Logo
Benutzer: Gast  Login
Autoren:
Huuk, Julia; Dhingra, Abheek; Ntoutsi, Eirini; Denkena, Berend 
Dokumenttyp:
Sonstiges / Other Publication 
Titel:
Shape error prediction in 5-axis machining using graph neural networks 
Jahr:
2024 
Sprache:
Englisch 
Abstract:
This paper presents an innovative method for predicting shape errors in 5-axis machining using graph neural networks. The graph structure is defined with nodes representing workpiece surface points and edges denoting the neighboring relationships. The dataset encompasses data from a material removal simulation, process data, and post-machining quality information. Experimental results show that the presented approach can generalize the shape error prediction for the investigated workpiece geomet...    »
 
Article-ID:
arXiv:2412.10341 
Fakultät:
Fakultät für Informatik 
Institut:
INF 7 - Institut für Datensicherheit 
Professur:
Ntoutsi, Eirini 
Open Access ja oder nein?:
Ja / Yes 
Art der OA-Lizenz:
CC BY-NC-ND 4.0 
Sonstige Angaben:
Preprint auf arXiv