
Heuristic Strategies
for Single Document Analysis

Thomas Bohne

Vollständiger Abdruck der von der Fakultät für Informatik der

Universität der Bundeswehr München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Gutachter:

1. Prof. Dr. Uwe M. Borghoff

2. Prof. Dr.-Ing. Mark Minas

Die Dissertation wurde am 11. Mai 2015 bei der Universität der Bundeswehr

München eingereicht und durch die Fakultät für Informatik am 28. Mai 2015

angenommen. Die mündliche Prüfung fand am 21. September 2015 statt.

Kurzfassung

Das enorme Wachstum digitaler Textdaten bewirkt eine hohe Nachfrage nach
automatischen Textanalysewerkzeugen zur Informationsgewinnung. Klartext
beinhaltet ausreichend Informationen, um mit einem heuristischen Ansatz sinn-
volle Schlüsselwörter extrahieren zu können. Texte in der Form von Dokumenten
und Textdatenströmen weisen außerdem eine inhärente Struktur auf, die Infor-
mationen über ihren Inhalt enthält.

In dieser Arbeit werden zwei Ansätze zur Gewinnung von aussagekräftigen
Informationen aus Einzeldokumenten entwickelt: Schlüsselwortextraktion und
die Detektion von Strukturänderungen in Texten.

Eine Kombination mehrerer heuristischer Schlüsselwortextraktionsalgorithmen
ist einzelnen Algorithmen überlegen und kann die Qualität der Resultate sig-
nifikant verbessern. Im ersten Teil meiner Arbeit vergleiche ich verschiedene
Kombinationsmethoden und verwende die Hauptkomponentenanalyse als para-
meterfreie und effektive Methode zur Auswahl von optimalen Kandidaten für
eine Kombination. Anschließend demonstriere ich den erfolgreichen Einsatz einer
Kombination mit einem effizienten und flexiblen Schlüsselwortextraktionsalgo-
rithmus. Dieser ist sprachunabhängig, schnell und benötigt kein Training. Die
extrahierten Schlüsselwörter sind sinnvoll und er ist schneller als der bekannte
Term Frequency - Inverse Document Frequency (TF-IDF)-Algorithmus.

Im zweiten Teil meiner Arbeit analysiere ich die Struktur von Textdokumenten
und entwickle einen neuen Algorithmus zur Detektion von Strukturänderungen.
Dieser Algorithmus identifiziert Veränderungen in der Zusammensetzung eines
Textes. Er ist flexibel, sprachunabhängig und anwendbar auf Einzeldokumente
und unbegrenzte Textdatenströme. Ich weise die Genauigkeit meines Ansatzes
mit konkreten Beispielen nach und demonstriere seine überzeugende Leistung
mit einem Vergleichsalgorithmus.

In einer Kollaboration habe ich eine Kombination von Schlüsselwortextraktions-
methoden in die praktische Anwendung CommunityMashup integriert. Das
CommunityMashup ist eine Datenaggregationslösung für unterschiedliche Soziale
Netzwerke. Mit der Extraktion von Schlüsselwörtern in nahezu Echtzeit sind
wir in der Lage, neue Beziehungen zwischen Inhalten und Personen zu erzeugen
und visualisieren diese mit einer interaktiven, plattformunabhängigen Lösung.

i

ii

Abstract

The immense growth of digital text data evokes demand for automatic text analy-
sis tools for information retrieval. A plain text provides sufficient information for
a heuristic approach to identify meaningful keywords. Text as documents and
text streams also feature an inherent structure that inform about their content.

In this thesis, two approaches for retrieval of meaningful information from single
documents are developed: keyword extraction and the detection of structural
changes in texts.

The combination of multiple heuristic keyword extraction algorithms is superior
to individual methods, and can improve the quality of the results significantly.
To further this idea in the first part of my thesis, I compare different combination
methods and utilize Principal Component Analysis (PCA) as a parameter-free
and effective method to determine optimal combination candidates. Then, I
demonstrate the success of these methods with an efficient and flexible keyword
extraction approach that is language-independent, fast, and does not require a
training phase. The results of this algorithm are deemed meaningful, and its
performance is superior to the well known TF-IDF.

In the second part of my thesis, I analyze the structure of text documents
and develop a novel algorithm that detects structural changes. This algorithm
identifies fluctuations in the composition of a text. It is flexible, language-
independent, and performs on single documents as well as indefinite text streams.
I demonstrate the accuracy of my approach using cogent real-world examples,
and present its compelling performance with a benchmark algorithm.

As an application of my work, I implement a keyword extraction approach into
the CommunityMashup in a collaboration. The CommunityMashup is a data
aggregation solution for different social networks. With the extraction of keywords
in almost real time, we are able to identify new relations between contents and
people and visualize them with an interactive and platform-independent solution.

iii

iv

Acknowledgements

I would like to thank my supervisor Prof. Uwe M. Borghoff for his encouragement,
strategic advice, and freedom to develop my own ideas. I am very grateful for the
remarks that Prof. Mark Minas provided and the worthwhile discussions with
him during numerous lunch breaks. The time at the Universität der Bundeswehr
was characterized by an excellent working environment and very supportive
colleagues: I would like to thank Peter Lachenmaier, Florian Ott, Sebastian
Behrendt, Sebastian Rönnau, Sonja Maier, Nico Krebs, Prof. Lothar Schmitz,
Volker Rönnau, Prof. Klaus Buchenrieder, Johannes Metscher, and Sebastian
Müller. Franz Schmalhofer furthermore contributed unconventional insights and
he is also a great climbing and skiing partner.

Prof. Jerzy Rozenblit continually supported since the beginning of my diploma
thesis. He also gave me a very inspiring insight into the American research
community. I also thank Prof. Nikolaus Ballenberger for his fruitful discussions
about statistical procedures and the early morning ski tours.

I am grateful to the Bundeswehr for giving me the opportunity to spend three
years of my career for the scientific work that led to this dissertation.

Thank you Judy for your time, your patience, and your loving support during all
these years. Now we have time for adventures again. Finally, I thank my parents
for supporting me with the care, consideration, and the love only parents can
provide.

v

vi

Legend

Symbols and Notations

Notation Description
D Document collection D = d1..dN
d single document d
|d| total number terms in d
|d|avg average document length
d(t) number of documents containing term t

w1..wN windows w1, ..., wN comprising the document
wt window containing the term t
|w| number of terms in w
w(t) number of windows containing the term t
W(t) the term weight of term t
q query q
p probability for a success

P (X) probability distribution of X
xt number of occurrences of term t
xnt normalized number of occurrences of term t
xdt number of occurrences of term t in document d
xwt number of occurrences of term t in window w
iwf inverse window frequency
zw zw = Fw or zw = Nw
N number of windows / documents in the collection
X random variable X with outcomes x1, ..., xn

E(X) expected value of the random variable X
A matrix with m rows and n columns
aij the element in the i-th row and j-th column of A
ai: the i-th row vector of A
a:j the j-th column vector of A
ti {t0, t1, ..., tm} series of term occurrences
σ2 variance
µ the mean
ρ(t) ranking position of term t
δ1..δn dimensions 1..n of term weights

vii

viii

List of Figures

2.1 State diagram for preprocessing 10

2.2 Finite single-state automaton . 18

4.1 Zipf’s Law . 37

4.2 Example for the Helmholtz Principle 40

4.3 Term distribution in windows . 40

4.4 Tweets during Golf Masters tournament 45

4.5 Runtime of the heuristics . 50

4.6 Memory consumption of the heuristics 51

6.1 Character usage frequencies . 67

7.1 Change-point between two texts 74

7.2 This Figure shows a single trie node. 76

7.3 Trie structure for “abrakadabra” 77

7.4 Trie structure for “To be or not to be” 78

7.5 Trie structure for 10 × ’a’ . 79

7.6 Deletion procedure of a trie node. 81

7.7 Trie structure with enumeration 82

7.8 UML diagram of the trie. 84

8.1 Number of keywords based on window size. 91

8.2 Performance of the keyword extraction algorithm 96

8.3 Keyword extraction from a phone book 97

8.4 Comparison of the Data Fusion Methods 99

8.5 PCA-based analysis of specific combinations 101

8.6 PCA-based analysis . 103

8.7 Comparison of Shannon Entropy and LZ77 estimator 106

8.8 Trie-based analysis of Faust . 107

ix

x LIST OF FIGURES

8.9 Match-length-based analysis of two Faust versions. 108

8.10 Trie-based analysis of two Faust versions. 109

8.11 Trie-analysis of Treasure Island with injected passage. 110

8.12 CPD algorithm on a dictionary 111

8.13 CPD algorithm for plagiarism detection 112

8.14 Performance analysis. 113

9.1 CommunityMashup Overview . 116

9.2 CommunityMashup data model 117

9.3 Number of connections . 121

9.4 Visualization CommunityMashup 122

A.1 UML diagram of the package KeywordExtraction. 146

A.6 UML diagram of the package ChangePointAnalysis. 149

List of Tables

2.1 Segmentation by number of terms. 13

2.2 Segmentation by document structure. 14

2.3 Overlapping window segmentation 15

2.4 Bag-of-Words Example . 16

4.1 Properties of the weighting algorithms 49

5.1 Terms and their ranks. 55

6.1 Lempel-Ziv (LZ)77 compression 71

8.1 Meaningfulness of Keywords . 94

8.2 Keyword extraction on speech.of the President of the USA 95

xi

xii LIST OF TABLES

Contents

Kurzfassung i

Abstract iii

Legend vii

Contents xiv

1 Introduction 1

1.1 Context of this Work . 2

1.2 Classification of this Thesis . 3

1.3 Goal and Approach . 3

1.4 Scientific Contributions . 4

1.5 Outline . 5

2 IR for Single Documents 7

2.1 Mathematical Background . 7

2.2 What is a Document? . 9

2.3 Segmentation of Documents . 12

2.4 Information Retrieval Models . 15

2.5 The Key Adaptations . 22

3 Related Work 23

3.1 Automatic Summarization for Single Documents 23

3.2 Keyword Extraction Algorithms 24

3.3 Change-Point Detection Literature Review 27

4 Term Weighting Algorithms 31

4.1 Keyword Extraction Procedure 32

4.2 Analytical View of Retrieval Constraints 32

4.3 Frequency-based Information Measures 36

4.4 Burstiness . 45

4.5 Analysis of the models based on the retrieval constraints 49

4.6 Performance Analysis of the Heuristic Algorithms 49

xiii

xiv CONTENTS

5 Combination of Heuristic Measures 53

5.1 The Divergence from Randomness Framework 53

5.2 Ranking Aggregation Methods 54

5.3 Principal Component Analysis 57

5.4 The relation between Principal Component Analysis and Singular
Value Decomposition . 61

6 Structural Information in Textual Data 63

6.1 Basic Idea . 64

6.2 Entropy – An Information Measure 65

6.3 Grassberger’s Match Lengths . 68

6.4 Lempel-Ziv’77 . 69

7 Change-Point Detection for Textual Data 73

7.1 A Match-Length-Based Approach 73

7.2 Trie-based Text Analysis . 75

7.3 The Trie Transformation Procedure 77

7.4 Trie-Based Change-Point Detection 81

7.5 Adaptive Window . 82

7.6 Reference Implementation . 83

8 Evaluation 87

8.1 Experimental Setup . 87

8.2 Evaluation of Keyword Extraction Approaches 89

8.3 A Specific Combination Approach 91

8.4 Evaluation of the Combination Approaches 97

8.5 Selection for a Successful Combination 100

8.6 Trie-Based Change-Point Detection Algorithm 105

9 How Keywords link Social Media 115

9.1 CommunityMashup . 115

9.2 Link Building . 118

9.3 Visualization . 122

10 Conclusions 125

10.1 Summary . 125

10.2 Discussion . 126

10.3 Future Work . 128

A The Reference Implementation 145

A.1 Keyword Extraction Reference Implementation 145

A.2 Detailed description of the Trie-Structure 146

A.3 Reference Implementation for CPD 148

Chapter 1

Introduction

The Voynich manuscript is one of the most widely known undeciphered hand-
written scripts. It is named after the Wilfried Voynich – a Polish book dealer
– who purchased it in 1912. It contains the remaining 240 pages of text and
illustrations. This “world’s most mysterious manuscript” was presumably written
in the second half of the 15th century [137] but it remains to be deciphered.
The text and the illustrations in the book remain a mystery. Just recently,
Montemurro analyzed the word distribution and statistical structure of the text
in the manuscript, and showed that the patterns within the text resemble those
of real languages [94]. Is this proof that the manuscript is real and just not
deciphered? Montemurro’s study clearly shows that a heuristic analysis can lead
to insightful results in the domain of information retrieval.

With heuristics, it is possible to detect patterns in texts. Patterns may indicate
information change or degree of informativeness. This idea is the fundamental
basis for a number of keyword extraction approaches. Keywords are very useful
in a number of scenarios: they provide an interpretation of the content of a
document, enable a more precise search, or serve the purpose of indexing and
linking. Thus, it follows that authors would readily provide keywords for their
texts.

Nowadays, it is commonplace for authors of scientific papers to assign a number
of keywords or key phrases to their publications. I also mention key phrases
because the assigned keywords sometimes consist of more than one word. Key
phrases typically consist of five to fifteen noun phrases. In Section 8.3 I show
that author-assigned keywords or tags sometimes do not suitably represent the
content of documents. This may be the case when they are assigned based on
other – sometimes organizational or social – constraints. Other texts, such as
online documents, may not be presented with any keywords at all. Automatic
keyword extraction methods are useful for the reader in these cases.

This chapter is structured as follows: first I outline in Section 1.1 the context
and in Section 1.2 the classification of my work. In Section 1.3, I provide an
overview of my approaches and in Section 1.4 my scientific contributions, and
finally in Section 1.5 an outline of my thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Context of this Work

The methods presented in this thesis derive information from texts and can be
categorized as text mining (also text data mining) algorithms. Although text
mining is not a subcategory of data mining both fields are closely related and
share a number of approaches [57]. The purpose of data mining – finding valuable
patterns in data – is an obvious response to the growing amount of data being
produced. Most data mining methods expect a highly structured format of data
and therewith necessitate an extensive data preparation. Text mining methods
prefer a document format such as Extensible Markup Language (XML). Some
methods that are used resemble those of data mining as they transform textual
data to numerical data, such as counting the words in texts. Although texts
seem to consist of highly unstructured data, at a certain point of the process,
the data gets transformed into a classical data-mining encoding and becomes
structured.

Marti Hearst clarified in her paper different aspects of information retrieval
and text data mining [57]. The goal of data mining is not to identify relevant
information, but also to discover or derive new information from existing data or
across datasets. Patterns such as part-of-speech tagging, word sense disambigua-
tion, and bilingual dictionary creation already exist in the field of computational
linguistics. Hearst noted that text mining includes an interactive cycle in which
the user investigates hypotheses suggestion. Kroeze makes user interaction a
precondition for the creation of novel knowledge [57; 72]. The concept of data
refers to raw facts and numbers that – upon analysis and interpretation – may
become information. In his work, Kroeze refers to knowledge as information
combined with context and experience [72].

In this work, the focus is information retrieval rather than knowledge discovery.
The presented methods do not require user interaction or lexical analysis of the
texts.

The word “information” is used differently in various disciplines, ranging from
Computer Science to Neurology and thus numerous definitions exist. Robert M.
Losee suggests a discipline-independent definition of information that I adopt in
this thesis:

Definition 1.1.1. Information may be understood in a domain-independent way
as the values within the outcome of any process [80].

This definition designates an information carrying process to be the source of
information. This process mays be a mathematical function as well as a complex
phenomenon beyond human comprehension. In this work, I present two different
carriers: one is a set of algorithms that are composed in different ways in order
to identify keywords, and a second analyzes the structure of a text in order to
identify changes of information value. Both approaches are based on a source
text as the input. Their outputs are directly related to the input and, at best,
carry meaningful information about the text. Therefore, Losee’s definition of
information suits the content of this work very well.

1.2. CLASSIFICATION OF THIS THESIS 3

1.2 Classification of this Thesis

In the past, information acquisition from texts was performed in collabora-
tion with domain experts, which was time consuming and costly. Two major
text-based automatic information acquisition areas can be distinguished [148]:
Information Retrieval (IR) and Information Extraction (IE). The IR techniques
enable the recovery of relevant documents from a collection of documents. The
task of IE aims to extract the most relevant content of the texts identified by
IR. As the approaches in this thesis are applied to single documents, there is no
distinction between relevant and irrelevant documents. Nevertheless, some of
the algorithms aim to identify relevant sections (paragraphs or sentences) within
a single document. The keyword extraction algorithms presented in this work
perform IR tasks as well as IE procedures, whereas the trie-based change-point
detection (CPD) algorithm presented in Chapter 7 is a classical IR task.

1.3 Goal and Approach

Single documents and also whole libraries such as the Bayerische Staatsbibliothek
are digitalized [99; 2] and require IE methods to automatically recover the most
relevant content from documents in very short time. Most of these IE methods
rely on large databases, knowledge of the specific language to process, or a
training phase. Texts can appear in different shapes, document formats, and
structures. They can be static or a constantly changing data stream. In this work,
I aim to extract the most valuable information from texts with nothing but the
text itself. Whereas in the past, information acquisition from texts was performed
with domain experts, the methods in this work guarantee maximal independence
from languages, reference data, and autonomy from time consuming training
processes.

Keyword Extraction

A number of heuristics have already proven to be extremely successful in IE
to determine keywords or index terms for small document collections or texts
[7; 149; 156]. These algorithms are based on specific properties of texts that
help to determine the most informative terms and phrases. These properties
were thoroughly analyzed throughout my work and thereafter I formalized them
according to the task of single document IE. Furthermore, formal studies showed
that the individual algorithms satisfy only a fraction of all preferable constraints of
a successful algorithm. To compensate for this shortcoming, I test and evaluate
different combination methods for keyword extraction algorithms. Finally I
propose combined versions of these algorithms to increase their performance in
different ways.

Structural Analysis

Documents and also text streams can be structured beyond the concept of
frequency distributions. They may contain additional information, that can
only be observed by analyzing their degree of order and disorder. I propose to

4 CHAPTER 1. INTRODUCTION

adapt the concept of entropy for textual data and develop a novel algorithm that
provides a relative measure for information value over a time series. My proposed
algorithm is mapped by a dynamic trie structure. The algorithm should be
language independent, fast, and be able to perform in a real-time scenario. The
ultimate goal here is to be able to perform an analysis of online social networking
and also news service that are constantly producing content.

Heuristic Analysis

It is in the nature of texts to differ in language, structure and content. A
scientific text differs significantly from a message within a social networking
service. Therefore, each text requires specific algorithms to extract the most
meaningful information. The algorithms for keyword extraction as well as
the detection method for structural information build a framework for this
purpose. In this thesis I focus on the essence – the text – and aim to show that
these algorithms extract meaningful information without many restrictions and
adjustments. I expected them to work well but did not foresee that they would
outperform well-known algorithms. I aim to provide use-case-scenarios that
demonstrate their behavior. They are not required to outperform all available
algorithms in every situation, nonetheless they come with a high degree of
flexibility, independence, and speed.

1.4 Scientific Contributions

This thesis provides the following scientific contributions:

• A formal definition of retrieval constraints for single document analysis
which allows for a characterization of some of the most prominent heuristics
for single document analysis.

• I compare six different combination methods for the presented retrieval
algorithms and interpret their behavior, and then propose a parameter-free,
PCA-based method to determine an optimal selection of retrieval heuristics
for combination. Furthermore, I demonstrate the compelling performance
of one particular composed algorithm with real-world examples.

• A novel measure of information value that detects structural changes within
a text or text stream. This algorithms is flexible, language independent,
and fast.

I demonstrate the behavior and the performance of all approaches with
real world examples. Furthermore, the integration of my newly composed
keyword extraction algorithm into a social media framework shows the
applicability of a flexible, fast, and independent IR approach.

1.5. OUTLINE 5

1.4.1 Research Methodology

The goal of this thesis is to identify the most useful properties of a plain text for
IR and to use them to compose successful retrieval algorithms. The analysis of the
most prominent retrieval algorithms and the definition of formal constraints for a
successful retrieval algorithm lead to the insight that a composition of algorithms
is desirable. Different composition methods exist but they haven’t been evaluated
and compared in this context. An analysis of different compositions was the
logical consequence. During this process, I discovered that PCA-based analysis
can identify candidates for a successful combination.

The detection of structural changes within texts is inspired by the concept of
entropy. With the help of an entropy-based compression algorithm I am able
to develop a measure of information change within texts. It is important to
recognize that this measure is solely based on the input text and it may also be
used for keyword extraction.

My aim here, is to provide a framework of techniques to identify information
within plain texts without the use of large databases, user input, or large sets of
parameters.

1.5 Outline

This thesis is divided into nine chapters and two appendices. The first three
chapters introduce the most important concepts for single document IR and
discuss related work. Chapter 4 to 5 contain the information retrieval algorithms
used in this work and their combination methods. A novel algorithm that detects
information structures in texts and text streams is described subsequently in
chapters 6 and 7. The remaining chapters contain the evaluations and the
conclusions of this thesis.

Chapter 1 classifies the research described in this thesis and puts the work into
context. It highlights the scientific contributions and details the structure of
this thesis. In Chapter 2 I provide the preliminary concepts for IR and IE for
single documents and text streams. I also mention related concepts and recent
developments. Chapter 3 discusses related work regarding the main approaches
of this thesis. Chapter 4 introduces the concept of term weighting and applies
the retrieval constraints of a successful IR algorithm to the scenario of single
document analysis. The most important IR-models are described in this chapter.
The proposed combination methods for the retrieval algorithms are described in
Chapter 5. A second approach to text analysis based on structural information
is described in Chapter 6. Chapter 7 describes the trie-based CPD algorithm
and its implementation in detail. An exhaustive evaluation of the proposed
keyword extraction algorithms and the novel information measure are presented
in Chapter 8. The CommunityMashup represents a suitable use-case scenario
for single document analysis in a fast changing environment and is presented in
Chapter 9. A discussion of the results and possible future research are presented
in Chapter 10. This chapter also contains the conclusions of this thesis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Information Retrieval for
Single Documents

This chapter lays the foundations for the approaches presented in this work, and
introduces related concepts and models that will be used in the remainder of
this thesis. Additionally, a separate Chapter 3 introduces related approaches
with reference to the main findings of my work.

Section 2.1 introduces certain mathematical methods necessary for the approaches
presented in this thesis. The analysis of single documents and written texts
requires a concept of linguistics and preprocessing for this work, which is described
in Section 2.2. In Section 2.3 I present different segmentation approaches for
single documents. The numerous approaches for text analysis in IR are based on
a number of fundamental language models. A detailed comparison of the most
important models is provided in Section 2.4.

2.1 Mathematical Background

In this section, I explain the basic mathematic principles essential for the under-
standing of the algorithms presented later on in this work. Statisticians perform
sampling on a portion of a population in order to estimate the characteristics of
the whole population. In the remainder I refer to a sample sequence X with its
elements:

X = x1, . . . , xN (2.1)

The element xi, i ∈ 1..N refers to the ith value of the sequence X.

Certain properties of the sample set X can be calculated: Mean and variance
are two basic parameters in statistics. Equation 2.2 defines the mean, µ:

µ =
1

N

N∑
i=1

xi (2.2)

7

8 CHAPTER 2. IR FOR SINGLE DOCUMENTS

Individual values may deviate from the mean, so that the spread of the values
can be described with the variance, σ2:

σ2 =
1

N

N∑
i=1

(xi − µ)2 (2.3)

The estimator above tends to underestimate σ for samples and is therefore
replaced by the unbiased sample variance with the denominator N − 1. As the
variance is not calculated for all texts of a certain topic but only for a selection,
the unbiased variance of the sample s2 and its sample standard deviation s. The
expected value E(s2) equals the variance σ2 of X:

s2 =

∑N
i=1(xi − µ)2

N − 1
(2.4)

The standard deviation σ is simply the square root of the variance and shows
how spread out the data is or how much it varies from the mean:

σ =
√
E(s2) =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (2.5)

The sample standard deviation and sample variance are corrected (Bessel’s
correction) versions of the standard deviation and standard variance that com-
pensate for systematic underestimation of variance in samples. The correction is
performed by using 1

N−1 in Equation 2.3 and 2.5 instead of 1
N .

2.1.1 Smoothing

In statistics smoothing is used to reduce noise and change individual data so
that important patterns can be captured more clearly. The analysis of the data
in Section 8.6.2 demands some sort of smoothing in order to clearly identify
seasonal patterns in the development of the trie structure that is monitored there.
One of these patterns will lead to the determination of a change-point in the data.
A common technique to perform a local averaging of a data stream is the moving
average smoothing, where each element of a time series is replaced by the simple
weighted average of n elements. The median filter can be used alternatively
to means. Medians are frequently employed in image processing because they
remove outliers from within the sequence of n data elements well. The basic
concept of the median is to replace each element in the data stream with the
median of the neighboring entries. The following example will demonstrate the
median filter process:

median [1 2 3] = 2

median [7 3 4 6 8] = median [3 4 6 7 8] = 6

Another filter method is the minimum filter that basically extracts the minimum
value from the sequence of elements:

min [1 2 3] = 1

min [7 3 4 6 8] = min [3 4 6 7 8] = 3

Both filters have been employed in the reference software that has been developed
in the course of this work.

2.2. WHAT IS A DOCUMENT? 9

2.2 What is a Document?

About 5000 years ago, the Sumerians realized that the preservation of written
information for future generations is critical for the efficient use of information
[127]. This problem is more topical than ever before as the amount of information
is growing tremendously and it is unknown in what form digital media will be
available in 50 years from now [20].

Throughout history, text has been written on numerous surfaces in many forms
all over the earth. Nowadays, it exists in either a printed or digital form as
units of texts. The size of a unit is not always trivial to distinguish, but a
general approach is to address a single unit of text as a document [7]. This
section provides a definition of the most basic text units and introduces a series
of preprocessing steps applied in this work.

2.2.1 Definition of Term, Word, Document

Generally, a document is a structured segment of text that appears in different
forms such as traditional book, paper, article, more recently e-mail, web page,
or source code. In this work, a document is denoted with the symbol d.

Words are the smallest syntactic units that can not be broken into smaller
segments [70]. They can be classified in part of speech (POS) such as verbs,
nouns, adverbs and used in their root forms as well as in modified forms. Words
may not conform to the units that are used for text processing in information
retrieval. Therefore, a token represents a single unit of text that may consist of
a letter, a word, or any string of consecutive alphanumeric characters, whereas
a term can be a single word, a word pair, a phrase within a document – I
define single words as terms. A term is denoted with the symbol t in this work.
Sometimes a term is called token, which is not entirely correct [93; 86]. Tokens
are basically the elementary units that remain when the text is decomposed into
smaller units by white spaces and special characters:

Input: “I am not omniscient, but I know a lot.” [155]

Output: I am not omniscient but I know a lot

The term-weight measures the importance of a term with respect to an assigned
text unit. The relevance of a term coincides with the relevance of the term for
the summary. A weighting algorithm assigns each extracted potential keyword
a term weight. The term weight of term t is denoted as W(t). Finding an
adequate weighting algorithm is the main challenge in keyword extraction. In
the remainder of this work I refer to a term as a preprocessed word of the input
text.

10 CHAPTER 2. IR FOR SINGLE DOCUMENTS

2.2.2 Preprocessing of Text

In this work, terms and characters represent the smallest fundamental units
for further analysis. In an information retrieval process, text pre-processing is
an essential functional part that has to be performed before the fundamental
units are passed to the following processing steps [101]. Preprocessing can be
referred to as tokenization or normalization in literature. It can be performed
step-by-step according to the scheme in Figure 2.1.

TokenizationText Document

Removal of unwanted
syntax (HTML tags)

Stop word removal Stop word list

Stemming Vocabulary/Lookup
table

Capitalization

Synonym recognition Thesaurus

Figure 2.1: This scheme shows some of the most common preprocessing steps in
a chronological sequence.

Some of the most common preprocessing steps and their dependencies are shown
in Figure 2.1.

The removal of special characters and unwanted syntax is a language-
specific and also a domain-specific task. In English texts, it makes sense to
identify the term “parents” as equal in the following two cases:

“The parents eat out.”

“The parents’ dinner.”

This example should probably be treated differently from words like “don’t”
or “ McDonald’s”. In some domains, there are certain names that should
be recognized, such as “C++”, “C#” or “Jay-Z”. When reading input from a
HyperText Markup Language (HTML) page or XML file, the syntax has to be
identified and processed, as well as certain character sequences like Uniform
Resource Locator (URL)s, e-mail addresses, or numbers.

Stop words are words that appear in almost all documents of a document collec-
tion, providing limited information about the content. Usually high frequency

2.2. WHAT IS A DOCUMENT? 11

words and function words such as conjunctions, prepositions, pronouns, etc. are
identified as stop words and can be excluded from the list of potential keywords.
Furthermore, stop words are content dependent, such as stop words for a web
page differ heavily from stop words for emails or a news article [70].

Stop word removal aims to remove common words to prevent their identifica-
tion as keywords and to reduce computation costs. The most common words in
English based on the Oxford English corpus are “the, be, to, ...” [32]. Stop word
lists can identify stop words in texts but they are language specific and usually
not exhaustive. Furthermore, there exists no universal stop word list; each list
has to be adjusted each time according to the input text, and the user runs
into the risk of eliminating potential keywords that contain valuable information.
For example, removing the most frequent English words from a text about the
British rock band “The Who” or from a text about the song “Let It Be” by The
Beatles is clearly not expedient. The trend in information retrieval systems
changed from using large stop word lists (200-300 terms) to very small ones
(7-13 terms) or even no stop word lists [86]. To remain language independent
and to avoid removing potential keywords, I do not filter any stop words before
the evaluation with the presented algorithms.

A stem is the root form of a word. Stems can be found in dictionaries though not
all forms of a word need to be stored in a dictionary in order to identify a stem.
The reason for stemming is to reduce a word to it’s basic form and is very similar
to lemmatization. Both preprocessing steps eliminate grammatical effects and
derivations to increase potential matches [86]. An example of stemming is shown
below:

“is”, “are”, “am”→ “be”

“different”, “difference”, “differential”→ “differ”

The example demonstrates a common problem that may occur with stemming:
the words “different” and “differential” may be used in various contexts with a
different meaning, such as “differential equation”. The stemming result “differ”
does not contain information about the context of the original word. With
stemming the contextual information is lost.

Stemming basically cuts off the end of words whereas lemmatization uses a
vocabulary and morphological analysis in order to remove inflectional endings.
A lemma of a word is its base or dictionary form. The Porter Stemmer is a very
popular stemmer for the English language [107] that is widely used.

Capitalization or case-folding can be performed to match terms in English
that appear at the beginning of a sentence like “House” with terms that normally
appear in lower case letters (“house”). This may also lead to problems with names
such as “George W. Bush” or “US” for United States. Correct capitalization for
only one language is challenging as it usually involves a sophisticated machine
learning model.

Any one fact may be described with different words in different texts. Synonym
recognition may help to identify factual similarities. It transforms words with
the same meaning into a unique identifier using a thesaurus [22] and facilitates a
subsequent analysis based on these common identifiers.

The pre-processing in this work includes removal of punctuation symbols, all
relevant terms of the document are down-cased, and special characters are

12 CHAPTER 2. IR FOR SINGLE DOCUMENTS

excluded. Since the examples in this work are based on the Latin alphabet,
I filtered all special characters with a regular expression and excluded single
characters from further processing. URLs, syntax, and e-mail addresses were
filtered when necessary.

This pre-processing can actually be performed without knowing any details of the
structure of the document. In addition, I exclude all terms with non-alphabetic
characters as well as numbers because I empirically found that most numbers are
used as page numbers or indices (e.g. in the appendix). Stemming and synonym
recognition were not performed in order to stay language-independent and to
conduct keyword extraction across several languages simultaneously. There is
certainly room for improvement of the preprocessing steps in order to refine the
results of the individual algorithms, but an extensive preprocessing is not the
focus of this work.

2.3 Segmentation of Documents

The structure of written texts can be described as a sequence of subtopics
that comprise a few main topics [56]. Sometimes these subtopics are noted by
subheadings or separated in paragraphs. Topics and subtopics in a document are
typically defined by the special words that characterize the document [112]. For
example, articles about computer security would contain a lot of occurrences of
words like: “phishing“, “intruder”, “malware”, “virus”. Topics can be inferred by a
number of different models – topic models – that uncover the underlying semantic
structure within a document (collection) [157; 35]. For example, the State of
The Union Address of the President of the United States (US) in 2012 contains
the special words: “Americans, United States, country, citizens”, whereas the
subtopics of this document are characterized by words like “Iraq, war, troops”,
or “jobs, manufacturers, hiring”.

The DARPA Topic Detection and Tracking (TDT) initiative addresses event
detection in document streams and aims to group stories that arrive over time
into single-topic clusters. Documents with temporal order (e.g. news stories)
are therefore considered streams that are applicable to event detection. The
developed methods aim to detect indications for new events. Topic Detection
(TD) is a fundamental research question of TDT and different topic models
can be obtained from a number of methods, such as manual thesauri, term
clustering, document clustering, Latent Semantic Analysis (LSA), relevance
feedback [54; 157; 3; 35].

Some of the presented information retrieval algorithms demand segmentation
of documents in order to return meaningful results. Passage retrieval aims to
retrieve text excerpts of a document that are relevant to a user query [121]. One
could assume that passage retrieval algorithms can simply segment a document
and return short passages in response to a user query [65; 170]. However, they
actually require query terms and are not capable of determining the topic of a
passage without these terms [90]. In fact, segmentation of a single document is
a very challenging tasks, often not even human readers agree upon clear topic
boundaries [56].

Most IR processes don’t address the segmentation issue because they focus on a
document collection. They preprocess the contained documents and perform the

2.3. SEGMENTATION OF DOCUMENTS 13

retrieval process on a single document with respect to the whole collection. In
this work, I partition a single document d into a number of windows N using
different criteria. The retrieval is then performed on the individual windows with
respect to the single document. The windows w1, . . . , wN consist of terms, are
non-overlapping, and contain all terms in d. All the segmentation approaches
have to be performed before preprocessing.

