the ones produced by the
local Newton method.

5.4. Alternative: A Globalized Approach

While the analytical properties of the algorithm proved to be advantageous in Example 5.3.1,
the convergence rate is slower than it could be expected in direct discretization algorithms
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Figure 5.3.: Iterations of the combined method for the regularized Minimum Energy
Problem
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(cf. Table 5.2). Also, since the constants 𝐶𝑡𝑜𝑙 and 𝑐𝛽 that have a significant influence on
the convergence, they have to be guessed correctly.

A straightforward approach would be to use the results from [Ger08] to improve this, namely
by using the globalized Newton method for the local problems. The method is inspired by
a globalized nonsmooth Newton method in finite spaces. This way, the constants 𝐶𝑡𝑜𝑙 and
𝑐𝛽 do not need to be guessed correctly in order to assure global convergence as any local
problem can always be solved globally.

The general idea is to use a merit function for the local problems that allows the use of
a sensible step size strategy. As this leads to a globally convergent algorithm, the only
remaining question is how the regularization parameter should be adapted. The approach
that is used in the context of this work is to update the parameter so that we can hope
that the solution for the new parameter solves the original problem sufficiently well.

The merit function used for the globalization in this context is

Θ𝛽(𝑧) :=‖𝐹𝛽(𝑧)‖2
𝑌 2 (5.13)

= 1
2

𝑛𝑥∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0

(︁
�̇�𝑖(𝑡) − 𝐴𝑖(𝑡)𝑥(𝑡) − 𝐵𝑖

𝑣(𝑡)𝑣(𝑡)
)︁2

𝑑𝑡

+ 1
2

𝑛𝑥∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0

(︁
�̇�𝑖(𝑡) + 𝑄𝑖(𝑡)𝑥(𝑡) + 𝑅𝑖

𝑣(𝑡)𝑣(𝑡) + 𝐴⊤
𝑖 (𝑡)𝜆(𝑡) + 𝐺⊤

𝑖 (𝑡)𝜂(𝑡)
)︁2

𝑑𝑡

+
𝑛𝐸∑︁
𝑖=1

(︁
𝐸𝑖

0𝑥(𝑡0) + 𝐸𝑖
1𝑥(𝑡𝑓 ) − 𝑓𝑖

)︁2

+
𝑛𝑥∑︁
𝑖=1

(︁
𝜆𝑖(𝑡0) + 𝐸0

⊤
𝑖 𝜎
)︁2

+ 1
2

𝑛𝑣∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0

(︁
𝑆𝑖

𝑣(𝑡)𝑣(𝑡) + 𝑅𝑣
⊤
𝑖 (𝑡)𝑥(𝑡) + 𝐵𝑣

⊤
𝑖 (𝑡)𝜆(𝑡) + 𝐻⊤

𝑖 (𝑡)𝜂(𝑡)
)︁2

𝑑𝑡

+ 1
2

𝑛𝑐∑︁
𝑖=1

∫︁ 𝑡𝑓

𝑡0
𝜔𝛽

2
𝑖 (𝜂(𝑡), 𝑙(𝑡) − 𝐺(𝑡)𝑥(𝑡) − 𝐻𝑣(𝑡)𝑣(𝑡))𝑑𝑡.

As in [Ger08], this merit function seems particularly natural for the problem as the partial
derivative at a point 𝑧𝑘 in the Newton direction 𝑑𝑘 equals the 𝐿2-norm of the residuum in
𝑧𝑘:
Lemma 5.26
Let 𝑧𝑘 ∈ 𝑋∞, and let 𝑑𝑘 be the Newton direction 𝑑𝑘 := −𝐹𝛽

′(𝑧𝑘)−1𝐹𝛽(𝑧𝑘). Then the partial
derivative of Θ𝛽, defined as in Equation (5.13), satisfies

Θ𝛽
′(𝑧𝑘)(𝑑𝑘) = −2Θ𝛽(𝑧𝑘) = −‖𝐹𝛽(𝑧𝑘)‖2

𝑌2 .

Proof.
Let ⟨·, ·⟩𝑌2 denote the scalar product in 𝑌2 with Θ𝛽(𝑧) = ⟨𝑧, 𝑧⟩𝑌2 . Then it holds that

Θ′
𝛽(𝑧𝑘)(𝑑𝑘) = 𝑑

𝑑𝑧𝑘

⟨𝐹𝛽(𝑧𝑘), 𝐹𝛽(𝑧𝑘)⟩𝑌2
(𝑑𝑘)
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= 2 ⟨𝐹𝛽(𝑧𝑘), 𝐹𝛽
′(𝑧𝑘)𝑑𝑘⟩𝑌2

= 2
⟨
𝐹𝛽(𝑧𝑘), −𝐹𝛽

′(𝑧𝑘)𝐹𝛽
′(𝑧𝑘)−1𝐹𝛽(𝑧𝑘)

⟩
𝑌2

= − 2Θ𝛽(𝑧𝑘) = −‖𝐹𝛽(𝑧𝑘)‖2
𝑌2 . �

Lemma 5.26 motivates the use of Θ𝛽 as a merit function in a globalization approach for
the local problems that uses Armijo’s step size, as the directional derivative does not need
to be calculated seperately, analogous to [Ger08]:

Algorithm 5.27 (Globalized Newton Method for regularized problems)

1. Choose 𝑧0 ∈ 𝑋∞, 𝛽𝑁 ∈ (0, 1), 𝜎𝑁 ∈ (0, 1/2) and 𝜖 > 0.

2. If ‖𝐹𝛽(𝑧𝑘)‖𝑌∞ ≤ 𝜖, stop.

3. Compute the search direction 𝑑𝑘 as

𝑑𝑘 = −𝐹𝛽
′(𝑧𝑘)−1𝐹𝛽(𝑧𝑘)

4. Find the smallest 𝑖𝑘 ∈ N0, such that

Θ𝛽(𝑧𝑘 + 𝛽𝑖𝑘
𝑁 𝑑𝑘) ≤ Θ𝛽(𝑧𝑘) + 𝜎𝑁𝛽𝑖𝑘

𝑁 Θ𝛽
′(𝑧𝑘)(𝑑𝑘) (5.14)

and set 𝛼𝑘
𝑁 := 𝛽𝑖𝑘

𝑁 .

5. Set 𝑧𝑘+1 := 𝑧𝑘 + 𝛼𝑘
𝑁𝑑𝑘, 𝑘 := 𝑘 + 1, and go to step 2.

According to Lemma 5.26, the partial direction in step 4 can replaced by Θ𝛽
′(𝑧𝑘)(𝑑𝑘) =

−2Θ𝛽(𝑧𝑘), so that Inequality (5.14) can equivalently be replaced by

Θ𝛽(𝑧𝑘 + 𝛽𝑖𝑘
𝑁 𝑑𝑘) ≤ (1 − 2𝜎𝑁𝛽𝑖𝑘

𝑁 )Θ𝛽(𝑧𝑘).

As the merit function shows the same attributes as in the aforementioned work, Theorem 4.2
from [Ger08] can be transfered to our setting:

Theorem 5.28
Assume that the LQOCP𝑠 satisfies the smoothness conditions 4.2, the normality condi-
tions 4.3 and the connected rank assumptions 5.6. Let 𝑆𝑣 be bounded and uniformly positive
definite, let assumption 5.11 be satisfied and assume that 𝑧𝛽 remains bounded.

Let 𝜖 = 0. Let 𝑧*
𝛽 be an accumulation point of the sequence (𝑧𝑘)𝑘∈N generated by Algo-

rithm 5.27. Then 𝑧*
𝛽 is a zero of 𝐹𝛽.

The proof is omitted here, as it can be literally copied from [Ger08, Theorem 4.2].
Consequently, the following convergence result can be transferred to this setting analogously
(cf. [Ger08, Theorem 4.3]):
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Theorem 5.29
Let the assumptions from Theorem 5.28 be valid. Assume that there exists a constant
𝐾 ∈ R, such that

‖𝐹 (𝑧𝑘)‖𝑌∞ ≤ 𝐾 · ‖𝐹 (𝑧𝑘)‖𝑌2 (5.15)

holds for the sequence (𝑧𝑘)𝑘∈N with 𝑧𝑘 → 𝑧𝛽. Then for sufficiently large 𝑘, the step size
𝛼𝑘

𝑁 = 1 is accepted, so that the global method coincides with the local method. The local
quadratic convergence is therefore inherited.

Remark 5.30 (The two-norm discrepancy in Theorem 5.29)
The problem with Theorem 5.29 is that Equation (5.15) cannot yet be guaranteed to hold
for the whole sequence by any other sensible assumption. The obvious assumption that
the equation is satisfied by the whole space is clearly wrong, as the two norms are not
equivalent. This is known as a “two-norm discrepancy”.

In the numerical calculations however, the two-norm discrepancy hardly matters as the
iterates are calculated on a discrete grid. All functions are therefore approximated as a
part of the R𝑛, where all norms are equivalent. The merit function should then be chosen
so that it is compatible with the discretization of the Newton direction. Naturally, the
expected problems with the two norm discrepancy may return if the discretization grid is
refined during the process.

Thus, we concentrate on a fixed grid for the remainder of this work, bearing in mind that
this merely helps accelerating the numerical solution of the original problem.

As we are interested in the solution of the original problem with 𝛽 = 0 rather than
the regulated problem, we use an adaptive regularization. Similarly to the combined
Newton method, we let the local method converge up to a tolerance that takes the current
regularization parameter 𝛽𝑘 into account: If ‖𝐹𝛽(𝑧𝑘)‖𝑌2 ≤ 𝐶𝑙𝑜𝑐 ·

√
𝛽𝑘 holds, we decrease

the parameter. Here, we already make use of the assumed property (5.15), as it is essential
for the fast convergence of the algorithm.

Then we set a decreased regularization parameter 𝛽𝑛𝑒𝑤, so that, according to our knowledge
of the problem, the next iterate 𝑧 that satisfies the stopping criterion satisfies ‖𝐹0(𝑧)‖𝑋∞ ≤
𝜖. As our estimations of the global error depend linearly on the square root of the
regularization parameter 𝛽, it seems straightforward to choose a stopping criterion for the
local problem that also depends linearly on the square root of 𝛽.

Let 𝑧 ∈ 𝑋∞ be an iterate that satisfies ‖𝐹𝛽𝑛𝑒𝑤(𝑧)‖𝑌2 ≤ 𝐶𝑙𝑜𝑐 ·
√

𝛽𝑛𝑒𝑤. Then it holds for the
solution 𝑧0 of 𝐹0(𝑧) = 0, that

‖𝐹0(𝑧)‖𝑌 ∞ ≤ 𝐶𝐹 · ‖𝑧 − 𝑧0‖𝑋∞

≤ 𝐶𝐹 · ‖𝑧 − 𝑧𝛽𝑛𝑒𝑤‖𝑋∞ + 𝐶𝐹 · ‖𝑧𝛽𝑛𝑒𝑤 − 𝑧0‖𝑋∞

≤ 𝐶𝐹 · 𝐶𝜏 · ‖𝐹𝛽𝑛𝑒𝑤(𝑧)‖𝑌∞ + 𝐶𝐹 · 𝐶𝑔

√︁
𝛽𝑛𝑒𝑤

≤ 𝐶𝐹 · 𝐶𝜏 · 𝐾 · ‖𝐹𝛽𝑛𝑒𝑤(𝑧)‖𝑌2 + 𝐶𝐹 · 𝐶𝑔

√︁
𝛽𝑛𝑒𝑤

≤ (𝐶𝐹 · 𝐶𝜏 · 𝐾 · 𝐶𝑙𝑜𝑐 + 𝐶𝐹 · 𝐶𝑔) ·
√︁

𝛽𝑛𝑒𝑤.
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Hence there exists a constant 𝐶, such that

‖𝐹0(𝑧)‖𝑌∞√
𝛽𝑛𝑒𝑤

≤ 𝐶.

As an analogous inequality holds for 𝛽𝑘 whenever the iterate 𝑧𝑘 satisfies 𝑧𝑘 ≤ 𝐶𝑙𝑜𝑐 ·
√

𝛽𝑘, we
simply use ‖𝐹0(𝑧𝑘)‖𝑌∞/

√
𝛽𝑘 as an estimation of this constant. This leads to the condition

‖𝐹0(𝑧𝑘)‖𝑌∞√
𝛽𝑘

·
√︁

𝛽𝑛𝑒𝑤 ≤ 𝜖

for the new parameter 𝛽𝑛𝑒𝑤, so that we choose

𝛽𝑛𝑒𝑤 := min
{︃

𝜖2 · 𝛽𝑘

‖𝐹0(𝑧𝑘)‖2
𝑌∞

,
𝛽𝑘

2

}︃
.

The minimum is used to guarantee that 𝛽𝑛𝑒𝑤 < 𝛽𝑘 holds. This is necessary, as the
regularization parameter is only updated if the stopping criterion for the regularized
problem is fulfilled and the residuum of the original problem is not sufficiently small.

Algorithm 5.31 (Globalized Newton Method)

1. Choose 𝑧0 ∈ 𝑋∞, 𝛽𝑁 ∈ (0, 1), 𝜎𝑁 ∈ (0, 1/2), 𝛽0 and 𝜖 > 0. Let 𝑘 = 0.

2. If ‖𝐹0(𝑧𝑘)‖𝑌∞ ≤ 𝜖, stop.

3. If ‖𝐹𝛽𝑘
(𝑧𝑘)‖𝑌2 ≤ 𝐶𝑙𝑜𝑐 ·

√
𝛽𝑘, set 𝛽𝑘+1 := min

{︂
𝜖2·𝛽𝑘

‖𝐹0(𝑧𝑘)‖2
𝑌∞

, 𝛽𝑘

2

}︂
, 𝑧𝑘+1 := 𝑧𝑘, 𝑘 := 𝑘 + 1.

4. Compute the search direction 𝑑𝑘 as

𝑑𝑘 = −𝐹𝛽
′(𝑧𝑘)−1𝐹𝛽(𝑧𝑘)

5. Find the smallest 𝑖𝑘 ∈ N0, such that

Θ𝛽𝑘
(𝑧𝑘 + 𝛽𝑖𝑘

𝑁 𝑑𝑘) ≤ (1 − 2𝜎𝑁𝛽𝑖𝑘
𝑁 )Θ𝛽𝑘

(𝑧𝑘)

and set 𝛼𝑘
𝑁 := 𝛽𝑖𝑘

𝑁 .

6. Set 𝑧𝑘+1 := 𝑧𝑘 + 𝛼𝑘
𝑁𝑑𝑘, 𝑘 := 𝑘 + 1, and go to step 2.

Again, Step 5 is equivalent to the Armijo step width, according to Lemma 5.26.

5.4.1. Example: Regularized Minimum Energy Problem

Finally, we compare the performance of the Combined Newton Method from the previous
Section 5.2.2 with the Globalized Method 5.31.

