We use analytical, numerical and experimental methods to characterize the laminar flow inside a Tesla turbine rotor gap. A comparison based on one particular set of operating conditions mutually validates the three approaches. The simplicity of the analytical flow model allows for a cost efficient optimization of the underlying turbine parameters. Performance charts exhibit general trends and serve as a guide for preliminary turbine design and optimization. In terms of the ratio of half the gap width to inlet radius and the ratio of outlet- to inlet radius, the designer of a tesla turbine has to find a compromise between optimal efficiency and optimal power output.
«We use analytical, numerical and experimental methods to characterize the laminar flow inside a Tesla turbine rotor gap. A comparison based on one particular set of operating conditions mutually validates the three approaches. The simplicity of the analytical flow model allows for a cost efficient optimization of the underlying turbine parameters. Performance charts exhibit general trends and serve as a guide for preliminary turbine design and optimization. In terms of the ratio of half the gap...
»