An optimal segmentation algorithm would be able to identify all subtopics and
partition a document into N = number of subtopics windows, that comprise a
single subtopic each. Words that describe a subtopic appear in close proximity
to each other, whereas words that describe the main topics distribute across
the entire document [58]. This information can be useful for term weighting.
Accordingly, a well performed segmentation process may contribute to better
keywords as the outcome. A book can be split into windows of constant length
or alternatively the author-defined chapters can form windows of different size
[114]. I propose the following three different criteria to determine the optimal
window composition:

• Number of terms

• Logical document structure

• Number of extracted keywords

The most straightforward approach defines the size of a window as a fixed number
of terms n that the window contains. This can be realized by setting |w| = n

beforehand and splitting the document into |d|n + 1 windows, whereas the last
window might contain less than n terms. Alternatively, I chose a segmentation

into d |d|n e equally sized windows. This method is simple, fast, but does not split
the document into subtopic-containing windows. An example is shown in Table
2.1.

Window 1 Window 2 Window 3
“Imagine what we” “could accomplish if” “we followed their ”

Table 2.1: The number of terms n = 3 determines the window size in this text
sample.

With a varying window size, the number of terms in a window changes. Conse-
quently, the risk of content-overlapping windows or content-splitting windows
rises with increasing window size. I propose the use of document structure
information to reduce that risk. Furthermore, I presume that there is no ex-
ternal corpus of documents available that could provide useful domain-specific
information for the keyword extraction process.

In principle, every syntactically correct text contains sentences. I took advantage
of the sentence punctuation and mark sentences as single units of the document.
Instead of varying the window size by single terms, I increase or decrease the
windows by single sentences to extract the claimed number of keywords (see
Section 8.3.2). Table 2.2 shows an example of the sentence-based segmentation
[135]. A similar segmentation approach creates windows that contain paragraph-
sized units. A well-written text is supposed to contain a summary sentence

14 CHAPTER 2. IR FOR SINGLE DOCUMENTS

at the beginning and / or at the end of each paragraph. Unfortunately these
expectations are often not met in the real world. Paragraph markings may
only be inserted by the author of the text in order to make it easier to read or
just because of a page break [134]. During my experiments, the sentence and
paragraph segmentation approaches contributed to good results but they were
not the main scope of this work [19].

Window 1 Window 2 Window 3
“They focus on the
mission at hand.”

“They work together.” “Imagine what we could
accomplish if we

followed their example.”

Table 2.2: The document structure – here: sentences – form windows of different
size.

Despite their usefulness, linguistic features are language-specific and domain-
dependent. A scientific article contains an abstract at the beginning and a
conclusion at the end. On the other hand, a news story or Web blog might
not conform with that structure. Text itself can be classified in structured and
semi-structured text. Web pages usually follow a very rigid format, such as
the weather forecast on a news site. Semistructured text consists of sentences
with fragments containing information that is following some kind of order [148].
Event announcements or restaurant menus usually show this kind of structure.

A more reliable domain- and language-independent source of additional informa-
tion is the document itself. Documents contain many types of structured data.
The structures of a document can be used to obtain maximum information for
the keyword extraction process. I illustrate the usefulness of document structure
with the following example:

The popularity of XML files rose significantly in the last years as they also
contribute to the Open Document Format for Office Applications (ODF) doc-
ument format. XML documents can contain meta-data, style-sheets and they
also include content relevant information. XML content data is stored in leaves
in the XML tree. Rönnau and Borghoff showed that the lowest two levels of the
XML tree contain over 80% of all nodes [119]. Since text nodes are often just
leaf nodes of the parent nodes, I propose a windowing technique that takes into
account the tree structure of the XML document.

Another common approach is the sliding window technique, where a sliding
window moves across the text. This approach uses overlapping windows – shared
areas between the windows exist [90]. An example is shown in Table 2.3. As
the window reads new terms, other terms are dropped. This technique includes
three major steps [14]:

1. Insertion – a new run for each incoming term

2. Term reservation until the lifetime of the message expires

3. Deletion operation, where the term is deleted

Since this technique would require an analysis after each insertion and the
analysis would be performed for each term multiple times, I did not consider

2.4. INFORMATION RETRIEVAL MODELS 15

Window 1 Window 2 Window 3
Imagine what we what we could we could accom-

plish

Table 2.3: The window of size |w| = 3 slides across the text.

this procedure for the term weighting algorithms described in Chapter 4, but
rather for the trie-based CPD in Chapter 7.

Most keyword extraction approaches produce a variable number of keywords
depending on the positive selection criterion. In Section 8.3 I empirically show
that the number of extracted keywords strongly depends on the size of the
windows that compose the underlying document. While experimenting with
different window sizes, I used the number of the extracted keywords as a criterion
for the optimal window size and developed the self-regulation approach that I
describe thoroughly in Section 8.3.2.

2.4 Information Retrieval Models

Models are commonly used in science to simplify real-world scenarios or objects
to make them more easily ascertainable for humans or to identify specific features.
In IR, document models in particular associate the problem of retrieval with
the issue of language model (LM) estimation [163]. The IR models account
for specific features of a document. Therefore, I selected four very popular
but also very diverse IR and language models for this work, which I introduce
in this section. This selection is certainly not exhaustive as I do not consider
the logic-based models or Latent Semantic Indexing (LSI) in this context. The
selected models support a fast performing, language-independent algorithm that
can perform on the text itself without user input and reference data.

2.4.1 The Bag-of-Words Model

The bag-of-words model is one of the most widely used document models in
IR. The bag-of-words model of a document is like a mathematical multiset
that allows duplicates containing the terms of the document as elements. It
is a simplified representation of a text that does not take into account word
order and grammatical structure. Consequentially, the bag {a, a, b, c, c, c} and
{a, b, c, a, c, c} are equivalent considering that model. Most of the frequency-
based IR algorithms are based on a bag-of-words document representation. One
of the most popular of the frequency-based term-weighting algorithms is TF-
IDF that I describe in Section 4.3.3. Consider the following two text snippets
(windows):

Window 1: “Mike likes to run in the mountains. Adam likes to run too.”

Window 2: “Mike also likes to run flat.”

The terms of the two windows were preprocessed (here: down-cased) and the
term frequency was put into the term-window matrix in Table 2.4. The word
order is ignored in the matrix. Hence the matrix is not able to differentiate

16 CHAPTER 2. IR FOR SINGLE DOCUMENTS

if it is “mike” or “adam” who “likes to run in the mountains.” It appears that
windows with similarities in the term-window-matrix have a similar content [86].

Term Window 1 Window 2
mike 1 1
likes 2 1
to 2 1
run 2 1
in 1 0
the 1 0
mountains 1 0
adam 1 0
too 1 0
also 0 1
flat 0 1

Table 2.4: This example is based on the Bag-of-Words model.

This representation used to represent the term frequency of the terms of the
windows in a document is commonly used to represent the relative importance
of terms of a document within a document collection and is denoted as Vector
Space Model (VSM).

2.4.2 Vector Space Model (VSM)

Salton et al. applied the VSM to information retrieval in 1975 [120]. They
propose a window space where each window is represented by a vector. The
dimension of the vector equals the number of different terms in the document.
A vector represents the corresponding window as a bag-of-words column in a
term-window matrix (Section 2.4.1). Each element of the matrix may be weighted
according to its importance or assigned the frequency of the term’s appearance in
the corresponding window. The rows in the term-window matrix correspond to
the unique terms in the document. The VSM is used for clustering, classification,
or scoring windows (documents) on a query, whereas the query terms are treated
as a pseudo window [86]. A measure of similarity is usually the cosine between
two vectors in the vector space.

Let A be a matrix of n windows containing m different terms:

A =

a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain
...

...
...

am1 . . . amj . . . amn

If Table 2.4 would be represented by A, it would contain 10 rows and 2 columns
(n = 2 and m = 10). In general, if a term ti is chosen randomly in a window wj
the value at position aij is zero because A is sparse. The vector a:j indicates the
column vector of A and ai: the row vector of A. While the vector a:j contains

2.4. INFORMATION RETRIEVAL MODELS 17

the signature of the j-th window, ai: contains the signature of the i-th term [150].
According to this vector-based document model a query is is usually represented
by a boolean query vector ~q, containing true for the terms in the query and false
otherwise.

The downsides of VSMs are the high dimensionality, the sparseness that comes
with the large number of terms, and the lack of structure. A significant approach
in IR that is based on the concept of VSM is LSA. LSA aims to overcome the
high dimensionality of VSM by reducing the dimensions of the matrix in order
to infer contextual usage of the terms and identify latent semantic relations [75].
This basically means, that the meaning of words is closely related the statistics
of their usage. In 2010 Turney wrote an overview paper about VSMs, stating
that they are a highly successful approach to semantics [150]. In this thesis,
the VSM will be of great use for the analysis of the concepts of term weighting
algorithms in Chapter 5. It is a basis for the described combination approaches.

2.4.3 The Probabilistic Language Model

There exist two probabilistic approaches that are mainly used in IR. A user that
aims to find a section of text thinks of words that would describe this section and
expresses a query – which is one or more words. The Binary Independence
Model (BIM) aims to estimate the probability value p(R|w, q) – the conditional
probability of a window w being relevant (R) to a query q [115]. Imagine this
user-generated query, containing n words, with n ≥ 1, n ∈ N . The windows
in the document that are relevant to the query compose the ideal answer set
[7]. So far it is unknown what relevant means. The meaning of relevant has
to be guessed and is the reason for the probability p(R|w, q). This allows the
creation of a probabilistic answer set. The windows with the highest probability
are assumed to answer the query best.

This model is closely related to the VSM as the windows in the document and
the query q are represented by binary (boolean) vectors ~x = (x1, ..., xn) [162].
The value of xi equals 1, if ti is present in w, 0 otherwise; the query vector ~q is
represented accordingly. Similar to the VSM, all occurring terms are represented
independently in this model. There is also no relation between the windows, and
duplicate windows would not be recognized. Additionally, two different windows
may have an equal vector ~x. This retrieval model is rather simple but has shown
satisfying results and is widely used [86].

Besides the BIM, there is another probabilistic model, which refers to a probability
distribution capturing the statistical regularities of the generating language [104].
This language model is the foundation for some of the most successful IR
algorithms, that are analyzed in Section 4.3. In speech recognition, a LM would
predict the probability of the next word. This principle can also be applied
to IR. Consequently, Ponte and Croft state, that LMs assign probabilities to
a single term (unigram) or a sequence of terms (n-gram). Then, a maximum
likelihood estimate calculates which window w1, .., wn in a single document d
would most likely generate the query q: p(q|Mw). The probability of a query
being generated by a window Mw of the LM is denoted as p(q|Mw). A relevant
window basically maximizes the probability p(q|Mw).

The unigram model is the most straightforward way to estimate the probability
of a sequence of terms. Figure 2.2 shows the language being modeled as a finite

18 CHAPTER 2. IR FOR SINGLE DOCUMENTS

q0start

generate a word

Figure 2.2: The finite single-state automaton representing the unigram language
model.

single-state automaton producing a probability distribution for all the terms of
the language A so that

∑
t∈A p(t) = 1. This model can determine the probability

for any sequence of any length as the single state which is also the end state
of the automaton. Equation 2.6 shows that the probability of sequence t1t2t3
equals the probability of the product of the probabilities of the individual terms.

p(t1t2t3) = p(t1) · p(t2|t1) · p(t3|t1t2)
(unigram)

= p(t1) · p(t2) · p(t3) (2.6)

The complexity of the unigram model is quite low as it does not recognize any
association between terms. It clearly does not model language correctly. It is
an assumption that states: The probability of the terms t1, t2, t3 appearing as
a sequence is equal to the product of the terms appearing individually. It can
be regarded as a first order approximation. Apparently, this assumption seems
to suffice in most cases as it is widely used for IR applications and it generates
good results [86]. This model totally neglects the influence of other words. It
is basically a probabilistic version of the bag-of-words model. Considering the
order of a sequence of terms, the n-gram model is a much better solution. The
probability of the sequence t1t2...tn is then approximated as follows:

p(t1t2...tn) = p(t1) · p(t2|t1)...p(tn|t1t2...tn−1) =

n∏
i=1

(pi|p1...pi−1)

The probability of the i-th term depends on the probability of the preceding
sequence of the i− 1 terms (also called the context) which leads to an (i− 1)-th
order Markov chain [33]. Due to the complexity of higher order Markov chains,
the less sophisticated bigram and trigram models are preferred in most higher
order approximations [91; 86].

In this work, I do not focus on the probability of a query fitting a window, but
rather on the relevance of terms inside this window – the potential keywords. In
order to extract keywords from a single document, the probability of a potential
keyword term t within a document has to be translated into a measure of
information. Which terms are relevant for the user? How much information
does t provide to the content of the document? How are these probabilities
determined? I will describe the most successful probability estimates and two
possible approaches to determine the information value of potential keywords in
Section 4.3.

2.4. INFORMATION RETRIEVAL MODELS 19

2.4.4 Divergence from Randomness Model

Amati and Rijsbergen propose a probabilistic model that can also be interpreted
as a language model [5]. Their basic concept states that terms occur in a
document with a certain probability, that can be modeled with a probabilistic
model. The term weights of the individual terms are then determined by
measuring the difference between the probability process and the actual term
distribution – divergence from randomness. This model is based on the following
two components:

1. The essential assumption is: Terms that are randomly distributed across
the entire document convey little information. The probability of the
term t in the document d according to the chosen model of randomness
is defined by p1(t|d). In his work, Amati provides a set of the most
successful fundamental probability models to determine p1(t|d) [4]. A
small probability p1(t|d) means a sparse distribution of t and therefore a
high informative content of t:

inf1 = − log2 p1(t|d) (2.7)

This first assumption closely resembles the Helmholtz principle in computer
vision (see Section 4.3.4).

2. The second component of the model considers only the windows that
contain the term t. According to the definition of Amati et al., this subset
is referred to as the elite set of windows [5]. The second probability p2(t|wt)
is then determined with respect to the windows wt containing the term t.
If there has not been an appearance of t in a while and suddenly t occurs
once, the expectation to find more occurrences of t rises [5]. It rises even
more if more occurrences appear. This phenomenon is called an apparent
aftereffect of future sampling and is very similar to the notion of burstiness
[43]. The lower the expectation of t with respect to the elite set of windows
is, the higher is the informative content that this term contains:

inf2 = 1− p2(t|wt) (2.8)

Amati et al. proposed a term weighting function that combines the two prob-
abilities p1 and p2 as a product of the informative content and the apparent
aftereffect of future sampling [5]:

W = inf1 · inf2 = − log2 p1(t|d) · (1− p2(t|wt)) (2.9)

The final term weight W is related to the whole document d as well as to the
elite set of windows wt. I utilize this this model in Chapter 5 to combine term
weights of different IR approaches that represent the concepts of inf1 and inf2

in order to create more successful retrieval algorithms.

Nevertheless, this model does have some shortcomings. It does not take into
account the length of the windows; therefore, normalization is necessary to avoid
the effect of a higher weight of a term due to a larger number of occurrences in
a long document. Normalization techniques are described in the next section.

20 CHAPTER 2. IR FOR SINGLE DOCUMENTS

2.4.5 Length Normalization

If the segmentation procedure for a document is not based on the number of
terms comprising the window (see Section 2.3), the windows may be of different
size. The term frequency of a term t in window w is defined as the number of
appearances of t in w: xw1

t . In order to illustrate length normalization, let the
term frequency of t in w1 be xw1

t = 5 and the term frequency xw2
t = 5. If |w1| <<

|w2|, the term frequency xw1
t should be accounted differently from xw2

t although
their numerical value equals. Amati and Rijsbergen named the normalization of
the term frequencies by the window length the second normalization principle
[5]. In general, language models have to account for the size of the windows in
order to prevent bias towards longer windows.

Normalization of document length is a recurring topic in information retrieval
[128; 15; 28]. Applied to the single document model, the windows should be
re-scaled to the average window size in order to normalize the occurrences of
t. This can be be implemented by multiplying the term frequency with the
proportion of the window size of the average window size [5]:

xnwt = xwt ·
|w|
|w|avg

(2.10)

The size of a window is determined by the number of terms in the window. The
normalized term frequency is denoted as xnwt and the average length of the
window as |w|avg.

The following example may illustrate this effect [5]: Let the average window size
|w|avg be 2000 and the number terms in |w1| = 8000 and |w2| = 200. If a term
t appears 8 times, I re-scale xw1

t in w1 to xnw1
t = 2 and in w2 to xnw2

t = 80.
In my experiments the proposed normalization reduced the extracted keywords
of above-average length windows satisfactorily but performed poorly on short
windows. The results seemed suboptimal and further investigation revealed the
reasons.

The presented normalization formula postulates, that an increase of window
length corresponds to a linear increase of the number of occurrences of a term t
in the window. Recalling the properties of the BIM, a linear correlation is highly
improbable. It is rather probable that new terms appear in the window as its
size increases [128]. The term frequency density is a decreasing function on the
window length and can also be normalized with the following equation [5; 28]:

xnwt = xwt · log
(

1 +
|w|avg

|w|

)
(2.11)

This equation fits the needs of a fast and parameter-free approach as it accounts
for higher terms frequencies and a larger number of terms in long windows.
Consequently, I apply this normalization of term occurrences in Equation 2.11
to the proposed weighting algorithms presented in Section 4.3 and replace xwt
with xnwt in the length-driven approaches.

There exist a number of other normalization techniques that are mentioned
in literature, such as: the cosine normalization for VSMs, the maximum term
frequency normalization used in Inquery [104], or the pivoted normalization
scheme [128]. None of these normalization methods resembles a decreasing term

2.4. INFORMATION RETRIEVAL MODELS 21

frequency function and fits the requirements for a fast and independent single
document analysis. Therefore, I did not consider them for this work.

2.4.6 Smoothing Methods for Language Models

The aforementioned probabilistic language model does not take into account the
probability of unseen words, and to assign a probability of zero to missing terms is
generally regarded as radical. The purpose of smoothing is to assign a probability
to unseen words that is different from zero [164; 104]. Most smoothing methods
discount the probabilities of the words appearing in the document to assign an
extra probability to the unseen words. The following example illustrates this
effect:

query: “hurricane”, “season”, “USA”

The query contains three words and I aim to identify a window in the document
d that is closely related to this query. If a window w contains only two of these
terms, the missing query term would assigned a probability of zero for this
window: p(t, w) = 0. Instead, the following smoothing can be realized [163]:

p(t, w) =

{
ps(t, w) if t appears in w
αw p(t, d) otherwise

The probability ps(t, w) is the probability after smoothing, and αw is a coefficient
ensuring that all probabilities sum to one. Further details on how to determine
ps(t, w) can be found in the work of Zhai and Lafferty [163]. The following three
smoothing methods were used to implement their approach: The Jelineck-Mercer
Method, Bayesian Smoothing using Dirichlet Priors, and Absolute Discounting
[164]. All three methods require parameters that must be precomputed before-
hand. As I analyze parameter-free IR algorithms in this work, no such smoothing
method is considered for my analysis. Moreover, a term that does not appear in
a window is unlikely to be a promising keyword candidate.

22 CHAPTER 2. IR FOR SINGLE DOCUMENTS

2.5 The Key Adaptations

The specific task of single document analysis demands adaption of standard IR
models and procedures.

Whereas various preprocessing steps are common in IR, implementation of only
selected preprocessing steps is required. In this work, all words in the input
texts are down-cased in order to increase potential matches. The advantage of
down-casing is that most letters in the English and German language already
appear in small case and some letters such as “ß” do not have an uppercase
version. Besides, the readability and legibility of lower case text is higher than
with all caps which facilitates the debugging of the samples used in this work
[158].

Furthermore, some common preprocessing steps such as stop word removal and
synonym recognition are omitted. This allows for emphasis of the characteristics
of the presented approaches.

In Section 2.2 a document model is described that fits the specific purpose of
single document analysis. Windows are defined as partitions of a document and
are an essential element of that model. Suitable position and size of a window are
crucial to the performance of the keyword extraction algorithms. Thus, different
criteria for window size determination have been determined and presented. One
of the criteria – the number of extracted keywords – is the foundation for my
self regulation approach as presented in Section 8.3.2. Windows of different size
require length normalization. Selected normalization models have been adapted
to the document model.

My analysis is based on the IR models

• Bag of Words Model,

• Vector Space Model (VSM),

• Probabilistic Language Model, and

• the Divergence from Randomness model

presented in Section 2.4. These models have been adapted here to single document
analysis and are applied to two different scenarios:

1. determination of potential keywords, and the

2. combination of keyword extraction approaches.

This chapter introduced several elementary models and methods, as well as their
adaptations of these models for analysis of single documents.

Chapter 3

Related Work

IR from single documents is extremely popular these days and a large number
of publications deal with that topic directly or indirectly. This chapter contains
the state-of-the-art methods to extract the most meaningful information from
single documents. The work presented in this chapter is relevant to the main
approaches in this thesis.

As an overview, I introduce document summarization approaches with a focus
on techniques applicable to single documents. As this work focuses on keywords,
I will address the most relevant methods for keyword extraction subsequently.
Combination methods can be applied to improve the performance of keyword
extraction algorithms. In Section 3.2.1 I describe the most fundamental com-
bination methods. One of my approaches is based on the concept of CPD. I
present the most relevant approaches to change-point detection in Section 3.3.

3.1 Automatic Summarization for Single Docu-
ments

The sale of Summly generated an immense amount of attention by the world’s
news media in 2013. Summly is a software application that generates quick story
summaries for news pages on iOS smartphones [123; 136]. The technology behind
Summly has not been published in detail but in principle the application extracts
the text from a website and applies a machine learning algorithm and natural
language processing (NLP) to generate a short paragraph summary. Summaries
do appear in various forms: sentences, paragraphs, n-grams, or even keywords.

In general, a summary is defined as a condensed version of the original document.
The goal of automatic summarization is to extract the most important content
from a text and present it to the user in less space. Different approaches exist to
extract information from unstructured machine-readable documents, but they
mostly conform upon creating semantic annotations. Summaries of documents
can be classified into generic summaries and query-relevant summaries (also called
query-biased summaries) [156]. Generic summaries are created independently
whereas query-relevant summaries refer to a given query or topic. Summaries of
documents are considered extraction-based when they consist of segments of the

23

24 CHAPTER 3. RELATED WORK

source document [156]. Teng et al. proposed a single document summarization by
calculating sentence similarity in a document to define topics [141]. Abstraction-
based summaries use natural language generation technologies to paraphrase
sections of the source document. In general an abstraction-based summary can
condense a text more strongly than an extraction-based summary. If one would
consider the heuristic approaches in this work in a summary scenario, they would
be classified as generic extraction-based summarization.

One of the most popular extraction-based text summarization tools is the
aforementioned Summly [123; 136]. TextTeaser is a multilingual application
programming interface (API) startup that follows a similar approach as Summly
but offers a Web API instead [142]. Other competitors in the market of text
summarization tools are Cruxbot, the Copernic Summarizer, and Topicmarks
[34; 31]. As Summly was acquired by Yahoo in 2013, Topicmarks was acquired by
the social discovery website Tagged in 2011 [146]. These acquisitions point out
an addition application area: The generation of bi-directional recommendations,
based on content in social media (see Section 9.1).

3.2 Keyword Extraction Algorithms

Qi He states in his review article that simple probabilistic models show best
performance [55]. One of the reasons is that nonparametric algorithms do not
require the use of a training set of documents. One of the most popular and
widespread heuristic ranking functions for terms has been proposed by Jones
[64] – it is known as TF-IDF. The definition of term specificity later became
well known as Inverse Document Frequency (IDF) and in combination with
term frequency (TF) it has proven to be extraordinarily robust. Numerous
variants can be found, also outside the domain of keyword extraction [118].
The project Video Google aims to localize objects and scenes within a video
[130; 129]. Therefore, matches on descriptors of objects are pre-computed as
a visual analogy to words. Documents are represented by weighed vector of
visual words. The ranking function applied to documents and a single query
document (image) is TF-IDF. Subsequently, the visual frames are ranked by
their normalized scalar product to retrieve matches between the documents in
the collection and the query. Whereas some of the analogies from text retrieval
could be applied to image retrieval, there were still some differences between the
bag-of-words concept for documents or visual words [129].

Another fundamental approach to keyword extraction is based on the Bayesian
Decision Theory. It is a fundamental statistical approach for classification –
terms are classified as keywords or not. Turney [149] was one of the first who
has defined keyword extraction as a supervised learning task. He combines the
genetic training algorithm Genitor with the heuristic Extractor to create GenEx.
The extractor filters stop words, performs stemming, and assigns a weight to
the stems so that the output is an ordered list of mixed-case phrases. The
Genitor optimizes a set of bit strings by randomly changing existing individuals
and by combining substrings from parents to generate new children. Each
individual is assigned a score, denominated fitness. Genitor is a steady-state
genetic algorithm. It updates one individual at a time, resulting in a continuously
changing population. Usually the least fit individual is being replaced by the

3.2. KEYWORD EXTRACTION ALGORITHMS 25

new individual. Generational algorithms update their entire population in one
batch hence creating a sequence of generations. GenEx has twelve parameters
to maximize performance of the algorithm [149]. Tuning such a number of
parameters is a sophisticated, domain-specific process.

There are similarities between keyword extraction and trend detection, especially
when they face common constraints. The work of Schubert et al. faces the
challenge of detecting emerging topics in data streams [1]. Their approach is
three-fold: A significance measure in combination with hash tables, and clustering
approaches in combination aim to detect emerging topics. The use of hashing and
clustering techniques allows a high throughput of data and meaningful results
at the same time. Although their objective is rather different from the one in
this work, their proposed significance measure of a trend is closely related to
the burst scores that I describe in Section 4.4. Contrary to their approach, the
scores generated in this work do not require tuning parameters and a learning
process.

Learning Algorithms

Similar to GenEx, the Keyphrase Extraction Algorithm (KEA) extracts key-
phrases from a document collection. Instead of using a genetic learning algorithm
for training, it is based on documents with author-assigned keyphrases [44]. These
documents create a model for keyword extraction [159]. KEA chooses keywords
based on this model employing the naive Bayes machine learning technique [159].
More pre-processing steps must be performed until the first keywords can be
extracted and the TF-IDF weight is used to distinguish keyword candidates. For
the speed of KEA, it is essential that documents belong to the same domain.
Irrespective of the development of KEA, machine learning techniques have
become more popular for keyword extraction in the recent years. This is due to
the fact that improved machine learning techniques, large document collections,
and enormous computational power have come together [86]

In contrast to the naive Bayes model, the Hidden Markov Model does not assume
statistical term independence. Conroy et al. [30] have trained a Hidden Markov
Model to assign a summary likelihood to each sentence of a text and create a
summary composed by the sentences with the highest probability. A different
approach based on the Hidden Markov Model is described in Section 4.4 [66]. A
fundamental feature of Kleinberg’s model is the applicability to indefinite data
streams. The processing of fast-flowing, ever-changing text streams becomes
increasingly important and the need to identify hot topics rises. The work of
Schubert et al. presents a novel method for the detection of emerging hot topics
in a data stream based on manually assigned keywords and clustering [1].

Graph-Based Algorithms

A graph-based document representation can be built upon lexical similarities
or semantic chains in a document. The Google PageRank algorithm [100]
and Kleinberg‘s HITS algorithm [67] are the most prominent link-based search
algorithms that take into account graph information. Litvak et al. [79] apply
HITS to document graphs to determine the top-ranked nodes in the graph in

26 CHAPTER 3. RELATED WORK

order to identify the most significant keywords. Link-based algorithms require
a link structure between individual texts, and their application is expedient in
large collections such as the internet or a library.

Linguistic Features

A number of methodologies use linguistic features in combination with filtering
and lexical analysis to identify relevant terms in a document [127]. Kumar et
al. use an n-gram filtration to extract potential keyphrases [73]. The LAKE
algorithm is another approach that couples linguistic analysis with a learning
algorithm that uses features such as TF-IDF for scoring [6]. Ontology-based
approaches are usually very complex and content specific as ontologies can’t be
transferred from one content to another. Gao et al. aim to identify Nigerian fraud
e-mails with a linguistic model [47]. In general, algorithms for keyword extraction
based on NLP require an extensive linguistic knowledge of the language used
[148].

3.2.1 Combination Approaches

Heuristics used in combination have been shown to have supplementary prop-
erties that improve retrieval results [5; 76]. Only a few approaches for ranking
aggregation can be found in the literature. One method of combining retrieval
results is feature ranking aggregation [108; 81]. Prati investigated four different
ranking aggregation methods, and demonstrated the compelling performance of
combinations towards single heuristics. I describe his most successful approaches
in Section 5 and further discuss their performance in Section 8.4. Another
approach presented by Li et al. suggests the application of PCA on the result
space of term weights [77]. With PCA they create a weighed linear combination
of retrieval heuristics that results in a final weight. While the method produces
good results, the theoretical foundation of this approach shows some difficulties
that I discuss in Section 5.3.1.

A similar application of Singular Value Decomposition (SVD) is LSA, also known
as LSI [75]. A vector-space representation of documents and queries is used to
identify latent semantic associations with co-occurrences of terms. With Singular
Value Decomposition (SVD) the dimensionality of a corpus can be reduced in
order to expose a limited number of topics. LSA uses a very similar mathematical
technique, but the objective of this method is entirely different. It requires a
large document collection in order to identify latent semantic associations and
the computational cost is significant [86].

3.3. CHANGE-POINT DETECTION LITERATURE REVIEW 27

3.3 Change-Point Detection Literature Review

The detection of abrupt changes in statistical processes dates back to the first
half of the 20th century when the quality in manufacturing processes had to be
monitored. Poor and Hadjiliadis mention in their book a range of fields where
CPD is used [105]: climate modeling, econometrics, environment and public
health, finance, image analysis, network security, and historical text analysis.
This list is definitely not an exhaustive list of applications but it shows the
versatility of CPD. Depending on the specific application field, CPD may be
denoted as statistical change detection or disorder detection.

Network performance is usually predicted with stationary models because it
is often characterized by periods of stationary – a time span with a constant
amount of network traffic. These intervals of stationary can be interrupted by
abrupt transitions such as a change from a period with high network traffic
to a period with low throughput or the detection of denial of service attacks
[140]. CPD was applied to network traffic analysis in order to model statistical
changes in networks and to improve traffic predictions. With CPD it is possible
to estimate the parameters of the stationary model after a change and generate
more accurate predictions [38]. It is generally difficult to detect change-points
because of their uncertainty but it is an additional challenge to estimate the
location of a change-point.

A very simple check for a change-point occurrence can be performed with
likelihood-ratio tests and a cumulative sum (CUSUM) algorithm [10]. An ap-
proach based on likelihood was presented in [59] by Hinkley and Bhattacharyya
and Riba and Ginebra [114]. Johnson published a parameter-free approach in
1968 [13]. A CUSUM algorithm monitors the cumulative differences of samples
and a “quality number”, which could be the mean of the probability distribution.
CUSUM is based on a threshold that has to be estimated beforehand.

Another way to address the CPD problem is to use Bayesian approach by
calculating the probability of a change-point, based on the posterior probability
that a change-point exists. Girón et al. apply a Bayesian approach to the word
lengths and word appearances in a book [50]. They aim to show the existence of
two authors in the Catalan book Tirant lo Blanc by assuming that the stylistic
boundary indicates multiple authorship. Besides, the same book was analyzed
with a likelihood-based CPD analysis by Riba and Ginebra with very similar
results [114].

Downey proposed an algorithm for the detection of the location of change-points
in a time series, based on the calculation of the probability for each index i,
that the last change-point occurred at position i [38]. This Bayesian approach is
based on the work of Chernoff and Zacks [24] who designed a Bayesian estimator
for a process with changing means. Downey’s approach requires subjective
prior probabilities, and is time consuming proportional to the complexity of
O(n2). The denotation n refers to the data points or time steps, which leads to
a particularly negative impact for large gaps between change-points.

Non-Parametric Approaches

A non-parametric CPD algorithm for written texts has been presented by Johnson
et al. [62]. They utilize an entropy estimator to estimate statistical changes in

28 CHAPTER 3. RELATED WORK

documents and perform analysis of concatenated texts to demonstrate that their
algorithm works well. This algorithm is based on ideas from information theory
and forms the foundation for the algorithm of this work (see Section 6.1). To
highlight differences between this algorithm and the original work presented in
this thesis, some of my experiments are based on the same examples as in [62]
(see Section 8.6).

Change-Point Detection Based on Entropy Estimators

A number of entropy estimation measures have been employed in other research
areas such as neuroscience to describe the amount of information processed by the
human brain [48]. Similarly, entropy serves as a universal measure in information
theory to quantify statistical effects of word order in language [93]. Montemurro
and Zanette compared the entropy of human written texts of eight different
languages with those of random texts. They showed a significant difference
between the entropy of the random texts and the human written texts but also
observed a variability among the entropy of the texts of the eight languages.
Their approach is very similar to the problem of CPD, as they already aim to
compare texts with different statistical properties while knowing the beginning
and the end of the text. I mentioned in a publication that the relationship
between uncertainty of terms and their meaningfulness can be beneficial for
information extraction approaches [19]. The Gestalt theory in Computer Vision
and the probabilistic model Divergence from Randomness are likewise based on
this principle, and were utilized in information extraction approaches [8; 5].

Online and Offline

It is possible to classify CPD algorithms as offline or online, which basically
indicate the way they are applied rather than the nature of the algorithm itself.
In many cases, CPD is performed as an offline analysis because the main goal is
to identify a single change-point in a data sample and characterize a statistical
behavior before and after the change. In some applications such as network
analysis, it may be beneficial to detect changes in real-time. Online algorithms
usually monitor new data and raise an alarm as soon as the probability for a
change-point reaches a certain threshold. Some online approaches continuously
read the input data and process it incrementally.

Compression-Based Similarities

The measurement of similarity between texts based on entropy has been applied to
research areas such as language recognition, authorship attribution, classification
of sequences, and plagiarism detection [143; 11; 9]. A common approach is to
train compression algorithms with a collection of texts of a specific category
in order to optimize their compression rate for this category of texts. The
subsequent compression of an unknown text with the optimized algorithms
allows for conclusions on the texts similarity. LZ is often the algorithm of choice.