The algorithm was started with the following parameters:

𝛽0 = 1, 𝜖 = 10−9, 𝛽𝑁 = 0.8, 𝜎𝑁 = 10−2.
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#IT 𝛽𝑘 ‖𝐹𝛽(𝑧𝑘)‖∞ ‖𝐹0(𝑧𝑘)‖∞ ‖𝐹𝛽(𝑧𝑘)||2 ‖𝐹0(𝑧𝑘)‖2

0 1.0000𝐸 + 00 1.0000𝐸 + 00 1.0000𝐸 + 00 1.5491𝐸 + 00 1.4142𝐸 + 00
1 1.0000𝐸 + 00 5.2499𝐸 − 01 1.4434𝐸 − 01 3.2741𝐸 − 01 6.7182𝐸 − 02
2 1.0000𝐸 + 00 2.8997𝐸 − 01 1.3398𝐸 − 01 1.6986𝐸 − 01 6.3318𝐸 − 02
3 1.0000𝐸 + 00 1.7567𝐸 − 01 1.1935𝐸 − 01 9.5312𝐸 − 02 5.7463𝐸 − 02
3 7.0197𝐸 − 17 1.1935𝐸 − 01 1.1935𝐸 − 01 5.7463𝐸 − 02 5.7463𝐸 − 02
4 7.0197𝐸 − 17 1.1935𝐸 − 01 1.1935𝐸 − 01 5.7460𝐸 − 02 5.7460𝐸 − 02
5 7.0197𝐸 − 17 1.1934𝐸 − 01 1.1934𝐸 − 01 5.7455𝐸 − 02 5.7455𝐸 − 02
6 7.0197𝐸 − 17 1.1933𝐸 − 01 1.1933𝐸 − 01 5.7449𝐸 − 02 5.7449𝐸 − 02
7 7.0197𝐸 − 17 1.1930𝐸 − 01 1.1930𝐸 − 01 5.7437𝐸 − 02 5.7437𝐸 − 02

. . .
37 7.0197𝐸 − 17 1.6849𝐸 − 05 1.6849𝐸 − 05 6.5117𝐸 − 06 6.5117𝐸 − 06
37 2.4729𝐸 − 25 1.6849𝐸 − 05 1.6849𝐸 − 05 6.5117𝐸 − 06 6.5117𝐸 − 06
38 2.4729𝐸 − 25 9.4896𝐸 − 05 9.4896𝐸 − 05 3.4182𝐸 − 06 3.4182𝐸 − 06
39 2.4729𝐸 − 25 3.6907𝐸 − 07 3.6907𝐸 − 07 1.2626𝐸 − 07 1.2626𝐸 − 07
40 2.4729𝐸 − 25 1.6948𝐸 − 08 1.6948𝐸 − 08 6.3788𝐸 − 09 6.3788𝐸 − 09
40 8.6096𝐸 − 28 1.6948𝐸 − 08 1.6948𝐸 − 08 6.3788𝐸 − 09 6.3788𝐸 − 09
40 2.9976𝐸 − 30 1.6948𝐸 − 08 1.6948𝐸 − 08 6.3788𝐸 − 09 6.3788𝐸 − 09
41 2.9976𝐸 − 30 2.8507𝐸 − 10 2.8507𝐸 − 10 8.7271𝐸 − 22 8.7271𝐸 − 22

Table 5.3.: Errors of the Globalized Method for the regularized problem

Naturally, the algorithm was again started with 𝑧0 = 0.

Figure 5.4 depicts the iterates generated by the algorithm. The first column in Table 5.3
shows the regularization parameter 𝛽, and the subsequent columns show the local and
global residua, in both the ‖ · ‖∞-norm and the ‖ · ‖2-norm.

Whenever 𝛽 was updated, a new row was used as the local errors changed (in this case, the
iteration number as well as the global errors remain the same). The number of iterations
needed for ‖𝐹0(𝑧𝑘)‖∞ to decrease below 10−9 is smaller than in the previous methods. A
reason for this effect is certainly that the regularization parameter 𝛽 is set to 10−17 after
the third iteration, so that its influence on the numerics pratically vanishes. The plots
as well as the ‖ · ‖𝑌 2-norm residua show that the merit function actually slows down the
convergence after this point, so that it takes more than 30 iterations until notable progress
is made. Since in the early iterations only small step sizes are accepted, the program has
to check many possible step sizes, which leads to a longer computation time. In fact, the
computations with the Combined Newton method took 9.81 seconds on an i7 processor (at
2.93Ghz), while the Globalized method took 12.65 seconds on the same machine. The price
to pay for the global convergence seems to be slower convergence under rough conditions.
A positive aspect of this phenomenon this is that the local and global residua decrease
consistently (although this is not guaranteed by the algorithm).
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Figure 5.4.: Iterations of the Globalized Method for the regularized Minimum Energy
Problem

92



6. Numerical Aspects

The focus of this work lies in the indirect solution approach to optimal control problems.
Hence, the theory focuses on the analytic properties of the problems and necessary
optimality conditions that are used to derive the various algorithms. Numerical solutions
of the problems necessarily involve discretization, which for this type of approach means
that the Newton direction is calculated by discretizing Equation (5.8).

In contrast to our approach, direct discretization method is introduces in the first part
of this chapter. Here, the optimal control problem itself is discretized, so that necessary
optimality conditions in finite dimensions can be used to create solution algorithms. The
second part of this chapter shows without proof of convergence how the Newton direction
is calculated in the indirect method. As the Globalized Newton Method 5.27 from the
previous chapter makes use of a merit function, the discretization of the Newton direction
in this context is fitted to the direct approach in order to insure that the step size 𝛼𝑁 = 1
is accepted.

6.1. The Direct Discretization Approach

The basic idea of this approach is to discretize the optimal control problem directly,
yielding an optimization problem in finite dimensions. In the next step, Newton’s method
is used to find a solution to the necessary optimality conditions for the finite problem.

In [MBM97] and [Ger06], the minimum principle and convergence results for the Euler
discretized problem are presented and proved. As we deal with problems of the class
LQOCP𝑠 5.1, the results are presented for this particular class of problems.

For the Euler discretization, the discretized LQOCP reads:

Problem 6.1 (𝐷𝐿𝑄𝑂𝐶𝑃 )

min! 𝐽ℎ(𝑥, 𝑣) :=1
2𝑥(𝑡𝑁)⊤𝑄𝑓𝑥(𝑡𝑁)

+1
2ℎ

𝑁−1∑︁
𝑖=0

(𝑥⊤
𝑖 , 𝑣⊤

𝑖 )
(︃

𝑄(𝑡𝑖) 𝑅𝑣(𝑡𝑖)
𝑅𝑣(𝑡𝑖)⊤ 𝑆𝑣(𝑡𝑖)

)︃(︃
𝑥𝑖

𝑣𝑖

)︃

with respect to the grid functions 𝑥ℎ : Gℎ → R𝑛𝑥, 𝑥𝑖 := 𝑥ℎ(𝑡𝑖), 𝑖 = 0, . . . , 𝑁
and 𝑣ℎ : Gℎ → R𝑛𝑣 , 𝑣𝑖 := 𝑣ℎ(𝑡𝑖), 𝑖 = 0, . . . , 𝑁 − 1
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subject to the difference equations
𝑥𝑖+1 − 𝑥𝑖

ℎ
= 𝐴(𝑡𝑖)𝑥𝑖 + 𝐵𝑣(𝑡𝑖)𝑣𝑖 𝑖 = 0, . . . , 𝑁 − 1.

boundary conditions
𝐸0𝑥0 + 𝐸1𝑥𝑁 = 𝑓,

and mixed control state constraints

𝐺(𝑡𝑖)𝑥(𝑡𝑖) + 𝐻(𝑡𝑖)𝑣𝑖 ≤ 𝑙(𝑡𝑖) 𝑖 = 0, . . . , 𝑁 − 1.

The following assumptions are crucial for the proof of convergence for the above problem
and were derived from the article by Malanowski et al. [MBM97, Assumptions II.1–II.6].
Firstly, the functions occuring in the problem need to be sufficiently smooth.
Assumption 6.2

1. The functions 𝑄, 𝑅𝑣, 𝑆𝑣, 𝐴, 𝐵𝑣 as well as 𝐺 and 𝐻 are constant in time. The
matrices 𝑆𝑣 and 𝑄 are symmetric. 𝐸0 and 𝐸1 have the structure

𝐸0 =
(︃

𝐼𝑛𝑥

0𝑛𝑥

)︃
, 𝐸1 =

(︃
0
𝐸 ′

)︃
,

with 𝐸 ′ ∈ R𝑛𝑐×𝑛𝑥 arbitrary. We write 𝑓 = (𝑓1, 𝑓2)⊤ with 𝑓1, 𝑓2 ∈ R𝑛𝑥.

2. There exists a possibly local solution

(𝑥0, 𝑣0) ∈ 𝒞1([𝑡0, 𝑡𝑓 ],R𝑛𝑥) × 𝒞([𝑡0, 𝑡𝑓 ],R𝑛𝑣).

As the class of problems in this chapter is restricted to optimality problems with linear
constraints, normality of the multipliers in the necessary optimality conditions holds,
without further regularity assumptions [GK02, Th. 2.42].

The KKT conditions for the discretized problem read (cf. [MBM97, Equ. (4.8),(4.9)]):
Theorem 6.3
Let Assumption 6.2 be satisfied by the data of the optimal control problem.

Let (�̂�ℎ, 𝑣ℎ) be a local minimum of problem 4.1.

Then there exist multipliers 𝜅 ∈ R𝑛𝐸 , 𝜆 = (𝜆0, . . . , 𝜆𝑁) ∈ R𝑛𝑥×(𝑁+1), 𝜁 = (𝜁0, . . . , 𝜁𝑁−1) ∈
R𝑛𝑐×𝑁 , 𝜅1, 𝜅2 ∈ R𝑛𝑥, such that the following conditions are satisfied:

1. Discrete adjoint equation:

𝜆𝑖+1 − 𝜆𝑖

ℎ
= −

(︁
𝑄𝑖�̂�ℎ𝑖 + 𝑅𝑖𝑣ℎ𝑖 + 𝐴⊤

𝑖 𝜆𝑖+1 + 𝐺⊤
𝑖 𝜁𝑖

)︁
for all 𝑖 = 0, . . . , 𝑁 − 1

2. Transversality conditions:

𝜆0 = − 𝜅1

𝜆𝑁 = 𝑄𝑓 �̂�ℎ𝑁 + 𝐸 ′⊤𝜅2
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3. Optimality conditions:

𝑅⊤
𝑖 �̂�ℎ𝑖 + 𝑆𝑖𝑣ℎ𝑖 + 𝐵⊤

𝑖 𝜆𝑖+1 + 𝐻⊤
𝑖 𝜁𝑖 = 0 for all 𝑖 = 0, . . . , 𝑁 − 1

4. Complementarity conditions:

0 ≤ 𝜁𝑖 ⊥ 𝑙(𝑡𝑖) − 𝐺(𝑡𝑖)�̂�ℎ𝑖 − 𝐻(𝑡𝑖)𝑣ℎ𝑖 ≥ 0 for all 𝑖 = 0, . . . , 𝑁 − 1

The following assumptions make use of the definition of the set of (𝛼-) active controls,
cf. 3.19. They firstly insure that the control 𝑣 has a sufficient influence on the active
constraints (this influence is defined by the matrix 𝐻). The second part is a controllability
assumption.

Assumption 6.4
1. There exists a positive constant 𝛾 > 0, such that

⃒⃒⃒
𝐻𝐼0(𝑡)(𝑡)⊤𝑧

⃒⃒⃒
≥ 𝛾|𝑧| for all 𝑧 ∈ R#𝐼𝜎(𝑡) and almost all 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

2. For any 𝑒 ∈ R𝑛𝑐, the following boundary value system has a solution:

�̇�(𝑡) = 𝐴(𝑡)𝑦(𝑡) + �̃�𝑣(𝑡)
𝑦(𝑡0) = 0, 𝐸 ′𝑦(𝑡𝑓 ) = 𝑒,

where

𝐴(𝑡) =𝐴(𝑡) − 𝐵𝑣(𝑡)𝐻⊤
𝐼0(𝑡)(𝐻𝐼0(𝑡)𝐻

⊤
𝐼0(𝑡))−1𝐻𝐼0(𝑡),

�̃�𝑣(𝑡) =𝐵𝑣(𝑡)
(︁
𝐼𝑛𝑣 − 𝐻⊤

𝐼0(𝑡)(𝐻𝐼0(𝑡)𝐻
⊤
𝐼0(𝑡))−1𝐻𝐼0(𝑡)

)︁
.

Finally, we make an assumption that guarantees the solvability of a linearization. In order
to formulate the according assumption, we introduce the following index set of positive
multipliers:

Definition 6.5
Let

𝐼+ := {𝑖 ∈ 𝐼0(𝑡)|𝜂𝑖(𝑡) > 0}

denote the set of indices with a positive multiplier. The multiplier 𝜂 in this context denotes
the multiplier for the mixed control state constraint.

With this new set of indices, we present the coercivity condition and the Riccati equation
that needs to be solvable:

Assumption 6.6
1. The Matrix 𝑆𝑣 is positive definite.
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2. The Riccati equation

�̇� (𝑡) = − 𝑃 (𝑡)𝐴(𝑡) − 𝐴(𝑡)⊤𝑃 (𝑡) − 𝑄(𝑡)

+
⎡⎣(︃ 𝑅𝑣(𝑡)⊤

𝐺𝐼+(𝑡)(𝑡)

)︃⊤

+ 𝑃 (𝑡)
(︃

𝐵𝑣(𝑡)⊤

0

)︃⊤
⎤⎦ ·
(︃

𝑆𝑣(𝑡) 𝐻𝐼+(𝑡)(𝑡)⊤

𝐻𝐼+(𝑡)(𝑡) 0

)︃

·
[︃(︃

𝐵𝑣(𝑡)⊤

0

)︃
𝑃 (𝑡) +

(︃
𝑅𝑣(𝑡)⊤

𝐺𝐼+(𝑡)(𝑡)

)︃]︃

possesses a bounded solution 𝑃 on [𝑡0, 𝑡𝑓 ] that satisfies

𝑑⊤(𝑄𝑓 − 𝑃 (𝑡𝑓 ))𝑑 ≥ 0 ∀𝑑 ∈ R𝑛𝑥 : 𝐸1𝑑 = 0.

Remark 6.7
Assumption 6.2 already requires 𝑆𝑣 to be constant in time. Therefore, the coercivity
condition in [MBM97] and [Ger06] is always satisfied if 𝑆𝑣 is positive definite, as ℋ′′

𝑣𝑣 = 𝑆𝑣.

Under the above assumptions, convergence of the Euler discretization has been shown
in [MBM97, Theorem 5.7]:
Theorem 6.8 (Convergence of the Euler discretization)
If Assumptions 6.2, 6.4 and 6.6 hold, then there exists ℎ̃ > 0 such that for each ℎ < ℎ̃,
there exists a locally unique KKT point (𝑥ℎ, 𝑣ℎ, 𝜅ℎ, 𝜆ℎ, 𝜁ℎ) of (𝐷𝐿𝑄𝑂𝐶𝑃 ), and

‖𝑥ℎ − 𝑥0‖1,∞ , ‖𝑣ℎ − 𝑣0‖∞ ≤ 𝑙′ |ℎ| ,

|𝜅ℎ − 𝜅0| , ‖𝜆ℎ − 𝜆0‖1,∞ , ‖𝜁ℎ − 𝜁0‖∞ ≤ 𝑙′ |ℎ| ,

where 𝑙′ is independent of ℎ.

Theorem 6.8 together with Theorem 6.3 lead to another way of solving the Optimal
Control Problem: After transforming the KKT conditions into equations, we can solve the
conditions using a globalized Newton’s method. At the same time, a comparison between
the direct and the indirect approach leads to a formula for the discretized problem and a
merit function that fits the problem exactly. In order to compare the Newton direction for
the direct approach with the Newton direction for the indirect approach, we again use the
regularization parameter 𝛽 and define the operator 𝐹 𝛽

ℎ :
Definition 6.9
Let

𝑧ℎ := (𝑥ℎ, 𝑣ℎ, 𝜅, 𝜆, 𝜁)⊤ ∈ 𝑋ℎ,

𝑋ℎ := R𝑛𝑥·(𝑁+1) × R𝑛𝑣 ·(𝑁+1) × R𝑛𝑥 × R𝑛𝑥 × R𝑛𝑥·(𝑁+1) × R𝑛𝑐·(𝑁+1),

𝑌ℎ1 := R𝑛𝑥·𝑁 × R𝑛𝑥 × R𝑛𝑥 × R𝑛𝑥·𝑁 × R𝑛𝑥 × R𝑛𝑥 × R𝑛𝑣 ·(𝑁+1),

𝑌ℎ2 := R𝑛𝑐·(𝑁+1).

