This paper deals with aspect phrase extraction and classification in sentiment analysis. We summarize current approaches and datasets from the domain of aspect-based sentiment analysis. This domain detects sentiments expressed for individual aspects in unstructured text data. So far, mainly commercial user reviews for products or services such as restaurants were investigated. We here present our dataset consisting of German physician reviews, a sensitive and linguistically complex field. Furthermore, we describe the annotation process of a dataset for supervised learning with neural networks. Moreover, we introduce our model for extracting and classifying aspect phrases in one step, which obtains an F1-score of 80%. By applying it to a more complex domain, our approach and results outperform previous approaches.
«This paper deals with aspect phrase extraction and classification in sentiment analysis. We summarize current approaches and datasets from the domain of aspect-based sentiment analysis. This domain detects sentiments expressed for individual aspects in unstructured text data. So far, mainly commercial user reviews for products or services such as restaurants were investigated. We here present our dataset consisting of German physician reviews, a sensitive and linguistically complex field. Furthe...
»