3.3. CHANGE-POINT DETECTION LITERATURE REVIEW 29

Detection of Hidden Passages

A closely related scenario with rising significance is the detection of hidden
passages within written texts. Governmental, as well as corporate organizations,
are exposed to the potential risk of losing information that may be sent outside
of the intranet as a hidden passage within text [89]. The detection of hidden
passages is also of critical importance in the finance sector when an insider
attempts to leak insider information [90]. Mengle et al. proposed an algorithm
for the detection of hidden passages in texts based on classification and supervised
learning [90]. His method requires an extensive amount of training as one of
his training dataset comprised 18 000 documents. Furthermore, the category
prediction result depends on the number of training documents of that category
[89].

Recent plagiarism detection methods aim to identify short passages that have
been copied into a long document by using structural information [132]. Sta-
matatos showed that by using structural information based on stop-words, he
can capture local similarities between texts and identify boundaries of plagiarized
passages. His method is based on a list of stop-words that has to be prepared
manually and comes with all the deficiencies of stop words that I described in
Section 2.2.2.

The distribution of symbols and words in a text is modeled by numerous in-
formation extraction approaches that identify structures within a text [17; 93].
In Chapter 7, I introduce a word-based entropy estimation algorithm based on
the principle of the Lempel-Ziv compression that pursues a single-pass strategy.
Word-based text compression algorithms were evaluated in previous studies were
found to perform well compared to character-based approaches that are more
common in literature [60]. In fact, the Lempel-Ziv algorithm performed the best
out of all that were tested because it was able to take long-range correlations
into account.

30 CHAPTER 3. RELATED WORK

Chapter 4

Term Weighting Algorithms
for Single Documents

The weight of a term represents its significance within its context. There are
remarkable algorithms available that aim to determine term weights for keyword
extraction or indexing. With no more than a plain text, they are able to identify
the most meaningful words for us humans. Unfortunately, none of them is
optimal and clearly superior to the others. Optimal means that it is faster, more
reliable than the other algorithms, and its resulting keywords are outstanding in
all possible scenarios.

First, I will briefly introduce the general concept of keyword extraction with
the heuristics presented in this Chapter. In Section 4.2 I will clarify why none
of the algorithms is superior to the others. Subsequently, I briefly describe the
different reference algorithms used to create well performing retrieval algorithms.
Based on the analysis of the retrieval constraints described in Section 4.2 and
the reference algorithms, it is possible to combine well-performing algorithms.
In Chapter 5, I present such an algorithm. This combined algorithm even
outperforms the well-known TF-IDF algorithm (see Section 8.3).

31

32 CHAPTER 4. TERM WEIGHTING ALGORITHMS

4.1 Keyword Extraction Procedure

The keyword extraction approaches presented in this chapter follow the same
general procedure. All of the algorithms will generate a term weight W for each
term of the document. If W > 0, the term is considered a keyword with the
weight W. The following algorithm describes the iterative steps for keyword
extraction of a plain text.

Algorithm 1 Keyword Extraction for a Single Document

Input: d = text document {the source text}
1: preprocess(d) {perform necessary preprocessing steps}
2: segmentation(d) {segment d if necessary}
3: normalization(d) {normalize d if necessary}
4: for all t in d do
5: generate weight W for t
6: if Wt > 0 then
7: t is keyword
8: t.weight =Wt

9: end if
10: end for
Output: write(keywords)

After performing this algorithm, all terms in the document contain a term weight
that is either zero or greater than zero. This allows the creation of a weighed list
of terms – the list of keywords. Algorithm 1 gives a basic idea of how keyword
extraction can be performed. The reference implementation of the approaches
presented in this thesis follows this algorithm and is described in Appendix A.

4.2 Analytical View of Retrieval Constraints

The quality of the results of keyword extraction algorithms is closely related
to the properties of the retrieval heuristics used to determine weight of the
potential keywords. In this section, I adapt existing retrieval constraints for
IR to term weighting algorithms for single documents and extend them. The
retrieval constraints for single documents differ significantly from the well known
IR scenario.

Fang et al. formally defined and characterized a set of desirable constraints
that retrieval heuristics should meet [42]. They concluded, that none of their
analyzed retrieval formulas satisfies their formal constraints which comprise the
first three of the following four characteristics:

1. term frequency,

2. the effect of window frequency,

3. length normalization,

4. burstiness.

4.2. ANALYTICAL VIEW OF RETRIEVAL CONSTRAINTS 33

A high term frequency does not mean that the term is a keyword, but the term
frequency definitely has an impact on the importance of a term in a document.
In Section 4.3.2, I will show that there is a characteristic relationship between
position and frequency in human written documents.

The effect of window frequency is closely related to the IDF-part of TF-IDF;
terms that are evenly spread across a document should be penalized. Conversely,
terms that appear in a very limited space should receive a higher weight because
they are probably important. Additionally, texts of different length should be
normalized according to the constraints described in Section 2.4.5.

The three characteristics described above aim to characterize the properties of
a successful keyword extraction algorithm. They are all based on the bag-of-
words-model described in Section 2.4.1. A phenomenon that is discounted by
the bag of words model and that raised attention in the field of text data mining
in the 1990s is the appearance of bursts. Church and Gale first mentioned the
phenomenon of burstiness in their publication [25]. The research group He et al.
define burstiness as follows:

“A word in a news stream is bursty if it appears in a large number of documents
over a finite time window.” [55]

According to this definition, a burst is characterized by a sudden unexpected
rise of term frequency in a short period of time. This behavior clearly distin-
guishes terms from low-frequency words and stop-words with a consistently high
frequency. Considering a document as a stream of content, the appearance of
bursts may indicate significant topic changes. Consequently, a successful retrieval
algorithm should also satisfy the characteristic of burstiness.

If the search for a term t in a text has been unsuccessful for a long time and
suddenly t appears once, the expectation to find more terms rises. This effect
of rising expectation is called the aftereffect of future sampling and similar to
the notion of burstiness [43]. The probability of an observed term t contributing
to the discrimination of a window is assumed to correlate to the probability of
another appearance of t [5].

Formal Definition of Retrieval Constraints

I applied the formal constrains proposed by Fang et al. to the scenario of keyword
extraction from single documents [42]. As keyword extraction is considered a
specialization of an IR scenario, where the potential keywords equal the search
terms of a query, these constraints continue to be valid without further proof. In
the following, I adapted the more general IR related constraints to the special
case of keyword extraction for single documents [42].

For this purpose, I refer to the document model described in Section 2.2 and
Section 2.3. Here, I refer to a document d that has been segmented into windows
w1..wn. The symbol |w| refers to the size of the window w and the weight of the
term t in window w is designated W(t, w). The term frequency of t in w is given
by xwt .

The following two conditions describe the expected behavior of a retrieval
algorithm with respect to the term frequency of the term t. Condition 4.2.1
describes the fact that windows with a higher score must result in a higher weight

34 CHAPTER 4. TERM WEIGHTING ALGORITHMS

of t. If a term appears more frequent in w1, there should be a higher weight
assigned to t in w1. Condition 4.2.2 ensures that the weight increase is smaller
for larger term frequencies. The weight difference between a frequency of 1 and
2 is larger than the weight difference between a frequency of 100 and 101.

Condition 4.2.1. Let term t be the potential keyword and t be a unigram
(|t| = 1). Assume |w1| = |w2|. If xw1

t > xw2
t , then W(t, w1) >W(t, w2).

Condition 4.2.2. Let term t be the potential keyword and t be a unigram
(|t| = 1). Assume |w1| = |w2| = |w3| and xw1

t > 0. If xw2
t > xw1

t and xw3
t > xw2

t ,
then W(t, w2)−W(t, w1) >W(t, w3)−W(t, w2).

Condition 4.2.3 states the following: if two terms appear in a document with the
same frequency, the term with the lower window frequency (higher iwf) receives
the higher term weight – less evenly spread terms receive higher term weights.

Condition 4.2.3. Let term t1 and t2 be two potential keywords and document
d = {w1, w2} contains two windows. Assume |w1| = |w2| and xw1

t1 + xw2
t1 =

xw1
t2 + xw2

t2 . If iwf(t1) > iwf(t2), then W(t1, d) >W(t2, d).

The following constraint describes the condition of an optimal normalization
property. Condition 4.2.4 states that the weight of a term t in w1 is greater than
the weight in w2 if the number of t are the same in w1 and w2 but w2 is longer
than w1 – it basically penalizes long windows.

Condition 4.2.4. Let term t be the potential keyword and w1, w2 two windows.
Assume |w2| > |w1| and xw1

t = xw2
t , then W(t, w1) ≥ W(t, w2).

Condition 4.2.5 prevents that a term in window w1, that is a concatenated
multiple of w2, receives a lower score than t in w2. This condition prevents
over-penalization of long windows.

Condition 4.2.5. Let term t be the potential keyword and w1, w2 two windows.
∀k > 1, if |w1| = k · |w2| and for all t, xw1

t = k · xw2
t , then W(t, w2) ≤ W(t, w1).

Condition 4.2.6 regulates the relationship between the length of a window and
the number of occurrences of t. If w1 equals a version of w2, which contains a
few more occurrences of t, then t should receive a higher weight in w1.

Condition 4.2.6. Let term t be the potential keyword and w1, w2 two windows.
Assume xw1

t > xw2
t . If |w1| = |w2|+ xw1

t − x
w2
t , then W(t, w1) ≥ W(t, w2).

These constraints comprise the first three characteristics for a successful algorithm
for single document IR. A formal (probabilistic) definition of burstiness was
provided by Clinchant and Gaussier [29]:

Condition 4.2.7. A distribution P is bursty iff the function

fε(x) = P (X ≥ x+ ε|X ≥ x), ∀ε > 0 (4.1)

is a strictly increasing function of x. A distribution which verifies this condition
is said to be bursty [29].

4.2. ANALYTICAL VIEW OF RETRIEVAL CONSTRAINTS 35

A bursty probability distribution occurs when a few outcomes of a term have
been observed and the distribution has passed a certain threshold, the probability
of more outcomes of the term rises. It is important to emphasize that burstiness
does not refer to a large number of occurrences at a certain point – a single
state – but rather to a behavior with a period of increase and decrease. Applying
this constraint to standard probability distribution, one can conclude that the
binomial distribution as well as most of the standard probability distributions
are not bursty. Then again, the Laplace law of succession and the Negative
Binomial Distribution are bursty but the Negative Binomial Distribution is
not applicable for single documents [27]. In Section 4.4, I describe the most
important algorithms that can detect bursty behavior in texts.

I reason that a successful retrieval heuristic for keywords should meet all the
above described constraints. Unfortunately no such retrieval heuristic exists [27].
In Section 4.5, I will show that the retrieval heuristics used in this work do not
meet all the requirements but can be categorized according to them.

Therefore, I propose that a combination of multiple heuristics can provide
improved and more reliable results than an individual algorithm. In Chapter
5, I introduce a selection of the best combination approaches. One of the key
findings of my work is the analysis of the performance of different combinations
for different scenarios and the characterization of combinations with respect to
the properties introduced in this section.

36 CHAPTER 4. TERM WEIGHTING ALGORITHMS

4.3 Frequency-based Information Measures

In this section, I introduce five different term weighting algorithms that can be
used to extract keywords from texts. I selected these algorithms because they
are well known in IR and they behave differently in different scenarios. All of
these algorithms consider term frequency in their calculation of the term weights
but do not consider burstiness.

4.3.1 On Information Content and Informativeness

A keyword extraction algorithm aims to identify terms that are important for
the content of the document and terms that describe the topics of the document
best. The works of Zipf, Luhn, Harter, Amati, Edmundson, and Jones assume
that the difference between high term frequencies and low term frequencies of a
term allow for conclusions to be drawn regarding the informativeness of the term
[40; 83; 168; 5; 53; 64]. Terms that are likely to be informative are also referred
to as “speciality” words, whereas terms that are usually randomly distributed in
a document are referred to as “non-specialty” words [53]. As I aim to identify
speciality words, the following question arises: how can informativeness of terms
be measured?

Tomokiyo and Hurst provide one answer to this question in their paper [145].
They determine an informativeness score and a phraseness score of a term.
These scores are generated with a binomial log-likelihood ratio test as well as
with the point-wise Kullback-Leibler (KL) divergence between two language
models. Their LMs are based a foreground and a background distribution, which
refer to a single document and a document collection. Their KL-based approach
creates reasonable results, but it is not a good measure of dependence as it favors
low-frequency scores over high frequency scores [85].

Another approach is proposed by Amati [4]. He calculates a term weight based on
the product of two factors, where one of these factors is denominated informative
content. In his thesis, he defines the informative content of a term as the negative
logarithm of the probability of the term occurrence. This probability is based on
a model of randomness that is shown in Section 2.4.4 in Equation 2.7. This idea
was first introduced by Popper under a different mathematical representation
[106]. The smaller the probability according to the model of randomness, the
less conform is the term distribution with the model of randomness and the
higher is the informative content of the term. In my work, I utilize this model
to calculate the informative content (the weight) of the potential keyword for
term probabilities generated by following language models: Helmholtz Approach,
the Bernoulli Model of Randomness, and the Poisson distribution. With this
definition of informativeness, it is possible to translate the probability of these
language models into a term weight or a measure of informative content. Another
application of this definition of informative content can be found in Section 5.1.

4.3. FREQUENCY-BASED INFORMATION MEASURES 37

4.3.2 Analysis of Term Frequencies

The term frequency of a potential keyword is one of the essential properties
described in Section 4.2. It is considered in almost every term-weighting algorithm.
Luhn published one of the first papers about keyword extraction based on term
frequency [83]. Luhn’s Assumption states the following [7]:

Definition 4.3.1. The value, or weight, of a term t that occurs in a document
d is simply proportional to the term frequency xdt . That is, the more often a
term t occurs in the text of the document d, the higher its term weight W is.

In 1932, Zipf recognized that term frequencies in texts of natural languages are
inversely proportional to their rank in the frequency table [167; 168]:

xi ∼
1

i

Hence, they follow a power-law distribution. Count all the terms in a document,
sort them by number of occurrences and write them in a table in decreasing
order. Zipf states, that the frequency xi of the i-th most term ti in an English
text is 1

i times the frequency x1 of the most frequent term in the text [7]. The
parameter α characterizes the distribution and was originally set to α = 1 by
Zipf for the English language.

xi =
x1

iα

The parameter α has to be determined empirically and characterizes the dis-
tribution. Zipf’s distribution holds for many other ranking scenarios such as
the population ranks of cities in China or the magnitude of earthquakes [96]. A
generalized version of this law is known as Zeta distribution.

The example in Figure 4.1 uses the top 14 conference paper abstracts from
Engineering of Computer Based Systems (ECBS) 2012 to illustrate Zipf’s law
by plotting the terms after ordering them in descending order according to their
frequency.

 0

 50

 100

 150

 200

 250

 300

 1 50 100 150 200 250 300

te
rm

 fr
eq

ue
nc

y

rank

Zipf’s law

Figure 4.1: The graph shows the term distribution of the terms in the top 14
ECBS 2012 conference paper abstracts after preprocessing.

38 CHAPTER 4. TERM WEIGHTING ALGORITHMS

Luhn stated that the most frequent words in a document are usually the most
common ones [83]. They are not containing a lot of information. Also the very
rare ones should not be considered as potential keywords. Besides that, it is
assumed that the author does not intend to mislead the reader by using words
that are unrelated to the content.

This means that the keywords should be found on neither side of the blue dotted
lines in Figure 4.1 but somewhere in between. This statement unfortunately
does not hold for all texts, as Ventura et al. describe in their publication [154].
Additionally, it is difficult to determine the threshold (the exact position) for
the very frequent and the very rare terms in a document.

But indeed, the number of topics in a document and how closely terms match
the topic they represent can be measured. The amount of information covered
by a document description and the amount of information provided by keywords
can be defined as follows:

Exhaustivity and Specificity

Exhaustivity is a property of keyword descriptions, specificity is a property
of keywords. The term exhaustivity describes the coverage of a document
description for the main topics of the document. Specificity describes the degree
of correctness with which a keyword describes a topic of a text. [64; 7]

Karen Spärck Jones stated in her seminal paper that the exhaustivity of a
document encompasses the various topics that are covered by the extracted
keywords [64]. Statistical exhaustivity is then the number of terms a document
contains and an essential factor of the well-known TF-IDF term weighting
algorithm [64]. And that is the basis for the TF-IDF approach where the term
frequency is only a factor of the final term weight, which is also determined by
the specificity of a term.

4.3.3 Term Frequency - Inverse Document Frequency (TF-
IDF)

One of the most popular term weights in IR is the TF-IDF algorithm. Karen
Spärck Jones concluded that popular words distributing equally over the whole
document should be penalized [64]. Therefore, Jones defined the specificity as
the number of documents that contain the term – the collection frequency. In
1972 she converted the specificity of a term in a document into a simple equation
which later became famously known as IDF.

The IDF-score is used to scale the TF of a term. Its purely heuristic nature has
led to many theoretical explanations [118]. The use of the logarithm in IDF by
Jones seems rather intuitive, and although she used a logarithm base 2, the base
of the logarithm is not really important [118; 86].

In the case of a single document, I apply IDF as a measure for the number of
windows that contain the term – the Inverse Window Frequency (IWF). Let the
number of windows in the document be N , where the term t occurs in w(t) of

4.3. FREQUENCY-BASED INFORMATION MEASURES 39

them. The Inverse Window Frequency (IWF)-weight for single documents for t
is adapted as follows:

iwf(t) = log
N

w(t)
(4.2)

The original proposal of IDF from Spärck Jones[64] does not make use of within-
window TF information. Consequently, there was no combination of TF and
IDF. I recall, the term frequency is the raw count of the number of occurrences
xwt of the term t within the particular window w.

WTF−IWF = xwt ∗ iwf(t) (4.3)

Apart from this very basic equation, a number of variants of the original TF-IDF
weighting scheme are common [7]. To account for longer windows, the term
frequency xwt could be normalized as in Equation 4.4 [154]. I describe further
normalization techniques in Section 2.4.5. In this work, I refer to the above
variant of Term Frequency - Inverse Window Frequency (TF-IWF) with the
normalization described in Section 2.4.5.

xnwt =
xwt
xdt

(4.4)

The TF-IWF weight WTF−IWF increases with a high term count in a single
window and a generally low appearance of the terms in the whole document. The
original TF-IDF weighting scheme has proven to be extraordinarily robust and
difficult to beat [118]. A serious problem with TF-IWF is, that only the single
potential keyword terms are taken into account and all the other vocabulary is
ignored (see BIM).

40 CHAPTER 4. TERM WEIGHTING ALGORITHMS

4.3.4 Helmholtz Approach

The Helmholtz principle is defined as the following statement: meaningful events
appear as large deviations from randomness. This concept was first stated by
Lowe and is valid for a huge range of applications [82]. In other words: every
structure that appears with too much regularity as it is very improbable to occur
in noise, calls for attention and may be of importance. Figure 4.2 illustrates
that principle with a black rectangle within a rectangle of noise. If the black
and white pixels appear with the same, equal probability, the black rectangle is
rather improbable. Therefore, the black rectangle clearly stands out.

Figure 4.2: An example for a deviation of randomness: a black rectangle within
a rectangle filled with noise (black and white pixels)

The Helmholtz Principle is defined as follows:

Helmholtz Principle:

“Gestalts are sets of points whose (geometric regular) spatial arrangement could
not occur in noise.” [37]

Balinsky et al. present the Helmholtz Principle in the context of automatic
keyword extraction [8]. I applied their approach to the domain of keyword
extraction for single documents. Let N be the number of windows in a document,
whereas the windows w1, ..wN are of the same length and the term t occurs
in one or more of them. xdt is defined as the sum of occurrences of t in the
document d. The set St = {t1, t2, ..tm} contains all of these occurrences of t,
whereas m = xdt .

. . .t tt
w1

t
w2

ttt t
w3

tt
wN

Figure 4.3: Sample term distribution modeled as m-tuples in the windows of a
document.

4.3. FREQUENCY-BASED INFORMATION MEASURES 41

Figure 4.3 shows a sample distribution for term t in the windows w1..wN of
a document. If the significance of a term in the document is related to its
appearance, the question must be: Is it an unexpected event if t appears m
times in w? Let xwt = m and the random variable Xm represents the m times
occurrence of t in w. Balinsky et al. propose the expected value E(Xm) as [8]:

E(Xm) =

(
xdt
m

)
∗ 1

Nm−1
(4.5)

The exponent m− 1 results from the fact that the probability of m occurrences
of t in one window is 1

Nm−1 .

Furthermore, Balinsky et al. define E(Xm) in Equation (4.5) as the number of
false alarms NFAT (m,xdt , N) of an m-tuple of a term t.

WNFA =

{
E(Xm) if E(Xm) < ε
0 else.

If NFAt < ε < 1 it is called ε-meaningful. The set of extracted keywords consists
of words with NFAt < ε, whereas ε = 1 in the reference implementation. If the
input stream does not consist of windows of equal size, the windows have to be
normalized according to the specification described in Section 2.4.5. It may be
noticed, that this algorithm does not consider the window frequency (and IWF).

4.3.5 The Bernoulli Model of Randomness

Written text consists of symbols from a finite alphabet. The symbols are
assembled in a way so that they compose and separate words and generate a
certain structure in a text. Symbols as well as words are not uniformly distributed
over a text (see Section 6.2). In fact, they depend on the symbols and words that
appeared before. A probability model should therefore consider the previous
“draws”, as it is done by the Markov Model [111]. A probabilistic model can then
be classified by the number of terms k it takes for generating the next term –
speaking of a k-order model. The Bernoulli trial is a very basic experiment, that
is considered a 0-order model.

A classic Bernoulli experiment is the coin toss, where a coin is repeatedly tossed
with the outcome heads or tails. The two main characteristics of Bernoulli trials
are:

• The individual trials are independent of each other.

• The probability for each event (success or failure) remains constant.

A Bernoulli trial that has a success value of 1 with probability p and failure
probability 1− p is defined as:

P (X = 1) = p

P (X = 0) = 1− p

Carried over to information retrieval, the probability p of window w containing
the term t can be defined as p = 1

N , whereas N equals the number of windows
in the document d. The complexity of the Bernoulli model is the same as the
complexity of the multivariate model [86].

42 CHAPTER 4. TERM WEIGHTING ALGORITHMS

The Binomial Distribution

The difference between a Bernoulli Trial and the basic binomial model is as
follows: In a binomial distribution the Bernoulli experiment is conducted in a
sequence of trials (multiple sampling). The binomial distribution is the discrete
probability distribution of the number of successes p(k) from n independent
trials. The term binomial is based on the binomial coefficient that is related
to the number of experiments n and their outcomes k [70]. In case of n = 2
the possible combinations of outcomes of an experiment with two trials are the
following: two times success, two times success, and failure and two times failure.

The probability mass function for a binomial distribution is defined as follows:(
n

k

)
pn ∗ (1− p)(n−k) (4.6)

Imagine a document d with 100 windows w1, .., w100 and the term t appears 10
times in the d. The probability of 4 occurrences of t in a specific window would
then be calculated as follows:

P (xwt = 4) =

(
10

4

)(
1

100

)4(
99

100

)6

The binomial distribution in IR is based on the BIM, which assumes no relation
between individual terms (see Section 2.4). The general assumption of the
Bernoulli Model of randomness is: a term t is spread across a document d with
N windows w1, .., wN according to the binomial law [5]:

PBinom(t|d,w) =

(
xdt
xwt

)
px

w
t qx

d
t−x

w
t (4.7)

The probability of t appearing once in a specific window is p = 1
|N | and the

probability of failure is set to q = |N |−1
|N | .

Contrary to the TF-IWF heuristic, the Bernoulli model does not take into account
the window frequency of t. The probability of success can be transformed into a
term weight as suggested in Section 2.4.4. In this work, I follow the proposal of
Amati et al. and determine the informative content WBinom(t) for each term in
the document with the following logarithmic representation:

WBinom(t) = − logPBinom(t|d,w) (4.8)

Accordingly, the terms with the highest informative content (weight) WBinom(t)
are considered the most probable keywords in the document. Furthermore, the
logarithmic representation also reduces computational costs.

4.3. FREQUENCY-BASED INFORMATION MEASURES 43

4.3.6 Poisson Distribution

If the values of n = xdt in a binomial distribution become large, the results become
computationally expensive and an approximation for the binomial distribution is
desirable. The Poisson distribution can be used as an approximation if n→∞
and np converges towards a constant value λ, whereas the probability p equals
the probability of the binomial distribution. This behavior can be observed when
analyzing very large literary texts such as books with thousands of terms that
repeat frequently.

PPoisson(t) =
λx

w
t e−λ

xwt !
, (4.9)

λ = p ∗ xdt (4.10)

The mean and the variance of the distribution P (t)Poisson is defined by λ. Using
the Stirling formula, Amati et al. define the informative content WPoisson as an
approximation of the Poisson distribution as follows [5]:

WPoisson ∼ xwt ∗log2
xwt
λ

+

(
λ+

1

12 ∗ xwt
− xwt

)
∗log2e+0.5∗log2(2π∗xwt) (4.11)

The informative content WPoisson is based on the term t, its window frequency
and the number of occurrences in the document. In this work, I calculate
WPoisson for each potential keyword in the document. The notion of informative
content is introduced in Section 2.4.4.

4.3.7 Okapi BM25

The BM25 model is one version of a series of experiments, whereas the term
“Okapi” refers to the retrieval system developed by the London City University
[117]. The formula was widely used with great success during the Text REtrieval
Conference (TREC) evaluations [116]. The aim of the experiments was to design
a formula that comprises the first three properties mentioned in Section 4.2.
During the development of this system, a number of models were tested and
denominated with the prefix “BM”. The BM25 model contains a number of
parameters that must be set beforehand.

WBM25(t) = log

(
N

w(t)

)
∗ (k1 + 1) ∗ xwt
k1 ∗ ((1− b) + b ∗ (|w|

|w|avg
)) + xwt

(4.12)

The term weight WBM25 is based on the definition of informative content
described in Section 2.4.4. The first part of the right side of Equation 4.12
equals the original iwf -weight. Sometimes a slightly different IWF-version is
used for the BM25 formula [5]. The number of windows containing the term t is
represented by the denomination w(t).

iwf(t) = log
N − w(t) + 0.5

w(t) + 0.5
(4.13)

This alternative iwf -version may lead to negative results if the term appears in
more than 50% of the windows. Therefore, the original version of the iwf -score

44 CHAPTER 4. TERM WEIGHTING ALGORITHMS

is preferable for the purpose of this work. I use the original iwf -version as it is
introduced in Equation 4.2.

The second part of the right side of the formula represents a combination of term
frequencies and window lengths. Parameter k1 calibrates the xwt -scaling on the

weight. If k1 = 0, then the right side reduces to
xw
t

xw
t

= 1 and the term frequencies

become ineffective on the term weight. In my reference implementation, I set
k1 = 1.2 as it is recommended in the work of Amati [86; 4]. The parameter b
(b ∈ [0, 1]) scales the term weight with respect to the window length. No length
normalization is performed for b = 0. And for b = 1 the term frequencies are
normalized by the average window length. In the reference implementation, I
set b = 0.75 as it is recommended in the work of Amati[86; 4]. As the focus of
this work is keyword extraction and term weighting for unigrams, the extension
for query-scaling of the BM25-formula may be dispensed.

4.4. BURSTINESS 45

4.4 Burstiness

The microblogging platform Twitter allows their users to send short text messages
of up to 140 characters – so called Tweets – instantly. The users use this method
to update their personal status, their experiences, or emotions more frequently –
in almost real time. In the domain of microblogging services, a burst is a well-
known scenario. In social media, bursts are represented by a dramatic change
of the activity rate during a limited time period [165; 46]. These high peaks of
activity are usually triggered by a real world event and collective excitement,
and usually take place in real time. During the Olympic Games in London the
100 meter final victory of Usain Bolt was accompanied by over 80 thousand
Tweets per minute (TPM) [152].

Figure 4.4: This graph shows the number and length of tweets during the Golf
Masters tournament in Augusta, Georgia.

Figure 4.4 displays the user activity on Twitter during the Golf Masters tour-
nament in Augusta, Georgia [92]. Every dot is a tweet ranging from 1 to 140
characters, whereas long tweets are at the top and short tweets are at the bottom
of the graphic. The yellow line displays the average length of the tweets. During
the five-day event more than 40 Million tweets were posted. In Figure 4.4 it
can be observed that the tweets burst during the competitions throughout the
individual five days, and peak during the final game on the last day. The principle
of bursts can be observed in documents as well.

Following the premise that a topic shows bursty behavior in a document or in a
text stream, the terms in the text are expected to represent bursty behavior as well.
In information retrieval, a number of methods aims to identify bursty behavior
[139]. Nevertheless, most frequency-based heuristics consider a document as a
bag-of-words-model and assume independence between the term occurrences. In
Section 4.2, I state that burstiness is one of the properties of a successful keyword
extraction algorithm, but burstiness can not be measured with a bag-of-words-
model as the (temporal) word order is an essential property of a human written
text and an essential criterion for burstiness [93]. Quite a few metrics assume
that the word order in a text plays a crucial role and that the neighborhood
of a term can be used to measure the relevance of a term. In the remainder
of this section, I present some of the most successful approaches for modeling

46 CHAPTER 4. TERM WEIGHTING ALGORITHMS

burstiness in texts. I later utilize these approaches to create and analyze different
combinations of term weighting algorithms and show that certain combinations
leads to improved results and meaningful keywords.

4.4.1 The Laplace Law of Succession

The rule of succession was introduced by Pierre-Simon Laplace in 1814. In the
context of IR, it states the following [36]:

If the term t has not occurred for a long time and suddenly t appears once, the
expectation to find further occurrences of t rises.

This effect of rising expectation is also called the aftereffect of future sampling
and is similar to the notion of burstiness [43]. The probability of an observed
term t contributing to the discrimination of a window is assumed to correlate to
the probability of another appearance of t [5]. This probability is obtained by
the conditional probability P (Xxt+1|xt) of the term t by the aftereffect model.
This probability is only related to the elite set of windows – the set that contains
the term t. As the Laplace law of succession reduces the term frequencies to
[0, 1], it may also be used as a normalization method (see Section 2.4.5).

Amati et al. applied the Laplace Law of Succession to account for burstiness
in their proposed algorithm [5]. They first surveyed the performance of several
aftereffect models, and found the Laplace Law of Succession provides reasonable
results despite its simplicity and linear complexity. I include this method in
the set of selected algorithms for combination because it accounts for term
frequency of a term t across the whole document and differs significantly from
other algorithms modeling burstiness.

Based on the assumption of term independence and Laplace’s Law of Succession,
the probability of xt + 2 appearances is close to xt+1

xt+2 . Assuming that xwt − 1
occurrences have been observed in the window an additional appearance of t is
approximated with the following equation [4]:

PLaplace(xt) =
xwt +A

xwt +A+B
(4.14)

The parameters A and B are constants and were set to A = B = 0.5 in [4].
This simple formula comes with linear complexity and is independent of the
window length. Amati et al. applied the Laplace Law of Succession to account
for burstiness in their proposed probabilistic model [5]. The information content
associated with this probability distribution is denoted as:

WLaplace =
1

xwt + 1

Besides its simplicity and linear complexity the Laplace Law of Succession has
provided reasonable results. Amati proposes a second probability distribution to
model the aftereffect of future sampling. Therefore, he adopted the ratio of two
Bernoulli processes, but the results of this ratio were generally worse than the
Laplace Law of Succession [5]. Consequently, the Bernoulli model for modeling
the aftereffect is not considered in this work. Moreover, I include this method

4.4. BURSTINESS 47

in the set of selected algorithms for combination because it accounts for term
frequency of a term t across the whole document and differs significantly from
the following Γ-Metric.

4.4.2 The Γ-Metric

The Γ-metric is based on the assumption that the terms in a document are
distributed inhomogeneously and relevant terms appear concentrated in limited
areas. This assumption is very similar to the definition of bursts and fits the
basic assumption of topics and subtopics in a written text (see Section 2.3).
Zhou and Slater developed a metric that is independent of raw term frequency
but analyzes term sequences [166]. The difference between a term sequence and
the raw term frequency is that a sequence accounts for order, whereas the raw
term frequency only tells about the numerical presence of terms. Their Γ-metric
is computationally simple, robust, and accounts for term order and long-range
correlations in texts. Zhou and Slater define an imaginary time-series of term
occurrences, where ti , with represents the i-th occurrence of the term t:

{tbegin, t1, ..., txt
, tend}.

Contrary to previous approaches, this one includes the space before the first
term occurrence tbegin and the distance after the last term occurrence tend
[166]. Since common words are evenly distributed, they should appear closely
to the beginning and the end of the document. Zhou and Slater define the
separation around term occurrence ti with sep(ti) ≡ ti+1−ti−1

2 , with 1 ≤ i ≤ xt.
The separation represents the median distance of a single occurrence of ti in
the document. The mean waiting time µ̂ between consecutive occurrences is
calculated as follows:

µ̂ =
|d|+ 1

xdt + 1

The symbol |d| accounts for the total number of terms in the document d. This
metric differs between large collections of terms in a small area – a cluster – and
isolated pairs of terms. In order to capture this difference and to identify clusters
of terms, they introduce the notion of a cluster point. The term occurrence at
position i is a cluster point, if the separation of ti is less than the mean waiting
time:

ti is cluster point, if sep(ti) < µ̂

The individual cluster points represent the local excess of term t in the text.
The quantity Γ(ti) measures the Γ-value of ti at position i [166]:

Γ(ti) =

{
µ̂−sep(ti)

µ̂ if ti is a cluster point

0 else.

To calculate the spread of t across the whole document, a normalized average of
the Γ-value of the cluster points of t has to be calculated. The Γ-metric for a
term t in d is defined as follows:

WΓ = Γ(t) =
1

xdt

xd
t∑

i=1

Γ(ti)

48 CHAPTER 4. TERM WEIGHTING ALGORITHMS

WΓ is the term weight for the terms in the document. The normalization factor
1
xd
t

is necessary to avoid preferential weighting of common terms. Terms with

a higher term frequency would score higher, otherwise. The Γ-metric basically
counts the additional words in a cluster. Zhou and Slater claim that this Γ-metric
is able to measure clusters of relevant terms in a text. They also claim that the
metric is stable towards term repositioning, does not artificially increase term
weights, and remains computationally simple. Unfortunately this metric does
not account very well for relevant terms with a low frequency and relevant words
that appear in more than one local area of the text.