Let the (regularized) discrete NCP function 𝜔𝛽
ℎ :

(︁
R𝑛𝑐·𝑁

)︁2
→ R𝑛𝑐·𝑁 be defined as

𝜔𝛽
ℎ

(︁
(𝑎𝑖)𝑛𝑐·(𝑁−1)

𝑖=0 , (𝑏𝑖)𝑛𝑐·(𝑁−1)
𝑖=0

)︁
:= (𝜑𝛽(𝑎𝑖, 𝑏𝑖))𝑛𝑐·(𝑁−1)

𝑖=0
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with 𝜑𝛽 : R × R → R, (𝑎, 𝑏) ↦→
√

𝑎2 + 𝑏2 + 𝛽 − 𝑎 − 𝑏.

Let 𝐹 𝛽
ℎ = (𝐹 𝛽

ℎ 1, 𝐹 𝛽
ℎ 2)⊤ : 𝑋ℎ → 𝑌ℎ1 × 𝑌ℎ2 be defined by

𝐹 𝛽
ℎ 1(𝑧ℎ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(︁
𝑥ℎ𝑖+1−𝑥ℎ𝑖

ℎ
− 𝐴𝑖𝑥ℎ𝑖 − 𝐵𝑣𝑖𝑣ℎ𝑖

)︁𝑁−1

𝑖=0
𝑥ℎ0 − 𝑓1

𝐸 ′𝑥ℎ𝑁 − 𝑓2(︁
𝜆𝑖+1−𝜆𝑖

ℎ
+ 𝑄𝑖𝑥ℎ𝑖 + 𝑅𝑣𝑖𝑣ℎ𝑖 + 𝐴⊤

𝑖 𝜆𝑖+1 + 𝐺⊤
𝑖 𝜁𝑖

)︁𝑁−1

𝑖=0
𝜆0 + 𝜅1

𝜆𝑁 − 𝑄𝑓𝑥ℎ𝑁 − 𝐸 ′⊤𝜅2(︁
𝑅𝑣

⊤
𝑖 𝑥ℎ𝑖 + 𝑆𝑣𝑖𝑣ℎ𝑖 + 𝐵𝑣

⊤
𝑖 𝜆𝑖+1 + 𝐻⊤

𝑖 𝜁𝑖

)︁𝑁−1

𝑖=0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐹 𝛽
ℎ 2(𝑧ℎ) := 𝜔𝛽

ℎ

(︁
𝜁, (𝑙(𝑡𝑖) − 𝐺(𝑡𝑖)𝑥ℎ𝑖 − 𝐻(𝑡𝑖)𝑣ℎ𝑖)𝑁−1

𝑖=0

)︁
.

Now we need to find an algorithm that solves the equation 𝐹 𝛽
ℎ (𝑧) = 0. As so far, algorithms

based on the Newton method have been used in the function space setting, it seems natural
to also use a suitable Newton method in the context of finite dimensional spaces.

The unregularized function 𝐹 0
ℎ is not differentiable, but it is still differentiable in any

direction. In this case, an algorithm based on a Newton method can make use of the
Bouligand subdifferential (see [Taw09]):

Definition 6.10 (Bouligand Subdifferential)
Let 𝐹 : Ω ⊆ R𝑛 → R𝑚 be locally Lipschitzian at each point of an open set Ω. For 𝑥* ∈ Ω,
define the Bouligand subdifferential of 𝐹 at 𝑥* by

𝜕𝐵𝐹 (𝑥*) =
{︂

lim
𝑘→∞

∇𝐹 (𝑥𝑘) : 𝑥𝑘 → 𝑥*, 𝑥𝑘 ∈ Ω𝐹

}︂
,

where Ω𝐹 is the set of all points in Ω where 𝐹 is Fréchet differentiable.

In [Kan00], a globalized nonsmooth Newton method for mixed complementarity problems
is presented. The necessary optimality conditions can be stated in this form, and the cited
Algorithm [Kan00, Algorithm 2.1] works by applying and globalizing a Newton method to
the unregularized equation 𝐹 0

ℎ (𝑧) = 0.

The merit function for the globalization is defined analogously to the merit function in the
indirect approach:

For 𝑧 ∈ 𝑋ℎ, let

Θ(𝑧) := 1
2
⃦⃦⃦
𝐹 0

ℎ (𝑧)
⃦⃦⃦2

2
.

Algorithm 6.11 (Globalized Semismooth Newton Method in Finite Spaces)
1. Choose 𝑧0 ∈ R𝑛, 𝜌 > 0, 𝛽 ∈ (0, 1), 𝜎𝑁 ∈ (0, 1/2), 𝑝 > 2 and 𝜀 > 0. Let 𝑘 := 0.

2. If ‖𝐹 0
ℎ (𝑧𝑘)‖ ≤ 𝜀, stop.
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3. Select an element 𝑉𝑘 ∈ 𝜕𝐵𝐹 0
ℎ (𝑧𝑘). Compute the Newton direction 𝑑𝑘 as a solution to

𝑉𝑘𝑑 = −𝐹 0
ℎ (𝑧𝑘). (6.1)

If the system is not solvable or the condition

∇Θ(𝑧𝑘)⊤𝑑𝑘 ≤ −𝜌‖𝑑𝑘‖𝑝

is not satisfied, set 𝑑𝑘 := −∇Θ(𝑧𝑘).

4. Find the smallest 𝑖𝑘 ∈ 𝑁0, such that

Θ(𝑧𝑘 + 𝛽𝑖𝑘
𝑁 𝑑𝑘) ≤ Θ(𝑧𝑘) + 𝛽𝑖𝑘

𝑁 ∇Θ(𝑧𝑘)⊤𝑑𝑘.

5. Set 𝑧𝑘+1 := 𝑧𝑘 + 𝛽𝑖𝑘
𝑁 𝑑𝑘, 𝑘 = 𝑘 + 1, and go to 2.

The convergence properties are claimed to hold without very rigid assumptions (see [Kan00,
Theorem 2.2]):

Theorem 6.12
Every accumulation point of a sequence (𝑧𝑘) generated by Algorithm 6.11 is a stationary
point of Θ, and such a stationary point is a solution of the mixed complementarity problem
under relative mild assumptions.

Finally, we state the linear system (6.1) that determines the Newton direction. Let 𝑧𝑘 be
the current iterate, and let

𝑟𝑗(𝑡𝑖) ∈ 𝜕𝐵𝜚0
′
𝑎(𝜂𝑘(𝑡𝑖), 𝑙(𝑡𝑖) − 𝐺(𝑡𝑖)𝑥𝑘(𝑡𝑖) − 𝐻(𝑡𝑖)𝑣𝑘(𝑡𝑖)), r := diag(𝑟1, . . . , 𝑟𝑛𝑐),

𝑠𝑗(𝑡𝑖) ∈ 𝜕𝐵𝜚0
′
𝑏(𝜂𝑘(𝑡𝑖), 𝑙(𝑡𝑖) − 𝐺(𝑡𝑖)𝑥𝑘(𝑡𝑖) − 𝐻(𝑡𝑖)𝑣𝑘(𝑡𝑖)), s := diag(𝑠1, . . . , 𝑠𝑛𝑐).

Then the system reads

𝑑𝑥𝑖+1 − 𝑑𝑥𝑖

ℎ
− 𝐴𝑖𝑑𝑥𝑖 − 𝐵𝑣𝑖𝑑𝑣𝑖 = 𝑦1𝑖, 𝑖 = 0, . . . , 𝑁 − 1, (6.2)

𝑑𝜆𝑖+1 − 𝑑𝜆𝑖

ℎ
+ 𝑄𝑖𝑑𝑥𝑖 + 𝑅𝑣𝑖𝑑𝑣𝑖 + 𝐴⊤

𝑖 𝑑𝜆𝑖+1 + 𝐺⊤
𝑖 𝑑𝜁 𝑖 = 𝑦2𝑖, 𝑖 = 0, . . . , 𝑁 − 1, (6.3)

𝑑𝑥0 = 𝑦3, (6.4)
𝐸 ′𝑑𝑥𝑁 = 𝑦4, (6.5)

𝑑𝜆0 + 𝑑𝜅1 = 𝑦5, (6.6)
𝑑𝜆𝑁 − 𝑄𝑓𝑑𝑥𝑁 − 𝐸 ′⊤𝑑𝜅2 = 𝑦6, (6.7)

𝑅𝑣
⊤
𝑖 𝑑𝑥𝑖 + 𝑆𝑣𝑖𝑑𝑣𝑖 + 𝐵𝑣

⊤
𝑖 𝑑𝜆𝑖+1 + 𝐻⊤

𝑖 𝑑𝜁 𝑖 = 𝑦7𝑖, 𝑖 = 0, . . . , 𝑁 − 1, (6.8)
−s𝑖𝐻𝑖𝑑𝑣𝑖 + r𝑖𝑑𝜁 𝑖 − s𝑖𝐺𝑖𝑑𝑥𝑖 = 𝑦8𝑖, 𝑖 = 0, . . . , 𝑁 − 1, (6.9)

where the right hand sides 𝑦𝑗 𝑖 and 𝑦𝑗 are defined as follows:

𝑦1𝑖 := − 𝑥𝑘𝑖+1 − 𝑥𝑘𝑖

ℎ
+ 𝐴𝑖𝑥𝑘𝑖 + 𝐵𝑣𝑖𝑣𝑘𝑖, 𝑖 = 0, . . . , 𝑁 − 1,
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𝑦2𝑖 := − 𝜆𝑘𝑖+1 − 𝜆𝑘𝑖

ℎ
− 𝑄𝑖𝑥𝑘𝑖 − 𝑅𝑣𝑖𝑣𝑘𝑖 − 𝐴⊤

𝑖 𝜆𝑘𝑖+1 − 𝐺⊤
𝑖 𝜁𝑘𝑖, 𝑖 = 0, . . . , 𝑁 − 1,

𝑦3 := − 𝑥𝑘0 + 𝑓1,

𝑦4 := − 𝐸 ′𝑥𝑘𝑁 + 𝑓2,

𝑦5 := − 𝜆𝑘0 − 𝜅𝑘1,

𝑦6 := − 𝜆𝑘𝑁 + 𝑄𝑓𝑥𝑘𝑁 − 𝐸 ′⊤𝜅𝑘2,

𝑦7𝑖 := − 𝑅𝑣
⊤
𝑖 𝑥𝑘𝑖 − 𝑆𝑣𝑖𝑣𝑘𝑖 − 𝐵𝑣

⊤
𝑖 𝜆𝑘𝑖+1 − 𝐻⊤

𝑖 𝜁𝑘𝑖, 𝑖 = 0, . . . , 𝑁 − 1,

𝑦8𝑖 := − 𝜔0
ℎ(𝜁𝑘, (𝑙𝑖 − 𝐺𝑖𝑥𝑘𝑖 − 𝐻𝑖𝑣𝑘𝑖)𝑁−1

𝑖=0 ).

6.2. Computing the Search Direction

In this section, we discuss algorithms that can be used to find the search direction of the
Newton method. Let an LQOCP𝑠 of the form 5.1 be given. Let 𝑧𝑘 = (𝑥𝑘, 𝜆𝑘, 𝑣𝑘, 𝜎𝑘, 𝜂𝑘) be
the current iterate. Then the search direction 𝑑𝑘 = (𝑑𝑥, 𝑑𝜆, 𝑑𝑣, 𝑑𝜎, 𝑑𝜂) is

𝑑𝑘 = −𝐹𝛽
′(𝑧𝑘)−1𝐹𝛽(𝑧𝑘). (5.8)

Again with

𝑟𝑖(·) := 𝜚𝛽
′
𝑎(𝜂𝑘(·), 𝑙(·) − 𝐺(·)𝑥𝑘(·) − 𝐻(·)𝑣𝑘(·)), r := diag(𝑟1, . . . , 𝑟𝑛𝑐),

𝑠𝑖(·) := 𝜚𝛽
′
𝑏(𝜂𝑘(·), 𝑙(·) − 𝐺(·)𝑥𝑘(·) − 𝐻(·)𝑣𝑘(·)), s := diag(𝑠1, . . . , 𝑠𝑛𝑐),

this is a solution to the differential algebraic equation(︃
𝑑𝑥

𝑑𝜆

)︃
=
(︃

𝐴 0
−𝑄 −𝐴⊤

)︃(︃
𝑑𝑥

𝑑𝜆

)︃
+
(︃

𝐵𝑣 0
−𝑅⊤

𝑣 −𝐺⊤

)︃(︃
𝑑𝑣

𝑑𝜂

)︃
+
(︃

𝑦1
𝑦2

)︃
, (6.10)

𝐸0𝑑𝑥(𝑡0) + 𝐸1𝑑𝑥(𝑡𝑓 ) = 𝑦3, (6.11)
𝑑𝜆(𝑡0) + 𝐸⊤

0 𝑑𝜎 = 𝑦4, (6.12)
𝑑𝜆(𝑡𝑓 ) − 𝑄𝑓𝑑𝑥(𝑡𝑓 ) − 𝐸⊤

1 𝑑𝜎 = 𝑦5, (6.13)(︃
𝑆𝑣 𝐻⊤

−s𝐻 r

)︃(︃
𝑑𝑣

𝑑𝜂

)︃
=
(︃

−𝑅⊤
𝑣 −𝐵⊤

𝑣

s𝐺 0

)︃(︃
𝑑𝑥

𝑑𝜆

)︃
+
(︃

𝑦6
𝑦7

)︃
, (6.14)

where

𝑦1 := − �̇�𝑘 + 𝐴𝑥𝑘 + 𝐵𝑣𝑣𝑘 𝑦5 := − 𝜆𝑘(𝑡𝑓 ) + 𝑄𝑓𝑥𝑘(𝑡𝑓 ) + 𝐸⊤
1 𝜎𝑘

𝑦2 := − �̇�𝑘 − 𝑄𝑥𝑘 − 𝑅𝑣𝑣𝑘 − 𝐴⊤𝜆𝑘 − 𝐺⊤𝜂𝑘 𝑦6 := − 𝑆𝑣𝑣𝑘 − 𝑅⊤
𝑣 𝑥𝑘 − 𝐵⊤

𝑣 𝜆𝑘 − 𝐻⊤𝜂𝑘

𝑦3 := − 𝐸0𝑥𝑘(𝑡0) − 𝐸1𝑥𝑘(𝑡𝑓 ) + 𝑓 𝑦7 := − 𝜔𝛽(𝜂𝑘, 𝑙 − 𝐺𝑥𝑘 − 𝐻𝑣𝑘).
𝑦4 := − 𝜆𝑘(𝑡0) − 𝐸⊤

0 𝜎𝑘

As the above system is linear in 𝑑𝑧, discretization leads to a system of linear equations.
We apply the Euler method to the differential equation for 𝑥, and, inspired by the direct
discretization approach, we alter the discretization of the adjoint equation to match (6.3).
Then we transform the algebraic equations (6.14) into algebraic equations on the grid.
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Let 𝑛 ∈ N, ℎ := 𝑡𝑓 −𝑡0
𝑛−1 and let Γ be the grid that devides the interval [𝑡0, 𝑡𝑓 ] into 𝑛

equidistant time steps, i.e. Γ := {𝑡0 + ℎ · 𝑖 | 𝑖 = 0, . . . , 𝑛 − 1}.

