Quantum key distribution (QKD) has become a promising option for transmitting sensitive data due to the increased maturity of QKD devices and the threat scalable quantum computers imposes on asymmetric public-key cryptosystems. By utilizing existing infrastructure, e.g., amplifier huts and dark fibers, the cost and complexity of deploying QKD networks (QKDNs) can be reduced. In this study, we develop a topology optimization algorithm that minimizes the cost of the QKDN deployment and maximizes the key capacity between any pair of nodes. We present three deployment upgrade strategies for facilitating the encryption of increasing throughput of QKD-secured optical transport networks and enabling a pay-as-you-grow approach. Comparing different strategies in a capacity-planning study allows operators to assess the scalability of deployments and upgrades. Depending on the availability requirements, our results compare the cost of protection measures. We confirm that adding trusted nodes is the most cost-efficient upgrading strategy based on our analysis.
«Quantum key distribution (QKD) has become a promising option for transmitting sensitive data due to the increased maturity of QKD devices and the threat scalable quantum computers imposes on asymmetric public-key cryptosystems. By utilizing existing infrastructure, e.g., amplifier huts and dark fibers, the cost and complexity of deploying QKD networks (QKDNs) can be reduced. In this study, we develop a topology optimization algorithm that minimizes the cost of the QKDN deployment and maximizes t...
»