4.4.3 BursT

Derived from the bursty appearance of topics in microblogging streams, the
BursT term weighting scheme reflects changes over time and assigns term weights
in a dynamic environment. Lee et al. presented this term weighting method for
text streams that focuses on online burst analysis by considering the arrival rate
of terms as a global baseline [76].

They define the weight of a term as a product of Burst Score and the Term
Occurrence Probability (TOP). The TOP is a very basic probability, based on
the term occurrences in the window. However, the factor burst score is a novel
approach for measuring bursts. It is defined by the arrival rate of the terms of
the text. The denotation art,i in Equation 4.15 describes the reciprocal of the
arrival gap between two arrival times ti and ti−1.

art,i =
1

ti − ti−1 + 1
(4.15)

While art,i is a measure of a single arrival gap, the development of arrival gaps
over time may indicate bursty behavior. Therefore, the mean value of the arrival
rate has to be calculated. Instead of calculating the mean for all appearances of
t at once, an incremental calculation of the mean is chosen. The mean value of
the arrival rate of a term t at time i is then calculated with Equation 4.16:

µt,i = µt,i−1 +
1

nt,i
· (art,i − µt,i−1) (4.16)

This allows for a mean calculation while new text arrives and makes this approach
applicable for text streams. The number of occurrences of t up to arrival time ti
are denoted by xt,i. Lee et al. proposed that the burst score WBS of the current
observation result of t at time i directly depends on the distance between the
incremental mean and the current arrival rate. The score accounts for shorter
arrival intervals than µt,i.

WBS(t, i) = max

{
art,i − µt,i

µt,i
, 0

}
(4.17)

In case of negative values of the part of the equation art,i − µt,i, the term is
considered a falling word [76]. Only rising words – term appearances with shorter
arrival intervals – are taken into account by this algorithm. The authors referred
to a sliding window in their work that is being analyzed as it slides across the
incoming messages of a microblogging platform. In this work, I refer to the
window approaches as described in Section 2.3.

4.5. ANALYSIS OF THE MODELS BASED ON THE RETRIEVAL
CONSTRAINTS 49

4.5 Analysis of the models based on the retrieval
constraints

In the first part of this chapter, I formally defined retrieval constraints for a
successful information retrieval algorithm. Subsequently I introduced eight state-
of-the-art models for term-weighting. Here, I state how well the above mentioned
algorithms fit the retrieval constraints. Table 4.1 contains the weighting formulas
of the described algorithms in the rows and the criteria in the columns. The
table summarizes the formal criteria as the following four properties:

1. term frequency,

2. the effect of window frequency,

3. length normalization, and

4. burstiness.

Table 4.1 illustrates the general properties of the weighting formulas, which can be
later utilized to create beneficial combinations. The properties are denoted with
yes if the behavior of the weighting formula fits one or more formal conditions
describing the property. If the weighting formula follows the conditions partially,
based on other conditions, it is denoted as conditional (cond.) and if it does not
follow the property it is denoted with no.

term weight W TF window
freq.

norm burstiness

WTF−IWF yes yes no no
WNFA cond. yes no no
WBinom cond. yes no no
WPoisson cond. yes no no
WBM25 yes cond. yes no
WLaplace no no no yes
WΓ no no no yes
WBS no no no yes

Table 4.1: Properties of the individual term weighting algorithms.

Table 4.1 shows clearly that none of the algorithms meets all the constraints
of a successful retrieval algorithm. It can also be observed, that the different
weighting formulas meet different properties. All the properties are met at least
once by one of the selected algorithms. This, the assumption that a combination
of these algorithms might be beneficial follows. Therefore, the next section
introduces several combination methods.

4.6 Performance Analysis of the Heuristic Algo-
rithms

The heuristic models described in this chapter do show differences in their
properties for extraction, which may affect their performance in a software

50 CHAPTER 4. TERM WEIGHTING ALGORITHMS

application. In this section, I analyze the performance of the heuristics described
in this chapter. I use an implementation that is further described in Appendix A.
The implementation follows the steps described in Section 4.1 for each algorithm.

The performance of a Java application is can be divided into two properties:

• the runtime of the application and

• the memory consumption of the application.

In the following, I compare the runtime performance and the memory consump-
tion of the heuristics described in this chapter.

Runtime Analysis

I performed an analysis of ten text documents with all the weighting algorithms
described in this chapter. The smallest text document has a size of 6 kilobyte
and the largest file 217 kilobyte. The texts were preprocessed and segmented
into 30 almost equally-sized windows in order to avoid very small and very large
window sizes. A normalization is performed according to the description in
Section 2.4.5. The runtime measure includes the calculation of the term weight
for each term and the assignment of that weight to the term. The output of the
keywords to a file is not measured here. The runtime was measured according to
the description in Section 8.1.2.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200 250

ex
ec

ut
io

n
tim

e
in

 m
s

document size in kB

Performance Analysis of Heuristic Algorithms

TF-IWF
Helmholtz

Binom
Poisson

BM25
Laplace
Gamma

BursT

Figure 4.5: The graph shows the runtime of the described weighting algorithms
for ten different documents.

Figure 4.5 shows the results of this analysis. The runtime clearly increases with
the size of the documents that have been analyzed. The values of the runtime
range within a few seconds and allow for scenarios, where recalculation is needed
in a short time. Nevertheless, the absolute values are not very indicative as the
software is not optimized for runtime performance. Additionally, the heuristics

4.6. PERFORMANCE ANALYSIS OF THE HEURISTIC ALGORITHMS 51

modeling burstiness seem to run longer with increasing document size. The
reason for that is related to the current implementation.

The calculation of the term weight for WLaplace is rather quick, but each time
a weight for a term t is calculated, it is assigned to all occurrences of t in d.
This process could be optimized in a future implementation. Furthermore, the
amount of processing for WBS and WΓ grows with the number of new terms
and also with the number of occurrences of a term.

Memory Consumption

I measured the memory consumption of the Java application, including all
operations described in Section 4.1. The eight algorithms analyzed two documents
of different size. Figure 4.6 shows the results of this measurement:

 1

 2

 3

 4

 5

 6

 7

 8

 9

TF-IW
F

NFA
Binom

Poisson

BM
25

Laplace

Gam
m

a

BursT

m
em

or
y

co
ns

um
pt

io
n

in
 M

B
â��

Memory Usage of Heuristic Algorithms

6 kB
217 kB

Figure 4.6: The graph shows the memory consumption of all algorithms during
an analysis of two documents of different size.

All algorithms had a very similar memory consumption with marginal differ-
ences. A 36-times larger document requires a 4.5-times larger memory for the
application.

In summary, the runtime of all presented algorithms increases with document
size but allows for quick recalculation as it does not exceed a few seconds. The
memory consumption behaves similarly as it also increases with document size
but does not exceed 9 Megabyte (MB) for the chosen samples.

52 CHAPTER 4. TERM WEIGHTING ALGORITHMS

Chapter 5

Combination of Heuristic
Measures

At present, a large number of different term weighting algorithms are used in
various IR-scenarios. However, there is no universal algorithm that outperforms
all the others. In Section 4.2, I stated that no retrieval algorithm meets all of the
formal constraints. Therefore, I decided to combine multiple (≥ 2) heuristics and
evaluate different combination methods with a selection of weighting algorithms.
I can show that the formal retrieval constraints allow for the combination of a
successful retrieval algorithm.

A combination can be realized by either mathematically combining the functions
of the weighting algorithms or combining the generated term weights instead.
Here, I introduce and analyze both methods. The combination of data from
multiple sources or systems is generally defined as data fusion [81]. In the
specific application for keyword extraction, it refers to the merging of term
weights of multiple term weighting algorithms. I chose five of the most successful
combination approaches of three different types to combine the algorithms
described in Chapter 4. First, I introduce the Divergence from Randomness
approach in Section 5.1. In Section 5.2 I review three different ranking aggregation
methods and in Section 5.3 I present a combination approach based on PCA.

5.1 The Divergence from Randomness Frame-
work

Amati proposed a probabilistic framework that can be interpreted as a language
model (see Section 2.4.4) as well as a term weighting formula consisting of two
components [4]. He states that a proper term weight must combine the eliteness
and the randomness of a term in a distribution and and therefore functionally
combines the informative content and the aftereffect of future sampling to
generate term weights [5]. A similar approach is presented in [76] where the
authors define a weight, based on burstiness and term frequency.

The Divergence from Randomness framework combines two heuristics as a
parameter-free product of term weights. After combination, terms with a weight

53

54 CHAPTER 5. COMBINATION OF HEURISTIC MEASURES

W > 0 are considered keywords. Since the aftereffect of future sampling is closely
related to bursty behavior, I select heuristics for the second component inf2

accordingly.

5.1.1 Improving Retrieval Performance

The Helmholtz approach (Section 4.3.4) is language-independent, performs with
a quick runtime, and exhibits meaningful keywords when applied to various
kinds of documents though it does not consider the window length and the
window frequency. Furthermore, the automatic removal of stop words is a
valuable criterion for preference of the Helmholtz algorithm over a comparable
algorithm such as TF-IDF. Hence, I aimed to combine this algorithm with a
second algorithm in order to compensate for these deficiencies and generate a
well performing algorithm that eliminates the need for automatic stop word
removal. This approach has already been published in [19].

The algorithm is composed as follows: I chose the combination ofWNFA with the
Laplace law of succession, based on the Divergence from Randomness Framework.
The Laplace law of succession models burstiness to some degree and it performs
faster than the two other algorithms that model burstiness as shown in Section
4.6. The runtime is important for that approach because it is supposed to work
in real-time scenario. The term weight based on that combination can then be
calculated based on the following equation:

W =
1

xwt + 1
· (− log NFAt) (5.1)

In Equation 5.1 the number of occurrences of t depends on the length of the
window. In order to compensate for different window lengths, I rescale the
window length with the decreasing function presented in Section 2.4.5 on the
window length. The occurrences of a term t in the window xwt are replaced
with the normalized number of occurrences xnwt . This normalization allows the
analysis of documents with windows of different size because it ensures that term
occurrences in larger windows are not erroneously weighted higher than term
occurrences in smaller windows. The evaluation of this approach is presented in
Chapter 8.

5.2 Ranking Aggregation Methods

All term weighting heuristics provide a weighted list of n terms that can be
transformed into a ranked list of potential keywords, whereas the top ranked
terms may be selected as keywords. The ranked list of terms is an ordering of
the terms according to their term weights [W(t1) >W(t2), ...,W(tn)], where “>”
is an ordering relation. The order is linear and strict. The position or rank of
the term ti is denoted as ρ(ti) .

Feature ranking is a principle often used in many research areas because of its
simplicity, scalability, and good empirical success [108]. Rankings are solely order-
based, therefore ranking aggregation is naturally calibrated and scale-insensitive.
In contrast, weight-based aggregation requires some sort of normalization (e.g.

5.2. RANKING AGGREGATION METHODS 55

weights between 0 and 1) but these scores may still represent different relative
scales. Here, I present three different ranking aggregation techniques that
combine independent term rankings in order to create a more stable ranking that
meets the constraints of a successful keyword extraction algorithm (see Section
4.2). The techniques presented meet the requirements of my applications: they
are simple to implement, computationally cheap, and parameter-free.

5.2.1 Minimum Ranking Method

The Minimum Ranking Method was proposed by Louloudis et al. [81], and despite
its simplicity it outperformed most of the state-of-the-art ranking aggregation
methods. Consider a sequence of terms that has been weighted by three different
algorithms W1, ...,W3. The weights have been converted into three ranked lists
of terms ρ1, ..., ρ3. The results of this procedure are depicted in Table 5.1 for a
selection of four terms.

term ρ1 ρ2 ρ3

“they” 5 3 4
“focus” 3 1 2
“mission” 8 9 11
“hand” 2 7 4

Table 5.1: A selection of four terms and their ranks, generated from the weights
of three different weighting algorithms.

The final ranking score of a term t is the minimum rank position on all the
different retrieval rankings ρ1, ..., ρm:

ρmin(t) = min
0≤k≤m

(ρk(t))

In the case of the examples in Table 5.1, the minimum rank ρmin for the term
“they” is 3, for “focus” ρmin = 1, for “mission” ρmin = 8, and for “hand” ρmin = 2.
The implementation of this algorithm is extremely simple and its execution time
is quite short. Nevertheless, it requires the sorting of all ranks for all terms. In
my reference implementation (see Appendix A.1), I utilize the sorting algorithm
merge sort with a complexity of O(n log n).

5.2.2 Borda Count

The Borda Count (BC) determines the rank of a term t by the number of points
according to its position in the different retrieval rankings ρ1..ρm. The term with
the highest term weight receives the highest number of points, which is (n− 1) –
the maximum number of rank positions decreased by one. The final rank of t
represents its mean position over all the input rankings ρ1..ρm [108; 81].

scoreBC(t) =

m∑
k=1

(n− ρk(t))

Alternatively, the the terms can be assigned a score equal to the number of terms
ranked lower than them. Assume a maximum number of rank positions n = 15

56 CHAPTER 5. COMBINATION OF HEURISTIC MEASURES

for the sample terms shown in Table 5.1. As a result the term “they” would be
ranked according to the BC-score as follows:

scoreBC(“they”) = 10 + 12 + 11 = 33

A large number of variants of the original BC ranking aggregation method exist.
At present, derivates of this method are used to determine winners in elections
with preference lists. All candidates on the list have to be ranked according to
the preference of the voter. Such lists are used in political elections in several
countries including Slovenia and small Pacific republics as well as for sports
events and public competitions such as the Eurovision Song Contest [113; 147].

5.2.3 Schulze Method

The Schulze method is an election method, that has been presented by Markus
Schulze in 1997 and it is based on the Condorcet method [122; 108]. A Condorcet
algorithm performs pairwise comparisons of the input ranks of all candidates
(here: terms t1..tn). The winner of a Condorcet method is the candidate (only
one winner!) which is preferred over all other candidates – the candidate that
wins most of the pairwise comparisons.

The Schulze method first counts how many times the rank of term ti ranks higher
than the rank of tj and vice versa across all rankings ρ1, ..., ρm. If ti ranks higher
than tj in one comparison, then ti wins this comparison, and the number of
wins d[ti, tj] is increased by one. The results of all comparisons can be stored
in an n× n matrix or in a directed graph, where the terms represent the nodes.
If d[ti, tj] > d[tj , ti] (ti defeats tj) I draw an edge from the node ti to the node
tj . The output of the Schulze method is then determined by computing the
strongest path between all candidate pairs in the graph [122]. The strength p of a
path between the nodes ti and tj is an ordered set of candidates [C(1), ..., C(n)]
with the following properties:

1. ti = C(1) and tj = C(n)

2. ∀k ∈ {1, ..., n− 1} :

d[C(k), C(k + 1)] > d[C(k + 1), C(k)]

3. ∀k ∈ {1, ..., n− 1} :

d[C(k), C(k + 1)] ≥ p

The strength p of a path between two candidates ti and tj means, that there
are at least p voters who prefer ti over tj . If there does not exist a path
between the nodes ti and tj , the strongest path equals zero. Otherwise, the
strongest path p[ti, tj] represents the maximum value, such that there is a path
of the accumulated number of wins from ti to tj . Term ti wins over tj , if
p[ti, tj] > p[tj , ti]. The term ti is a potential Schulze winner iff p[ti, tj] > p[tj , ti]
for every other term tj :

ti wins ⇐⇒ p[ti, tj] ≥ p[tj , ti] for every other candidate tj

5.3. PRINCIPAL COMPONENT ANALYSIS 57

The Schulze method is a single-winner election method. The winner term might
not be top-ranked by a single input ranking but may be the most preferred term
of all the rankings. In the case of ties, Schulze proposed a tie breaking method
in his paper [122].

The Schulze method can be efficiently implemented with the Floyd-Warshall
algorithm reducing its complexity to O(n3), where n is the number of terms.
This method is widely used by organizations including Debian, Ubuntu and the
German political party Pirate Party Germany for the determination of candidate
rankings on election lists. If several candidates have to determined for a ranked
list, the last winner is taken out of the list and the Schulze method is applied
again.

5.3 Principal Component Analysis

PCA is a statistical technique used to structure data and identify patterns in a
multivariate dataset. It is used to highlight similarities and differences between
variables in a dataset. An orthogonal transformation is used to reduce a highly
dimensional dataset of possibly correlated variables into low dimensional data
without a significant loss of information. PCA has been introduced by the
English mathematician Karl Pearson in 1901 [103] and extended by Hotelling in
1933 [61].

My motivation to introduce PCA is twofold: I will first analyze this method for
term weight combination, also used by Li et al [77], and compare it to other
combination approaches in Section 8.4, and then I will demonstrate how PCA
can provide valuable information for the selection of algorithms for combination.

The algorithms presented in Chapter 4 generate term weights for each term
t1..tn in the analyzed document. To generate a single list of ranked terms –
potential keywords – the term weights generated by m different algorithms for
each t1..tn have to be combined. The resulting lists of term weights of the m
different algorithms applied to d are the m different data dimensions δ1..δm. Li
et al. [77] used PCA to combine the term weights for each term ti ∈ {t1..tn}
and dimension to a final weight ai for the term ti. His approach is utilized in
Section 5.3.1.

To perform PCA, the mean δ̄ is subtracted from each single value – the mean is
the average across the terms t1..tn of the corresponding dimension:

δ̄j =

∑n
i=1 δj,ti
n

Term ti in dimension δj is assigned the value aij = δj,ti − δ̄j , whereas δj,ti is the
weight of ti in dimension δj . The resulting data set has a mean of zero and the
mean-adjusted dimensions can be written as matrix A:

A =

a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain
...

...
...

am1 . . . amj . . . amn

58 CHAPTER 5. COMBINATION OF HEURISTIC MEASURES

Matrix A is made up of m rows and n columns with m� n. The rows of the
matrix represent the weights for each algorithm and the columns represent the
weights for each individual term.

In order to determine how much the term weights of the m dimensions δ1..δm
vary from their mean with respect to each other, a covariance matrix has to be
created:

Cm×m = (ci,j , ci,j = cov(δi, δj))

Covariance is a measure between two random variables that analyzes their
behavior with respect to each other:

cov(δj , δk) =

∑n
i=1(δj,ti − δ̄j)(δk,ti − δ̄k)

n− 1
=

∑n
i=1 aijaik
n1

If the covariance is positive, an increasing term weight of δj corresponds with an
increasing term weight of δk and decreasing term weight of δj corresponds with
a decreasing term weight of δk. The dimensions δj and δk increase and decrease
together. If the covariance is negative, an increase of the values of δj means a
decrease of the weights of δk. If there is no relation between the dimensions, the
covariance is zero. In the field of IR from single documents a positive covariance
translates: if a term is weighted high with algorithm j, it should also be weighted
high with algorithm k.

The covariance matrix is a square (m ×m) matrix that is symmetrical about
the main diagonal. The entries of Cm×m capture the covariance between all
possible pairs of dimensions: the entry ci,j = cj,i contains the covariance between
dimension δi and δj and the diagonal entries i = j equal the variance of the
corresponding dimension.

The covariance matrix CA can also be written as

CA =
1

n
AAT

because A consists entirely of real numbers. The analyzed document is a sample
of the entire population of documents. Therefore, the sample covariance can be
an unbiased estimator of the covariance matrix of the matrix A and is 1

n−1AA
T .

The denominator changes to n− 1 du to a variant of Bessel’s correction [63; 126].

The covariance matrix measures the strength of linear relation and minimizes
redundancy. Any data contains noise and redundancy. No valuable information
can be extracted from noise, whereas redundancy might indicate the same
information captured by different keyword extraction algorithms. In order to
further minimize the redundancy, measured by the magnitude of the covariance,
and to maximize the signal of the variance (the diagonal entries of CA), the
matrix CA has to be diagonalized [126]. The matrix CA is diagonalizable if
it exists an invertible matrix Q, such that QCAQ

T is a diagonal matrix. The
following describes how this leads us to the eigenvectors and eigenvalues of CA.

The motivation for doing this is to identify the most important characteristics of
the data by transforming it into independent new variables sorted by variance
– the components. The eigenvectors provide the new axis of the dataset and
define the orientation, whereas the eigenvalues express their significance. The
components represent the new values of data in each direction and they are

5.3. PRINCIPAL COMPONENT ANALYSIS 59

usually very significant characteristics of the data. The new linearly uncorrelated
components allow for a new interpretation of the data. Maybe two IR-algorithms
show the same behavior so that a combination of them is not beneficial. The
following procedure is able to detect that redundancy.

A good way to diagonalize the sample covariance matrix CA is PCA, because
it is a simple, non-parametric method. The procedure acts as a generalized
rotation of data in order to align it with the components.

PCA can be performed in different ways. The following version is the standard
method for PCA. Another approach is described in Section 5.4. The m × n
matrix A contains m dimensions and n term samples for each dimension. The
goal is to find an orthogonal transformation matrix Q so that B = QA such
that CB = 1

nBB
T is a diagonal matrix. The following mathematical conversion

shows that Q is the matrix of eigenvectors of A because it is able to diagonalize
CA.

CB =
1

n
BBT

=
1

n
(QA)(QA)T

=
1

n
QAATQT

=
1

n
Q(AAT)QT

= Q
1

n
(AAT)QT

CB = QCAQ
T

Furthermore, it is important to state that any symmetric matrix C can be
diagonalized by an orthogonal matrix of its eigenvectors – eigen-decomposition:

C = QΛQT

C can be factorized in a column-eigenvector matrix Q, where the column qi is i-th
eigenvector of C and the diagonal matrix λ containing the eigenvalues λ1, . . . , λn
as its diagonal elements. Given that CB is the diagonal matrix containing the
real eigenvalues of CA, the columns of the orthogonal eigenvector matrix QT

contain the eigenvectors of CA and subsequently the rows of Q contain the
eigenvectors of CA. The eigenvalues and eigenvectors are ordered and paired.

CB = QCAQ
T

= Q(QTΛQ)QT

= QQTΛQQT

= (QQT)Λ(QQT)

CB = Λ

The equation above shows that Q diagonalizes CB, whereas the eigenvalues of

60 CHAPTER 5. COMBINATION OF HEURISTIC MEASURES

CB form a m×m diagonal matrix Λ with λ1..λm:
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

The eigenvalues λ1..λm in descending order account for the amount of variation
in the components (eigenvectors) of A.

The PCA procedure is defined in such a way that the first of those resulting
components comprises the largest amount of variance – the principal component
of the data set. Each subsequent component has the next highest variance
and is orthogonal to all preceding components. An advantage of PCA is that
these discovered patterns allow for dimension reduction, e.g. if three out of
four components already reveal the internal structure of the data to a sufficient
degree, the dimensionality of the data can be reduced to only the first three
components.

Three major assumptions are made with PCA to derive good results [126]:

• Linearity
Linearity is the basis of any linear transformation involved in PCA.

• Large variances represent important structure
This basic assumption relates to the assumption that components with large
variance represent properties of the text that were successfully identified
by an algorithm.

• Orthogonality of the principal components
This assumption simplifies the PCA decomposition and allows for the
solution presented in the following paragraphs.

5.3.1 PCA-based weighting

Li et al. [77] took the eigenvalues into account to determine the contribution
rate α:

αi =
λi∑m
k=1 λk

The contribution rate α is then used to create a weighted combination of keyword
weights for terms t1 . . . tn in the dimensions δ1 . . . δm:

weighttj = α1a1,j + α2a2,j + . . .+ αmam,j

This approach accounts for all eigenvalues λ1..λm and does not exclude any
components. The goal of this approach is not to reduce dimensionality but rather
to achieve a weighted combination of the dimensions based on the variance in
the result space. It does not seem plausible to multiply the contribution rate
with the original data set. Li et al. apply their approach to several keyword
“properties”, these include: word length, contribution rate, stop word rating, word
frequency [77]. They extract keywords from 300 chosen samples of three different

5.4. THE RELATION BETWEEN PRINCIPAL COMPONENT ANALYSIS
AND SINGULAR VALUE DECOMPOSITION 61

groups and and received high precision (> 80%) for the top 20 keywords of each
sample. However, the authors do not provide details about their evaluation or
the exact description of their test samples, nor do they explain how the precision
has been measured.

The PCA-based combination of term weights appears promising because it is a
novel way to combine term weights. Therefore I used it to combine weighting
algorithms presented in Chapter 4 according to the formal retrieval constraints
presented in Section 4.2. As the evaluation of such an approach is a very
challenging and subjective task, the results in this work might differ from the
results in the paper of Li et al. [77]. In order to analyze this approach in detail,
further evaluations have been performed. I provide an evaluation of this approach
in Chapter 8.

5.4 The relation between Principal Component
Analysis and Singular Value Decomposition

PCA is closely related to SVD. Both eigenvalue methods are able to reduce a high
dimensional dataset to a dataset with fewer dimensions while retaining valuable
information. For an implementation of PCA, it is important to understand the
relationship between PCA and SVD. This Section refers to the procedure of PCA
as it is described in Section 5.3 and presents an alternative and more general
method for the calculation of PCA.

By definition of SVD [138], any real m×n matrix A of rank r can be decomposed
as follows:

A = UΣV T

with the m×m matrix U denominating the left-singular vectors and the n× n
matrix V T denominating the right-singular vectors. The diagonal m× n matrix
Σ contains the ordered singular values σ1 ≥ σ2 ≥ . . . ≥ σr on the diagonal axis.

σ1

σ2

. . .
0

σr
0

0 . . .

0

The singular values σ equal the square root of the non-zero eigenvalues of AAT

62 CHAPTER 5. COMBINATION OF HEURISTIC MEASURES

and ATA. The covariance matrix CA of A is then defined as:

CA =
1

n
AAT

=
1

n
UΣV T (UΣV T)T

=
1

n
UΣV TV ΣTUT

=
1

n
UΣ2UT

= UΛUT

Since V is an orthogonal matrix, its transpose equals its inverse and entails
V V T = I. It can be observed that the positive square roots of the eigenvalues Λ
equal the singular values Σ:

λi =
1

n
σ2
i

Since Λ is the diagonalized eigenvalue matrix of CA, it is known that Λ ≡ CB
and therewith:

CB = UTCAU (5.2)

= QCAQ
T (5.3)

Equation 5.2 and 5.3 show that the column eigenvector matrix Q is equivalent
to the transposed left-singular vectors UT . Consequently, SVD can be used to
calculate the eigenvectors and eigenvalues for PCA without the construction
of a large covariance matrix. Since the dimensions of A can be very large, the
SVD-based calculation method of the eigenvectors and the eigenvalues is the
preferred method. The programming language R use the SVD computation as
their standard technique.

Chapter 6

Structural Information in
Textual Data

Some people say that politicians talk a lot but essentially they say nothing.
What they really mean is: they use a lot of words but provide very little of
information. Conversely, very short messages in the form of abbreviations such
as “IMHO u r gr8!”, or “tl;dr” contain only a few characters and may convey
a lot of information. Even languages may vary in the size of their expressions,
when describing the same facts. For example the Chinese proverb

揠苗助长。

can be written in simplified Chinese (Pinyin) as

Yà-miáo-zhù-zhǎng.

In English, this sentence is translated as:

You won’t help the new plants grow by pulling them up higher.

The Chinese language appears to be very concise and a few words in Chinese
may convey much more information than a few English or German words. Is
it possible to measure the amount of information a sentence or a sequence of
elements contains? Is it even possible to distinguish between paragraphs that
convey little information and paragraphs that convey a lot of information?

In Chapter 4.4 I have described the notion of burstiness in the context of word
ranking. Burstiness is often based on term order of single terms and accounts
for entropic properties in a text. In this chapter, I introduce a novel method
that accounts for statistical properties of a whole document or text stream. I
developed this algorithm to identify information structures that can possibly
be used to segment the document subsequently (see Chapter 2.3) to conduct
keyword extraction afterwards. This new algorithm is language independent and
it can be applied to single documents as well as text streams of indefinite length.

63

64 CHAPTER 6. STRUCTURAL INFORMATION IN TEXTUAL DATA

First, I introduce the basic concepts behind this algorithm. In Section 6.2 the
notion of entropy is introduced as the fundamental measure of information for
texts. In Section 6.3 Grassbergers concept of match lengths is described. These
match lengths form the theoretical basis for the well known LZ77 compression
algorithm, which is described in Section 6.4. In Chapter 7 I utilize the LZ77-
algorithm for CPD in texts and text streams.

6.1 Basic Idea

Suppose you want to model statistical data from an experiment or that appears
during a time series. You would have to assume stochastic homogeneity or at
least identify sequential homogenous passages that can be modeled individually.
The detection of statistical changes in the probability distribution is an essential
criterion for modeling a stochastic process properly. Brodsky et al. define
CPD as: “the problem of detection of changes in the characteristics of random
sequences. . . ” [21]. A more formal definition of a change-point is provided by
Girón et al. [50]:

Definition 6.1.1. Let X be an observed sequence of conditionally ordered random
variables with the outcomes x1, ..., xn. The sequence has a change-point at t if it
has a probability distribution function Pa(X) for i ≤ t and Pb(X) for i > r, and
Pa(X) is different from Pb(X).

In this chapter I apply CPD to written texts in order to identify structural
changes within documents or text streams. This application is based on the
fact that human language is the main contribution of mankind to evolution that
allows the exchange of complex information. Human languages can be learned by
the human brain and can also be analyzed structurally and mathematically [97].
Written human text consists of sequences that appear at certain different levels:
Characters form phonemes, which combine with other phonemes to words, word
sequences create sentences and sentences form paragraphs. All these sequences
are methodologically assembled in a way to encode information and are not
random collections of data. Finite rules specify the grammar of a language
and provide the framework for organized patterns that permit for individuality
and versatility in communication. Whereas individual languages follow different
grammatical rules, the structural, and mathematical principles remain similar
[97].

Johnson considered written text as the output of a data source drawing a string
of symbols from a finite alphabet A [62]. Based on that assumption, I consider
written text a piecewise stationary source of data and determine the positions
at which the source model changes its probability distribution. My assumption
is that the detection of statistical changes within a text may reveal valuable
information about its structure or its composition.

A number of different approaches exist to analyze the statistical properties of
a text. Zipf’s law captures the distribution of term frequencies at the first
organizational level in a text. It articulates that terms are inversely proportional
to some power of their ranking in a frequency table (see Section 4.3.2). This
correlation is a key for many information extraction approaches, but it does

6.2. ENTROPY – AN INFORMATION MEASURE 65

not consider the word order in a text – which can be considered a second
organizational level in a text. Since word order plays a crucial part of information
composition of a text, it is necessary to take it into account when analyzing the
information structure of a text.

Montemurro et al. showed that the degree of word order in a random text differs
significantly from the degree of word order in written human texts [93]. His
approach is based on entropy – a measure of uncertainty of a random variable.
The Shannon Entropy [124], however, is a measure of order and the expected
value of information in any symbolic sequence. Consequently, the Shannon
entropy contains information about the degree of order in a text.

Based on this assumption, I developed a novel, language-independent CPD
algorithm, that can detect statistical changes in texts. The fundamental principle
of this algorithm is based on word order in a text and can be an estimator for
entropy. This algorithm is language-independent, fast, and applicable to single
documents as well as to indefinite text data streams. For this approach, words
are considered the most elementary units of written information. In order to
measure structural changes in a text, a trie-based data structure is introduced
in Chapter 7.2. It represents the entropic properties of a written text at any
one time. My method allows for constant analysis and detection of information
change of a text stream instantly and continuously. The experimental results of
this approach and a comparison to a similar method are presented in Chapter
8.6. The application requires a few preprocessing steps that are described in
Chapter 2.2.2. To avoid language dependencies only minimal preprocessing of
the text was performed.

6.2 Entropy – An Information Measure

In this section, I introduce the concept of entropy which reveals information
about the distribution of words in a written text. The fundamentals of the
concept of entropy go back to the 19th century when the German physicist
Rudolf Clausius provided a first definition in the field of thermodynamics where
he and his colleagues studied the dissipation of energy in a thermodynamic
system [26]. Entropy measures the amount of disorder in a physical system.
A trivial analogy for entropy is the physical form of water: Hot water can be
considered in a state of high entropy because the molecules are moving randomly
with a high kinetic energy. In contrast, the water molecules in ice are arranged in
fixed positions within the crystal structure of ice and move only very little – ice
represents a state of low entropy. Boltzmann later investigated statistical systems
and formulated the probability equation S = k · logW for entropy S, where
k denotes Boltzmann’s constant and W the number of microstates consistent
with the given macrostate. Gibbs formula considers thermodynamic systems
with microstates of different probabilities: S = −k

∑W
i=1 pi log pi [88]. Based

on this concept of entropy, Claude Shannon established an entropy measure for
information theory [124]. How does the entropy definition in physics relate to
language?

A random sequence of words resembles the example of the hot water as it is
chaotic and unordered. Shannon recognized, that in a random text sequence it
is difficult to predict the next word, such as:

66 CHAPTER 6. STRUCTURAL INFORMATION IN TEXTUAL DATA

“carries heart man in world what A in sees his the he.”

The same words compose one of the most famous quotes of Goethes Faust (First
Part), when they follow the structure of the English language:

“A man sees in the world what he carries in his heart. [155]”

Shannon noted that a random text with high entropy contains a lot of information.
This does not seem very logical as this means that the second sentence of the
examples given above contains less information than the first. In fact, Shannon’s
definition is a of mathematical nature which differs from the intuitive definition
of information. Shannon states that a sequence of elements that is entirely
predictable does not convey a lot of information. A more random sequence has
a higher information content since it is unexpected.

Shannon performed experiments with people, asking them to predict letters in
the English texts. If most of the people were able to predict a certain letter,
the letter would be marked as predictable, otherwise less predictable. This
experiment allowed him to measure the probability distribution of the characters
of the English language and consequently the entropy of the English language.

Closely related to the definition of Shannon entropy is the Kolmogorov complexity,
expressing that the information content of a string s being the size of the smallest
nonhalting program that produces s as its output. This algorithmic counterpart
of Shannon entropy was presented by Kolmogorov in 1965 [69] and can be
interpreted as algorithmic information of s. The Kolmogorov complexity is
computer independent and of fundamental importance in information theory.
The Kolmogorov complexity is not the focus of this work.