For 𝑘 ∈ N, the last (descrete) iterate is denoted by 𝑧Γ
𝑘 = (𝑥Γ

𝑘 , 𝜆Γ
𝑘 , 𝑣Γ

𝑘 , 𝜎Γ
𝑘 , 𝜂Γ

𝑘 ), with 𝑥Γ
𝑘 ∈ R𝑛·𝑛𝑥 ,

𝜆Γ
𝑘 ∈ R𝑛·𝑛𝑥 , 𝑣Γ

𝑘 ∈ R(𝑛−1)·𝑛𝑣 , 𝜎Γ
𝑘 ∈ R𝑛𝐸 and 𝜂Γ

𝑘 ∈ R(𝑛−1)·𝑛𝑐 .

We denote the discrete search direction by 𝑑Γ
𝑧 = (𝑑Γ

𝑥 , 𝑑Γ
𝜆, 𝑑Γ

𝑣 , 𝑑Γ
𝜎, 𝑑Γ

𝜂 ), again with 𝑑Γ
𝑥 ∈ R𝑛·𝑛𝑥 ,

𝑑Γ
𝜆 ∈ R𝑛·𝑛𝑥 , 𝑑Γ

𝑣 ∈ R(𝑛−1)·𝑛𝑣 , 𝑑Γ
𝜎 ∈ R𝑛𝐸 and 𝑑Γ

𝜂 ∈ R(𝑛−1)·𝑛𝑐 .

In order to find a consistent discretization for the differential equation (6.10), we use the
same method as in equation (6.2). The discretized differential equations for the discrete
search direction of the state 𝑑Γ

𝑥 and the adjoint 𝑑Γ
𝜆 read:

𝑑Γ
𝑥𝑖+1 − 𝑑Γ

𝑥𝑖

ℎ
− 𝐴𝑖𝑑

Γ
𝑥𝑖 − 𝐵𝑣𝑖𝑑

Γ
𝑣 𝑖 = 𝑦1𝑖, 𝑖 = 0, . . . , 𝑛 − 2, (6.15a)

𝑑Γ
𝜆𝑖+1 − 𝑑Γ

𝜆𝑖

ℎ
+ 𝑄𝑖𝑑

Γ
𝑥𝑖 + 𝑅𝑣𝑖𝑑

Γ
𝑣 𝑖 + 𝐴⊤

𝑖 𝑑Γ
𝜆𝑖+1 + 𝐺⊤

𝑖 𝑑Γ
𝜂 𝑖

= 𝑦2𝑖, 𝑖 = 0, . . . , 𝑛 − 2, (6.15b)

for 𝑖 = 0, . . . , 𝑛 − 2, where the right hand sides are

𝑦1𝑖 := −
𝑥Γ

𝑘 𝑖+1 − 𝑥Γ
𝑘 𝑖

ℎ
+ 𝐴𝑖𝑥

Γ
𝑘 𝑖 + 𝐵𝑣𝑖𝑣

Γ
𝑘 𝑖, 𝑖 = 0, . . . , 𝑛 − 2,

𝑦2𝑖 := −
𝜆Γ

𝑘 𝑖+1 − 𝜆Γ
𝑘 𝑖

ℎ
− 𝑄𝑖𝑥

Γ
𝑘 𝑖 − 𝑅𝑣𝑣Γ

𝑘 𝑖 − 𝐴⊤
𝑖 𝑑Γ

𝜆𝑖+1 − 𝐺⊤
𝑖 𝑑Γ

𝜂 𝑖
, 𝑖 = 0, . . . , 𝑛 − 2.

Note that in the Euler discretization the control variables only influence the right hand
side of the differential equation up to the time step 𝑡𝑛−2. Hence, the control variables that
are calculated are 𝑣0, . . . , 𝑣𝑛−2. Consequently, the search direction is 𝑑𝑣0, . . . , 𝑑𝑣𝑛−2 as well.
The boundary conditions (6.11)-(6.13) with respect to the discretized variables read⎛⎜⎝𝐸0 0

0 𝐼
0 0

⎞⎟⎠(︃𝑑Γ
𝑥0

𝑑Γ
𝜆0

)︃
+

⎛⎜⎝ 𝐸1 0
0 0

−𝑄𝑓 𝐼

⎞⎟⎠(︃𝑑Γ
𝑥𝑛−1

𝑑Γ
𝜆𝑛−1

)︃
+

⎛⎜⎝ 0
𝐸⊤

0
−𝐸⊤

1

⎞⎟⎠ 𝑑Γ
𝜎 =

⎛⎜⎝𝑦3
𝑦4
𝑦5

⎞⎟⎠ (6.16)

with

𝑦3 := − 𝐸0𝑥
Γ
𝑘 0 − 𝐸1𝑥

Γ
𝑘 𝑛−1 + 𝑓

𝑦4 := − 𝜆Γ
𝑘 0 − 𝐸⊤

0 𝜎Γ
𝑘

𝑦5 := − 𝜆Γ
𝑘 𝑛−1 + 𝑄𝑓𝑥Γ

𝑘 𝑛−1 + 𝐸⊤
1 .𝜎Γ

𝑘

Finally, the algebraic equation (6.14) has to hold where the control variables are calculated,
i.e. from the time step 𝑡0 to 𝑡𝑛−2:(︃

𝑆𝑣𝑖
𝐻⊤

𝑖

−s𝑖𝐻𝑖 r𝑖

)︃(︃
𝑑Γ

𝑣 𝑖

𝑑Γ
𝜂 𝑖

)︃
=
(︃

−𝑅⊤
𝑣𝑖 −𝐵⊤

𝑣𝑖

s𝑖𝐺𝑖 0

)︃(︃
𝑑Γ

𝑥𝑖

𝑑Γ
𝜆𝑖+1

)︃
+
(︃

𝑦6𝑖

𝑦7𝑖

)︃
(6.17)

for 𝑖 = 0, . . . , 𝑛 − 2 with the right hand sides

𝑦6𝑖 := − 𝑆𝑣𝑖𝑣
Γ
𝑘 𝑖 − 𝑅𝑣

⊤
𝑖 𝑥Γ

𝑘 𝑖 − 𝐵𝑣
⊤
𝑖 𝜆Γ

𝑘 𝑖+1 − 𝐻⊤
𝑖 𝜂Γ

𝑘 𝑖
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𝑦7𝑖 := − 𝜚𝛽(𝜂Γ
𝑘 𝑖, 𝑙(𝑡𝑖) − 𝐺𝑖𝑥

Γ
𝑘 𝑖 − 𝐻𝑖𝑣

Γ
𝑘 𝑖).

Equations (6.15)-(6.17) can be combined in one linear equation. Let

𝑀 :=

⎛⎜⎝𝑀11 𝑀12 0
𝑀21 𝑀22 0
𝑀31 0 𝑀33

⎞⎟⎠ ,

where

𝑀11 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(︃
−𝐼𝑛𝑥−ℎ𝐴0 0

𝑄0 −𝐼𝑛𝑥

)︃ (︃
𝐼𝑛𝑥 0
0 𝐼𝑛𝑥+ℎ𝐴⊤

0

)︃
. . . . . .(︃

−𝐼𝑛𝑥−ℎ𝐴𝑛−2 0
𝑄𝑛−2 −𝐼𝑛𝑥

)︃ (︃
𝐼𝑛𝑥 0
0 𝐼𝑛𝑥+ℎ𝐴⊤

𝑛−2

)︃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

𝑀12 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ℎ

(︃
−𝐵𝑣0 0
𝑅𝑣0 𝐺⊤

0

)︃
. . .

ℎ

(︃
−𝐵𝑣𝑛−2 0
𝑅𝑣𝑛−2 𝐺⊤

𝑛−2

)︃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

𝑀21 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(︃
𝑅𝑣

⊤
0 0

−s0𝐺0 0

)︃ (︃
0 𝐵𝑣

⊤
0

0 0

)︃
. . . . . .(︃

𝑅𝑣
⊤
𝑛−2 0

−s𝑛−2𝐺𝑛−2 0

)︃ (︃
0 𝐵𝑣

⊤
𝑛−2

0 0

)︃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

𝑀22 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(︃
𝑆𝑣0 𝐻⊤

0
−s0𝐻0 r0

)︃
. . . (︃

𝑆𝑣𝑛−2 𝐻⊤
𝑛−2

−s𝑛−2𝐻𝑛−2 r𝑛−2

)︃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

𝑀31 :=

⎛⎜⎝𝐸0 0 0
0 𝐼𝑛𝑥 0
0 0 0

. . .

. . .

. . .

0 𝐸1 0
0 0 0
0 −𝑄𝑓 𝐼𝑛𝑥

⎞⎟⎠

𝑀33 :=

⎛⎜⎝ 0
𝐸⊤

0
−𝐸⊤

1

⎞⎟⎠
so that the block matrices have the following dimensions:

𝑀11 ∈ R(𝑛𝑡−1)·(2𝑛𝑥) × 𝑛𝑡·(2𝑛𝑥), 𝑀12 ∈ R(𝑛𝑡−1)·(2𝑛𝑥) × (𝑛𝑡−1)·(𝑛𝑣+𝑛𝑐),

𝑀21 ∈ R(𝑛𝑡−1)·(𝑛𝑣+𝑛𝑐) × 𝑛𝑡·(2𝑛𝑥), 𝑀22 ∈ R(𝑛𝑡−1)·(𝑛𝑣+𝑛𝑐)×(𝑛𝑡−1)·(𝑛𝑣+𝑛𝑐),

𝑀31 ∈ R(𝑛𝐸+2𝑛𝑥) × 𝑛𝑡·(2𝑛𝑥), 𝑀33 ∈ R(𝑛𝐸+2𝑛𝑥) × 𝑛𝐸 .
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Let 𝑟 ∈ R(𝑛𝑡−1)·(2𝑛𝑥)+(𝑛𝑡−1)·(𝑛𝑣+𝑛𝑐)+𝑛𝐸+𝑛𝑥+𝑛𝑥 ,

𝑟 := (𝑦10, 𝑦20, 𝑦11, 𝑦21, . . . , 𝑦1𝑛−1, 𝑦2𝑛−1, 𝑦60, 𝑦70, . . . , 𝑦6𝑛−2, 𝑦7𝑛−2, 𝑦3, 𝑦4, 𝑦5)⊤.

Then the discretized search direction 𝑑Γ ∈ R𝑛𝑡·(2𝑛𝑥)+(𝑛𝑡−1)·(𝑛𝑣+𝑛𝑐)+𝑛𝐸

𝑑Γ
𝑧 = (𝑑Γ

𝑥0 , 𝑑Γ
𝜆0 , . . . , 𝑑Γ

𝑥𝑛−1 , 𝑑Γ
𝜆𝑛−1 , 𝑑Γ

𝑣0 , 𝑑Γ
𝜂0 , . . . , 𝑑Γ

𝑣𝑛−2 , 𝑑Γ
𝜂𝑛−2 , 𝑑Γ

𝜎)⊤

solves

𝑀𝑑Γ
𝑧 = 𝑟. (6.18)

In [Ger08], another approach has been introduced that reduces the size of the linear system
by reducing the DAE to a linear boundary value problem. If the inverse of

𝒜 :=
(︃

𝑆 𝐻⊤

−s𝐻 r

)︃

exists, then the algebraic equation (6.14) can be solved for 𝑑𝑣 and 𝑑𝜂.

Substituting the respective terms in the ODE (6.10) yields:

(︃
𝑑𝑥

𝑑𝜆

)︃
=
(︃

𝐴 0
−𝑄 −𝐴⊤

)︃(︃
𝑑𝑥

𝑑𝜆

)︃

+
(︃

𝐵𝑣 0
−𝑅⊤

𝑣 −𝐺⊤

)︃
𝒜−1

[︃(︃
−𝑅⊤

𝑣 −𝐵⊤
𝑣

s𝐺 0

)︃(︃
𝑑𝑥

𝑑𝜆

)︃
+
(︃

𝑦6
𝑦7

)︃]︃
+
(︃

𝑦1
𝑦2

)︃

=
[︃(︃

𝐴 0
−𝑄 −𝐴⊤

)︃
+
(︃

𝐵𝑣 0
−𝑅⊤

𝑣 −𝐺⊤

)︃
𝒜−1

(︃
−𝑅⊤

𝑣 −𝐵⊤
𝑣

s𝐺 0

)︃]︃(︃
𝑑𝑥

𝑑𝜆

)︃

+
(︃

𝐵𝑣 0
−𝑅⊤

𝑣 −𝐺⊤

)︃
𝒜−1

(︃
𝑦6
𝑦7

)︃
+
(︃

𝑦1
𝑦2

)︃
,

which can be rewritten using

B :=
(︃

𝐴 0
−𝑄 −𝐴⊤

)︃
+
(︃

𝐵𝑣 0
−𝑅⊤

𝑣 −𝐺⊤

)︃
𝒜−1

(︃
−𝑅⊤

𝑣 −𝐵⊤
𝑣

s𝐺 0

)︃

b :=
(︃

𝐵𝑣 0
−𝑅⊤

𝑣 −𝐺⊤

)︃
𝒜−1

(︃
𝑦6
𝑦7

)︃
+
(︃

𝑦1
𝑦2

)︃
.

Application of the single shooting method with Euler discretization on the grid Γ for this
problem leads to the linear equation for 𝑑𝑥, 𝑑𝜆 and 𝑑𝜎:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼 + ℎ0B0 −𝐼
𝐼 + ℎ1B1 −𝐼

. . . . . .
𝐼 + ℎ𝑛−2B𝑛−2 −𝐼⎛⎜⎝𝐸0 0

0 𝐼
0 0

⎞⎟⎠
⎛⎜⎝ 𝐸1 0

0 0
−𝑄𝑓 𝐼

⎞⎟⎠
⎛⎜⎝ 0

𝐸⊤
0

−𝐸⊤
1

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑Γ
𝑥0

𝑑Γ
𝜆0
...

𝑑Γ
𝑥𝑛−1

𝑑Γ
𝜆𝑛−1
𝑑Γ

𝜎

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ0b0
...
...

ℎ𝑛−2b𝑛−2
𝑦3
𝑦4
𝑦5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Finally, the discretized control 𝑑Γ
𝑣 and the multiplier 𝑑Γ

𝜂 can be calculated solving the
algebraic equation 6.14:(︃

𝑑Γ
𝑣𝑖

𝑑Γ
𝜂𝑖

)︃
= 𝒜−1

𝑖

[︃(︃
−𝑅⊤

𝑣𝑖 −𝐵⊤
𝑣𝑖

s𝑖𝐺𝑖 0

)︃(︃
𝑑Γ

𝑥𝑖

𝑑Γ
𝜆𝑖

)︃
+
(︃

𝑦6𝑖

𝑦7𝑖

)︃]︃

for all 𝑖 = 0, . . . , 𝑛 − 2.

Naturally, this approach could also be fitted to the discretization scheme that was used
to derive linear system (6.18). Here, we made use of the simpler explicit Euler method
for simplicity. The numerical examples stated in this work were calculated by solving the
linear system (6.18).
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Design

In this chapter, the concept of a Linear Quadratic Controller for control-state constrained
systems is introduced. This presents an application for function space Newton methods.
In numerical tests, the globalized Newton method for a fixed regularization of the NCP
function showed the best performance and stability, so that this solver was used for the
subsequent examples. Problems with pure state constraints may become infeasible during
the passage of time. The Virtual Control Concept from chapter 4.2 turns out to fix
this problem so that a solution can be calculated. Since the regularized problem then is
constrained by mixed control-state constraints, the said method can be used again.