It is generally difficult to capture the amount of information contained in a text,
but it is obvious that it is somehow related to the distribution of characters in a
text: For example, if one symbol appears almost all the time in a text, the text
probably does not contain a lot of information. Different characters do not appear
with the different probabilities in natural languages. There have been studies on
English language that proved that vowels appear generally more frequently than
consonants [78]. Figure 6.1 shows letter frequencies for the English [109] and the
German [12] language. The numbers of the English frequencies are based on the
letters occurring in the main entries of the Concise Oxford English Dictionary
[131]. The numbers for the German character frequencies in the figure also
contain the umlaut characters ä, ö, ü which are treated as ae, oe, ue [12]. The
difference between uppercase and lowercase letters was ignored. These letter
frequencies not just vary by language but also by author, style, and topic. In
German the letter “e” has a frequency of about 17 %, whereas the least common
letters “q” and “j” only appear with a frequency of about 0.2%.

Figure 6.1 shows, that the characters in our alphabet are not statistically
independent and do not appear with the same probability. Shannon applied this
idea with his source code theorem and showed that a character, that appears
with the probability p, should be encoded by a codeword of length log2

1
p bits to

generate the best possible average length of lossless encoding [7]. For example, a
fair coin toss can be encoded with one bit. The entropy, or information content,
represented by a fair coin toss is one bit. A written text can then be considered

6.2. ENTROPY – AN INFORMATION MEASURE 67

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

a b c d e f g h i j k l m n o p q r s t u v w x y z

%
 o

f t
ot

al

Frequency Distribution of Characters
 for English and German Language

English
German

Figure 6.1: The figure shows the average usage frequencies of the characters in the
alphabet in German language [12] and English language [109]. The frequencies
are neither equally distributed nor is their distribution identical for the two
languages.

as a statistical model with a discrete random variable X, an alphabet A, and a
probability mass function p(x) = Pr(X = x), x ∈ A. Each symbol in the text
occurs with a certain probability p(x). The Shannon Entropy H can then be
defined as follows [33]:

Definition 6.2.1. The entropy H(X) of a discrete random variable X is defined
by

H(X) = −
∑
x∈A

p(x) log p(x) (6.1)

The logarithm in this formula is base 2; and hence the entropy is measured in bits.
The entropy H(X) measures the information uncertainty or information content
– amount of information in the text. If a possible outcome of an experiment is
certain with probability p(x1) = 1, the entropy is zero. The entropy is maximized
for two outcomes X = {x1, x2} if P (x1) = P (x2), such as for the fair coin toss.

A very basic entropy estimation method is the maximum likelihood (also refer-
enced as plug-in) estimator [48; 95]. The process X has to be stationary and
ergodic. The document d contains |d| terms and the term t appears xdt times in

d. If the text is sufficiently long, the empirical probability of t is p̂(t) =
xd
t

|d| . The

plug-in estimator Ĥ(X) is close to H(X) for a large number of samples.

The term frequencies of a large sample of N observations allow the calculation
of term probabilities and the estimated entropy of the source.

The computation of entropy in a written text is impracticable with Equation
6.1 because not only is the frequency of letters and letter pairs far away from
uniform, but also due to the existence of long-range correlations in texts [93].
Long-range correlations in language emerge when sentences cohere in a higher
semantic structure beyond itself. They often originate in the fact that a text is
written by one author in a unique style according to a plan [39]. In addition, the
letter frequency distribution in a text is significantly affected by so called content
words – words that have a statable lexical meaning – and their lexical composition
amongst function words [84]. These complex dependencies in written texts, DNA

68 CHAPTER 6. STRUCTURAL INFORMATION IN TEXTUAL DATA

sequences, or TV images lead to extremely difficult probability computations
and an exponential explosion of parameters [93]. In a Markov chain you visit
the states:

..., new, plants, grow, by, pulling, ...

After visiting state “grow”, a third order Markov model calculates the probability
for the next term on the recent history: “new, plants, grow”. In order to predict
the next term, a third order Markov model requires the probabilities of the
last two states: p(xi+1|xi, xi−1, xi−2). For the 27 characters of the alphabet
this leads to 19.683 states and a transition matrix with 274 = 531.441 entries.
These numbers point out a serious limitation of Markov models for probability
estimates in written texts. Another way to estimate the entropy of a text is to
compress the text with an optimal algorithm. My algorithm is based on a version
of the Lempel-Ziv compression algorithm, which is a robust and highly efficient
compression algorithm that converges towards the entropy of the source. In the
following, I describe the algorithm in more detail. In Chapter 8.6 I evaluate the
results of the structural analysis with several examples.

6.3 Grassberger’s Match Lengths

In Section 6.2 I stated that entropy is a universal measure of information content,
but it is difficult to estimate the entropy within a text with Markov models.
An alternative approach can be parameter-free models such as an optimal
compression algorithm that converges towards the entropy of the text. The
working principle of this algorithm can be explained with an easy example of
two binary sequences:

1. 01010101010101010101

2. 00101101011000101011

The two sequences contain the same numbers of ten 0s and ten 1s but their
composition is entirely different. The first sequence is periodic, whereas the
second sequence appears to be random. In order to differentiate the two sequences,
determine the length of the longest substring that starts at position 1 and appears
again within the sequence. In sequence 1 the longest substring has a length of
18 bits and starts again at position 3. Whereas the longest substring starting at
position 1 in sequence 2 is only 5 bits long and starts again at position 13.

1. 01010101010101010101

2. 00101101011000101011

In the year 1989 Grassberger defined these “match lengths” in his seminal paper
[51] and showed that his match lengths converge towards entropy and were
computationally superior to previous algorithms. To provide a formal definition
for a written text, one has to assume the text a piecewise stationary data source
X. Let Xn

m denote the finite sub-sequence (xm, xm+1, ..., xn), drawn from a

6.4. LEMPEL-ZIV’77 69

finite alphabet A. The match length for a term sequence drawn from A is then
defined as:

Lni = Lni (X) = min{L : Xi+L−1
i 6= Xj+L−1

j ,∀ 1 ≤ i, j ≤ n, i 6= j} (6.2)

The formula above allows the calculation of the matches for the two sequences
at position 1:

Sequence 1: L20
1 = 19

Sequence 2: L20
1 = 6

These match lengths were derived from LZ compression algorithm and from the
paper of Wyner and Ziv who showed that the LZ data compression algorithm
converges towards entropy [160]. Additionally, Shields states that match lengths
can serve as an entropy estimator for a stationary ergodic source:

lim
n→∞

∑n
i=1 L

n
i (X)

n log n
=

1

H
(6.3)

Johnson et al. utilized Grassbergers match lengths to determine change-points
in literary texts – times when the source model changes [62]. Their approach is
presented in Section 7.1 and will serve as a reference approach for the comparison
with my method in Chapter 8.6. Considering a text as an indefinite stream of
data containing multiple change-points I utilize the widely used LZ compression
algorithm for CPD [169]. A detailed description of the LZ algorithm can be
found in Section 6.4.

6.4 Lempel-Ziv’77

One of the most successful compression algorithms, that takes long range cor-
relations into account, is the LZ compression algorithm [169]. A number of
estimators based on the algorithm of Lempel-Ziv have been published, showing
that the compression ratio of the LZ compression can be used as an upper
bound to the entropy of the stationary ergodic source H [71; 98; 161; 9]. A
stochastic process is stationary if it does not change its statistical properties.
If its statistical properties can be deduced from a sufficiently long sample, it is
considered ergodic.

The main advantage of the LZ algorithm over the presented match lengths in
Section 6.3 is its speed rather than the achieved compression rate. The LZ
algorithm requires a time of the order of O(N2) for N input elements [51].
The compression rate on the other hand tends asymptotically to its maximum
with increasing text size. In other words: LZ does not encode a text sequence
optimally but does it better with increasing size. I utilize this convergency
property to detect statistical changes in a text sequence, and benefit from the
performance of this algorithm that is applicable to streams [161; 9].

Here, I refer to the core of the original LZ77 algorithm, that is the base for many
variations of this algorithm. LZ77 is the base for the commercial compression
software gzip, zip, pkzip, and winzip.

70 CHAPTER 6. STRUCTURAL INFORMATION IN TEXTUAL DATA

For all n ≥ 1 let Xn
1 = (x1, ..., xi−1, xi, xi+1, ..., xn) be an input sequence of

length n, where xi is the ith input element in the sequence. In the original
compression-based applications, binary values are used as input elements. Here,
I use characters and terms instead. The basic functionality of LZ77 can be
described with the match lengths: as the algorithm reads new terms of the input
sequence, it aims to identify the shortest sequence that has not been seen before
[71]. Shields states in his work, that the simplest form of the algorithm can be
summarized with the following sentence [125]:

The next sequence is the shortest new sequence.

Equation 6.4 contains a formal definition of the match lengths determined by
the LZ77 algorithm [125; 62]:

Ln = 1 +max{l : 0 ≤ l ≤ n,X l−1
0 = X−j+l−1

−j

for some l ≤ j ≤ n}
(6.4)

The denotation l refers to the longest match with a sequence that has been
seen before and Ln adds one to the longest match that starts at position 0 and
does not appear in the past X−n−1 . The small example below shows a character
sequence with a match of “a,b,c” and Ln = 4.

. . . a b c x y . . . a b c y . . . sequence

−j 0 l − 1

With probability 1 the source entropy is the quotient of log n and L(X) as shown
in Equation 6.5 [160].

lim
n→∞

log n

Ln(X)
= H (6.5)

To identify new matches, the algorithm maintains a dictionary that is empty
prior to the start of the compression procedure. The dictionary may vary in
size and is referred to here as the sliding window. Then, the input is encoded
continuously: to encode the next segment at position 0, the algorithm reads the
longest contiguous sub-sequence X l−1

0 that comprises an entry in the dictionary
and adds the next input element to it. LZ77 emits a triple, containing the
dictionary index for X l−1

0 , the length l of the longest match, and the term X l
l−1

following the match. Subsequently, the new sequence X l
0 of length l is written

to the dictionary.

6.4. LEMPEL-ZIV’77 71

The following example with the input stream“abrakadabra”will show the working
principle of LZ77. Each character of the string is read individually.

dictionary input stream output triples
abrakadabra → (0,0,a)

a brakadabra → (0,0,b)
ab rakadabra → (0,0,r)

abr akadabra → (3,1,k)
abrak adabra → (2,1,d)

abrakad abra → (4,4,-)
abrakadabra →

Table 6.1: The character-based compression sequence of the term “abracadabra”.

At the beginning of the process, the dictionary is empty and the input stream
comprises the sequence “abrakadabra”. The algorithm is looking for the longest
match with the dictionary entries and the input sequence. Since the dictionary
is empty, no match can be found and the output triple is:

(0,0,a)

the dictionary index

length of the match

character following the match

For the next two steps, the input characters cannot be found in the dictionary
and the output contains no reference to the dictionary. In step 4, the input “a”
can be found in the dictionary at a distance of 3 with a length of 1 – here the
distance of the character behind the input stream represents the index position
in the dictionary. The longest match can be found in the 6th line of the table,
where the 4-character input “abra” matches the dictionary entry at position 4
and creates to the output (4,4,-). Since there is no further input, the compression
is finished at that point. The compression depends on the repetition rate of the
input sequence and LZ77 compresses better with increasing input.

This strategy of adding character or a term sequence to the dictionary guarantees
that the dictionary already contains all prefixes of the next string. Tries are
commonly used for dictionaries due to their quick modification operations and
space efficiency for subsequent terms. Therefore, I implemented this dictionary
as a trie data structure, which I describe in Section 7.2.

72 CHAPTER 6. STRUCTURAL INFORMATION IN TEXTUAL DATA

Chapter 7

Change-Point Detection for
Textual Data

This chapter describes the novel trie-based CPD algorithm in detail. In Section
7.1 I present a reference algorithm, that is also based on match-lengths. In
Section 7.2 I describe the trie structure, used to store the dictionary during
the CPD process. Update procedures of the trie require restructuring and are
presented in Section 7.3. In order to enable auto-adaptation of the algorithm
and to avoid a preset window size, an adaptive window approach is suggested in
Section 7.5. Finally, I provide an overview of the reference implementation for
this trie-based CPD approach. Parts of this approach have been pre-published
in [17; 18].

7.1 A Match-Length-Based Approach

In this section, I present Johnson’s state of the art CPD algorithm [62] that is
based on string matching and Grassbergers match lengths (see Section 6.3). I
present this approach to complement my work because this estimator is parameter
free and does not require any assumptions about the source distribution. This
algorithm is particularly interesting because it is not language specific and serves
as a reference for my algorithm, that is presented in Section 7.2.

Let s be a string of n characters that consists of the two substrings s1 and
s2. The purpose of Johnson’s algorithm is to detect a change-point in between
those two substrings. An example could be two literary texts where one text is
attached behind the other, as shown in Figure 7.1.

73

74 CHAPTER 7. CHANGE-POINT DETECTION FOR TEXTUAL DATA

d1 d2

j

CLR

Figure 7.1: Text document d2 is attached behind text d1 with the change-point j
between the two texts. A crossing CLR is found when a substring in d1 matches
a substring in d2.

The crossing functions CLR and CRL count the number of matches that cross
the potential change-point j between the two texts of length n [62]. CRL counts
the number of right to left crossings of the potential change-point j and CLR
counts the number of left to right crossings respectively.

CLR(j) = #{k : k < j ≤ Tnk }, 0 ≤ j ≤ n− 1 (7.1)

CRL(j) = #{k : Tnk < j ≤ k} (7.2)

In Equation 7.1 and 7.2 the potential change-point is at position j and Tnk
denotes the position of the longest match that equals the substring at position
k. If k is left of the position j and Tnk appears right of j, we count a left-right
crossing. In case of two matches Tnk of the same length, the one that is chosen is
the match closer to j. The count of the number of elements in a set is denoted
with # – the cardinality.

The idea behind this approach is: the substrings in d1 match substrings in d1

and the substrings in d2 match substrings in d2. If k > j then Tnk will tend to
be > j and if k < j then Tnk will probably be < j. The following equations are
the normalized versions of the the crossing functions [62]:

ψLR(j) =
CLR(j)

n− j
− j

n
(7.3)

ψRL(j) =
CRL(j)

j
− n− j

n
(7.4)

ψ(j) = max(ψLR(j), ψRL(j)) (7.5)

The crossing function ψ(j) represents the maximum of the normalized versions
of CRL (7.4) and CLR (7.3) [62]. The aim of Johnson et al. is to minimize
the crossing function ψ(j) (Equation 7.5) and to assume the change-point at
its minimum. This approach provides no absolute measure of entropy but it
accounts for the entropic properties of the source. The authors applied their
approach to different concatenations of literary texts and showed the successful
detection of change-points.

I applied my trie-based approach (see Section 7.2) to the same examples to
demonstrate that my method works correctly (see Section 8.6). The problem

7.2. TRIE-BASED TEXT ANALYSIS 75

with this approach is that its runtime increases with n as its complexity is
O(n log n). That leads to long runtimes for large texts and renders it inapplicable
for indefinite text streams. With my algorithm, I do consider scenarios of large
texts and indefinite texts streams. A runtime comparison between the two
algorithms is provided in Section 8.6.3.

7.2 Trie-based Text Analysis

This section contains the core of my CPD algorithm. Here, I describe the basic
structure of the trie that implements the dictionary of the LZ-algorithm – which
is described in Section 6.4. The trie transformation operations required are
described in Section 7.3.

The word trie is derived from the word retrieval by Edward Fredkin [45]. A trie
is a M-ary tree data structure, which means that the number of child nodes of a
node is ≤M [68]. The nodes are M -place vectors with components corresponding
to digits, characters, or as in this work: terms. The nodes do not store keys,
instead each node on a certain level l represents the set of all keys that begin
with a sequence of l components – its prefix [68]. The level of a trie is defined as
the number of parent nodes a trie node has. The root node of the trie is located
at level zero.

In general, tries are used to store repeated patterns because they inherit positive
attributes such as fast lookup and insertion time, space efficiency, and ordered
iteration. Here, I use a trie as a database for the entries of the LZ-dictionary. The
motivation is to store structural information within that trie that represents the
entropic property Ln of the text. The denotation Ln is described in Section 6.4.
With this approach, I focus on a relative measure of entropy as the trie structure
does not lead to absolute number of entropy but rather indicates changes with
respect to previous states.

While a moving window slides across the text, the trie represents the term
sequences within that window. The algorithm is described in the next section. In
this work, the input elements are either single characters or terms, depending on
the specification of the actual scenario. In other words: the trie stores n-grams,
whereas each prefix is represented only once.

Trie Structure

Nodes in the trie can be classified into three categories: root node, leaf node, and
inner node:

• The root node is the starting and top node of the trie.

• A leaf node is a node without children.

• An inner node is a node with at least one descendant.

The root node is can also be a leaf node if the trie is empty. The trie is built up,
starting at the root node, as the sliding window processes the input text. An
exemplary trie structure is depicted in Figure 7.3.

76 CHAPTER 7. CHANGE-POINT DETECTION FOR TEXTUAL DATA

A single node of the trie is presented in Figure 7.2. The node contains the
element, that has been read on the path to the node, and the birth-time of the
node. The element in the node is not associated with the node itself, but rather
with the path that leads to the node. Character “a” means that this node can be
reached by reading character “a” in the input sequence. The detailed steps that

“a”, 7

the input element

the birth time

Figure 7.2: This Figure shows a single trie node.

lead to this trie are described in Algorithm 2 and depicted in Appendix A.2. Let
the sample “abrakadabra” be the input sequence. The first character ’a’ is read
by the algorithm and added to the helper list sequence. Since the trie T consists
only of the root node, the character ’a’ is added as a child of the root node to the
trie. The next character of the input sequence is ’b’. The same input procedure
happens to ’b’ and ’r’ so that there are three nodes at level one. When the next
’a’ is read and put to the helper sequence, it can already be found in the trie.
The character ’k’ is added to sequence and a node with character ’k’ is added as
a child node to the node at level one with character ’a’. The trie in Figure 7.3
represents the structure of the dictionary window after having read the input
“abrakadabra”.

Algorithm 2 Trie Construction Algorithm

Input: input← the source text
1: character c ← ’ ’
2: trie T ← new empty trie
3: trie node node ← root node of T
4: for c in input do {take next character of the input}
5: if c in node.children then
6: node = node.getChild(c)
7: else
8: node.addChild(c) {add new leaf node}
9: node = root node of T

10: end if
11: end for

The root node in Figure 7.3 is marked with the term root and contains an
additional numerical value that is described in Section 7.3. The paths to the
children of the root node represent the character sequences as they appeared in
the text. A path along the nodes starting with the root node and ending with a
leaf or an inner node represents a character sequence that has been observed in
the input stream. Not all sequences in the text can be observed in the trie.

The input sequence of the trie in Figure 7.3 differs slightly from the example in
Section 6.4. Here, the last two trie inputs have been “ab” and “ra” instead of

7.3. THE TRIE TRANSFORMATION PROCEDURE 77

“abra”. Accordingly, the nodes with the content “a”, “b”, “r” are the child-nodes
of the root node and are therefore not recognized as subsequent input data for
future matches. The keys are only read from the root node to the leaf nodes and
not across sibling nodes at any level.

This change to the original LZ77 algorithm results in a speed gain but also
means that some patterns will be dismissed (similar to LZ78). This adaption
of LZ77 is necessary, but it does not have a huge impact on the performance of
this algorithm for the purpose of CPD (see Section 8.6).

root, 11

“a”, 7

“k”, 4 “d”, 6 “b”, 8

“b”, 1 “r”, 9

“a”, 10

Figure 7.3: The trie structure that is created by the LZ77 algorithm after
processing the input sequence “abrakadabra”.

7.3 The Trie Transformation Procedure

The trie dictionary represents a sliding window, that comprises a certain amount
of structural information. It it necessary to limit the amount of data analyzed
at any one time and to discard terms from the dictionary after a defined period.
This can be achieved with a sliding window technique. The sliding window
technique requires a trie structure that can be constantly modified upon every
update procedure of the dictionary. One way to update a trie is to completely
rebuild the trie with each new node that is added. This requires a rebuild of the
trie for each new dictionary input. Since the complete rebuild is time-consuming,
I propose an alternative: a trie transformation procedure that retains the entropic
properties of the text. How is that guaranteed?

In Section 6.4, I showed that LZ77 is a lossless compression algorithm that is
based on match-lengths, which represent the entropic properties of a text well.
The trie that I introduced in Section 7.2 stores most of these match lengths
within its structure. Since not all of the matches are stored, the trie can not
be used to completely reconstruct the original text as can be done with a LZ77
dictionary. The key is that Algorithm 2 does not change the order of the input
sequence and thus ensures that the trie contains a certain amount of the entropic
properties of the text. How much order of the text the trie represents, depends
on the text itself. In the following, I present two extreme cases to emphasize the
amount of order represented by the trie structure.

78 CHAPTER 7. CHANGE-POINT DETECTION FOR TEXTUAL DATA

Another limitation is the total amount of text that is stored in the trie. A time
value for each node except the root node limits the size of the trie.

Therefore, the creation time τi, i ≥ 0 of each individual node i is displayed next
to the character in Figure 7.2 and inside the nodes in Figure 7.4. When a new
character or term (as in Figure 7.4) is read from the input stream, the time value
of the created node is set to the actual trie time τ . For each node inserted in the
trie, the time value of the trie τ is increased by one. If a new term sequence is
read and one of the existing nodes has to be updated, the time value of the node
is updated as well. The node with the term “to” in Figure 7.4 contained the time
value 0 before it was updated to 4 when the sequence “to be” was inserted into
the trie the second time. The most recent node that has been added to this trie
is the node with the term “be” because its time value is 5.

As the window progresses and slides across the text, the trie will change its struc-
ture and eventually become wider and deeper. The window size |w| determines
the maximum size of elements represented by the trie.

root, 6

“to”, 4

“be”, 5

“be”, 1 “or”, 2 “not”, 3

Figure 7.4: The trie structure that is created by the LZ77 algorithm after
preprocessing the input sequence “To be or not to be” from Shakespeare’s
Hamlet.

In order to describe the composition of the trie, I depict two extreme cases:

1. the input sequence X contains a multiple of one element

2. the input does not repeat at all

Figure 7.5 contains an example for the character sequence containing 10 times
the character “a”. Although this sample indicates an estimated entropy of zero
of the source, the trie still grows as it processes the input. However, the trie
only grows in depth and the number of nodes is limited. The minimum number
of nodes for input x1, ..., xn can be calculated by the reverse of the triangular

number: number of nodes= b
√

8n+1−1
2 c+ 1. Case two leads to a very flat and

wide trie structure with a maximum number of nodes that equals n+ 1.

7.3. THE TRIE TRANSFORMATION PROCEDURE 79

root, 10

“a”, 6

“a”, 7

“a”, 8

“a”, 9

Figure 7.5: The trie structure that is created by the LZ77 algorithm after
processing ten times the character ’a’.

The trie contains the most recent input elements and its structure represents
the entropic properties of the input sequence, but the size |w| depends on the
following trie transformation procedure:

Algorithm 3 Insertion of a new symbol into the trie

{insert a new input element xi}
if node with xi exists then

update τi of the node
else

insert a new node with element xi and creation time τ
end if
τ = τ + 1
{Decay Procedure}
for all nodes of the trie do

if node exceeds its life time then
delete the node

end if
end for

A new node can only be inserted at the correct level in the trie. Therefore
the insertion procedure of a sequence of elements y1, ...ym always starts at the
root of the trie and the first element y1 is then inserted into the level of the
children of the root node, y2 at the next level and all subsequent elements are
inserted accordingly. Figure 7.5 contained the root node and three nodes with
the element “a” before the sequence “aaaa” was inserted. Since the first three
elements already existed as nodes, their creation time was just updated. Only
for the last input character of the sequence “aaaa”, no node existed and a new
node with element “a” and τi = 9 had to be created.

80 CHAPTER 7. CHANGE-POINT DETECTION FOR TEXTUAL DATA

If a new node has to be inserted at a certain level into the trie and other nodes
already exist at that level, it is always inserted behind the existing nodes. Figure
7.4 shows that the terms “to, be, or, not” were inserted subsequently as they
appeared in the input sequence “to be or not to be”.

After each input of an element, the overall time τ of the trie increases. After
each increase, all the nodes of the trie have to be validated. The lifetime of a
trie node is determined as follows:

τlifetime = τcreation + decay(~∆τ)

τlifetime of a node limits how long that node can exist. If τlifetime of a single
node has expired, that is: τlifetime < τ , the node is deleted.

The τlifetime depends on the creation time of the node and the function decay(~∆τ).

The vector ~∆τ contains the deltas of the creation times of the node and its past
instances. The following equation calculates the deltas for the creation times of
a trie node other than the root node.

~∆τ = [∆τ1, ...,∆τn]

= [τcreation(2)− τcreation(1), ..., τcreation(n)− τcreation(n− 1)]

The vector ~∆τ of the first child of the root node in Figure 7.5 contains the
following values after processing the input procedure:

~∆τ = [1, 2, 3]

I tested different versions of decay(~∆τ) and describe the evaluation results in
Section 8.6.

The delete function for a single node is defined as follows: If τlifetime < τ then
delete the node from the trie. If this node has child nodes, insert its child nodes
recursively as sub-nodes of the father of the deleted node at the position where
deleted node was before. This ensures that the information of the child nodes
does not get lost and the impact on the whole trie structure is minimized.

The children are inserted at the position of the father node in the same order as
they were before. Figure 7.6 shows the deletion of the node with character “t” as
the last letter of the input sequence “Titanium” is read by the algorithm. The
value oft he function decay for node was 5 before it got deleted.

7.4. TRIE-BASED CHANGE-POINT DETECTION 81

root, 7

“t”, 2

“a”, 3

“i”, 5

“u”, 6

“n”, 4

(a) Trie after 7 input elements are
processed.

root, 8

“a”, 3 “i”, 5

“u”, 6

“n”, 4 “m”, 7

(b) Trie after 8 input elements are pro-
cessed.

Figure 7.6: This figure shows the deletion procedure of the node with the
character “t” as the last letter of the input sequence “Titanium” is read.

These transition operations ensure that the trie never grows indefinitely, although
the input stream might be of indefinite length.

7.4 Trie-Based Change-Point Detection

The trie-based CPD is based on the structure of the trie itself as it represents the
entropic properties of the text. In order to detect change-points, the following
properties of the trie are measured:

• maximum depth

• total number of nodes

• total number of leaf nodes

• input position

The maximum depth of the trie represents the number of nodes along longest
path from the root node to the farthest leaf node. Since the trie structure
represents the entropic properties with respect to a distinct window, I expect
these measures to vary over time and to indicate fluctuations in entropy as the
window progresses along the stream. The total number of nodes as well as the
total number of leaf nodes is expected to decrease with recurring term sequences.

The input position is related to the nodes at level one of the trie – the children
of the root node. The children of the root node are numbered according to their
position in the trie from left to right. Each node in the trie has a designated
input position, that equals the input position of its parent nodes, except for
the nodes at level one. The input position may change with trie transformation
procedures, that are described in Section 7.3. The possible input positions of
the nodes in the trie in Figure 7.7 are 1, 2, or 3.

82 CHAPTER 7. CHANGE-POINT DETECTION FOR TEXTUAL DATA

root, 11

“a”, 7

“k”, 4 “d”, 6

1

“b”, 8

“b”, 1

2

“r”, 9

“a”, 10

3

Figure 7.7: The children of the root node of the trie are numbered from 1 to 3.

Based on the trie structure, the following assumptions can be made:

• If the trie processes a single text that does not change style, language, or
topic, the measures should adopt a somewhat steady state.

• As the algorithm processes new terms, that have not been seen before, the
number of nodes and the number of input positions should increase.

• If the algorithm hits a change-point, where the statistical properties of the
text change abruptly, measures such as total number of nodes and input
position should indicate this clearly by a sudden rise.

In Section 8.6.2 I measure these properties of the trie as the algorithm slides
along several sample texts. The measures are observed over time while the input
text is processed and sudden changes of the values may indicate a change-point.
I also describe how this method reveals some unexpected change-points in sample
texts and that the input positions are the most appropriate measure to detect
change-points.

7.5 Adaptive Window

Similar to the original LZ77 compression algorithm, the trie-based algorithm
is based on a sliding window. The window does not contain a fixed number of
elements, but it allows for the analysis of indefinite streams. A crucial parameter
for the CPD is the window size |w|, which dictates the number of terms to be
considered at any one time.

Long-range correlations can only be detected if the window size exceeds a multiple
of sentence length. Only then is the likeliness of finding more sequential matches
within the text increased. The window size can be considered as a parameter
specifying the resolution. A larger window size accounts for more matches as
well as more noise, whereas small window sizes only accounts for very serious
changes of the distribution of the source. Here, I do not focus on finding an

7.6. REFERENCE IMPLEMENTATION 83

optimal value for |w| as I did in 2.3 with the introduced self-regulation approach.
I rather present an adaptive window approach, based on different properties of
the text.

The performance of trie-based approach depends on the length of the document
|d| and the window size |w|. An increasing document size leads to a linear
increase of the number of match lengths and also a linear increase of the number
of trie operations. The trie operations insert, search, and decay require runtime
proportional to the following:

• insert : O(key length)

• search: O(key length)

• decay : O(number of nodes)

The operation decay checks for every node of the trie to determine if the lifetime
of the node has expired. The number of nodes of the trie never exceeds the
window size. All trie operations depend on the window size |w|. Consequently,
the runtime for the trie operations grows slowly as the document size increases.
The complexity of the trie-based change-point algorithm is O(n2) as its three
main operations insert, search, decay depend on the input length and the constant
number of nodes. In case of a data stream, the algorithm can run continuously
and can continuously produce results.

The lifetime of a node in the trie is based on the creation time and the function
decay(~∆τ) (see Section 7.3). The following four variants of decay have been
realized in this work:

decay1(~∆τ) = |w|, |w| ∈ N (7.6)

decay2(~∆τ) = ∆τn, ∆τ = ∆τ1, ...,∆τn (7.7)

decay3(~∆τ) = median(~∆τ) (7.8)

decay4(~∆τ) = min(~∆τ) (7.9)

The function decay1 simply returns a fixed value |w|, determining the decay time
of a node, whereas decay2 always refers to the latest delta of this node. If there
has not been updated, decay2 is set to the initial value |w|. The versions decay3

and decay4 are based on the median, respectively the minimum element of vector
∆τ . The different decay functions allow for a flexible window size, based on the
deltas of the appearances of the nodes. The only parameter that has to be set
beforehand is the initial window size |w|. I conducted experiments with this
adaptive window approach and present the results of these in Section 8.6.

7.6 Reference Implementation

During the development of the CPD algorithm, I developed a reference implemen-
tation to verify and evaluate the behavior of my algorithm. The implementation
is based on Java, using the version Java SE 1.7. Java code is portable, allows for
cross-platform development, and comes with a large collection of plug in libraries.

84 CHAPTER 7. CHANGE-POINT DETECTION FOR TEXTUAL DATA

The CPD algorithm has been implemented iteratively and its architecture is
based on two independent packages: Entropy and Trie.

In a first step, I implemented the LZ77 algorithm (compression and decompres-
sion) in the package Entropy in order to compare its results to the estimated
entropy of sample texts. The input texts were read from UTF-8 plain texts and
preprocessed according to the descriptions in Section 2.2.2. My first version of
the trie-based algorithm builds up a trie that grows according to the size of the
input text.

An overview of the program structure of the package Trie is provided by the
UML class diagram in Figure 7.8. An instance of the generic class Trie can have
only one root node, whereas the root node can have zero or more child nodes.
The child nodes are identified as INNER or LEAF nodes.

Trie

#root

0..1

#children

0..*

Trie

Trie() : void
insert(List<C>) : void
clear() : void
contains(List<C>) : boolean

C

TrieNode

content : C

TrieNode() : void
TrieNode(C) : void

C

Figure 7.8: This UML Class diagram provides an overview of the structure of
the reference implementation of the trie without transformation operations.

The next version of the reference implementation included the trie transfor-
mation procedures as described in Section 7.3. A more exhaustive UML class
diagram for this implementation is attached to this work in Section A.3. The trie
transformation procedures were implemented and realized with the classes Trie
and AdaptiveWindowTrieNode – referring to the adaptive and moving window
capabilities of the trie. In order to instantiate the generic trie package TrieNode-
Type with characters and terms, the class Term and Preprocessor were added
to the package Entropy. The class Preprocessor extracts text from Webpages

7.6. REFERENCE IMPLEMENTATION 85

and Documents of different kinds and performs all the necessary preprocessing.
It also provides information about the text, such as: the number of terms in a
window as well as the number of terms in a document. The package Entropy
contains all classes for the input data processing and CPD and compression
operations. It also contains reference implementations of related projects for
comparison (see Section 8.6).

Finally, visualization of the trie was necessary for debugging purposes and I chose
the open source graph visualization software Graphviz [144] for this purpose.
However, this implementation is yet a prototype and neither optimized for fast
runtime nor space efficiency. It serves as a proof of concept and as a first reference
for an evaluation.

86 CHAPTER 7. CHANGE-POINT DETECTION FOR TEXTUAL DATA

Chapter 8

Evaluation

Even though the theoretical foundations of an algorithm may sound compelling,
the true nature of its behavior can only be revealed throughout evaluation. In
this chapter, I demonstrate the most interesting experiments that I conducted
throughout this work and present their results. Some of the results in this
chapter have been pre-published [19; 17; 18; 16].

In the first part of this chapter, I describe the experimental setup of my ex-
periments in detail. Subsequently, I demonstrate how my combination of two
term weighting approaches outperforms one of the most widely-used keyword
extraction approaches. This example serves as a prototype. The number of pos-
sible combinations of algorithms is fairly large and may be composed according
to the use case scenario. The adjustments of these combinations may differ in
the number of algorithms in their kind, but also in the way they are combined.
Therefore, in Section 8.4 I compare the different combination approaches that I
proposed before in Section 5.

As the structure of a text may contribute to the heuristic analysis, I dedicate
Section 8.6 to the proposed trie-based structural analysis. I analyze some com-
pelling real-world examples with the trie-based CPD algorithm and demonstrate
its superior performance with respect to a state-of-the-art algorithm.