The concept of simulation shall be explained as well, before numerical examples show the
effects of the different parameters. In this chapter, we use the letter 𝑢 for the control, as
this is traditionally used in controller design.

7.1. Controller design and Simulation

For the controller, Newton’s method is used in the context of a linear quadratic model
predictive controller, cf. [GH10]. A system’s dynamic is described by ordinary differential
equations, where the right hand side can be influenced via an 𝐿∞ control function. The
task of the controller is to regulate the system, i.e. to either track a reference trajectory
or to efficiently reach an equilibrium state.

Figure 7.1 (cf. [GH10, Figure 1]) depicts the concept of a predictive controller. The
system’s dynamic is described by an ordinary differential equation. Given a measured
initial state, the behavior of the system is predicted over some time horizon (𝑡𝑐𝑎𝑙𝑐 in the
figure). The objective function for this prediction is then optimized with respect to the
control function. The dashed line in the figure shows the predicted state trajectory of the
system for the optimal control. Then the calculated control is applied to the system for
some time (𝑡𝑎𝑝𝑝𝑙), leading to the solid line as the real system’s behavior under this control.
The time horizon for the application of the control does not coincide with the calculation
time horizon. Afterwards, the state of the system is measured and used as the initial state,
and the algorithm starts again. The prediction can be quite accurate if it is possible to
get a good measurement of the initial state.

For this concept of controller design, it is crucial that the optimal control is calculated
quickly, as the optimization process cannot start until a measurement of the initial state
for the problem has been made. This leads to a time gap between the calculation and the

105



7. Application: LQ Controller Design

𝜏𝑖
𝜏𝑖 + 𝑡𝑎𝑝𝑝𝑙 𝜏𝑖 + 𝑡𝑐𝑎𝑙𝑐

time

state

𝜏𝑖+1
𝜏𝑖+1 + 𝑡𝑎𝑝𝑝𝑙 𝜏𝑖+1 + 𝑡𝑐𝑎𝑙𝑐

Figure 7.1.: Concept of control

actual application of the control. In this time gap, the system may already divert from its
prediction.

Two models for controller design are commonly used in this context:

Model Predictive Control In this approach, the underlying dynamic is left unchanged,
while the objective function is often modelled as a weighted 𝐿2-norm. Control and
control-state constraints can be taken into account when determining the optimal
control. The calculation needed for determining the optimal control may be quite
expensive, so that embedded systems may struggle to solve the problems in due
time.

LQ Control In order to reduce the calculation time, one can also look at a simplified
dynamic. While the objective function is a weighted 𝐿2-norm, the system’s dynamic
is linearized along the reference trajectory or in the equilibrium state, depending
on the present problem. One advantage of this method is that its solution can be
calculated offline. The optimal control can then be determined by multiplying the
state deviation from the reference trajectory by a time-dependent matrix. When
tracking an equilibrium state, this matrix is even independent of time, so that
the online calculation effort is reduced to a simple matrix multiplication. For this
approach to be applicable, the state deviation from the original trajectory must not
be too large. Otherwise, the linearization may become inaccurate.

The controller design proposed in this work is a mixture between the above approaches.
The system’s dynamic is linearized as in the LQ control, but linear state and control-state
constraints are taken into account. In contrast to the LQ control case, the optimal control
problem cannot be solved analytically any more, but has to be solved numerically.

Problem 7.1 (Original Problem)
Let the physical system be described by the ordinary differential equation

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑡 ∈ [𝑡0, 𝑡𝑓 ],
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with 𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥) and 𝑢 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R𝑛𝑢), together with a given initial condition

𝑥(𝑡0) = 𝑥0,

for some 𝑥0 ∈ R𝑛𝑥. Let state and control-state constraints be modelled as

𝑐(𝑡, 𝑥(𝑡), 𝑢(𝑡)) ≤ 0 a.e. in [𝑡0, 𝑡𝑓 ],
𝑠(𝑡, 𝑥(𝑡)) ≤ 0 for 𝑡 ∈ [𝑡0, 𝑡𝑓 ].

The task is to track a given reference trajectory (𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓), 𝑥𝑟𝑒𝑓 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R𝑛𝑥),
𝑢𝑟𝑒𝑓 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ], 𝑅𝑛𝑢).

Unfortunately, the controller algorithm cannot guarantee that the state constraints will be
statisfied. One reason is that the state cannot be exactly determined due to measurement
errors. The second reason is that a linearized version of the dynamics is being used.
Finally, the calculated control is applied over a given time interval, during which the state
constraint may be violated. It may happen that a feasible solution to the above problem
does not even exist, because the constraints are already violated in the initial state.

In this case, it is desirable to get a solution that reduces the violation and also gives a good
objective function value. A regularization that renders the problem feasible is therefore
needed in this case. Hence, the virtual control technique as presented in chapter 4.2 is
applied to Problem 7.2 with a positive regularization parameter 𝛼.

In all examples, the parameter functions were again set to

𝜅(𝛼) := 0, 𝜑(𝛼) := 1, 𝛾(𝛼) := 𝛼.

The Linear Quadratic Regulation Problem for the initial state 𝜉𝑖 on the interval [𝜏𝑖, 𝜏𝑓 ]
(with 𝜏𝑓 := min{𝜏𝑖 + 𝑡𝑐𝑎𝑙𝑐, 𝑡𝑓}) reads:

Problem 7.2 (Linear Quadratic Regulation Problem 𝐿𝑄𝑅𝑃 )
Let Δ𝑥𝑖 := 𝜉𝑖 − 𝑥𝑟𝑒𝑓(𝜏𝑖) denote the deviation of the measured state from the reference
state at time 𝜏𝑖. Find a control correction Δ�̂� ∈ 𝐿∞([𝜏𝑖, 𝜏𝑓 ],R𝑛𝑢), a virtual control
�̂�𝛼 ∈ 𝐿∞([𝜏𝑖, 𝜏𝑓 ],R𝑛𝑠) and a state correction Δ�̂� ∈ 𝑊 1,∞([𝜏𝑖, 𝜏𝑓 ],R𝑛𝑥), that minimize

𝐽(Δ𝑥, Δ𝑢) := 1
2Δ𝑥(𝜏𝑓 )⊤𝑄𝑓Δ𝑥(𝜏𝑓 )

+ 1
2

∫︁ 𝜏𝑓

𝜏𝑖

(Δ𝑥(𝑡)⊤, Δ𝑢(𝑡)⊤)
(︃

𝑄(𝑡) 𝑅(𝑡)
𝑅(𝑡)⊤ 𝑆(𝑡)

)︃
(Δ𝑥(𝑡), Δ𝑢(𝑡))𝑑𝑡

+ 1
2

∫︁ 𝜏𝑓

𝜏𝑖

‖𝑤𝛼(𝑡)‖2
2𝑑𝑡

under the constraints

Δ�̇�(𝑡) = 𝐴(𝑡)Δ𝑥(𝑡) + 𝐵(𝑡)Δ𝑢(𝑡),
Δ𝑥(𝜏𝑖) = Δ𝑥𝑖,
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𝐶(𝑡)Δ𝑥(𝑡) − 𝑤𝛼(𝑡) ≤ 𝑑(𝑡),
𝐺(𝑡)Δ𝑥(𝑡) + 𝐻(𝑡)Δ𝑢(𝑡) ≤ 𝑙(𝑡),

where 𝐴, 𝐵, 𝐶, 𝑑, 𝐺, 𝐻 and 𝑙 are defined as

𝐴(𝑡) := 𝑓 ′
𝑥(𝑡, 𝑥𝑟𝑒𝑓 (𝑡), 𝑢𝑟𝑒𝑓 (𝑡)), 𝐵(𝑡) := 𝑓 ′

𝑢(𝑡, 𝑥𝑟𝑒𝑓 (𝑡), 𝑢𝑟𝑒𝑓 (𝑡)),
𝐶(𝑡) := 𝑠′

𝑥(𝑡, 𝑥𝑟𝑒𝑓 (𝑡)), 𝑑(𝑡) := − 𝑠(𝑡, 𝑥𝑟𝑒𝑓 (𝑡)),
𝐺(𝑡) := 𝑐′

𝑥(𝑡, 𝑥𝑟𝑒𝑓 (𝑡), 𝑢𝑟𝑒𝑓 (𝑡)), 𝐻(𝑡) := 𝑐′
𝑢(𝑡, 𝑥𝑟𝑒𝑓 (𝑡), 𝑢𝑟𝑒𝑓 (𝑡)),

𝑙(𝑡) := − 𝑐(𝑡, 𝑥𝑟𝑒𝑓 (𝑡), 𝑢𝑟𝑒𝑓 (𝑡)).

Then the proposed controller works as follows:

Algorithm 7.3 (Linear Quadratic Controller for Constrained Problems)
1. Let 𝑖 := 0, 𝜏0 := 𝑡0, and let 𝜉0 be the measured system state in 𝜏0.

2. Calculate Δ𝑥, Δ𝑢 as an approximate solution to the Linear Quadratic Regulation
Problem 7.2 in [𝜏𝑖, 𝜏𝑓 ], with 𝜏𝑓 := min{𝜏𝑖 + 𝑡𝑐𝑎𝑙𝑐, 𝑡𝑓}.

3. Apply the control 𝑢𝑟𝑒𝑓 + Δ𝑢 in the time interval [𝜏𝑖, 𝜏𝑖 + 𝑡𝑎𝑝𝑝𝑙𝑦). Measure the final
state 𝜉𝑖+1 := 𝑥(𝜏𝑖 + 𝑡𝑎𝑝𝑝𝑙𝑦).

4. Let 𝜏𝑖+1 := 𝜏𝑖 + 𝑡𝑎𝑝𝑝𝑙𝑦, 𝑖 := 𝑖 + 1, and go to step 2.

This controller algorithm will be referred to as LQC controller in the remainder in contrast
to the LQ algorithm (or ”LQR“ for ”Linear Quadratic Regulator“) that does not take the
constraints into account.

In step 2, a numerical solution to the Regulation Problem 7.2 is needed. We apply a
function space method presented in chapter 5 and discuss the effects of this approach in
the following examples.

For the simulation of the following examples, the discretization method described in
chapter 6 is used on a time grid with the same equidistant step size as for the calculation.
In the first examples, where control constraints in the form of box constraints 𝑢𝑖 min ≤
𝑢𝑖 ≤ 𝑢𝑖 max are present, the controls 𝑢𝑖 are cut off to fit in the given box, independent
from the control method in use. The reason for this is that this sort of constraints usually
reflects physical constraints of the controls (e.g., the maximum velocity/acceleration of a
motor).

It should be mentioned that the control scheme of the proposed algorithm is applied to
the traditional LQ controller as well. That means that the LQ controller is not applied
as a feedback control (where the behavior of the system would have been predicted for
an infinite time horizon or the remaining time horizon in the case of a given reference
trajectory) but as a closed loop control, where again the optimal control is calculated over
a bigger horizon, and the control is then applied over a smaller interval. As the main
calculations for the traditional LQ controller can be done before the simulation starts, the
actual on line calculation time for this approach negligible.
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𝑢

𝑥3

𝑥1
𝑙

𝑔

Figure 7.2.: Sketch: The Inverse Pendulum

7.2. Examples: LQC Controller With Control
Constraints

First, the controller is tested for a simple equilibrium example. At the same time, this
example is used to showcase the simulation technique used for all numerical controller
examples. The effect of the virtual control in comparison to the LQ approach as well
as the effect of the regularization of the Fischer-Burmeister function when solving the
Regulation Problem is observed.

In the subsequent example, a reference trajectory will be tracked.

7.2.1. Inverse Pendulum With Control Constraints

This is a (2D-) model of an inverse pendulum, mounted on a wagon (cf. Figure 7.2). The
weight at the top can be balanced by accelerating the wagon. In this model, we assume
that the weight of the wagon is is much higher than the weight of the pendulum. This
leads to the simplifying assumption that the pendulum has no influence on the wagon:

Problem 7.4 (Original Inverse Pendulum)

�̇�1 = 𝑥2

�̇�2 = −𝑘𝑥2 + 𝑔 sin 𝑥1 + 𝑢 cos 𝑥1

�̇�3 = 𝑥4

�̇�4 = 𝑢

a.e. in [0, 𝑡𝑓 ],

𝑥1(0) = 𝑥10, 𝑥2(0) = 𝑥20, 𝑥3(0) = 𝑥30, 𝑥4(0) = 𝑥40
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In this model, the states 𝑥1 and 𝑥2 do not depend on the position 𝑥3 or the velocity 𝑥4 of
the wagon. The task is to keep the pendulum in the upper position 𝑥1 = 𝑥2 = 0 for as
long as possible, despite of possible disturbances.

The Linear Quadratic Regulation Problem for a given initial state 𝑥0 reads:

Problem 7.5 (Inverse Pendulum: 𝐿𝑄𝑅𝑃 )

min! 𝐹 (Δ𝑥, Δ𝑢) := Δ𝑥1(𝜏𝑓 )2 + Δ𝑥2(𝜏𝑓 )2

+ 1
2

𝜏𝑓∫︁
𝜏𝑖

1
10Δ𝑢(𝑡)2 + Δ𝑥1(𝑡)2 + Δ𝑥2(𝑡)2𝑑𝑡

(7.6)

with respect to Δ𝑥 ∈ 𝑊 1,∞([𝜏𝑖, 𝜏𝑓 ],R4)
and Δ𝑢 ∈ 𝐿∞([𝜏𝑖, 𝑡𝑓 ],R1),

s.t.

Δ𝑥(0) = Δ𝑥0

Δ�̇�1 = Δ𝑥2

Δ�̇�2 = 𝑔Δ𝑥1 − 𝑘Δ𝑥2 + 𝑢

Δ�̇�3 = Δ𝑥4

Δ�̇�4 = Δ𝑢

a.e. in [𝜏𝑖, 𝜏𝑓 ],

−1 ≤ Δ𝑢 ≤ 1 a.e. in [𝜏𝑖, 𝜏𝑓 ].

For both implementations, we used the parameters 𝑘 = 1, 𝑔 = 9.81. For the controller, we
chose 𝑡𝑐𝑎𝑙𝑐 = 0.75, 𝑡𝑎𝑝𝑝𝑙𝑦 = 0.25 over a total time of 2.5, starting at 𝑥0 = (0.095, 0, 0, 0)⊤.
The constraint −1 ≤ 𝑢(𝑡) ≤ 1 was enforced. Each LQRP was solved using the discretization
method from chapter 6 with 150 time steps. The simulations plotted in Figures 7.3 and 7.4
have been calculated with 𝛽 = 10−5. As the system proved to be quite stable with respect
to the calculation errors, the tolerance was set to 𝜀 = 10−3. The overall calculation time
for the LQC simulation was 1.134 seconds, while the maximum time needed for one time
step was 0.287 seconds1.

The most important aspect that can be expected to be advantageous about the LQC
algorithm is that the future behavior of the system can be predicted more precisely near
boundaries, since the predictions of the traditional algorithm lead to optimal controls
that are not necessarily feasible and have to be altered before they are applied to the
system. This becomes apparent in Figure 7.3: The trajectories generated by the classical

1All calculation times in this chapter were measured on a Dell XPS laptop running at 2.00 Ghz. These
values includes the time needed for memory allocation and finding the norm of the direction, which in
real life applications can be simplified. It should also be noted that the calculations were made using
Scilab instead of a lower level language.
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(a) LQR algorithm: 𝑥1
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(b) Constraint Controller: 𝑥1
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(c) LQR algorithm: 𝑥2
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−0.05

−0.025

0

real trajectory

LQR prediction
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(d) Constraint Controller: 𝑥2

Figure 7.3.: Inverse Pendulum: Prediction and Trajectories for the unconstrained and the
constrained controller

LQ controller differ significantly from the mathematical prediction (shown in 7.3a and
7.3c). The predictions of the proposed algorithm are significantly more precise (shown in
7.3b and 7.3d). This leads to a lower functional value for the controller.