8.1 Experimental Setup

This section describes the setup as well as the methodology of the test environment
in detail. The experiments were conducted on commercial-off-the-shelf hardware,
which is concisely described in the next section. Execution time measurements in
a Java environment demand for special tools and precautions, which are briefly
described in Section 8.1.2.

87

88 CHAPTER 8. EVALUATION

8.1.1 Test Environment

All experiments are conducted on a MacBook Pro furnished with a 2,66 GHz
Intel Core 2 Duo Processor and 4 GB random access memory. The operating
system is an OS X 10.8.5. The Java environment dates version 1.7.0 25 and the
heap size is set to 1024 MB. The Java code development has been conducted
with the development toolkit Eclipse integrated development environment (IDE)
version Kepler (4.3).

8.1.2 Methodology

This section provides a detailed explanation of the performance evaluation applied
to the methods in this work in order to allow others to better understand the
results and enable them to reproduce the evaluation results presented here.

The performance evaluation of a Java application is not a trivial task. One of
the challenges that comes with a Java system is its non-determinism. A Java
Virtual Machine (JVM) uses Just-In-Time (JIT) compilation which may lead
to different execution times of the same code. A multi-processor machine may
execute different thread schedules which may also lead to different execution
times and also affects the garbage collection behavior and thus the overall system
performance [49]. Various system effects such as interrupts and DMA transfers
may also be a source of non-determinism.

In this work, the performance of the algorithms is measured by executing
relatively short running java applications. Consequently, the analysis is focused
on startup performance of these applications rather than steady-state performance.
A recommended “statistically rigorous performance evaluation” approach is to
measure the average or mean execution time instead of the fastest or slowest
execution time [49]. Therefore, the following two steps were conducted:

1. Measure the execution time of n = 6 Virtual Machine (VM) invocations
running a single benchmark iteration.

2. Calculation of the confidence interval for the confidence level as described
below.

Each application must be executed at least seven times. Since the first VM
invocation will load certain data, such as libraries, persisting in memory or
data persisting in disk cache, the subsequent VM invocations are not entirely
independent as one would require for a well-defined mean. Therefore, the first
VM invocation is being discarded and only the subsequent measures are retained
for further analysis. The mean of the n = 6 measurements yi, 1 ≤ i ≤ 6 can be
calculated as follows:

ȳ =

∑6
1 yi
6

The measured execution time is the time between the specific task such as
CPD or keyword extraction and the beginning of the output operations. The
initialization time, I/O time, and preprocessing time is not measured because
document parsing and content loading may take a serious amount of time. To

8.2. EVALUATION OF KEYWORD EXTRACTION APPROACHES 89

accomplish that, I use VisualVM, a profiling software tool that provides a visual
interface for Java applications that are running on JVM. VisualVM allows for a
monitoring and performance analysis at method level. The measurement of the
execution time is conducted according to the following procedure:

1. set breakpoint within main-method

2. run the application

3. wait until VisualVM has properly launched

4. when application has finished, open Profiler → CPU

5. resume the application

6. read the execution time after the app has finished

This procedure ensures that VisualVM is properly loaded and the execution time
of the specific method can be measured correctly. During the time measurements,
most other processes are inactive but operating system processes may still affect
the results.

8.2 Evaluation of Keyword Extraction Approaches

The evaluation of the performance of a keyword extraction approach provides
insight pertaining to its usefulness in a real time scenario. The performance
of an algorithm is crucial as it may influence the response time and therefore
the usability of an application. The following measures are commonly used in
information retrieval to determine the quality of the retrieved data:

Compression Ratio

The research areas indexing and summarization apply keyword extraction meth-
ods to generate indices or summaries based on keywords. A substantial criterion
of evaluation in these research fields is the compression ratio [86; 153]. The
compression ratio quantifies the reduction of data that can be achieved with
keyword extraction. It is possible to calculate the compression ratio, which
depicts the savings of space obtained with the extracted keywords in contrast to
the original text [153]. Equation 8.1 shows how to determine the compression
ratio for a text.

compression ratio =
length of the summary

length of the full text
(8.1)

Meaningfulness

The second fundamental property measures the meaningfulness of information
that is retained. The evaluation of the meaningfulness of keywords is very
challenging because it is a very subjective task. Whereas a term appears to be
a keyword for one reader, it might not be a meaningful term for another one.

90 CHAPTER 8. EVALUATION

Moreover, single terms may become meaningful only in combination with another
term, or they may take up another meaning in different context. Furthermore,
various definitions of meaningfulness exist: Wan and Xiao state that a meaningful
term highlights the major points of a document and contributes to the summary
[156], whereas the Gestalt Theory in computer vision defines meaningful events
as a meaningful deviation of randomness – an event is ε-meaningful if the
expectation of number of occurrences of this event is less than ε ≤ 1 under the
a-contrario uniform random assumption [37].

Precision

I chose telling real-world examples as source documents and evaluated all the
results by hand. This means, each extracted keyword was categorized into
meaningful or not meaningful – keyword or no keyword. This approach allowed
the use of the classic evaluation methods: precision and recall. Here, I did not
consider accuracy (F-measure) due to the high number of negatives. Precision is
the fraction of extracted keywords, that are actual keywords:

precision =
|keywords extracted ∩ keywords identified|

|keywords extracted|

Recall

Not all rankings exclude terms from the set of potential keywords but rather
provide a ranked list of potential keywords. Hence, I selected the top ten keyword
candidates for the precision determination. Recall is the fraction of extracted
keywords out of all keywords in the whole document:

recall =
|keywords extracted ∩ keywords identified|

|keywords identified|

It is very subjective to determine the exact number of all potential keywords in
a document and for a keyword extraction approach it is not necessary to identify
all potential keywords in a documents. It is rather preferable if the extracted
keywords comprise the topics of a text than all the meaningful words. Therefore,
I did not consider the measure recall in this evaluation.

8.3. A SPECIFIC COMBINATION APPROACH 91

8.3 A Specific Combination Approach

In this section, I present an evaluation of the combination of two specific heuristics
for keyword extraction. This combination had been described in Section 5.1.1.
This particular combination is a prime example of a successful combination for
a specific purpose. Here, I also show how the number of extracted keywords
changes with the size of the document for this particular combination. This
observation is the foundation for my self regulation approach, that regulates
the window size automatically. Moreover, I evaluated the meaningfulness of
the extracted keywords and I analyzed the compression ratio in dependence of
the window size. Finally, I evaluated the runtime efficiency of this particular
combination approach.

8.3.1 Compression Ratio and Window Size

In order to analyze the compression ratio, I performed keyword extraction with
the algorithm presented in Section 4.1. My combined heuristic described in
Section 5.1.1 was used to generate the term weights for all terms in the sample,
with 0 < NFAt < ε, whereas ε = 1. The ε criterion allows to limit the number
of extracted keywords, which is a prerequisite for a count of extracted keywords.
Subsequently, I accumulated the number of extracted keywords of all windows of
the single document. The analysis has been performed on more than 200 State
of the Union Addresses of the Presidents of the USA individually [135; 19]. The
size of the documents varied between 8 KB and 217 KB with more than 27 000
words. Furthermore, the use of language and style of writing varied for each
document.

 0

 50

 100

 150

 200

 250

0.2% 0.4% 0.6% 0.8%

N
um

be
r

of
 e

xt
ra

ct
ed

 k
ey

w
or

ds

Window size in percent of document length

Keyword to window ratio

State of the Union Address
Interpolation

Figure 8.1: The compression ratio directly relates to the window size.

After preprocessing, I performed term weighting with NFAt for each single
term of the individual documents with a varying window size. The window

92 CHAPTER 8. EVALUATION

sizes ranged from 0.25% up to 50% of the document length. The windows
were non-overlapping and of equal size. For this experiment, I did not consider
document structure. Figure 8.1 shows the results for the State of the Union
Address in 2012. The graph shows the typical curve for a window size smaller
than 1% of the document length. In Figure 8.1, it can be observed that the
algorithm extracted about 250 potential keywords at a window size of 1% of
the document length. Therefore, the compression ratio at 1% is about 4%. For
the window size below 1%, the increase of extracted keywords is significant,
especially for larger documents.

A window size of about 1% of the document length leads to an average of 2.5
keywords per window. This allows the user to capture the content of each
window, and with that window size it is unlikely that one window comprises
several subtopics of a single document. This window size seems appropriate
for the chosen samples. A window size of more than 30% of the document size
presumable leads to topic-overlapping windows as stated in the pre-published
paper [19]. In Section 2.3, I stated that keyword extraction performs best, if
each window comprises a single subtopic. Subtopic-overlapping windows are
likely to affect the specificity of a term – how specific one term is to a concept
than another. For this heuristic, it may lead to a reduction of the term weight
for WNFA. The number of extracted keywords stagnated with a window size of
more than 10% and even decreased abruptly in larger documents with a window
size of more than 30% of the document length [19].

To summarize, the window size is crucial for the extraction of the appropriate
number of meaningful keywords. In this case, it should be set between 1% and
30% of the document length. This is only a rough estimate and may not work
for other samples as the window size also depends on the kind of literary work
– the number of meaningful words differs significantly between a novel and a
technical document. The CPD approach presented in Chapter 7 may help to
identify a beneficial window structure. Subsequently, the self-regulation approach
presented in the next Section may provide a way to determine an optimal window
size.

8.3.2 Self-Regulation Approach

During my test runs with the described algorithms, I experienced large differences
in number of extracted keywords per window. Some algorithms extracted
more keywords from larger windows and less keywords from smaller windows.
Consequently, the window size had to be fitted to a size so that a reasonable
number of keywords per window was extracted. However, the number of keywords
varied significantly for documents of different author, style, and topic and the
window size had to be adjusted for each document to extract a reasonable
number of keywords. A small window size of 20 terms may fit a short document
but it does not fit a novel such as Treasure Island by Robert Louis Stevenson.
A too small window size may split topics and generate not enough keywords
whereas a too big window size may not satisfy the intended focus and leads to
content-overlapping. To automate this process, I developed a self-regulation
approach that determines the window size automatically by running the keyword
extraction algorithm with different window sizes.

8.3. A SPECIFIC COMBINATION APPROACH 93

This algorithm can only be applied if the number of keywords positively correlates
to the window size. In order to obtain a fixed number of keywords k from the
window w, I introduce a self-regulating algorithm for an adaptable window size.
This algorithm automatically determines the window size necessary to extract
the claimed number of keywords c and does not require any further adjustments.

Algorithm 4 Bisection method for window adaption

1: c = claimed number of keywords
2: left = 0
3: right = maximum window size
4: found = false
5: while left ≤ right and not found do
6: size = (left + right) / 2
7: k = extracted keywords with window size size
8: if k > c then
9: right = size - 1

10: else if k < c then
11: left = size + 1
12: else
13: found = true
14: end if
15: end while

Algorithm 4 repeatedly bisects the interval of number of terms that compose
a window until the claimed number of keywords per window is reached. The
algorithm performs several subsequent keyword extractions for windows of
different size until an optimal window size is reached. I set the maximum window
size for the initialization of the algorithm to half the number of terms in the

document: right = |D|
2 . The window size determined by the algorithm is only an

estimate of the optimal window size to retrieve a reasonable number of keywords
per window. It has proven to be extremely fast and its adaptiveness allows for
analysis of documents of different size. This approach has been pre-published in
[19].

8.3.3 The Meaningfulness of Extracted Keywords

In Section 8.2, I stated that it is difficult to evaluate the meaningfulness of
the extracted keywords. In order to show the meaningfulness of the extracted
keywords, I chose documents of different domains and different sizes with an
easily deducible content. During my studies, I analyzed a number of different
algorithms and combinations of algorithms. Not only did I experience varying
results depending on the algorithms and their combinations, but also on the
analyzed texts.

I demonstrate the meaningfulness using two examples (pre-published in [19]).
First, a keyword extraction on all abstracts of all Association for Computing
Machinery (ACM) Symposium on Document Engineering (DocEng) submissions
has been performed. Subsequently, I have compared the extracted keywords to
the author-defined keywords to estimate their meaningfulness. In the second

94 CHAPTER 8. EVALUATION

example, I have extracted keywords from President Obama’s State of the Union
Address in January 2011. Here, my goal was to bring out the benefits of
inner-document keyword extraction.

Title (Year) Author-assigned key-
words

Extracted keywords

Vector Graphics: From
Postscript and Flash to
SVG. (2001)

svg, flash, swf, pdf,
postscript

svg, vector, graphics

Fast Structural Query
with Application to Chi-
nese Treebank Sentence
Retrieval. (2004)

treebank, structural
query, xml

pcrf, query, chinese,
structural, flexible, cor-
pus, search

Towards XML Version
Control of Office Docu-
ments (2005)

version control, office ap-
plications, xml diffing

office, openoffice, diff,
version, control, state-of-
the-art, binary, xml, ver-
sioning, documents

A Document Engineer-
ing Environment for
Clinical Guidelines.
(2007)

clinical guidelines, xml,
deontic operators, gem

computerization, mark-
up, recommendations,
guidelines, clinical, op-
erators, medical

Logic-based Verification
of Technical Documenta-
tion. (2009)

model checking, docu-
ment verification

checker, specification,
technical, documenta-
tion

Semantics-based change
impact analysis for het-
erogeneous collections of
documents. (2010)

document collections,
document management,
change impact analy-
sis, semantics, graph
rewriting

changing, documents,
other, different, collec-
tions

Table 8.1: The author-assigned keywords of all submissions of ACM DocEng are
compared with the automatically extracted keywords. Here, I show six results.

The first example is based on an accumulation of all published ACM DocEng
abstracts into one document. The total amount of submissions comprises 387
abstracts between the years 2001 to 2010. These are excellent candidates for
keyword extraction because each single abstract corresponds to a window, so
that each window contains a subtopic of the document. The difference in window
size was handled by a normalization approach presented in Section 2.4.5. Then, I
applied the combination proposed in Section 5.1.1 on the document and extracted
the keywords.

Table 8.1 shows the computed keywords in comparison to the author-assigned
keywords for six representative abstracts. In my opinion, the extracted keywords
match the corresponding paper well. However, some results are interesting. Stop
word filters would have removed the extracted keyword “other” in row six, though
in this context, it refers to document relations, which is an essential idea of
the referred paper. There is no doubt that author-assigned keywords should
outperform automatically extracted keywords, but the keywords in row one and

8.3. A SPECIFIC COMBINATION APPROACH 95

three show that the results of this particular algorithm come close. In fact,
the extracted keywords in row two reveal, that the paper focuses on “Chinese”
language and the submission in row five uses “technical” documentation.

The State of the Union Address of US President Barack Obama of January 25th
2011 is a single document that covers several topics, that were current at that
time. I have split up the text into 26 consecutive windows of equal size.

Table 8.2 shows the top keywords of some sample windows. They clearly illustrate
the variety of topics within this single speech. Additionally, this example shows
the importance of keyword extraction for small portions of a text to help the
reader to depict the actual semantic context.

Window Top Keywords
5 how, innovation, future, what, change
12 rebuilding, infrastructure, high-speed, internet
16 freeze, spending, decade, chamber
21 afghan, qaeda, troops, taliban, thanks

Table 8.2: Extracted keywords for different parts of President Obama’s State of
the Union Address show significant content changes within the speech.

These examples show quite well, that a successful combination of two keyword
extraction approaches can lead to meaningful results. These results may even
outperform author-defined keywords. The evaluation will always be a subjective
task as long as language can be interpreted differently.

8.3.4 Performance

The speed of a keyword extraction algorithm is especially important when the
extraction is performed in a real-world scenario including user interactions. The
response time of an application is a key criterion for its success. In this section, I
aim to measure the speed of the here combined algorithm and compare it to the
well known TF-IDF (TF-IWF) weighting algorithm [19]. I have implemented both
algorithms according to the specifications made in Section 8.1. The hardware
setup for this experiment is also described in that section.

Both keyword extraction algorithms were performed on plain text files of different
length. In this case, I have measured the complete process of parsing the text,
pre-processing the words, segmentation of the document, and performing the
weight calculation for each term. It is crucial to measure the whole process,
because document parsing and initialization of the algorithms require extra time,
depending on the document length. Mostly in literature, pre-processing steps
are excluded. As I aim to give a hint on real-world scenarios, the pre-processing
was part of this runtime evaluation.

Figure 8.2 shows the total execution time of both algorithms – the sample
combination and TF-IWF. The runtime scales almost linearly for TF-IWF and
my approach as well. A linear growth of the execution time is a crucial feature
that enables applications to ensure responsiveness. My algorithm performed

96 CHAPTER 8. EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

5000 10000 15000 20000 25000

E
xe

cu
tio

n
tim

e
in

 m
s

Number of words of the document

Performance of the keyword extraction algorithm

TF-IDF
TF-IDF Interpolation
Weighting Algorithm

Weighting Algorithm Interpolation

Figure 8.2: Performance of TF-IWF and my proposed weighting algorithm
applied to documents of different lengths

slightly faster than TF-IWF. Here, I recall that in contrast to TF-IWF, the
combined algorithm does not rely on stop word lists or other training data, whose
time for creation is not listed here.

In conclusion, my approach appears to be fast for real-world applications, espe-
cially when run in a thread-based environment. The keywords can be extracted
in parallel to the actual editing or viewing application. This experiment clearly
shows, that a combination of two algorithms can – although performing similar
to TF-IWF – clearly provide benefits such as the superfluous stop-word removal.
The potential gain in meaningfulness provided by the additional keywords may
lead to valuable insights for the reader.

8.3.5 The Phone Book

A use-case scenario for a keyword extraction algorithm would generally be a text
of a size that does not allow for a quick information extraction for the human
reader. A document that is usually not considered for keyword extraction is a
typical phone book as it is known in the paperback form to most people. What
happens, one applies the above mentioned keyword extraction algorithm to this
kind of data? Which names would be considered as keywords – containing the
key information?

For this experiment, I used a phone book from the Universität der Bundeswehr
München. The original phone book contained more information than just names,
titles, and the phone numbers of the people. I extracted the names and surnames
of all the entries and preprocessed them according to the steps described in
Section 2.2.2. The phone book contained a total number of 1795 entries with a
total of 3617 terms. The phone book contains 1958 different terms. At a first
glance, I analyzed the term distribution for this phone book. Figure 8.3 clearly
shows that Zipf’s law also applies to this scenario, but the curve is much flatter
than the curve in Figure 4.1 in Section 4.3.2. This accounts for a low repetition
rate of the terms.

8.4. EVALUATION OF THE COMBINATION APPROACHES 97

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 500 1000 1500

te
rm

 fr
eq

ue
nc

y

rank

Zipf’s law for a phonebook

term frequencies

Figure 8.3: The term-frequency and rank distribution for the entries of a phone
book.

To apply the keyword extraction approach described in Section 5.1.1, I separated
the phone book into windows of almost equal size. The number if windows was
set to ten as a window size of 10% turned out to be quite reasonable for this
example. What is to be expected from the results of this keyword extraction
algorithm? The results should account for the frequency of the terms, the term
distribution across the windows (window frequency) and the burstiness.

The top five results of the extracted keywords appeared with a term frequency of
{xdt (ta..e) = (4, 3, 3, 3, 3) | ta..e ∈ d, φ(ta..e) = (1..5)}, whereas the most frequent
term in the phonebook ”Andreas” appeared 50 times. The top keywords appeared
somewhere in between the extreme values of Zipf’s distribution, which complies
with the assumptions of Luhn an Zipf (see Section 4.3.2).

In addition, these top keywords were similarly distributed within the phone book.
They all appeared to be last names. This indicates that their position within the
phone book is limited to a defined area. They all showed bursty behavior, which
was detected by the keyword extraction algorithm. In summary, a keyword
extraction from a phone book is not a common approach but this experiment
confirmed the expected behavior of this particular combination quite well.

8.4 Evaluation of the Combination Approaches

Based on the properties of the individual weighting algorithms that I presented
in Section 4.2, a combination of these algorithms seems beneficial [5; 76; 108; 81].
In Section 8.3, I compared the runtime of a combined algorithm to TF-IWF
and showed that a combination may outperform a well known and widely used
algorithm. In Section 8.4.1, I compare the different combination approaches
presented in Chapter 5. Some of the results presented in this section have been
pre-published in [16].

98 CHAPTER 8. EVALUATION

8.4.1 Comparison of the Data Fusion Methods

A common approach to measure the precision of a keyword extraction algorithm
is to choose a telling real-world example and evaluate the extracted keywords
by hand. The abstracts of a scientific conference are ideal candidates for such
kind of an evaluation because each abstract clearly comprises a single topic
and keywords can be identified by a human reader. They all are of similar
length, which reduces the necessity and the effect of normalization approaches as
normalization is always an assumption. For the comparison of the combination
approaches, the first 14 ECBS 2012 conference abstracts were chosen as samples.

Each of the 14 ECBS conference paper abstracts was preprocessed and constituted
a single window, with all 14 windows being treated like a single document –
a summary version of the conference proceedings. Besides that, the abstracts
provided additional information that facilitated the rating of the extracted
keywords such as: author assigned keywords, headline, classification category.

The goal of this experiment was the comparison of five different data-fusion
methods:

1. The Divergence from Randomness Framework (Amati)

2. The Minimum Ranking Method

3. Borda Count

4. The Schulze Method

5. Principal Component Analysis

I combined paired heuristics with different characteristics with all these combi-
nation methods.

1. WΓ and WTF−IWF ,

2. WLaplace and WBinom.

The Divergence from Randomness model (see Section 5.1) allows the combination
of only two algorithms, thus I combined exactly two with each of the combination
approaches. The two paired algorithms were selected with respect to their
properties as summarized in Section 4.5. Their properties indicate that a
combination of these heuristics should lead to a successful keyword extraction
algorithm. However, the focus of this experiment was not on the combined
algorithms but rather on the differences the combination methods.

Figure 8.4 shows the precision of the top ten extracted keywords from all data
fusion methods with the two different combinations. The graph in Figure 8.4
shows a high precision, which implies that the extracted keywords of the two
combinations were meaningful and fit the topics of the samples. However, the
results of the combination methods show certain differences.

8.4. EVALUATION OF THE COMBINATION APPROACHES 99

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

pr
ec

is
io

n

window

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

pr
ec

is
io

n

window

Amati
minRank

Borda
PCA (Li et al.)

Schulze

Figure 8.4: The graph shows the precision of the extracted keywords from 14
ECBS 2012 paper abstracts. The data fusion methods have been applied to the
results of WΓ / WTF−IWF and WLaplace / WBinom.

The PCA-based combination shows the highest precision overall. The results of
the Divergence from Randomness approach and minRank rank lower in precision.
But the extracted keywords of these methods appear to be subjectively more
compelling, although the quality of keywords is not presented with this metric.
The implemented Schulze method only determines one winner candidate for
both heuristics and the potential keyword is either categorized as a keyword
(100% precision) or not (0% precision). Since no extensive preprocessing nor
stop-word filtration had been performed, I expected a relatively low precision
for the extracted keywords.

One of the questions that arise is: How can the appropriate algorithms be
determined and why do some of the algorithms perform better than others? The
next section provides the answer through the results of an experiment.

100 CHAPTER 8. EVALUATION

8.5 Selection for a Successful Combination

To determine an optimal combination, let us consider the selection process of
algorithms. As the weighting algorithms behave differently depending on the
length, the structure and the writing style of the author, I decided to analyze
their retrieval results. In this section, I analyze the result space of the presented
heuristics (see Chapter 4) and present a simple method to determine optimal
candidates for a successful combination procedure. The results of the first
experiment presented, have been pre-published in a research paper prior to this
work [16].

As a first step, I applied PCA to the result space of six different combinations of
retrieval heuristics to determine potential candidates for a successful combination.
Here, the objective of using PCA was not to reduce a highly dimensional dataset.
Quite the contrary: a balanced set of components accounts for a low correlation
rate of the data and therefore for a diverse set of results. I assume, a highly
diverse set of results embraces more individual characteristics of the underlying
document and is therefore desirable. Since PCA exclusively considers the result
space, it accounts for all effects that have influenced the result generation and
does not require any adjustment of additional parameters.

Based on the basic properties of the heuristics presented in Chapter 4, I have
selected the following combinations for evaluation:

1. WΓ and WTF−IWF

2. WΓ and WBinom

3. WTF−IWF and WBinom

4. WLaplace and WΓ

5. WLaplace and WTF−IWF

6. WLaplace and tWBinom

I only combined two algorithms at a time in order to emphasize the effect of
their individual properties on the result space. A successful selection of retrieval
algorithms should comprise the defined constraints with respect to the source
text (Chapter 5) and may require a set of three or more retrieval algorithms.

To determine the variance of the result set for each of the six algorithm pairs, I
applied them to three different texts of different genres, lengths, and structures:
the top 14 ECBS paper abstracts of 2012, US-President Obama’s State of the
Union Address in January 2012, and the English book Treasure Island by Robert
Louis Stevenson.

Scientific research paper abstracts are very suitable for keyword extraction
because of their similar length. The scientific texts contain a lot of potential
keywords, and the number of windows is relatively low. I treated each abstract of
the top 14 ECBS papers from 2012 as a window and the collection of windows as a
single document. In contrast, the presidential speech represents a larger document
of a different writing style. It is divided into 104 consecutive paragraphs of
different length, representing the individual windows with subtopics. My largest

8.5. SELECTION FOR A SUCCESSFUL COMBINATION 101

 0

 20

 40

 60

 80

 100

ECBS

PresSpeech

TreasureIsland

pe
rc

en
t

Gamma/TF-IDF

 0

 20

 40

 60

 80

 100

ECBS

PresSpeech

TreasureIsland

Gamma/Binomial

 0

 20

 40

 60

 80

 100

ECBS

PresSpeech

TreasureIsland

TF-IDF/Binomial

 0

 20

 40

 60

 80

 100

ECBS

PresSpeech

TreasureIsland

pe
rc

en
t

Laplace/Gamma

 0

 20

 40

 60

 80

 100

ECBS

PresSpeech

TreasureIsland

Laplace/TF-IDF

 0

 20

 40

 60

 80

 100

ECBS

PresSpeech

TreasureIsland

Laplace/Binomial

Figure 8.5: The PCA eigenvalue proportions for six different heuristic retrieval
combinations show the individual contribution of variance to the result set.

sample – the book Treasure Island – is the biggest document of the three test
cases and consists of 5758 paragraphs of different size. Each paragraph was
treated as an individual window.

The algorithms were performed sequentially for each of the combinations 1)
to 6). Subsequently, I analyzed the results with PCA. The fraction of the
individual eigenvalues of the sum of the eigenvalues of all components as defined
in Equation 5.3.1 is depicted in Figure 8.5. The single bar charts depict the
contribution of the results of each individual component to the variance of the
results of the combination for the three sample texts. A strong contribution of
both components indicates two individual, uncorrelated variables; this seems
beneficial for this analysis.

The results for combination 1) and 2) show that the combination of a frequency-
based heuristic with a term-distance measure appears to be beneficial compared
to the combination of WTF−IWF and WBinom. It is clearly visible, that the
two frequency-based measures WTF−IWF and the WBinom do not contribute to
richer results when combined with each other. Another characteristic that can
be observed is the influence of the length of the documents. The combination of
WTF−IWF and WLaplace performs well for the short texts but the contribution
of the second component is almost non-existent for Treasure island. This is
due to the fact that the contribution of WLaplace to the variability of the result
set decreases with larger document size. Apparently, the performance of this
algorithm depends on the size of the texts.

102 CHAPTER 8. EVALUATION

A similar behavior can be observed in the chart of the combination for WBinom

andWLaplace. This behavior is not surprising since the Laplace Law of Succession
is solely based on term frequency. In fact, this indicates that WΓ is a better
candidate for modeling the burstiness for larger documents.

As the results of the PCA-analysis seem to account for the properties of the
retrieval heuristics as well as for the characteristics of the test documents, I
propose to apply PCA to the set of results of the individual heuristics before the
final combination procedure to select the most beneficial retrieval heuristics for
a combination.

As an example, I ran all algorithms on a single document: the English book
Treasure Island by Robert Louis Stevenson and performed PCA as it is described
on Section 5.3 subsequently. The results of this analysis are shown in Figure 8.6.

8.5. SELECTION FOR A SUCCESSFUL COMBINATION 103

-1

-0
.5 0

 0
.5 1

Fre
qu

en
cyLa

pla
ce

Bur
sT

Gam
m

a
Sco

re

NFA

TF-ID
F

Bino
m

ial
 A

na
lys

is

Pois
so

n
Ana

lys
is

BM
25

influence
C

om
po

ne
nt

 1

-1

-0
.5 0

 0
.5 1

Fre
qu

en
cyLa

pla
ce

Bur
sT

Gam
m

a
Sco

re

Helm
ho

ltzTF-ID
F

Bino
m

ial
 A

na
lys

is

Pois
so

n
Ana

lys
is

BM
25

influence

C
om

po
ne

nt
 2

-1

-0
.5 0

 0
.5 1

Fre
qu

en
cyLa

pla
ce

Bur
sT

Gam
m

a
Sco

re

Helm
ho

ltzTF-ID
F

Bino
m

ial
 A

na
lys

is

Pois
so

n
Ana

lys
is

BM
25

influence

C
om

po
ne

nt
 3

F
ig

u
re

8.
6:

T
h
e

P
C

A
ei

ge
n
va

lu
e

p
ro

p
or

ti
on

s
fo

r
si

x
d
iff

er
en

t
h
eu

ri
st

ic
re

tr
ie

va
l

co
m

b
in

at
io

n
s

sh
ow

th
e

in
d

iv
id

u
al

co
n
tr

ib
u
ti

on
of

va
ri

an
ce

to
th

e
re

su
lt

se
t.

104 CHAPTER 8. EVALUATION

The results of this analysis were surprising as the individual components clearly
indicated the properties of the algorithms as stated in Section 4.2. The first two
components comprise more than 98% of the result set. One may interpret that
these two components contain more than 98% of the information of the result
set. The direction of the bars in the graph indicates the results of the algorithms
are positively correlated. If one bar is positive and another negative, the results
are negatively correlated accordingly. The height of the bars indicates the level
of correlation.

The first component indicates a very strong correlation of WTF−IWF , WNFA,
WBinom, and WPoisson. All of these algorithms are based on term frequency,
which I stated in Section 4.5. This can also be observed by the first bar. It
represents the term frequency as a reference value. The results ofWBinom do not
correlate well with the first property. In Table 4.1 is stated that WBinom does
not consider the window frequency, whereas WTF−IWF , WNFA, WBinom, and
WPoisson do consider window frequency to a certain degree. In summary, the
principal component indicates that the results of WTF−IWF , WNFA, WBinom,
and WPoisson show a very similar behavior. This behavior represents a large
portion of the information of the result set, and is based on their common
properties term frequency and window frequency.

The second component indicates, that the results of WBS represent a portion of
the variance of the result set, which does not correlate with any other algorithm.
I assume that this is based on its very specific modeling of term burstiness, that
differs quite significantly from the other algorithms, that model burstiness. The
BursT algorithm clearly represents features of this particular text that none of
the other algorithms may capture.

The third component only represents less than 2% of the variance of the result
set, but its importance is not decreased in any way for this evaluation. The
bars clearly indicate a very strong correlation with the reference value term
frequency. Interestingly, one may observe that the bars of the results of the
TF-IWF-algorithm and the results of the Helmholtz algorithm indicate a quite
strong decorellation. This is due to the aforementioned fact: TF-IWF contains a
lot of stop words and Helmholtz does not. Stop words usually appear frequently
and therefore correlate strongly with term frequency as shown in Figure 8.6.

The results shown in Figure 8.6 only account for the chosen sample. With PCA,
I clearly identified certain properties that were represented by the algorithms
used. These properties account for information contained in the text, but they
may differ for other texts as the algorithms may behave differently for longer
texts or texts of a different style.

The consequence of such an analysis leads to a proper selection of algorithms,
that are able to consider most of the information within the text and combine
them. For this example, the algorithms of choice would be Helmholtz and BursT
or a combination of TF-IWF and BursT if a stop-word removal is performed
before the analysis. The optimal selection of algorithms may vary for each sample
as the properties of written texts can be very diverse.

In this section, I presented a flexible method for clear identification of properties
of the different algorithms for a specific sample. These properties also correspond
to the theoretical analysis, presented in Chapter 4.

8.6. TRIE-BASED CHANGE-POINT DETECTION ALGORITHM 105

8.6 Trie-Based Change-Point Detection Algorithm

The comparison of different measures of entropy in Section 8.6.1 undermines
the claim of the existence of long range correlations in texts. The presented
CPD approach analyzes these correlations and detects hidden passages in texts.
Section 8.6.3 contains a performance analysis of this algorithm as well as a
comparison with another state-of-the-art CPD algorithm. The results of the
comparison are remarkable.

8.6.1 Entropy Measures Compared

A range of different entropy measures for written text exist, but only a few of
them account for long range correlations. Here, I compare a basic estimation
of the Shannon Entropy with the entropy estimate of the parameter free LZ77
algorithm and my trie-based version of the LZ77 algorithm. I applied the
following entropy estimation techniques:

The Shannon Entropy for a sample was estimated with the maximum likelihood
estimate, that was described in Section 6.2. The estimation based on characters
differs from the one based on terms. The estimates of the LZ77 algorithm
were solely character-based and were calculated with the formula provided in
[71]. Kontoyiannis et al. defined an entropy estimator for a sliding window LZ
algorithm as follows:

Ĥk,n =

[
1

n

n∑
i=1

Λni
log n

]−1

The denotation Λni is the match length of the next phrase to be encoded by the
sliding window LZ. The size of sliding window is denoted with n. In other words,
Λni denotes the length of the shortest substring starting at position i that has
not been seen as a substring in the previous n symbols.

I also applied the calculation of Ĥk,n to the trie-based version of the adapted
LZ77 algorithm for characters and terms individually. As the matches of LZ77
and the trie-based algorithm differ, the results of the estimator Ĥk,n were likely

to be different. In this experiment, the purpose of Ĥk,n was to serve as a measure
of the compression rate and convergence of LZ77 and the trie-based algorithm.