Figure 7.3c together with Figure 7.4 reveal the reason for the difference between the two
approaches: The optimal control in the unconstrained LQ algorithm is infeasible, so that it
was projected into the feasible box before the simulation. This leads to unsmooth “hooks”2

in the plot whenever the calculation is restarted. The control plots in Figure 7.4 show
that at the end of the first [𝑡𝑖, 𝑡𝑖 + 𝑡𝑎𝑝𝑝𝑙] intervals, the control already starts getting smaller
in the LQ calculation, as the predicted trajectory has already decreased significantly.

Effects of the Regularization on the Controller

Finally, the question remains how the solution depends on the regularization parameter 𝛽.
It turns out that for sufficiently small 𝛽, the solutions seem to converge. If on the other
hand 𝛽 is too large, then the LQC controller does not yield any advantage over the LQ
approach at all. In fact, the trajectories for 𝛽 = 10−2 are even less advantageous as the

2This effect will be explained in more detail at the end of the example on page 112.
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0 1 2
−1

−0.5

0
constrained
cut

Control u

Figure 7.4.: Inverse Pendulum: Controls calculated by the unconstrained and the con-
strained controller

LQ control. For the start value 𝑥0 = (0.1, 0, 0, 0)⊤, the controller with 𝛽 = 10−2 even fails
to track the equilibrium at all; the applied control was not sufficient to keep the pendulum
upright.

The explanation for this effect lies in the nature of the example. The inverse pendulum
tends to “tip over” and move towards the stable equilibrium (−𝜋, 0, 𝑥3, 𝑥4)⊤. If the applied
control is not powerful enough, then the algorithm fails. At this point, the constraints
can render the problem absurd when the control is constrained in a way that makes it
impossible to reach the upper equilibrium. In this regard, the property mentioned in
Remark 5.15 has a negative aspect in this scenario: The generated control is strictly
feasible, in other words, the regularized solutions stay away from the boundaries of the set
of feasible controls. This leads to the calculated control being weaker than the control given
by the LQ algorithm, so that the set of start values that still lead to tracking trajectories
decreases. For the given start value and 𝛽 = 10−2, the effect is that the control is too
weak to regulate the system more efficiently than the LQ controller does.

Other parameters of the Controller Algorithm

Finally, it remains to point out how the general parameters of the controller effect the
behavior of the simulated system. In particular, the claim that the “hooks” (cf. footnote 2
on page 111) arise from the difference between calculated and applied control needs support,
as even the control calculated by the proposed algorithm shows points of discontinuity (cf.
Figure 7.4 and the last plot in Figure 7.5).

Evidence for this claim is given in Figure 7.6. These plots have been made using a longer
prediction horizon, 𝑡𝑐𝑎𝑙𝑐 = 1.5 as opposed to 𝑡𝑐𝑎𝑙𝑐 = 0.75 in the previous examples. It can
clearly be seen that the points of discontinuity in the control of the LQ algorithm remain
in a neighborhood of the constraints. This supports the claim that these points arise from
the projection into the box of feasible constraints. All other “hooks” seem to vanish, in
the LQ algorithm as well as in the proposed LQC controller. The reason for this is that
the bounded horizon leads to the algorithm calculating a control that is only optimal
inside the bounded time interval [𝜏𝑖, 𝜏𝑖 + 𝑡𝑐𝑎𝑙𝑐]. After the application of the control, the
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Figure 7.5.: Inverse Pendulum: Regularized calculations with 𝛽 = 10−2, . . . , 10−5
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Figure 7.6.: Inverse Pendulum: Simulations for a longer time horizon 𝑡𝑐𝑎𝑙𝑐
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Figure 7.7.: Inverse Pendulum: Simulations for a smaller application time 𝑡𝑎𝑝𝑝𝑙

time interval is shifted, which leads to a different optimal control problem. For larger
time horizons, the difference between both problems vanishes up to the difference that
arises from the fact that the problems are calculated using a linearization of the system’s
dynamic.

The price that needs to be paid for the higher level of smoothness are longer calculation
times. As the time interval of the optimal control problem becomes twice as long, so do
the calculation times in the best case.

Since the argument of the control problems becoming more similar holds analogously when
the application time 𝑡𝑎𝑝𝑝𝑙𝑦 decreases, it can be expected that the “hooks” also decrease
for smaller values of 𝑡𝑎𝑝𝑝𝑙𝑦. Figure 7.7 shows that in fact, the simulations behave even
better than expected: The aforementioned discontinuities in general decrease, and even
the “hooks” near active constraints in the control of the LQ simulation vanish. The reason
for this is simple: In this example, the projection of the calculated control into the feasible
set yields the optimal control for the shown time intervals [𝜏𝑖, 𝜏𝑖 + 𝑡𝑐𝑎𝑙𝑐].

Several problems may render a reduction of 𝑡𝑎𝑝𝑝𝑙𝑦 inapplicable in real life applications:

• The overall computation times increase. While in each step the optimal control
problem remains unchanged in size, the number of optimal control problems doubles
when 𝑡𝑎𝑝𝑝𝑙𝑦 is halved.

• As 𝑡𝑎𝑝𝑝𝑙𝑦 is reduced, the importance of the calculation time increases. The calculated
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𝑢

𝑥1

𝑥2
𝑙

𝑔

Figure 7.8.: Sketch: The Trolley Model

control can only be invoked after it has been calculated. This leads to an offset
between the measurement of the initial state of the Linear Quadratic Regulation
Problem and the application of the control. Sensibly, 𝑡𝑎𝑝𝑝𝑙𝑦 should stay significantly
larger than the time needed for solving the optimal control problems.

• A reduction of 𝑡𝑎𝑝𝑝𝑙𝑦 also means that the control algorithm has to be called more
often. As the matrices that store the linearization of the system’s dynamic may have
to be updated (this is the case when either the dynamic or the reference trajectory is
dependent on time), an overhead occurs each time the calculation routine is called.

7.2.2. Trolley Problem With Control Constraints

This example is a linear quadratic controller for a trolley. A weight 𝑚2 is attached to a
rope of length 𝑙 hanging from the trolley. The trolley itself has mass 𝑚1. The task is to
move the weight quickly over a distance of 1, without causing too much oscillation of the
weight (cf. Problem 7.6). The acceleration of the trolley can be controlled. Figure 7.8
shows a sketch of the trolley.

Problem 7.6 (Original Trolley problem)

min! 𝐽(𝑥, 𝑢) := 1
2

𝑡𝑓∫︁
0

(𝑢(𝑡)2 + 1000𝑥4(𝑡)2)𝑑𝑡 + 𝑡𝑓

with respect to 𝑥 ∈ 𝑊 1,∞([0, 𝑡𝑓 ],R4)
and 𝑢 ∈ 𝐿∞([0, 𝑡𝑓 ],R1),

s.t.

�̇�1 = 𝑥3

�̇�2 = 𝑥4
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�̇�3 = (𝑚2
2𝑙

3𝑥2
4 + 𝑚2𝐼𝑦2𝑙𝑥2

4 + 𝑚2
2𝑙

2𝑔 cos(𝑥2)) sin(𝑥2) − (𝑚2𝑙
2 + 𝐼𝑦2)𝑢

−𝑚1𝑚2𝑙2 − 𝑚1𝐼𝑦2 − 𝑚2
2𝑙

2 − 𝑚2𝐼𝑦2 + 𝑚2
2𝑙

2 cos(𝑥2)2

�̇�4 = 𝑚2𝑙(𝑚2𝑙 cos(𝑥2)2𝑥2
4 sin(𝑥2) + 𝑔 sin(𝑥2)(𝑚1 + 𝑚2) − cos(𝑥2)𝑢)

−𝑚1𝑚2𝑙2 − 𝑚1𝐼𝑦2 − 𝑚2
2𝑙

2 − 𝑚2𝐼𝑦2 + 𝑚2
2𝑙

2 cos(𝑥2)2

a.e. in [0, 𝑡𝑓 ],

𝑥1(0) = 𝑥2(0) = 𝑥3(0) = 𝑥4(0) = 0
𝑥1(𝑡𝑓 ) = 1, 𝑥2(𝑡𝑓 ) = 𝑥3(𝑡𝑓 ) = 𝑥4(𝑡𝑓 ) = 0

and

−0.2 ≤ 𝑢 ≤ 0.2

Values for and the meaning of the different parameters of the problem are shown in
table 7.1.

Parameter Meaning Value
𝑔 gravitational acceleration 9.81

𝑚1 mass of the trolley 0.6
𝑚2 mass of the weight 0.62
𝑙 length of the rope 0.73
𝑟 radius of the (spherical) weight 0.1

𝐼𝑦2 moment of inertia of a spherical weight 0.4 * 𝑚2 * 𝑟2

Table 7.1.: Parameters of the Trolley Problem

The reference trajectory (𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓 ) was calculated as the optimal solution for this problem
using the OC-ODE library written by Matthias Gerdts. In this example, the job of the
controller algorithm is to find optimal deviations of the controls and states for given initial
deviations of the state.

The problem is linearized along the calculated reference trajectory. The objective for the
controller is to minimize the deviation from the states and the control. After choosing
weights for these objectives, the Regulation Problem reads:

Problem 7.7 (Trolley: 𝐿𝑄𝑅𝑃 )

min! 𝐽(Δ𝑥, Δ𝑢) := 1
2‖Δ𝑥(𝑡𝑓 )‖2

2 + 1
2

𝑡𝑓∫︁
𝑡0

‖Δ𝑥(𝑡)‖2
2 + 1

10‖Δ𝑢(𝑡)‖2
2𝑑𝑡

with respect to Δ𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R4)
and Δ𝑢 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R1),
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s.t.

Δ�̇� = 𝑓 ′
𝑥(𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓 )Δ𝑥 + 𝑓 ′

𝑢(𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓 )Δ𝑢

a.e. in [𝑡0, 𝑡𝑓 ],

with

−0.2 ≤ 𝑢𝑟𝑒𝑓 + Δ𝑢 ≤ 0.2

The original trajectory was calculated on 500 time steps on the time interval [0, 5.680].
For the LQ algorithm, the same time steps were used, and the whole interval was divided
into 10 subintervals for application, while the calculation was performed for a time horizon
three times the length of the application time. Hence, each LQRP interval starts at some
time 𝑡𝑛0 , then the optimal control over the next 3 · 50 = 150 time steps is calculated and
the control is applied for 50 steps, before the calculation starts again at time 𝑡𝑛0+50. Again,
the constrained LQC controller was calculated with a regularization parameter 𝛽 = 10−5.
With a tolerance of 𝜀 = 10−5, the calculations took 1.647 seconds in total. The maximal
time used for one prediction step was 0.185 seconds.

Figure 7.9 shows the trajectories and the control for the LQ algorithm as well as the
proposed LQC controller. The latter controller performs better in the sense that the
reference trajectory gets tracked faster (this effect is best visible in states 𝑥2 and 𝑥4, cf.
Fig. 7.9b and 7.9d). Also, the maximum deviation in state 4 remains significantly smaller,
cf. Fig. 7.9d.

Figure 7.10 gives the reason for the difference. As in the previous example, the traditional
LQ algorithm cannot predict the system’s behavior where the constraints become active.
In such cases, the prediction and the real trajectory (i.e. the trajectory of the simulated
system) differ.

7.3. Examples: LQ Control With State Constraints

In this section, the examples from section 7.2 are revised with different constraints. In the
previous section, the new LQC controller performed slightly better than the traditional
unconstrained LQ controller, but it remained questionable if the better performance would
compensate the higher computational effort.

In the first example, the inverse pendulum is simulated in a constrained space. Still,
the task is to track the equilibrium (𝑥1, 𝑥2) = (0, 0), while the constrained variable is 𝑥2,
the angular velocity3. The drawback of the traditional LQ approach is that these state
constraints cannot be explicitly taken into account when calculating a controller.

A natural way of handling this situation is to add a penalty term for the constrained
variable in the LQRP weighting function (or in this case increase the existing term), so
that the LQRP objective function reads

3At first glance, it appears more natural to restrict the velocity or the available space for the wagon. On
second thought, it becomes clear that for such a task, other controller design approaches are more
suitable. The problem is discussed in adequate depth in Appendix B.
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Figure 7.9.: Trolley Problem: Trajectories for the LQ and the LQC controller
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Figure 7.10.: Trolley Problem: Prediction and trajectories for the LQ and the LQC
controller
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min! 𝐹 (Δ𝑥, Δ𝑢) := Δ𝑥1(𝜏𝑓 )2 + Δ𝑥2(𝜏𝑓 )2

+ 1
2

𝜏𝑓∫︁
𝜏𝑖

1
10Δ𝑢(𝑡)2 + Δ𝑥1(𝑡)2 + 𝑐 · Δ𝑥2(𝑡)2𝑑𝑡

(7.19)

for some constant 𝑐 > 1. The downside of this is that deviations from 𝑥2 are penalized
in general, which means that the angular speed of the pendulum tends to 0 more than
it would be optimal for the original task. The negative aspect of this model becomes
apparent when the constraints are not symmetric, or when a variable is constrained that
does not need to be minimized.

The LQC controller admits a more natural approach. The problem is augmented by a
virtual control variable that models an 𝐿2-penalty term, thus adding a cost when the
constraint is violated, so that the virtual control does allow violation of the constraints.
The form of the cost for the violation is the same as the form of the cost for a deviation from
the reference trajectory. At the same time, the fact that the regularized Fischer-Burmeister
function is being used constitutes a counterweight to the relaxation. As mentioned in
Remark 5.15, the regularized complementarity conditions are equivalent to 𝐶𝑖𝑥 · 𝜇𝑖 = 𝛽,
so that the calculated trajectories remain strictly feasible. In this sense, the regularized
NCP-function acts as an antagonist to the virtual control relaxation.

7.3.1. Inverse Pendulum With State Constraints

Again, we start with an example in which an equilibrium should be tracked, as this
type of example has the simplest structure. In real life applications, problems with state
constraints will often come with a given reference trajectory.

The state constraint for this problem is 𝑥2(𝑡) ≥ −0.08.

The objective function for the for the controller is analog to the objective function (7.6).
The LQRP with the virtual control for the state constraint reads:

Problem 7.8 (Inverse Pendulum with State Constraints: 𝐿𝑄𝑅𝑃 )

min! 𝐹 (Δ𝑥, Δ𝑢, 𝑤𝛼) :=Δ𝑥1(𝜏𝑓 )2 + Δ𝑥2(𝜏𝑓 )2 + 1
2

𝜏𝑓∫︁
𝜏𝑖

1
10Δ𝑢(𝑡)2 + Δ𝑥1(𝑡)2 + Δ𝑥2(𝑡)2𝑑𝑡

+ 1
2

𝜏𝑓∫︁
𝜏𝑖

‖𝑤𝛼(𝑡)‖2
2𝑑𝑡

with respect to Δ𝑥 ∈ 𝑊 1,∞([𝜏𝑖, 𝜏𝑓 ],R4),
Δ𝑢 ∈ 𝐿∞([𝜏𝑖, 𝑡𝑓 ],R1),

and 𝑤𝛼 ∈ 𝐿∞([𝜏𝑖, 𝜏𝑓 ],R1),
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7.3. Examples: LQ Control With State Constraints

s.t.