In order to show the difference between these three estimates, I applied them to a
number of different texts of different size and estimated the entropy of these texts.
The texts were retrieved from Project Gutenberg [110] and [135]. I analyzed State
of the Union addresses of former Presidents of the US as well as literary books
from Jane Austen (as in [71]), Lew Tolstoi, Johann Wolfgang Goethe, as well as
the Holy Bible. All texts were available in the English language. Throughout
my experiments I discovered that scientific texts seem to have a lower entropy
than literary texts such as novels or poems. This may be resulted in the fact,
that redundancies are generally avoided and the vocabulary of scientific texts is
usually more limited than in literary texts.

Figure 8.7 shows the entropy estimates of the three different algorithms. Shannon
estimated the entropy of written English to be between 0.6 and 1.3 bits per
character (bpc). The LZ77 algorithm was closest to this estimate as it estimated
the entropy of all sample texts close to a value of 2 bpc and approached a

106 CHAPTER 8. EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500

en
tr

op
y

in
 b

its

document size in kB

Shannon Entropy (term-based)
Shannon Entropy (char-based)

LZ77 entropy estimation
LZ77 trie-based (term-based)
LZ77 trie-based (char-based)

Figure 8.7: Comparison of Shannon Entropy, LZ77 estimator, and trie-based
LZ77 estimator with texts of different size.

value even lower than two for large texts. As expected, the Shannon estimation
method did not capture all correlations in the sample texts and estimated much
higher values than the LZ methods. Figure 8.7 shows clearly, that my trie-based
approach was able to capture far more information than any of the plug-in
Shannon estimates. The difference between the LZ77 entropy estimation and
trie-based estimation represents the amount of information lost by the adaptions
made in this work. The character-based approaches were able to catch more
correlations than the term-based methods. This is because some words share
similar character combinations and no stemming was performed beforehand.
Minor positive (at 2 MB) and negative deviations at 1 MB from the expected
continuous results were observed. The reason for these deviations is likely to be
justified in the fact that not all the texts were from the same author and of the
exact same genre.

8.6.2 Trie-Based Change-Point Detection

This section provides the results of the trie-based CPD method, which is described
in Section 7.4. To demonstrate its functionality, I applied this novel algorithm
to several real-world examples while the following properties of the trie are
measured as the algorithm processes the text:

• maximum depth

• total number of nodes

• total number of leaf nodes

• input position

8.6. TRIE-BASED CHANGE-POINT DETECTION ALGORITHM 107

First, I applied the trie-based algorithm to the English version of Goethe’s Faust.
During this evaluation, I observed a predominantly flat trie-structure. This
observation was made for a large amount of texts. Consequently, the maximum
depth provided only limited amount of information. However, the total number
of nodes accounted for the whole trie and responded immediately to structural
changes. The measured total number of nodes and the filtered input positions
(described below) are show in Figure 8.8. The algorithm has been launched in
the term-based version and the window size |w| was set to 200.

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000

po
si

tio
ns

 /
nu

m
be

r
of

 n
od

es

Input Sequence

Trie Analysis

number of nodes
filtered input positions

Figure 8.8: Trie-based analysis of Goethe’s Faust.

The number of nodes measure indicated a sudden growth of the trie after the
start of the process up to approximately 150 nodes. A rise of the number of
nodes was always accompanied by input sequences not observed previously. As
a result, the input positions increased likewise because new entries were inserted
into the trie. The values shown in Figure 8.8 were smoothened with a median
filter to perform a noise reduction and to preserve the edges of the curve. The
noticeable peaks of the filtered input positions were surprising, since Faust was
written by a single author and it was not immediately obvious that the book
contains noticeable changes of the writing style. As I later observed, the English
version actually contained German sections. These German sections triggered
the peaks of the input position measure and a simultaneous increase of the total
number of nodes. Apparently, this trie-based algorithm was able to detect these
“hidden” passages well.

Although the difference between terms and characters has a significant impact
on the entropy estimates as shown in Section 8.6.1, the results of the CPD
algorithms did not show considerable difference between the results. This may
be due to the fact, that the statistical effect of a change-point in my examples
was strong enough to be captured by terms. In addition, terms are at a higher
abstraction level than characters and account for less ambiguity between different
languages. Consequently, I based all the examples presented in this section on
an analysis of terms rather than characters.

108 CHAPTER 8. EVALUATION

To show that this algorithm can detect a change-point within a text, I applied
it to a concatenated excerpt of the English and German versions of Goethe’s
Faust. This example has been chosen in [62] in order to detect a change-point
between these two texts. In a first step, I generated a Java-version of the
match-length-based approach described in [62] and applied it to the sample
text. The documents were preprocessed according to the specifications made in
Section 2.2.2. The result of this experiment serves as a reference and is shown in
Figure 8.9.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

ψ
(j)

n

Match-Length-Analysis

Text 1 Text 2

Figure 8.9: Analysis of a concatenation of two Faust excerpts with the match-
length-based algorithm.

The minimum of the crossing function ψ(j) (see Section 7.1) marks the estimated
change-point between the two texts. I expected a similar result from my trie-
based CPD algorithm and applied it to the same text (|w| = 200, term-based).
The result of the trie-based approach is shown in Figure 8.10. The number of
nodes increased at the beginning of the analysis as the trie was initialized. The
significant increase of filtered input positions clearly indicates a change-point at
about 2500 steps, which matches the position in the text that 8.9 estimated as
the most probable change-point. The difference in steps between the identified
change-points of two algorithms is due to the following:

In Figure 8.10, each step accounts for a new match sequence added to the trie,
contrary to the term position in Figure 8.9. I used a minimum filter to detect a
lower bound of input positions because a change-point was most probable at a
point where a series of almost exclusively new term sequences was inserted into
the trie. Since this is not a sufficient criterion for a change-point, I experimented
with different thresholds of the input positions to set a criterion for change-points.
The minimum filter of input positions in combination with a threshold between
25% to 50 % of |w| appeared to be reasonable to automatically detect a change-
points for the examples presented. The thresholds depend on the text itself and
are not domain-dependent.

8.6. TRIE-BASED CHANGE-POINT DETECTION ALGORITHM 109

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500

po
si

tio
ns

 /
nu

m
be

r
of

 n
od

es

Input Sequence

Trie Analysis

number of nodes
filtered input positions

Figure 8.10: Analysis of a concatenation of two Faust excerpts with the trie-based
algorithm.

In the next example, I applied the trie-based algorithm to a text with one
injected passage. Due to the length of the book Treasure Island by Robert Louis
Stevenson, I considered it a text stream. This text stream contained the German
Wikipedia article about Treasure Island, inserted at a random position. The
same preprocessing steps as above were applied and the initial value for |w| was
set to 400. The trie-based algorithm was applied with the four different versions
of the decay function, presented in Section 7.5. Figure 8.11 shows the results for
this example.

110 CHAPTER 8. EVALUATION

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10000 20000 30000 40000

po
si

tio
ns

 /
nu

m
be

r
of

 n
od

es

Input Sequence

Trie Analysis

number of nodes
filtered input positions

(a) decay1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10000 20000 30000 40000

po
si

tio
ns

 /
nu

m
be

r
of

 n
od

es

Input Sequence

Trie Analysis

number of nodes
filtered input positions

(b) decay2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10000 20000 30000 40000

po
si

tio
ns

 /
nu

m
be

r
of

 n
od

es

Input Sequence

Trie Analysis

number of nodes
filtered input positions

(c) decay3

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10000 20000 30000 40000

po
si

tio
ns

 /
nu

m
be

r
of

 n
od

es

Input Sequence

Trie Analysis

number of nodes
filtered input positions

(d) decay4

Figure 8.11: Trie analysis to locate the boundaries of the German Wikipedia
article that was randomly inserted into the text of the book Treasure Island.

The boundaries of the Wikipedia article can be clearly identified in all four
pictures by the two peaks of input positions within the first quarter of the
book. The first of the two peaks is accompanied by a rise of number of nodes
in the trie due to the new terms in the Wikipedia article, that have not been
observed before by the trie. The hidden passage was identified best with function
decay1. The change-points were located exactly at sequence numbers 2684
and 3409 with the threshold-based procedure described above. However, the
fluctuations in the remainder of the text differed. Through analyzing the results of
decay2, decay3, decay4, I realized that the position of the peaks (input positions
and number of nodes) was slightly off the expected location. Investigations
revealed, that these decay functions erased nodes with terms that appeared more
frequently earlier in time, instead of increasing their life time. Only an increased
life time for these nodes leads to more matches with similar sequences, thus
preserving the long term correlations. Eliminating these nodes faster, leads to
unexpected results. The improved decay functions are displayed in the following
equation:

decay1(~∆τ) = |w|, |w| ∈ N (8.2)

decay2(~∆τ) = |w|+ ∆τn, ∆τ = ∆τ1, ...,∆τn (8.3)

decay3(~∆τ) = |w|+median(~∆τ) (8.4)

decay4(~∆τ) = |w|+min(~∆τ) (8.5)

8.6. TRIE-BASED CHANGE-POINT DETECTION ALGORITHM 111

With the improved decay functions, the trie-based algorithm detected the change-
points correctly and adapted the size of the trie automatically to a certain degree.
Nevertheless, the “resolution” of the detection procedure has to be set beforehand
with |w|.
During my experiments, I used a dictionary as control data for my change-point
analysis method. The expected result was a flat tree structure with only child
nodes of the root node, containing the terms of the dictionary. The English
dictionary had 349.900 terms in total. I performed an analysis with my trie-based
algorithm, the window size set to 200 terms. The result is shown in Figure 8.12.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100000 200000 300000

po
si

tio
ns

 /
nu

m
be

r
of

 n
od

es

Input Sequence

Trie Analysis

number of nodes
filtered input positions

Figure 8.12: This figure shows the results of the trie-based CPD algorithm
applied to a dictionary.

While the algorithm read the first 200 terms, the trie built up until it had reached
the maximum window size. Afterwards, the input position and the number of
position remained constant until the algorithm had read the 349.900 terms.

A few approaches aim to detect plagiarism [133; 23] with IR methods by using
stop words or n-grams. These methods aim to detect authorships plagiarism
in texts. The purpose of the following experiment was to test, if my trie-based
algorithm would detect a change-point between two texts written by two different
authors. Therefore, I placed the first State of the Union address of the first
President of the United States of America (USA) George Washington from
January 8, 1790 before the most recent State of the Union address of the present
President of the USA Barack Obama from January 8, 2014. The two speeches
were written by different authors in different times, and they are of different
length: Washington’s speech contains 1089 terms and Obamas speech contains
6843 terms. I treated the two speeches as one text and analyzed them with the
trie-based change-point algorithm. The window size was 200 terms and decay1

had been used. The results of this sample can be seen in Figure 8.13.

Figure 8.13 contains three measures during the analysis of a total of 7932 terms
and 5214 input sequences. The first speech ends at input sequence 675, which
is marked with a vertical red line in the graph. The minimum filtered input

112 CHAPTER 8. EVALUATION

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000

po
si

tio
ns

 /
nu

m
be

r
of

 n
od

es

Input Sequence

Trie Analysis

number of nodes
median filtered input positions

minimum filtered input positions

Figure 8.13: This figure shows the results of the trie-based CPD algorithm
applied to two consecutive presidential speeches.

positions measure indicates three change-points at positions 3008, 3533, and 5112.
These positions are clearly located within Obamas speech and don’t indicate a
change-point between the two speeches. Instead, they appear to be at paragraphs
with new subtopics in Obamas speech:

• trie input sequence 3008: equal pay for women

• trie input sequence 3533: health care system

• trie input sequence 5112: veterans, freedom, democracy

The difference in word use between the two State of the Union Addresses appeared
to be smaller than the differences between the subtopics in Obamas speech. In
this case, the minimum filtered input positions measure did indicate different
authorship. Instead, the number of trie nodes grew instantly as the algorithms
processed the first terms of Obamas speech.

In Figure 8.13 I also depicted the median filtered input positions, which show
this increase more clearly. Apparently, the trie receives a significant number of
new first level nodes as the algorithm reads the first terms of Obamas State of
the Union Address. Interestingly, this has not been identified as a change-point
simply because the minimum filter was not suitable for this sample. Since both
texts are the same language, there are enough common words (stop words)
that appear in both texts with a high frequency. These terms have low input
positions: the rise of the median number of input positions near sequence 675 was
accompanied by low values, whereas a rise of median number of input positions
near sequence 3000 was not. Consequently, the median number of input positions
may be an additional indicator for authorship plagiarism detection.

To conclude, the presented algorithm detected fluctuations of information content,
but it does not consider the meaning of the information. However, this structural

8.6. TRIE-BASED CHANGE-POINT DETECTION ALGORITHM 113

information can be used for further analysis, such as the segmentation of the text
into individual windows containing a single subtopic. A topic-based segmentation
is desirable for a number keyword extraction approaches (see Section 2.3).

8.6.3 Performance Analysis

In this section, I describe the execution time analysis of the trie-based algorithm.
The execution time of an algorithm is a very important usability aspect, especially
if the algorithm is used for online streaming text data, or for an information
extraction system with user interactions. My reference application has been
implemented according to the specifications described in Section 7.6. The analysis
has been performed with the setup specified in Section 8.1.

In order to compare the execution time, I implemented the state-of-the-art
algorithm presented in [62] as a benchmark. I denoted this benchmark algorithm
“match-lengths”, since the core of this algorithm is based on the match-lengths
described in Section 6.3. The new trie-based algorithm has been applied in
its most advanced (adaptable) version with a window size of |w| = 200. Both
algorithms were executed on texts of different size ranging from 6 Kilobyte (kB)
up to 247 kB and the results of the measured execution time are shown in Figure
8.14. The execution time has been plotted in seconds on the y-axis.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

ex
ec

ut
io

n
tim

e
in

 s

document size in kB

Performance Analysis of Change-Point-Detection Algorithms

Match-Lengths
Trie-Based

Match-Lengths (fitted)
Trie-Based (fitted)

Figure 8.14: Performance analysis of the trie-based algorithm.

Whereas the curve of the trie-based algorithm scales linearly with respect to the
document size and runs very close to the x-axis, the benchmark instead performed
with quadratic complexity. For the smallest tested documents the match-length-
based algorithm performed even better than the trie based algorithm, which I
attribute to the trie build up overhead at the beginning of the scan.

As soon as the trie has reached it’s defined size, the trie transformation operations
continue to be the major operations. The fitted line of the trie-based execution
time grew with a gradient of 0.218 and with an offset of approximately 8.10.
The maximum asymptotic standard error for the fitted line is 5.913%. The fitted

114 CHAPTER 8. EVALUATION

curve for the CPD algorithm exhibits almost quadratic growth with an exponent
of 1.93 and an asymptotic standard error of 3.012%.

These curves revealed one of the key features of my algorithm: its complexity
and therefore its performance allow the application to indefinite streams and
the detection of changes in almost real-time. The implementations used have
room for improvement since they are only reference implementations, but they
revealed the performance characteristics of the algorithms adequately.

Chapter 9

How Keywords link Social
Media

In this chapter, I describe how automatic keyword extraction based on heuristic
text analysis has been applied to the CommunityMashup – a use case scenario
for the heuristic analysis. The CommunityMashup is a data integration solution
for aggregation of data from different social services developed at the Universität
der Bundeswehr München by Peter Lachenmaier and his colleagues [74]. This
software aims to provide an environment for more than just connecting persons
and their online profiles to their real individuals. It aims to identify connections
between contents of different social media services with automated linking
techniques. Automatic keyword extraction and text analysis were successfully
employed to calculate connections between objects in aggregated datasets. The
quick, language-independent retrieval approach fits exactly the needs of the
constantly changing data of the CommunityMashup. First, I describe the
CommunityMashup as a data integration solution. Subsequently, I describe the
link building process in detail.

9.1 CommunityMashup

One of the key success factors of Web 2.0 platforms is the transparency of
an individual’s activities and interests to friends, followers and specific groups.
Subsequently, a multitude of technically enabling platforms exist and each of
them provides individual benefits to its users. Real world users create a number
of independent profiles on different social media platforms to share information.
Support for interlinking platforms and especially for interlinking content is
missing, which results in redundant, unlinked cross-posts.

The microblogging service Twitter has a built in feature that does exactly
this [151]. When connected to other social media services, it automatically
tweets all posts of the connected social media platforms, although the have
been posted already. Various data integration solutions attempt to fill this
gap by aggregating data from different services using techniques such as visual
or dynamic cross-media linking. A major problem with aggregated datasets

115

116 CHAPTER 9. HOW KEYWORDS LINK SOCIAL MEDIA

from different services is, that they generally have poor interlinking. In this
approach users are allowed to modify data: either by interacting with a specific
application or by directly using the source system, which results in frequent
changes of the dataset. Thus, connections must be recalculated very quickly to
keep them up-to-date. This approach has been implemented within an existing
person-centric data integration solution to ensure that each (natural) individual
is represented only once in the overall dataset, independent of how many virtual
identities for separate services each has. Furthermore, user-generated existing
connections can be filtered.

Entity recognition is a subtask of information extraction and it is essential for
the identification of real persons, locations, or organizations [41]. Here, entities
are defined as persons – representing real individuals – users of social media
platforms, or authors of platform content. The entities are identified by their
email or full name, and they can own multiple accounts, or the can be authors
of multiple contents.

This technical solution has been built inside the environment of the Community-
Mashup [74]. In the following, I present an overview of the CommunityMashup
to clarify the integration of the keyword-based link generation into the whole
system. The CommunityMashup is a flexible integration solution for data from
social services and provides features such as application frameworks with offline
data access for different platforms. In contrast to existing mashup solutions, it
aims to provide unified and aggregated information based on a person-centric
data model. This enables the integration of social media data that naturally
belongs to a person or an organization, but is artificially distributed over differ-
ent services on the web. Figure 9.1 depicts the layered overall structure of the

External
 Services

Unifica'on)

End User
Applications

Filtering)

Aggrega'on)
Community

Mashup

Figure 9.1: CommunityMashup Overview

CommunityMashup containing a few exemplary external services at the bottom
and abstract mashup components in the middle, which are responsible for data
unification, aggregation, and filtering. The top layer shows mobile-, web-, and

9.1. COMMUNITYMASHUP 117

desktop-clients as three different exemplary consumer applications representing
stereotypical usage scenarios.

The aggregation of data from different sources allows the creation of connections
across system boundaries. Furthermore, it allows the combination of automatic-
and user-generated connections. The person-centric aggregation of the Commu-
nityMashup also enables the connection of persons with their respective contents
and interlinking of persons that, for instance, work on similar contents.

This setup allows links to be created in background processes on the server side,
and to easily provide the results for consuming (desktop or mobile) applications.

id
InformationObject

RichAttribute

Category

Tag

MetaTag

*

*

*

*

parent

*

keywords
Connection

*

*
*

* *
* **

Content

name
Person

name
Organisationleader

members
author

contributors

parent parent* *

* **

* *

*

persons*

*

Figure 9.2: CommunityMashup data model containing core objects and connec-
tion class

Figure 9.2 shows the core elements: person, content, and organization of the
mentioned internal person-centric data model. The data model also shows the
connection class, which can connect two of these information objects. This core
model is limited only to the most important entities of Social Software. The
central element is the person, which can be grouped in organizations, and can
author or contribute to content. Organizations and content can be structured
hierarchically (parent relation). Additional information can then be assigned
to the information objects by rich attributes, tags, meta-tags and categories.
Categories, in comparison to tags, can be modeled hierarchically. Tags, categories,
and rich attributes carry information that is directly gathered from external
services whereas meta-tags are specific to concrete scenarios.

118 CHAPTER 9. HOW KEYWORDS LINK SOCIAL MEDIA

9.2 Link Building

The link building process requires a content analysis beforehand, where similari-
ties between contents can be identified. In this case, the following two keyword
extraction approaches were performed:

• WTF−IWF

• WBS

These two algorithms were combined with the PCA-based combination method
(see Section 5.3). These two algorithms were chosen because of their properties
and their robustness. Additionally, I performed stop-word extraction, because
some of the sample texts contained a lot of terms that do not serve well as
keywords, such as: “tweet”, “retweet“, and URLs.

They had a more functional relevance such as: URLs, and application specific
commands. Due to the different size of the sample texts I also normalized the
texts according to the specifications presented in Section 2.4.5. I experimented
with a number of approaches and this configuration served well for this use-case
scenario.

This keyword extraction approach was applied to three different preprocessed
datasets individually. From the content analysis, different types of links were
computed:

9.2.1 Types of links

Depending on the concrete application scenario, a balance between accuracy
and interlinking needs to be specified. Two parameters were defined in order to
configure the accuracy and the number of links being created. For all three types
previously existing connections were filtered. Existing connections could be two
people or two authors of the same content. The newly created connections can
be categorized as follows:

Content-Content (CC)

I extracted a list of the best keywords for all contents and compared them
to the keywords of all other contents. A connection between two contents is
then created if there is more than the configured number of required common
keywords.

Person-Content (PC)

As mentioned above, the CommunityMashup creates links between contents,
their author, and additional contributors automatically. If the keywords of a
contribution of a person match the keywords of another content, a new connection
between this content and the person is being created. Consequently, persons are
linked with potentially relevant contents.

9.2. LINK BUILDING 119

Person-Person (PP)

Similar to Person-Content (PC) connections, connections between two persons
are created if they author similar contents.

Abstracts of scientific papers

Scientific paper abstracts are suitable for heuristic keyword analysis because
they precisely comprise a single research project and thus provide inherent
topic segmentation. Furthermore, they are all of similar length, which leads to
minimal distortions by normalization. Two different datasets of 50 scientific
paper abstracts were used for our evaluation:

• the abstracts of the Communities and Technologies (C&T) conference of
the years 2009 and 2011

• the abstracts of the 50 most recent German and English papers of the
Cooperation Systems Center Munich (CSCM)

The precision of the extracted keywords for the scientific paper abstracts was
generally very high, but the precision was not explicitly measured in this paper.
Instead, a telling example is provided to further illustrate our approach:

From the C&T abstracts 242 unidirectional links between contents (Content-
Content (CC)) with a minimum of three matching keywords were generated.
This resulted in 121 newly created bidirectional CC links. One of those links is
based on the three matching keywords:

[wiki, knowledge, communities]

The keywords have been extracted from the two following papers:

• Wiki-based community collaboration in organizations [87]

• Mail2Wiki: low-cost sharing and early curation from email to wikis [52]

The extracted keywords indicate a conceptual association between the two papers
and therefore new Person-Person (PP) and PC connections have to be created.
Three persons have been contributing to the first paper and seven people to the
second. Consequently, 21 PP connections (3 ∗ 7) and 10 PC connections (3 + 7)
are created. The analysis of the two source documents results in a total of 32
connections, based on the three keywords.

Tweets

The third test set consisted of 400 tweets. The challenges of analyzing tweets
are: their short length, the high repetition rate (retweets), and their general lack
of content within the single tweets. It should be mentioned, that in almost all
tweets, each term appears at most once due to the short length of the individual
texts. For this evaluation, the most recent 400 tweets, hash-tagged with the

120 CHAPTER 9. HOW KEYWORDS LINK SOCIAL MEDIA

terms “Europe” or “Greece”, were analyzed. Furthermore, the few preprocessing
steps (see Section 2.2.2) were applied and the terms “europe” and “greece” were
deleted from the source texts.

Connections based on multiple matching keywords often indicated retweets. They
haven’t been excluded from the dataset because they served as a basis for PP
connections. Connections based on a single keyword can reveal interesting links
between independent events: just as the keyword “crisis” links a report about the
ongoing crisis of the European Union and the recent hostage crisis in Algeria.

In addition, single keywords can link independent sources that refer to the same
event: The keyword “eyesight” links a New York Times newspaper article with an
Indian article. Both refer to the same acid attack in Russia. A very interesting
effect can be observed by analyzing tweets that span multiple languages. Due
to the fact that important terms reappear in tweets of different languages and
are identified as keywords by the keyword extraction algorithm, it is possible to
create links between tweets of different languages that link sources of separate
communities. This was done without a resource intensive semantic analysis in
almost real-time. The only limitations were observed within languages that do
not separate their words with spaces such as Chinese or Japanese.

9.2.2 Number of Links

The number of new connections created for the three different datasets are
displayed in Figure 9.3.

Fifteen keywords were extracted from each of the 50 C&T conference abstracts
and from the 50 most recent Cooperation Systems Center Munich (CSCM) paper
abstracts. Due to the short length of the Twitter messages, it seemed reasonable
to only extracted a maximum of four keywords per tweet. For all three test sets,
links were created between persons and contents (CC, PC, PP) by comparing
the extracted keywords for each of these. The minimum number of matching
keywords for a connection to be established varied between one and four. Figure
9.3 shows the number of connections for each of the test sets and the required
number of keywords to connect. The graphs clearly indicate that the highest
number of connections is created when only one matching keyword is required.
With a threshold of four matching keywords the number of connections decreases
significantly.

9.2. LINK BUILDING 121

0

500

1000

1500

2000

2500

3000

 1 2 3 4

nu
m

be
r

of
 c

on
ne

ct
io

ns

keywords to connect

a) CSCM

0

2000

4000

6000

8000

10000

12000

14000

 1 2 3 4

nu
m

be
r

of
 c

on
ne

ct
io

ns

keywords to connect

b) C&T

0

500

1000

1500

2000

2500

3000

 1 2 3 4

nu
m

be
r

of
 c

on
ne

ct
io

ns

keywords to connect

c) Twitter

All connections
PC
CC
PP

Figure 9.3: Number of connections based on number of keywords to connect

122 CHAPTER 9. HOW KEYWORDS LINK SOCIAL MEDIA

The high number of PP-connections for the 50 C&T abstracts is due to the fact
that a total of 142 authors and coauthors were identified throughout the analysis,
whereas only 48 persons were identified as contributors of the papers of the CSCM
research group. Many of these persons wrote the papers together and therefore
have pre-existing explicit connections. This results in less PP-connections.

A total of 356 Twitter users emitted the 400 tweets, that were analyzed. The high
retweet rate in this test set leads to a large number of PC and CC connections.
This indicates that the retweets were identified correctly and that a lot of PP
connections were subsequently created. Tweets with identical content, that have
not been tagged as retweets led to additional PP connections.

The average runtime of the extraction algorithm was only a few seconds. This
can be considered almost real-time since the update procedure is a constantly
running background process.

9.3 Visualization

In a collaboration with Peter Lachenmaier and Martin Burkhard we have im-
plemented a visualization for the links within the CommunityMashup. Figure
9.4 shows this visualization for a sample dataset. The software is web-based
and has been implemented with the JavaFX platform. It has been displayed on
portable mobile devices as well as desktop computers, and large, touch-sensitive,
wall-mounted screens. The objects are not static, they rather position themselved
around the objects they are linked to and appear to be pulled by their gravity.
This effect creates a very organic visualization.

Figure 9.4: This visualization of the CommunityMashup displays users, their
related content, and the associated keywords.

The objects displayed in Figure 9.4 are categorized as follows:

9.3. VISUALIZATION 123

• red circle: person in focus

• green rectangle: person

• red rectangle: first author content

• grey rectangle: co-author content

• blue rectangle : keyword

Before the visualization is initialized, the user has to select a person from a
list. Subsequently, the visualization displays a person-centered view with the
focused person-object (red circle) and all the related contents for this person.
The person Michael Koch is the person object in focus in Figure 9.4. A white
line connects this object to two linked objects. The white line to the content
“Facilitating Social Networking Access for Elderly” (red rectangle) shows, that he
is the first author of that content. Furthermore, he is the second author for the
content “Bowling online: social networking and social capital” (grey rectangle).
The link to the grey rectangle is established via the person Nicole B. Ellison
(green rectangle).

The displayed objects are constantly moving in order to encourage users to
interact with them. All of the objects can be dragged across the screen and
placed somewhere else. Keywords appear for a content in case a user hovers with
the mouse over the content or if a user presses on the content on a touch-screen.
As described above, objects can be linked due to an author/co-author relationship
but also via a specified number of keywords.

This visualization may link people with contents they were not aware of before.
These newly established connections can be created in almost real time and are
visualized instantly. Not only content-person but also person-person relationships
are created and displayed. By adding a social networking service that is constantly
emitting content, this whole setup is continually evolving.

124 CHAPTER 9. HOW KEYWORDS LINK SOCIAL MEDIA

Chapter 10

Conclusions

This chapter contains a summary of the results and provides a discussion of the
main contributions of this thesis.

10.1 Summary

The motivation for this work as well as the main scientific contributions are
presented in Chapter 1. Additionally, I introduced the topic of IR with heuristics
to the specific research field of single documents.

In Chapter 2 I provided general information about this specific research subject
that is necessary for the understanding of the remainder of this thesis. The
analysis of single documents requires segmentation approaches for the different
retrieval algorithms. One of these segmentation approaches has been developed
throughout this work. As one of my main objectives is context-independence, I
perform minimal preprocessing. Furthermore, a number of language models and
basic mathematical concepts were introduced in this chapter.

IR and IE are two major research areas in computer science that have been
studied for many years. Chapter 3 provides an overview of related research for
major fields: summarization, keyword extraction, combination approaches, and
CPD.

A successful combination of different retrieval algorithms comprises all charac-
teristics of a successful IR algorithm. Therefore, I provide formal definition of
retrieval constraints for single documents in Chapter 4. Additionally, a selection
of sample algorithms is presented in this chapter. These sample algorithms
fit the demands of a fast, independent, and parameter-free keyword-extraction
algorithm and are suitable for combination.

The most common approaches for combination of retrieval algorithms have been
presented in Chapter 5. I have presented one approach based on the model of
Divergence of Randomness and four other methods, that combine the results of
the individually executed retrieval algorithms. These combinations allow for the
composition of an algorithm that meets all the desirable retrieval constraints.

The algorithms in Chapter 4 are based on frequency information of single terms
in a document. They don’t consider the structure of the text, and they rely

125

126 CHAPTER 10. CONCLUSIONS

on a segmentation based on windows. In Chapter 6, I have described how the
concept of entropy can provide further insights into the structure of texts. The
basis for my CPD approach is the well known LZ77 compression algorithm,
which has been described in that chapter. The fundamental principle of match
lengths play a crucial role for the understanding of this algorithm and for the
reference algorithm presented in Chapter 7. With the concept of entropy and
the approximation technique based on match lengths, I was able to develop my
own CPD algorithm, that has been presented in Chapter 7. This algorithm is
based on tries and analyzes their structural data. The trie structure and the
trie-transformation procedures were also described in that chapter. Additionally
I have provided a general overview of my reference implementation.

Chapter 8 has revealed that a combination of algorithms may be superior to
individual algorithms. Apparently, the combination method is less crucial than
the combined algorithms. An example of a successful approach has been presented.
Furthermore, I have shown, that the results of individual algorithms reveal
details about their characteristics, which may lead to successful combinations of
algorithms. The CPD algorithms has performed well on the test set of documents
and has clearly identified the change-points. In addition, I have shown that it is
faster than the reference algorithm and it can be applied to indefinite streams of
text data.

10.2 Discussion

Single retrieval heuristics fail to encompass all information of a text that is poten-
tially relevant for a keyword extraction process. In this thesis, I have presented
and analyzed heuristics for IR and IE from single documents. I introduced state-
of-the-art retrieval combination and ranking aggregation methods to combine
well-known retrieval heuristics that work best with single documents. Moreover,
I have evaluated these combination methods with real-world-examples. The
individual compositions are based on retrieval constraints for single documents,
that I have formally defined in this work. All algorithms are based on a common
notation. In this work, I utilized PCA as a parameter-free and effective method
for determining an optimal selection of retrieval heuristics for combination. This
approach accounts for the properties of the heuristics as well as for the charac-
teristics of the analyzed text. I have also introduced self-regulating windows to
achieve more meaningful results.

To demonstrate the success of combinations, I have presented an efficient and
flexible keyword extraction approach for arbitrary text documents. Its key
features are independence from language, structure, and content. Unlike most
other approaches, it does not rely on a training phase or extensive pre-processing
steps. This algorithm satisfies the constraints of a successful retrieval algorithm
as it combines the Helmholtz approach with information related to the burstiness
of terms. I have exemplified the meaningfulness of the results and compared them
to human-assigned keywords. Additionally, I have evaluated the compression
ratio as well as the efficiency of this approach. The runtime scales linearly
to document size and performs better than the well-known TF-IDF approach.
Essentially it enables a fast perception of the content of a larger portion of text.

10.2. DISCUSSION 127

To extract more information from a document or text stream, I analyzed its struc-
tural composition, and I have presented a novel measure for information value
within a text over a time series. This approach identifies entropy fluctuations
within a text based on a history of predefined size. It is flexible, language-
independent, and fits the needs for a fast performing application. I demonstrate
its correctness with several telling examples, presented in a publication of a
related approach, and showed its compelling performance with a benchmark
algorithm.

Finally, I introduced an application of this approach by integrating it into
the implementation of the CommunityMashup with Peter Lachenmaier. With
the contribution of an efficient keyword extraction approach, it was possible to
interlink information objects from different source services based on automatically
extracted keywords. We have evaluated our implementation with three real-world
datasets from different services, varying in length of the contents, community and
topic. The new links revealed new connections between people and content that
were previously unknown. Furthermore, we developed an interactive, platform-
independent visualization approach that allows people to discover new knowledge,
and new social interactions may be forged.

The Wider Scope

Recent applications such as Summly show that the retrieval and extraction
of information is a current topic [123]. Supervised learning algorithms are
extremely popular and most of the successful algorithms incorporate them.
However, I clearly aim to focus the analysis on the text itself. Most of the
research contributions either focus on the single algorithm itself, or on additional
knowledge such as user feedback, large databases, or semantics. Combinations
of heuristics have not been intensively studied.

These heuristics have been selected because they allow for keyword extraction.
Keyword extraction is only one way to extract information from texts, but it is
a very efficient way to obtain meaningful results in short time. Instead, Summly
extracts sentences from texts.

My objective with this work was to extract as much information as possible out
of a plain text, because sometimes a plain text is the only source available. First,
I analyzed some of the most successful retrieval algorithms and found that they
may supplement each other. The presented algorithm in Section 5.1.1 proves this
assumption well. The retrieval constraints were a first step to a formal definition
of the requirements of an optimal algorithm. To my knowledge, no such formal
analysis and composition of retrieval heuristics for single documents has been
done before.

Apparently, the field of single document analysis has not been extensively studied.
Most of the retrieval algorithms have been applied to document collections instead
of single documents. This is partially based on the Defense Advanced Research
Projects Agency (DARPA) Message Understanding Conference (MUC) research
projects. Due to the requirements of these algorithms, single documents have
to be treated like a collection. The presented self-regulating window approach
resulted out of this research question.