Δ𝑥(0) = Δ𝑥0

Δ�̇�1 =Δ𝑥2 Δ�̇�2 =𝑔Δ𝑥1 − 𝑘Δ𝑥2 + 𝑢

Δ�̇�3 =Δ𝑥4 Δ�̇�4 =Δ𝑢

a.e. in [𝜏𝑖, 𝜏𝑓 ],

and

Δ𝑥2 + 𝛼𝑤𝛼 ≥ −0.08 in [𝜏𝑖, 𝜏𝑓 ].

Analog to the examples from section 4.3, we first investigate the influence of the virtual
control on the behavior of the system and compare it the behavior of the system, regulated
by an LQ Controller.

The simulations in Figure 7.11 were calculated using a global algorithm, so that the
regularization parameter 𝛽 did not have any measurable influence on the outcome. The
parameter for the virtual control was set to 𝛼 = 10−3, and both simulations were calculated
over 𝑡𝑐𝑎𝑙𝑐 = 1.2 seconds, before the control was applied for 𝑡𝑎𝑝𝑝𝑙 = 0.4 seconds. In this
case, the virtual control did not measurably weaken the constraints; the virtual control
variable remained smaller than 10−3. As this scenario was only interesting for illustrating
the influence of 𝛼 on the control when the regularization of the NCP function vanishes, the
code for this example was not optimized for speed. The start iteration for each calculation
was set to 0, and the globalized Newton method was used, which lead to calculation times
of about 20 seconds.

For the LQ controller, the objective function was altered in order to satisfy the constraint,
cf. (7.19): The constant that the Δ𝑥2 part of the objective function was multiplied with is
set to 𝑐 = 3.5, as for this value, the constraint was nearly satisfied. Figure 7.11 shows the
effect that has already been mentioned: The altered objective function leads to the effect
that the original task cannot be performed as well, as part of the efford is diverted on the
minimization of Δ𝑥2. Different simulation parameters like longer calculation horizons or
shorter application times smoothed out the hooks in the control of the simulation but did
not have any influence on this effect. The performance on the LQ algorithm was improved,
but only in the sense of its specific task, which already had to be changed from the original
problem.

Figure 7.13 shows the influence of the virtual control parameter 𝛼 on the system. For
fixed 𝛽 = 10−3, the state 𝑥2 as well as the control 𝑢 seem nearly unaffected by the virtual
control, which is why only the values 𝛼 = 10−1, 10−5 are shown. The LQ solution is plotted
for comparison. The virtual control 𝑤𝛼 itself is already small for 𝛼 = 10−1, as the third
plot shows. For values below 10−3, the virtual control was not visible at the given scale
(cf. Figure 7.12).

Finally, the influence of the parameter 𝛽 is visualized in Figure 7.14. The calculations
are made with fixed 𝛼 = 10−3, and different values of 𝛽 are compared. As in the previous
examples, large values of 𝛽 lead to the trajectories being similar to the LQ outcome, as

121



7. Application: LQ Controller Design

0 1 2 3
0

0.05

0.1
constrained
LQR

State 1

0 1 2 3

−0.075

−0.05

−0.025

0

constrained
LQR

State 2

0 1 2 3

−2

−1

0
constrained
LQR

State 3

0 1 2 3
−1

−0.5

0
constrained
LQR

State 4

0 1 2 3

−1.5

−1

−0.5

0

constrained
LQR

Control u

Figure 7.11.: Inverse Pendulum With State Constraints: Simulations for LQC and LQ
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Figure 7.12.: Inverse Pendulum With State Constraints: Virtual Control
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Figure 7.13.: Inverse Pendulum With State Constraints: Simulations for different values
of 𝛼
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Figure 7.14.: Inverse Pendulum With State Constraints: Simulations for different values
of 𝛽

active constraints in general are avoided. For 𝛽 ≤ 10−3, the LQC algorithm performs
significantly better than the traditional controller. The plot of the virtual control in the
same figure suggests that for 𝛽 = 10−2, the virtual control variable is even needed when the
trajectory is relatively far from being active. The conclusion to draw from this example is
that the regularization of the Fischer-Burmeister function does lead to results that faintly
reminiscent of inner point methods, as the constraints are avoided. In order to achieve
better results than with the LQ approach, small values of 𝛽 have to be used. This is in
fact unsurprising, as the regularization parameter only appears in the square root, so that
effectively the square root of the parameter is an indicator for its influence.

The question of applicability is addressed in Table 7.2. The table shows the iterations
needed during the calculation process for 𝛼 = 10−3 and 𝛽 = 10−3, as these values lead
to very satisfying results in the simulation. The maximal time used to find an optimal
solution was 0.333 seconds, and the total calculation time was 1.549 seconds. Given that
the number of time steps for the calculation was quite high, i.e. 𝑛𝑡𝑐𝑎𝑙𝑐

= 121, in order to
produce pleasant plots, the calculation time suggests that the algorithm is well applicable
even for systems with limited computing power.

In the given example, it is not surprising that the number of iterations depends on the
intervals in which the constraint becomes active. In the second step, in which the time
interval [0.4, 1.6] is predicted, six iterations are needed, as the trajectory hits and leaves
the constraint. Later, the calculations are easier to perform, even though the dimensions
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#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 2.00000𝐸 − 01 1.95735𝐸 + 00
1 3.57617𝐸 − 04 5.63265𝐸 − 02
2 5.93604𝐸 − 05 1.04266𝐸 − 01
3 5.24942𝐸 − 06 8.03924𝐸 − 02
4 1.86715𝐸 − 08 1.23143𝐸 − 02
5 7.93431𝐸 − 13

(a) First Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 4.26015𝐸 − 01 9.89940𝐸 − 01
1 2.65456𝐸 − 03 9.15294𝐸 − 02
2 5.74878𝐸 − 05 4.93657𝐸 − 02
3 2.97132𝐸 − 06 4.61292𝐸 − 02
4 5.27395𝐸 − 08 3.11659𝐸 − 02
5 4.22407𝐸 − 10 9.50863𝐸 − 03
6 8.50779𝐸 − 13

(b) Second Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 2.26002𝐸 − 01 7.89571𝐸 − 01
1 2.95960𝐸 − 02 6.19402𝐸 − 01
2 7.24123𝐸 − 05 2.24016𝐸 − 02
3 3.03829𝐸 − 06 1.05638𝐸 − 02
4 4.20130𝐸 − 08 2.54524𝐸 − 03
5 3.85125𝐸 − 11

(c) Third Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 2.78895𝐸 − 01 3.35391𝐸 − 01
1 1.66753𝐸 − 05 1.85661𝐸 − 02
2 2.16874𝐸 − 07 3.66097𝐸 − 03
3 1.83028𝐸 − 10 1.50931𝐸 − 04
4 3.14266𝐸 − 16

(d) Fourth Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 3.10643𝐸 − 01 3.39366𝐸 − 01
1 7.30048𝐸 − 08 1.32900𝐸 − 03
2 4.09751𝐸 − 12

(e) Fifth Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 3.26300𝐸 − 01 3.41456𝐸 − 01
1 1.51797𝐸 − 09 1.72744𝐸 − 04
2 1.13469𝐸 − 15

(f) Sixth Step

Table 7.2.: Iterations for the Inverse Pendulum: Calculation Steps

of the problem remain the same.

7.3.2. Trolley With State Constraints

Again, the trolley example is revised under state constraints. As the reference trajectory
is calculated before the control and simulation process, the state constraints were also
taken into account for the calculation of said trajectory. The state constraint that was
imposed on the problem is 𝑥3 ≤ 0.25. This is a natural constraint, as in the context of
the model, this means that the speed of the wagon is limited. Thus, the LQRP for this
problem reads

Problem 7.9 (Trolley: 𝐿𝑄𝑅𝑃 )
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min! 𝐽(Δ𝑥, Δ𝑢) :=1
2‖Δ𝑥(𝑡𝑓 )‖2

2 + 1
2

𝑡𝑓∫︁
𝑡0

‖Δ𝑥(𝑡)‖2
2 + 1

10‖Δ𝑢(𝑡)‖2
2𝑑𝑡

+ 1
2

∫︁ 𝜏𝑓

𝜏𝑖

‖𝑤𝛼(𝑡)‖2
2𝑑𝑡

with respect to Δ𝑥 ∈ 𝑊 1,∞([𝑡0, 𝑡𝑓 ],R4),
Δ𝑢 ∈ 𝐿∞([𝑡0, 𝑡𝑓 ],R1),

and 𝑤𝛼 ∈ 𝐿∞([𝜏𝑖, 𝜏𝑓 ],R1),

s.t.

Δ�̇� = 𝑓 ′
𝑥(𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓 )Δ𝑥 + 𝑓 ′

𝑢(𝑥𝑟𝑒𝑓 , 𝑢𝑟𝑒𝑓 )Δ𝑢

a.e. in [𝑡0, 𝑡𝑓 ],

and
Δ𝑥3 + 𝑥𝑟𝑒𝑓 − 𝛼𝑤𝛼 ≤ 0.25 in [𝜏𝑖, 𝜏𝑓 ],

where again 𝑓 is defined as in the original trolley problem 7.6.

The first Figure 7.15 compares the outcome of the simulations for different virtual control
parameters 𝛼. For 𝛼 < 10−3, the virtual control values remained the same, so that no
notable difference could be seen in the plots. In this example, the constraint was not
obeyed completely for any value of 𝛼. The violation is, as described earlier, owed to the
linearization of the system’s dynamic. For this first set of plots, 𝛽 was chosen so small
that its influence on the simulations was neglectable. At first sight, it is visible that 𝛼
again does not dramatically change the plots for values of the chosen size. For 𝛼 = 1, the
plots looked more like the LQ simulation, but the constraint was basically ignored. As the
LQ simulation is plotted for comparison, where the weight for the third state 𝑄33 was set
to 5 in order to encourage trajectories that would obey the constraint, it becomes clear
that for the chosen weight, the violation of the constraint is not very satisfactory. The
reason why the said weight was chosen lies in the plot of the first state. As the control
process was startet in the initial state Δ𝑥(𝑡0) = (−0.05; 0; 0; 0)⊤, the task was to possibly
go back to 0. As the plot shows, the LQ trajectory remained noticably below the other
simulations, which means that setting 𝑄33 := 5 did improve the violation slightly, but it
also distracted the controller from its actual task.

Figure 7.16 shows that again the use of sufficiently small values for 𝛽 is essential for good
solutions. While for 𝛽 = 10−2, the LQC simulation lead to much worse results than the
LQ simulation, the results remained pratically unchanged if 𝛽 was chosen below 10−4.
However, for all values of 𝛽, the constraint was in this plot strictly obeyed.

The conclusion that can be drawn from these figures is that for sufficiently small values of
𝛼 and 𝛽, the LQC showed a notable improvement in the constraint violations as well as
in the original task. As both controller designs can be considered independent from the
algorithm that is used for solving the occurring problem, they might also be taken into
consideration in other regulation settings like real model predictive controllers.
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7.3. Examples: LQ Control With State Constraints
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Figure 7.15.: Trolley Problem With State Constraints: Simulations for different values of
the parameter 𝛼
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7. Application: LQ Controller Design

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 2.00000𝐸 − 01 3.85632𝐸 − 01
1 6.28510𝐸 − 02 2.54463𝐸 − 01
2 1.50044𝐸 − 03 8.95896𝐸 − 02
3 2.65896𝐸 − 05 1.81585𝐸 − 02
4 2.98504𝐸 − 07 4.72707𝐸 − 03
5 5.05438𝐸 − 10 2.92018𝐸 − 04
6 3.01915𝐸 − 15

(a) First Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 2.44547𝐸 − 02 5.07445𝐸 − 02
1 1.33512𝐸 − 05 6.41324𝐸 − 02
2 1.71759𝐸 − 07 6.42286𝐸 − 02
3 6.65935𝐸 − 10 2.41058𝐸 − 02
4 1.94245𝐸 − 12

(b) Second Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 2.38481𝐸 − 02 4.57406𝐸 − 01
1 2.29196𝐸 − 05 2.39113𝐸 − 01
2 4.89248𝐸 − 07 2.25262𝐸 − 02
3 4.92583𝐸 − 09 1.32603𝐸 − 02
4 2.58371𝐸 − 12

(c) Third Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 1.82405𝐸 − 02 5.47085𝐸 − 02
1 1.77612𝐸 − 05 2.55310𝐸 − 02
2 3.39932𝐸 − 07 7.22392𝐸 − 03
3 2.22879𝐸 − 10 3.82003𝐸 − 04
4 3.99205𝐸 − 16

(d) Fourth Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 1.62306𝐸 − 02 6.69842𝐸 − 02
1 1.65866𝐸 − 05 4.14300𝐸 − 02
2 8.01618𝐸 − 07 1.90887𝐸 − 02
3 3.81022𝐸 − 09 1.91570𝐸 − 03
4 1.63971𝐸 − 13

(e) Fifth Step

#It ‖𝐹𝛽(𝑧𝑘)‖2
2 ‖𝑑𝑘‖∞

0 1.37460𝐸 − 02 7.30710𝐸 − 02
1 1.90938𝐸 − 06 1.41719𝐸 − 02
2 5.30438𝐸 − 09 3.38793𝐸 − 03
3 3.73864𝐸 − 12

(f) Sixth Step

Table 7.3.: Iterations for the Trolley Problem: Calculation Steps

The Table 7.3 shows the iterations needed during the calculation for the first six steps,
for 𝛼 = 10−3 and 𝛽 = 10−3. Again, the quadratic convergence is visible in all steps. The
overall simulation intervall [0, 6.370] was divided into 400 time steps.

The local problems were, as in the previous example, calculated with 120 steps (equivalent
to 1.911 seconds), and the maximal time used for the calculation of a solution in each step
was 0.235 seconds. As the resulting optimal control was applied for 40 time steps (equivalent
to 0.637 seconds), the calculation time was significantly lower than the application time.
In total, the calculations over the whole interval took 1.332 seconds. Using calculation
environments with higher performance as well as a coarser grid for the interval would
certainly render the controller design applicable in a real life application.
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Figure 7.16.: Trolley Problem With State Constraints: Simulations for different values of
the parameter 𝛽
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8. Conclusions

In Chapter 3, the minimum principle was generalized for problems where mixed state
control constraints as well as control set constraints are present. As the principle had
already been developed for both types of constraints and due to the assumption was made
that the different constraints only affected different controls, the main improvement in the
theory lies in the usage of control theory for the proof of normality for the multipliers.

The virtual control concept in Chapter 4 was introduced for linear quadratic optimal
control problems. By intuition, one would expect the convergence results to hold for
general problems as well, but the restriction to linear quadratic problems turned out to
be essential for this regularization. It is conceivable that the results may be generalized
in the future. However, the theory has to be fitted in a nontrivial way. As the focus in
this work lies on the application in linear quadratic regulation, the concept proved useful
nevertheless.

The regularized Fischer-Burmeister function led to several globalizations of the Newton
method. The results for the Combined Newton method were comparable to the globalized
approach but suffered from the fact that suitable constant have to be chosen. The
globalized method on the other hand seemed to slow down convergence at the beginning
(one should mention that the example for which the iterations were evaluated is extremely
ill-conditioned), but a good reason for its usage is that the iterations converge independently
from the chosen constants. For this reason, in Chapter 7, the globalized method for fixed
regularization parameters was used, although local Newton methods worked in most cases
as well.

In the numerical experiments, the LQC algorithm worked well in the case of state con-
strained systems, while in the control constrained cases, similar results could be attained
by exploiting the smaller computation effort of the LQ algorithm. A promising field for
experiments might be the use of the described algorithms for fixed numbers of iterations.
So far, the iterations were calculated until some tolerance was reached. As the linear system
of differential equations is solved by any iteration in the Newton method, further iterations
just improve the complementarity conditions. For problems where the constraints cannot
be satisfied, as it may occur during the regulation process, the effect of regulating using
just the first (or the first few) iterates may be worth observing. Also, it remains to research
the question of how the computation time is affected if a nonlinear system of equations is
used in the regualtion process, which leads to actual model predictive controllers instead
of the linear quadratic approach. In that case, the iterations would probably have to
be calculated with more accuracy, as the solution has to satisfy the differential equation.
Appendix B finally shows that even in linear quadratic control, where the problems arising
in applications seem to be of simple structure, unexpected effect may occur.

131





A. Auxiliary Proofs

This appendix contains proofs that would have disrupted the thesis if they had been proved
in detail where they were used.

The first proof is a lemma about convex sets that is needed in lemma 4.15 that targeted
on showing that the normality conditions for the original problem are also sufficient for
normality of the regularized problem. The property that is needed in the proof is that a
convex combination of an inner point and an arbitrary (in particular, a boundary point)
of a convex set is an inner point:
Lemma A.1
Let 𝑆 be a convex set in a normed vector space, and 𝑥 ∈ 𝜕𝑆, 𝑦 ∈ int 𝑆. If 𝜆 ∈ (0, 1), then
𝑧 := 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ int 𝑆.

For simplicity, the idea of the proof is depicted in Figure A.1. If 𝑧 /∈ int 𝑆, then there
exists a point 𝑧𝜖 nearby with 𝑧𝜖 /∈ 𝑆. A projection 𝑦𝜖 of such a point that is constructed
using the principle of intersecting lines would then lie in a neighborhood of 𝑦, and therefore
𝑦𝜖 ∈ 𝑆 if 𝜖 is chosen sufficiently small. Consequently, 𝑧𝜖 = 𝜆𝑥 + (1 − 𝜆)𝑦𝜖 (by construction
of 𝑦𝜖) would belong to the convex set 𝑆.
Proof.
Assume that 𝑧 /∈ int 𝑆, then it must hold 𝑧 ∈ 𝜕𝑆, since 𝑆 is convex. For any 𝜀 > 0 there
must be a point 𝑧𝜖 ∈ 𝐵𝜖(𝑧) with 𝑧𝜖 /∈ 𝑆.

Let 𝑦𝜖 := 1
1−𝜆

(𝑧𝜖 − 𝜆𝑥). For proving that 𝑦𝜖 gets arbitrarily close to 𝑦, we first express 𝑦
by means of 𝑥 and 𝑧: As 𝜆 ∈ (0, 1), we find that

𝑦 = 1
1 − 𝜆

(𝑧 − 𝜆𝑥)

The distance of the new point from 𝑦 is

‖𝑦 − 𝑦𝜖‖ = 1
1 − 𝜆

‖𝑧 − 𝜆𝑥 − 𝑧𝜖 + 𝜆𝑥‖

𝑥 ∈ 𝜕𝑆 𝑧 = 𝜆𝑥 + (1 − 𝜆)𝑦 𝑦 ∈ int 𝑆

𝑧𝜖

𝑦𝜖

Figure A.1.: Construction of 𝑦𝜖
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≤ 𝜖

1 − 𝜆

This shows that for small 𝜖, the point 𝑦𝜖 gets close to 𝑦. As 𝑦 is an interior point, it must
eventually hold that 𝑦𝜖 ∈ 𝑆. Therefore, the point 𝑧𝜖 = 𝜆𝑥 + (1 − 𝜆)𝑦𝜖 lies in the convex
set 𝑆, which contradicts 𝑧𝜖 /∈ 𝑆. The assumption 𝑧 /∈ int 𝑆 must be wrong. �

The second proof is a simple result that helps finding an estimate for the convergence
radius of the Newton method.
Lemma A.2
Let 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ R and 𝛽 > 0. Then the estimate⃒⃒⃒⃒

⃒⃒ 𝑎1√︁
𝑎2

1 + 𝑏2
1 + 𝛽

− 𝑎2√︁
𝑎2

2 + 𝑏2
2 + 𝛽

⃒⃒⃒⃒
⃒⃒ ≤ |𝑎1 − 𝑎2| + |𝑏1 − 𝑏2|√

𝛽

holds.
Proof.
Let 𝛽 > 0, and 𝑓 : R × R → R be defined as

𝑓(𝑎, 𝑏) := 𝑎√
𝑎2 + 𝑏2 + 𝛽

.

For the partial derivatives 𝑓 ′
𝑎 and 𝑓 ′

𝑏, it holds

|𝑓 ′
𝑎(𝑎, 𝑏)| =

⃒⃒⃒⃒
⃒ 𝑏2 + 𝛽√

𝑎2 + 𝑏2 + 𝛽(𝑎2 + 𝑏2 + 𝛽)

⃒⃒⃒⃒
⃒ ≤ 1√

𝛽

|𝑓 ′
𝑏(𝑎, 𝑏)| =

⃒⃒⃒⃒
⃒ 𝑎𝑏√

𝑎2 + 𝑏2 + 𝛽(𝑎2 + 𝑏2 + 𝛽)

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒ max{𝑎2, 𝑏2}√

𝑎2 + 𝑏2 + 𝛽(𝑎2 + 𝑏2 + 𝛽)

⃒⃒⃒⃒
⃒ ≤ 1√

𝛽
.

For (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ R2 we get⃒⃒⃒⃒
⃒⃒ 𝑎1√︁

𝑎2
1 + 𝑏2

1 + 𝛽
− 𝑎2√︁

𝑎2
2 + 𝑏2

2 + 𝛽

⃒⃒⃒⃒
⃒⃒

= |𝑓(𝑎1, 𝑏1) − 𝑓(𝑎2, 𝑏2)|
≤ |𝑓(𝑎1, 𝑏1) − 𝑓(𝑎2, 𝑏1)| + |𝑓(𝑎2, 𝑏1) − 𝑓(𝑎2, 𝑏2)|

Now 𝑓 is totally differentiable. Hence, according to the mean value theorem, there exist
𝜉𝑎 ∈ (𝑎1, 𝑎2) and 𝜉𝑏 ∈ (𝑏1, 𝑏2), such that

|𝑓(𝑎1, 𝑏1) − 𝑓(𝑎2, 𝑏1)| + |𝑓(𝑎2, 𝑏1) − 𝑓(𝑎2, 𝑏2)|
= |𝑓 ′

𝑎(𝜉𝑎, 𝑏1)(𝑎2 − 𝑎1)| + |𝑓 ′
𝑏(𝑎2, 𝜉𝑏)(𝑏2 − 𝑏1)|

≤
⃒⃒⃒⃒
⃒𝑎2 − 𝑎1√

𝛽

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒𝑏2 − 𝑏1√

𝛽

⃒⃒⃒⃒
⃒ �
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B. A Curious Regulation Example

In this chapter, another example for regulation is introduced, based on the state constraint
variant of the trolley from section 7.3.2. The original moptivation for this example lies in
the idea of dealing with higher order state constraints.

The physical system remains the same, and the constraint under consideration is 𝑥3(𝑡) ≥
−0.3. Still, the only requirement that has to be met by the regularor is that the states
𝑥1 and 𝑥2 are tracked. At first glance, the constraint is of the same kind as any other
state constraint that has been introduced so far, and the traditional LQR approach can be
altered so that the state constraint is obeyed. Again, the price for altering the objective
function of the regulator is that the tracking of the “important” first two states works less
efficiently. However, there appears a quite unique problem in this example.

In order to understand the difficulties of the problem, we have to go back to the physical
meaning of the task: An inverse pendulum is meant to be juggled so that it remains in
(or near) the upright position. The constraint imposed on the third state means that the
space available for the movement of the trolley is bounded (cf. Figure 7.2). Of course,
the constraint 𝑥3 ≥ −0.3 is chosen in a fashion that ensures that the constraint becomes
active. This means that the control of the pendulum has to be increased in comparision
with the unconstrained control; the wagon has to be accelerated more, which increases
the objective function, as the acceleration appears quadratically in the objective function.
Consequently, a linear quadratic regulator that only aims at obeying the constraint and
minimizing the objective function value will lead the wagon to the state 𝑥3 = −0.3 and
remain in this position as moving away from it only increases the costs. More precisely,
the quadratic appearance of the control in the objective function leads to an oscillation
around or near this point; an oscillation is tolerated (even if the constraint is violated), if
it remains small and the control that is necessary to bring the system back to the upright
position remains sufficiently small with respect to the 𝐿2-norm.

The fact that the behavior of the system is restricted turns out fatal in the simulations: A
violation of the constraint is tolerated (it is only taken into consideration in the 𝐿2-norm
sense), which leads to slight violations. Increasing controls have to be used to regulate
this, which also affects the objective function, so they are kept low. As the pendulum
states 𝑥1 and 𝑥2 are independent from the constrained state 𝑥3, a deviation in the first
state is accepted, and the pendulum tilts more. The tilt of the pendulum is considered less
important than the violations, so that at some point the pendulum tips over. At the point
when the angle of the pendulum becomes big enough to influence the objective function so
much that the regulation reacts (approximately at 𝑡 = 3.5), the tilt has already grown to
much to be regulated again. During the subsequent intervals, the control explodes at the
beginning (again due to the 𝐿2-norm in the objective function), but the impulses from the

135



B. A Curious Regulation Example

control are not sufficient to track the instable upper position of the pendulum.

A deduction that can be drawn from this example is that the system to be regulated needs
to be deeply understood before an algorithm and an objective function for regulation is
chosen. In this particular case, two options can be used to avoid the difficulties:

• The easiest way to regulate the given example is to use the traditional LQR algorithm
with an altered objective function. The positive aspect is that pendulum stays in
the middle of the available space (if the pendulum and the space are modeled
accordingly), so that even consecutive occurrences of noise are regulated.

• Alternatively, the LQRC algorithm can be used if only small disturbances are to be
expected. The parameter 𝛼 for the virtual control may then be chosen sufficiently
big, so that the system accepts bigger violations. This can be compensated by using
more rigorous constraints in the calculation, like 𝑥3 ≥ −0.25, so that trajectories
that come close to the constraints are already penalized.
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Figure B.1.: LQRC and LQR for the pendulum in a constrained space
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C. The Controller Software

This chapter gives an overview of the Optimal Control software created in the frame of
this work. The software is written in Scilab, an open source software package for numerical
computations. The plots were made using PyXPlot. Alternatively, the data files created
by the software kernel can be visualized using any other plotting software.

Each problem is placed in an own subdirectory of ”problems“. The runme script in the
directory starts the calculations in Scilab and plots the data with PyXPlot1. For some
examples, plots are made using different values for the parameters, e.g. for different values
of 𝛼, the parameter for the virtual control. The name of the Scilab function that calls the
example for different parameters start with ”article“. The solvers and wrapper scripts
that are called can be found in the ”kernel“ directory.

First, the solvers shall be described in more detail. All solvers are written for linear
quadratic optimal control problem with mixed control state constraints, but with no state
constraints. As problems with state constraints are handled by regularization in the frame
of this work, they are dealt with by the wrapper scripts. There also exists a script that
facilitates the simulation process for the model predictive controller. The wrappers are
described in the subsequent section.

Solvers

All solvers share a common structure: their return values are

1. the number of iterations needed,

2. the final residuum value with respect to the ‖ · ‖𝑌 ∞-norm,

3. the final iterate

4. and the calculation time.

The parameters are flags, t, Qf, Q, R, S, A, B, E0, E1, f, G, H, l2. The array t contains all
time steps, and all other functions that depend on the time are expected to be defined with
respect to this grid, e.g. Q(i,:,:) = 𝑄(𝑡𝑖), l(i) = 𝑙(𝑡𝑖). The names of the parameters in
this list are chosen to coincide with their meaning in problem 4.1. As pure state constraints
are not handled by the numerical solvers directly, only the functions that define mixed

1In order for this to work, the runme script as well as the pyxplot files have to be marked executable
when used in Linux. More adjustments may be necessary for other operating systems.

2The names used in the function declaration differ from this list for historic reasons. For the function
call however, the names used in the declaration are irrelevant.
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C. The Controller Software

function Algorithm
lq_alt Globalized Newton method 5.27.
lq_comb Combined Newton method 5.23.
lq_globloc Globalized Newton method for fixed values of 𝛽.
lq_locloc Local Newton method for fixed values of 𝛽 5.16.

Table C.1.: Algorithm description for the solver functions

function flags

lq_alt verbosity, *tolerance, *start value
lq_comb verbosity, *tolerance, *𝛽0, **𝐶𝑡𝑜𝑙, **𝑐𝛽, *start value
lq_globloc verbosity, *tolerance, *𝛽, *start value
lq_locloc verbosity, *tolerance, *𝛽, *start value

Table C.2.: The flags lists for the solver functions

control state constraints are expected by the solvers. Pure state constraints are handled
by a wrapper script, namely lq_statesolv.

The flags variable contains a list of parameters for the solver algorithms. The list
in table C.1 explains the algorithm realized by the functions, and table C.2 contains
descriptions of the flags list that these functions expect. Values marked with an asterisk (*)
are optional arguments. For the function lq_comb, the double asterisk (**) indicates
that the arguments 𝐶𝑡𝑜𝑙 and 𝑐𝛽 are optional but can only be used together. All optional
parameters have to be filled up from the left to the right. E.g. in order to use lq_comb
with a specific start value, the user has to supply all other parameters as well.

Wrapper scripts

lq_statesolv Regularizes a linear quadratic problem. The actual solver can be
changed easily3. The second parameter is used as the regularization parameter
𝛼, with 𝜅(𝛼) := 0, 𝜑(𝛼) := 1, 𝛾(𝛼) := 𝛼. The flags list is forwarded (with the
second parameter missing) to the solver. The other parameters include the matrix
valued function 𝐶 and the vector valued function 𝑑 that define the state constraints.
Altogether, the parameters are flags, t, Qf, Q, R, S, A, B, E0, E1, f, C, d, G, H, l,
with the notation from problem 4.1.

lq_regulate Simulates a system controlled by the linear quadratic model predictive
controller. The script expects the same flags as lq_statesolv, even though the
𝛼-flag is not used by this script. This happens in order to guarantee compatibility
with lq_stateregulate. Apart from the flags, this script expects the number of
application time steps nt_apply, the number of prediction time steps ntlqr, the

3This can be done in line 52. It is important to note that the solver used in this wrapper has to be
initialized (using the exec-command) first.
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time steps t that define the interval [𝑡0, 𝑡𝑓 ], the right hand side of the ordinary
differential equation odef and its derivatives fx and fu, the initial state x0, the
functions C and d as in the problem definition (they are expected to have 0 columns, as
lq_stateregulate should be used otherwise), umin and umax for the box constraints,
the reference trajectory prex and preu as well as the matrices Qf, Q and S. The
return value is a matrix that contains t as well as the simulated state and the control.

lq_stateregulate Simulates a state constrained system. It is used in the same fashion
as lq_regulate. The expected parameters are the same. The return value is again
a matrix describing the simulated system. An important difference between the two
scripts is that lq_stateregulate can handle unconstraint controls: If it is called
with umin = umax, then the simulation ignores any control constraints.

The reason for the existence of different wrappers for controller scenarios with and without
state constraints is a glitch in Scilab: The sizes of tensors are not correctly calculated if
one of the sizes are 0. Therefore, a state constraint defining matrix function 𝐶 ∈ R𝑛𝑡,0,𝑛𝑥

could not be inserted into a block matrix. The same glitch makes it necessary to insert
inactive constraints when the traditional LQR controller needs to be simulated. In this
case, the lines 81 and 82 in lq_regulate have to be changed additionally, so that the
control is cut off according to the box constraints.
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