128 CHAPTER 10. CONCLUSIONS

The accuracy of the IR heuristics is not always convincing. The quality of
the results often depends on a good segmentation of the document and on the
document itself. I experienced massive problems with the analysis of Tweets,
because a large number of Retweets change the statistics of the text significantly
and therefore strongly influence the retrieval results of a particular algorithm.
Certain syntax had to be filtered manually. A learning algorithm could easily
overcome that issue.

Some recent studies show that the structure of a text document may reveal
valuable insights into the content [94]. The CPD approach can definitely identify
some of these structures. A remarkable feature is its applicability to indefinite
streams. Unfortunately, this prototype is not sensitive enough to detect less
apparent changes in a texts. A more sensitive, automatic approach might be
used for segmentation of documents as a preprocessing step before the analysis
with heuristics.

It also has to be emphasized, that there is still room for improvement for the
reference implementations that were implemented throughout this work. They
serve the purpose of proof of concept and have a great potential for speed and
efficiency optimization. For example, the trie data structure may be implemented
more efficiently with the programming language C/C++ as it facilitates low-level
access to memory [102].

10.3 Future Work

The presented combination approaches show that a combination of heuristics can
be beneficial for the results of a retrieval algorithm. I also provide a PCA-based
method to analyze the properties of the heuristics. If the properties of the
single heuristics could be measured and compared to each other, a framework
for an automatic composition of suitable algorithms would be possible. This
framework can theoretically self-adjust, depending on the text source that has
to be analyzed.

A fast and independent information extraction application can be extremely useful
on small electronic devices such as smartphones and tablets. The development of
a tag-cloud application on a mobile platform may provide the user with instant
summaries to the live content on the screen.

A higher resolution for the CPD approach would be desirable. Experiments with
only certain types of terms (stop words or function words) might provide finer
results. The identification of the change-point can be optimized and may lead to
an automatic segmentation of a document. This automatic partitioning could
be the basis for a keyword extraction process. Additionally, an extensive study
within a microblogging environment could be conducted to analyze the burst
detection capabilities of this algorithm.

The first experiments with the CommunityMashup showed promising results.
Nevertheless, this approach can be utilized for bigger scenarios. The presented
visualization for large screens allows, for example, participants of a scientific
conference to browse all conference submissions as well as the contents and
profiles of all other participants. This keyword-based link creation could be
extended by analyzing the social structure inside the aggregated data of the

10.3. FUTURE WORK 129

CommunityMashup. Similarities between preferences or keywords of linked
documents could be used to generate new links.

130 CHAPTER 10. CONCLUSIONS

Bibliography

[1] SigniTrend: Scalable Detection of Emerging Topics in Textual Streams by
Hashed Significance Thresholds, KDD ’14, New York, NY, USA, August
2014. ACM.

[2] Andrew Albanese. Google book search grows.
http://lj.libraryjournal.com/2007/06/industry-news/google-
book-search-grows/, June 2007.

[3] James Allan, Jaime Carbonell, George Doddington, Jonathan Yamron,
Yiming Yang, Brian Archibald, and Mike Scudder. Topic detection and
tracking pilot study final report. In Proceedings of the DARPA Broadcast
News Transcription and Understanding Workshop, pages 194–218,
Lansdowne, VA, USA, February 1998.

[4] Giambattista Amati. Probability Models for Information Retrieval based
on Divergence from Randomness. Thesis of the degree of doctor of
philosophy, Department of Computing Science University of Glasgow,
June 2003.

[5] Gianni Amati and Cornelis Joost Van Rijsbergen. Probabilistic models of
information retrieval based on measuring the divergence from randomness.
ACM Trans. Inf. Syst., 20:357–389, October 2002.

[6] Ernesto D Avanzo, Bernardo Magnini, and Alessandro Vallin. Keyphrase
Extraction for Summarization Purposes: The LAKE System at DUC-2004.
In Document Understanding Conferences, Boston, USA, 2004.

[7] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern
Information Retrieval – the concepts and technology behind search, Second
edition. Pearson Education Ltd., Harlow, England, 2011.

[8] Alexander A. Balinsky, Helen Y. Balinsky, and Steven J. Simske. On
helmholtz’s principle for documents processing. In Proc. of the 10th ACM
symp. on Document engineering, DocEng ’10, page 283, New York, NY,
USA, 2010. ACM.

[9] Andrea Baronchelli, Emanuele Caglioti, and Vittorio Loreto. Measuring
complexity with zippers. European Journal of Physics, 26(5):S69, 2005.

[10] Michèle Basseville and Igor V. Nikiforov. Detection of abrupt changes:
theory and application. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1993.

131

http://lj.libraryjournal.com/2007/06/industry-news/google-book-search-grows/
http://lj.libraryjournal.com/2007/06/industry-news/google-book-search-grows/

132 BIBLIOGRAPHY

[11] Dario Benedetto, Emanuele Caglioti, and Vittorio Loreto. Language trees
and zipping. Phys. Rev. Lett., 88:048702, Jan 2002.

[12] A. Beutelspacher. Kryptologie. Vieweg, 2007.

[13] G. K. Bhattacharyya and Richard A. Johnson. Nonparametric tests for
shift at an unknown time point. The Annals of Mathematical Statistics,
39(5):pp. 1731–1743, 1968.

[14] Albert Bifet. Adaptive stream mining: Pattern learning and mining from
evolving data streams. In Proceedings of the 2010 conference on Adaptive
Stream Mining: Pattern Learning and Mining from Evolving Data
Streams, pages 1–212, Amsterdam, The Netherlands, The Netherlands,
2010. IOS Press.

[15] Roi Blanco and Alvaro Barreiro. Probabilistic document length priors for
language models. In Craig Macdonald, Iadh Ounis, Vassilis Plachouras,
Ian Ruthven, and RyenW. White, editors, Advances in Information
Retrieval, volume 4956 of Lecture Notes in Computer Science, pages
394–405. Springer Berlin Heidelberg, 2008.

[16] T. Bohne and U.M. Borghoff. Data fusion: Boosting performance in
keyword extraction. In Engineering of Computer Based Systems (ECBS),
2013 20th IEEE International Conference and Workshops on the, pages
166–173, April 2013.

[17] Thomas Bohne and Uwe M. Borghoff. Beyond frequency: Structural
analysis of texts. In Proc. 14th Int. Conf. on Computer-Aided System
Theory, Eurocast 2013, 2013.

[18] Thomas Bohne and UweM. Borghoff. Detecting information structures in
texts. In Roberto Moreno-Dı́az, Franz Pichler, and Alexis
Quesada-Arencibia, editors, Computer Aided Systems Theory -
EUROCAST 2013, volume 8112 of Lecture Notes in Computer Science,
pages 467–474. Springer Berlin Heidelberg, 2013.

[19] Thomas Bohne, Sebastian Rönnau, and Uwe M. Borghoff. Efficient
keyword extraction for meaningful document perception. In Proceedings
of the 11th ACM symposium on Document engineering, DocEng ’11, pages
185–194, New York, NY, USA, 2011. ACM.

[20] U.M. Borghoff, P. Rödig, J. Scheffczyk, and L. Schmitz. Long-Term
Preservation of Digital Documents: Principles and Practices.
Physica-Verlag, 2007. ISBN 9783540336402.

[21] B.E. Brodsky and B.S. Darkhovsky. Nonparametric Methods in Change
Point Problems. Mathematics and Its Applications. Springer, 1993.

[22] Zdeněk Češka and Chris Fox. The influence of text pre-processing on
plagiarism detection. In Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP 2009),
Borovets, Bulgaria, 2009.

BIBLIOGRAPHY 133

[23] Zdenek Ceska and Chris Fox. The influence of text pre-processing on
plagiarism detection. In Proceedings of the International Conference on
Recent Advances in Natural Language Processing, pages 55–59. RANLP
2009 Organizing Committee / ACL, 2009.

[24] H. Chernoff and S. Zacks. Estimating the current mean of a normal
distribution which is subjected to changes in time. The Annals of
Mathematical Statistics, 35(3):pp. 999–1018, 1964.

[25] Kenneth W. Church and William A. Gale. Poisson mixtures. Natural
Language Engineering, 1:163–190, 1995.

[26] R. Clausius. On the Motive Power of Heat, and on the Laws which Can be
Deduced from it for the Theory of Heat. Annalen der Physik. Dover, 1960.

[27] Stéphane Clinchant and Eric Gaussier. The bnb distribution for text
modeling. In Proceedings of the IR Research, 30th European Conference
on Advances in Information Retrieval, ECIR’08, pages 150–161, Berlin,
Heidelberg, 2008. Springer-Verlag.

[28] Stéphane Clinchant and Eric Gaussier. Bridging language modeling and
divergence from randomness models: A log-logistic model for ir. In Leif
Azzopardi, Gabriella Kazai, Stephen Robertson, Stefan Rüger, Milad
Shokouhi, Dawei Song, and Emine Yilmaz, editors, Advances in
Information Retrieval Theory, volume 5766 of Lecture Notes in Computer
Science, pages 54–65. Springer Berlin Heidelberg, 2009.

[29] Stéphane Clinchant and Eric Gaussier. Retrieval constraints and word
frequency distributions a log-logistic model for ir. Inf. Retr., 14:5–25,
February 2011. ISSN 1386-4564.

[30] John M. Conroy and Dianne P. O’leary. Text summarization via hidden
Markov models. In Proc. of the 24th ann. int. ACM SIGIR conf. on
Research and development in information retrieval - SIGIR ’01, pages
406–407, New York, NY, USA, September 2001. ACM.

[31] Copernic Summarizer.
http://www.copernic.com/en/products/summarizer/, November 2013.

[32] Oxford English Corpus. The oec: Facts about the language.
http://www.oxforddictionaries.com/words/the-oec-facts-about-
the-language, November 2013.

[33] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley,
2012.

[34] Cruxbot. http://www.cruxbot.com/, November 2013.

[35] J. Lafferty D. Blei. Topic models. In A. Srivastava and M. Sahami,
editors, Text Mining: Classification, Clustering, and Applications, CRC
Data Mining and Knowledge Discovery Series. Chapman & Hall, 2019.

[36] Pierre Simon de Laplace. Essai philosophique sur les probabilités. English;
A philosophical essay on probabilities. J. Wiley, 1902.

http://www.copernic.com/en/products/summarizer/
http://www.oxforddictionaries.com/words/the-oec-facts-about-the-language
http://www.oxforddictionaries.com/words/the-oec-facts-about-the-language
http://www.cruxbot.com/

134 BIBLIOGRAPHY

[37] Agns Desolneux, Lionel Moisan, and Jean-Michel Morel. From Gestalt
Theory to Image Analysis: A Probabilistic Approach. Springer Publishing
Company, Incorporated, 1st edition, 2007. ISBN 0387726357,
9780387726359.

[38] Allen B. Downey. A novel changepoint detection algorithm, December
2008.

[39] Werner Ebeling and Thorsten Pöschel. Entropy and Long range
correlations in literary English. Europhysics Letters (EPL), 26(4):241–246,
September 1993.

[40] H. P. Edmundson. New Methods in Automatic Extracting. Journal of the
ACM, 16(2):264–285, April 1969.

[41] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal
Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates.
Unsupervised named-entity extraction from the web: An experimental
study. ARTIFICIAL INTELLIGENCE, 165:91–134, 2005.

[42] Hui Fang, Tao Tao, and ChengXiang Zhai. A formal study of information
retrieval heuristics. In Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in information retrieval,
SIGIR ’04, pages 49–56, New York, NY, USA, 2004. ACM.

[43] William Feller. An Introduction to Probability Theory and Its
Applications, Vol. 2. Wiley, 1967.

[44] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, and
Craig G. Nevill-Manning. Domain-specific keyphrase extraction. In
Proceedings of the 16th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’99, pages 668–673, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[45] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):
490–499, September 1960.

[46] Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Philip S. Yu, and Hongjun Lu.
Parameter free bursty events detection in text streams. In Proceedings of
the 31st International Conference on Very Large Data Bases, VLDB ’05,
pages 181–192. VLDB Endowment, 2005.

[47] Yanbin Gao and Gang Zhao. Knowledge-based information extraction: A
case study of recognizing emails of nigerian frauds. In Andrés Montoyo,
Rafael Muńoz, and Elisabeth Métais, editors, Natural Language
Processing and Information Systems, volume 3513 of Lecture Notes in
Computer Science, pages 161–172. Springer Berlin Heidelberg, 2005.

[48] Yun Gao, Ioannis Kontoyiannis, and Elie Bienenstock. Estimating the
entropy of binary time series: Methodology, some theory and a simulation
study. Entropy, 10(2):71–99, 2008.

[49] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous
java performance evaluation. SIGPLAN Not., 42(10):57–76, October 2007.

BIBLIOGRAPHY 135

[50] Javier Girón, Josep Ginebra, and Alex Riba. Bayesian analysis of a
multinomial sequence and homogeneity of literary style. The American
Statistician, 59(1):pp. 19–30, 2005.

[51] Peter Grassberger. Estimating the information content of symbol
sequences and efficient codes. IEEE Transactions on Information Theory,
pages 669–669, 1989.

[52] Ben Hanrahan, Guillaume Bouchard, Gregorio Convertino, Thiebaud
Weksteen, Nicholas Kong, Cedric Archambeau, and Ed H. Chi. Mail2wiki:
Low-cost sharing and early curation from email to wikis. In Proceedings of
the 5th International Conference on Communities and Technologies, C&T
’11, pages 98–107, New York, NY, USA, 2011. ACM.

[53] Stephen P. Harter. A probabilistic approach to automatic keyword
indexing. Part I. On the Distribution of Specialty Words in a Technical
Literature. Journal of the American Society for Information Science, 26
(4):197–206, July 1975.

[54] Qi He, Kuiyu Chang, and Ee-Peng Lim. Using Burstiness to Improve
Clustering of Topics in News Streams. In Data Mining, 2007. ICDM 2007.
Seventh IEEE International Conference on, pages 493–498, 2007.

[55] Qi He, Kuiyu Chang, Ee-Peng Lim, and A. Banerjee. Keep it simple with
time: A reexamination of probabilistic topic detection models. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 32(10):1795
–1808, oct. 2010.

[56] Marti A. Hearst. Multi-paragraph segmentation of expository text. In
Proceedings of the 32nd annual meeting on Association for Computational
Linguistics, ACL ’94, pages 9–16, Stroudsburg, PA, USA, 1994.
Association for Computational Linguistics.

[57] Marti A Hearst. Untangling text data mining. In Proceedings of ACL’99:
the 37th Annual Meeting of the Association for Computational Linguistics,
pages 3–10. Association for Computational Linguistics, 1999.

[58] Marti A. Hearst and Christian Plaunt. Subtopic structuring for full-length
document access. In Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’93, pages 59–68, New York, NY, USA, 1993. ACM.

[59] David V. Hinkley. Inference about the change-point in a sequence of
random variables. Biometrika, 57(1):pp. 1–17, 1970.

[60] R.N. Horspool and G.V. Cormack. Constructing word-based text
compression algorithms. In Data Compression Conference, 1992. DCC
’92., pages 62 –71, March 1992.

[61] H. Hotelling. Analysis of complex statistical variables into principal
components. Journal of Educational Psychology, 24(6):417–441,
September 1933.

136 BIBLIOGRAPHY

[62] Oliver Johnson, Dino Sejdinovic, James Cruise, Ayalvadi Ganesh, and
Robert J. Piechocki. Non-parametric CPD using string matching
algorithms. CoRR, 2011.

[63] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical
Analysis. Applied Multivariate Statistical Analysis. Pearson Prentice Hall,
2007.

[64] Spärck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation, 28(1):11–21, 1972.

[65] Marcin Kaszkiel and Justin Zobel. Effective ranking with arbitrary
passages. Journal of the American Society for Information Science &
Technology, 52(4):344 – 364, 2001.

[66] Jon Kleinberg. Bursty and hierarchical structure in streams. In
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’02, pages 91–101, New York,
NY, USA, 2002. ACM.

[67] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, September 1999.

[68] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching (2nd Ed.). Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998.

[69] Andrey N. Kolmogorov. Three approaches to the quantitative definition
of information. Problems in Information Transmission, 1:1–7, 1965.

[70] Manu Konchady. Text Mining Application Programming. Charles River
Media, Inc., Rockland, MA, USA, 2006.

[71] I. Kontoyiannis, P.H. Algoet, Yu.M. Suhov, and A.J. Wyner.
Nonparametric entropy estimation for stationary processes and random
fields, with applications to english text. Information Theory, IEEE
Transactions on, 44(3):1319 –1327, May 1998.

[72] Jan H. Kroeze, Machdel C. Matthee, and Theo J. D. Bothma.
Differentiating data- and text-mining terminology. In Proceedings of the
2003 annual research conference of the South African institute of computer
scientists and information technologists on Enablement through technology,
SAICSIT ’03, pages 93–101, Republic of South Africa, 2003. South
African Institute for Computer Scientists and Information Technologists.

[73] Niraj Kumar and Kannan Srinathan. Automatic keyphrase extraction
from scientific documents using N-gram filtration technique. In Proc. of
the 8th ACM symp. on Document engineering - DocEng ’08, page 199,
New York, NY, USA, 2008. ACM.

[74] Peter Lachenmaier, Florian Ott, and Michael Koch. Model-driven
development of a person-centric mashup for social software. Social
Network Analysis and Mining, 3(2):193–207, 2013.

BIBLIOGRAPHY 137

[75] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An
Introduction to Latent Semantic Analysis. Discourse Processes, 25:
259–284, 1998.

[76] Chung-Hong Lee, Chih-Hong Wu, and Tzan-Feng Chien. Burst: A
dynamic term weighting scheme for mining microblogging messages. In
Derong Liu, Huaguang Zhang, Marios Polycarpou, Cesare Alippi, and
Haibo He, editors, Advances in Neural Networks – ISNN 2011, volume
6677 of Lecture Notes in Computer Science, pages 548–557. Springer
Berlin / Heidelberg, 2011.

[77] Chang-Jin Li and Hui-Jian Han. Keyword extraction algorithm based on
principal component analysis. In Ran Chen, editor, Intelligent Computing
and Information Science, volume 135 of Communications in Computer
and Information Science, pages 503–508. Springer Berlin Heidelberg, 2011.

[78] Wentian Li and Pedro Miramontes. Fitting ranked english and spanish
letter frequency distribution in us and mexican presidential speeches.
Journal of Quantitative Linguistics, 18(4):359–380, 2011.

[79] Marina Litvak and Mark Last. Graph-based keyword extraction for
single-document summarization. In MMIES ’08 Proc. of the Workshop on
Multi-source Multilingual Information Extraction and Summarization,
pages 17–24, August 2008.

[80] Robert M. Losee. A discipline independent definition of information. J.
Am. Soc. Inf. Sci., 48(3):254–269, February 1997.

[81] G. Louloudis, A.L. Kesidis, and B. Gatos. Efficient word retrieval using a
multiple ranking combination scheme. In Document Analysis Systems
(DAS), 2012 10th IAPR International Workshop on, pages 379 –383,
march 2012.

[82] D.G. Lowe. Perceptual organization and visual recognition. Kluwer
international series in engineering and computer science: Robotics. Kluwer
Academic Publishers, 1985.

[83] H. P. Luhn. A statistical approach to mechanized encoding and searching
of literary information. IBM J. Res. Dev., 1(4):309–317, October 1957.

[84] Dmitrii Y. Manin. On the nature of long-range letter correlations in texts.
CoRR, abs/0809.0103, June 2008.

[85] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge, MA, USA, 1999.

[86] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. Cambridge University Press,
Cambridge, Juli 2008.

[87] Osama Mansour, Mustafa Abusalah, and Linda Askenäs. Wiki-based
community collaboration in organizations. In Proceedings of the 5th
International Conference on Communities and Technologies, C&T ’11,
pages 79–87, New York, NY, USA, 2011. ACM.

138 BIBLIOGRAPHY

[88] Ali Mehri and Amir H. Darooneh. The role of entropy in word ranking.
Physica A: Statistical Mechanics and its Applications, 390(18–19):3157 –
3163, 2011.

[89] Saket Mengle and Nazli Goharian. Detecting hidden passages from
documents. In SIAM Conference on Data Mining (SDM 2008) Workshop,
April 2008.

[90] Saket Mengle and Nazli Goharian. Passage detection using text
classification. Journal of the American Society for Information Science
and Technology, 60(4):814–825, April 2009.

[91] David R. H. Miller, Tim Leek, and Richard M. Schwartz. A hidden
markov model information retrieval system. In Proceedings of the 22Nd
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’99, pages 214–221, New
York, NY, USA, 1999. ACM.

[92] MIT Senseable City Lab. http://senseable.mit.edu/tweetbursts/,
August 2015.

[93] Marcelo A. Montemurro and Damián H. Zanette. Entropic analysis of the
role of words in literary texts. CoRR, 2001.

[94] Marcelo A. Montemurro and Damián H. Zanette. Keywords and
co-occurrence patterns in the voynich manuscript: An
information-theoretic analysis. PLoS ONE, 8(6):e66344, 06 2013.

[95] Marcelo A. Montemurro and Damián H. Zanette. Towards the
quantification of the semantic information encoded in written language.
Advances in Complex Systems, 13(2):135–153, 2010.

[96] M. E. J. Newman. Power laws, pareto distributions and zipf’s law.
Contemporary Physics, 2005.

[97] Martin A. Nowak, Natalia L. Komarova, and Partha Niyogi.
Computational and evolutionary aspects of language. Nature, 417(6889):
611–617, June 2002.

[98] D.S. Ornstein and B. Weiss. Entropy and data compression schemes.
Information Theory, IEEE Transactions on, 39(1):78–83, 1993.

[99] Joseph O’Sullivan and Adam Smith. All booked up.
http://googleblog.blogspot.de/2004/12/all-booked-up.html,
January 2014. Google Official Blog.

[100] The Pagerank, Citation Ranking, and Bringing Order. The PageRank
Citation Ranking: Bringing Order to the Web. World Wide Web Internet
And Web Information Systems, pages 1–17, 1998.

[101] David D. Palmer. Text pre-processing. In Nitin Indurkhya and Fred J.
Damerau, editors, Handbook of Natural Language Processing, Second
Edition. CRC Press, Taylor and Francis Group, Boca Raton, FL, 2010.

http://senseable.mit.edu/tweetbursts/
http://googleblog.blogspot.de/2004/12/all-booked-up.html

BIBLIOGRAPHY 139

[102] Adam Pauls and Dan Klein. Faster and smaller n-gram language models.
In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1,
HLT ’11, pages 258–267, Stroudsburg, PA, USA, 2011. Association for
Computational Linguistics.

[103] K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(6):559–572, 1901.

[104] Jay M. Ponte and W. Bruce Croft. A language modeling approach to
information retrieval. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’98, pages 275–281, New York, NY, USA, 1998. ACM.

[105] H.V. Poor and O. Hadjiliadis. Quickest Detection. Cambridge books
online. Cambridge University Press, 2009.

[106] K.R. Popper. The Logic of Scientific Discovery. Classics Series.
Routledge, 2002.

[107] M. F. Porter. An algorithm for suffix stripping. In Karen Sparck Jones
and Peter Willett, editors, Readings in information retrieval, pages
313–316. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1997.

[108] R.C. Prati. Combining feature ranking algorithms through rank
aggregation. In Neural Networks (IJCNN), The 2012 International Joint
Conference on, pages 1–8, june 2012.

[109] Oxford University Press. Oxford dictionary.
http://oxforddictionaries.com/words/what-is-the-frequency-of-
the-letters-of-the-alphabet-in-english, August 2015.

[110] Project Gutenberg Literary Archive Foundation.
http://www.gutenberg.org/, August 2015.

[111] L R Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):
257–286, 1989.

[112] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, Cambridge, 2012.

[113] Benjamin Reilly. Social choice in the south seas: Electoral innovation and
the borda count in the pacific island countries. International Political
Science Review, 23(4):355–372, 2002.

[114] Alex Riba and Josep Ginebra. Diversity of vocabulary and homogeneity of
literary style. Journal of Applied Statistics, 33(7):729–741, 2006.

[115] S. E. Robertson and Sparck K. Jones. Relevance weighting of search
terms. Journal of the American Society for Information Science, 27(3):
129–146, 1976.

http://oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-the-alphabet-in-english
http://oxforddictionaries.com/words/what-is-the-frequency-of-the-letters-of-the-alphabet-in-english
http://www.gutenberg.org/

140 BIBLIOGRAPHY

[116] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and
M. Gatford. Okapi at TREC-3. In Overview of the Third Text REtrieval
Conference (TREC–3), pages 109–126. Gaithersburg, MD: NIST, 1996.

[117] S.E. Robertson, S. Walker, M. Beaulieu, and Peter Willett. Okapi at
trec-7: Automatic ad hoc, filtering, vlc and interactive track. In, 21:
253–264, 1999.

[118] Stephen Robertson. Understanding inverse document frequency: on
theoretical arguments for IDF. Journal of Documentation, 60(5):503–520,
2004.

[119] Sebastian Rönnau and Uwe Borghoff. Xcc: change control of xml
documents. Computer Science - Research and Development, pages 1–17,
2010.

[120] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Communications of the ACM, 18:613–620, November 1975.
ISSN 0001-0782.

[121] Gerard Salton, J. Allan, and Chris Buckley. Approaches to passage
retrieval in full text information systems. In Proceedings of the 16th
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’93, pages 49–58, New York,
NY, USA, 1993. ACM.

[122] Markus Schulze. A new monotonic, clone-independent, reversal symmetric,
and condorcet-consistent single-winner election method. Social Choice and
Welfare, 36:267–303, 2011.

[123] Ami Sedghi. Summly founder: teen entrepreneurs have the net advantage.
http://www.theguardian.com/technology/2013/oct/21/summly-
founder-teen-entrepreneurs-nick-daloisio, October 2013.

[124] C. E. Shannon. A mathematical theory of communication. Bell system
technical journal, 27, 1948.

[125] P.C. Shields. The Ergodic Theory of Discrete Sample Paths. Graduate
studies in mathematics. American Mathematical Society, 1996.

[126] Jonathon Shlens. A tutorial on principal component analysis. In Systems
Neurobiology Laboratory, Salk Institute for Biological Studies, 2005.

[127] Amit Singhal. Modern Information Retrieval : A Brief Overview. IEEE
Data Engineering Bulletin 24, pages 35–43, 2001.

[128] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document
length normalization. In Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’96, pages 21–29, New York, NY, USA, 1996. ACM.

[129] J. Sivic and A Zisserman. Efficient visual search of videos cast as text
retrieval. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 31(4):591–606, April 2009.

http://www.theguardian.com/technology/2013/oct/21/summly-founder-teen-entrepreneurs-nick-daloisio
http://www.theguardian.com/technology/2013/oct/21/summly-founder-teen-entrepreneurs-nick-daloisio

BIBLIOGRAPHY 141

[130] Josef Sivic and Andrew Zisserman. Video google: A text retrieval
approach to object matching in videos. In Proceedings of the Ninth IEEE
International Conference on Computer Vision - Volume 2, ICCV ’03,
Washington, DC, USA, 2003. IEEE Computer Society.

[131] C. Soanes and A. Stevenson, editors. The concise Oxford dictionary.
Oxford University Press, 11. ed., rev. edition, 2006.

[132] Efstathios Stamatatos. Plagiarism detection based on structural
information. In Proceedings of the 20th ACM international conference on
Information and knowledge management, CIKM ’11, pages 1221–1230,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0717-8.

[133] Efstathios Stamatatos. Plagiarism detection based on structural
information. In Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, CIKM ’11, pages 1221–1230,
New York, NY, USA, 2011. ACM.

[134] Heather A. Stark. What do paragraph markings do?. Discourse Processes,
11(3):275 – 303, 1988.

[135] State of The Union Address Library.
http://stateoftheunionaddress.org/, August 2015.

[136] Brian Stelter. He has millions and a new job at yahoo. soon, he’ll be 18.
New York Times, 11, mar 2013.

[137] Danie Stolte. Experts determine age of book ’nobody can read’.
http://phys.org/news/2011-02-experts-age.html, 2011. PhysOrg.

[138] Gilbert Strang. Introduction to linear algebra. Cambridge Publication,
2003.

[139] Russell Swan and James Allan. Automatic generation of overview
timelines. In Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’00, pages 49–56, New York, NY, USA, 2000. ACM.

[140] Alexander G. Tartakovsky, Boris L. Rozovskii, Rudolf B. Blažk, and Kim
Hongjoong. A novel approach to detection of intrusions in computer
networks via adaptive sequential and batch-sequential CPD methods.
IEEE Transactions on Signal Processing, 54(9):3372 – 3382, 2006.

[141] Zhi Teng, Ye Liu, Fuji Ren, and Seiji Tsuchiya. Single Document
Summarization Based on Local Topic Identification and Word Frequency.
In 7th Mexican Int. Conf. on Artificial Intelligence, pages 37–41. IEEE,
October 2008.

[142] TextTeaser. http://www.textteaser.com/, November 2013.

[143] Nitin Thaper. Using compression for source baed classification of text.
Master’s thesis, Massachusetts Institute of Technology, 2001.

[144] The Graph Visualization Software. Graphviz.
http://www.graphviz.org/, August 2015.

http://stateoftheunionaddress.org/
http://phys.org/news/2011-02-experts-age.html
http://www.textteaser.com/
http://www.graphviz.org/

142 BIBLIOGRAPHY

[145] Takashi Tomokiyo and Matthew Hurst. A language model approach to
keyphrase extraction. In Proceedings of the ACL 2003 Workshop on
Multiword Expressions: Analysis, Acquisition and Treatment - Volume 18,
MWE ’03, pages 33–40, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

[146] Topicmarks.
http://techcrunch.com/2011/12/09/tagged-acquires-topicmarks/,
August 2013.

[147] Jurij Toplak. Preferential voting: definition and classification. In Annual
Meeting of the Midwest Political Science Assication 67th Annual National
Conference, 2010.

[148] Jordi Turmo, Alicia Ageno, and Neus Català. Adaptive information
extraction. ACM Computing Surveys, 38(2), July 2006.

[149] Peter D. Turney. Learning algorithms for keyphrase extraction.
Information Retrieval, 2:303–336, May 2000. ISSN 1386-4564.

[150] Peter D. Turney and Patrick Pantel. From frequency to meaning: vector
space models of semantics. Journal of Artificial Intelligence Research, 37:
141–188, January 2010. ISSN 1076-9757.

[151] Twitter. http://www.twitter.com/, August 2015.

[152] UK Twitter Blog. The olympics on twitter.
https://blog.twitter.com/en-gb/2012/the-olympics-on-twitter,
November 2012.

[153] Vińıcius Rodrigues Uzêda, Thiago Alexandre Salgueiro Pardo, and Maria
Das Graças Volpe Nunes. Evaluation of Automatic Text Summarization
Methods Based on Rhetorical Structure Theory. In 8th Int. Conf. on
Intelligent Systems Design and Applications, pages 389–394. Ieee,
November 2008.

[154] J. Ventura and J.F. da Silva. Brain, Vision and AI, chapter Ranking and
Extraction of Relevant Single Words in Text. InTech, 2008.

[155] J. W. von Goethe and David Luke. Faust: Part One. Oxford World’s
Classics. OUP Oxford, 2008. ISBN 9780191501258.

[156] Xiaojun Wan and Jianguo Xiao. Exploiting neighborhood knowledge for
single document summarization and keyphrase extraction. ACM
Transactions on Information Systems, 28(2):1–34, May 2010.

[157] Xing Wei. Topic Models in Information Retrieval. Ir, University of
Massachusetts, August 2007.

[158] Colin Wheildon and M. Warwick. Type & Layout: How Typography and
Design Can Get Your Message Across–or Get in the Way. Strathmoor
Press, 1995.

http://techcrunch.com/2011/12/09/tagged-acquires-topicmarks/
http://www.twitter.com/
https://blog.twitter.com/en-gb/2012/the-olympics-on-twitter

BIBLIOGRAPHY 143

[159] Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin, and
Craig G. Nevill-Manning. KEA: Practical Automatic Keyphrase
Extraction. In Proc. of the 4th ACM conf. on Digital libraries - DL ’99,
pages 254–255, New York, NY, USA, August 1999. ACM.

[160] A.D. Wyner and J. Ziv. Some asymptotic properties of the entropy of a
stationary ergodic data source with applications to data compression.
Information Theory, IEEE Transactions on, 35(6):1250–1258, 1989.

[161] A.D. Wyner and J. Ziv. The sliding-window lempel-ziv algorithm is
asymptotically optimal. Proceedings of the IEEE, 82(6):872–877, 1994.

[162] C. T. Yu and G. Salton. Precision weighting – an effective automatic
indexing method. J. ACM, 23(1):76–88, January 1976.

[163] Chengxiang Zhai and John Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’01, pages 334–342, New
York, NY, USA, 2001. ACM.

[164] Chengxiang Zhai and John Lafferty. A study of smoothing methods for
language models applied to information retrieval. ACM Trans. Inf. Syst.,
22:179–214, April 2004. ISSN 1046-8188.

[165] Wayne Xin Zhao, Baihan Shu, Jing Jiang, Yang Song, Hongfei Yan, and
Xiaoming Li. Identifying event-related bursts via social media activities.
In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL ’12, pages 1466–1477, Stroudsburg, PA, USA,
2012. Association for Computational Linguistics.

[166] Hongding Zhou and Gary W. Slater. A metric to search for relevant
words. Physica A: Statistical Mechanics and its Applications, 329(1–2):309
– 327, 2003.

[167] G. K. Zipf. Selective Studies and the Principle of Relative Frequency in
Language. Harvard University Press, 1932.

[168] G K Zipf. Human Behavior and the Principle of Least Effort, volume 6.
Addison-Wesley, 1949.

[169] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. Information Theory, IEEE Transactions on, 23(3):337–343,
1977.

[170] J Zobel, R Wilkinson, and R Sackes-Davis. Efficient retrieval of partial
documents. Information Processing & Management, 31(3):361 – 377, 1995.

144 BIBLIOGRAPHY

Appendix A

The Reference
Implementation

This appendix describes the detailed trie construction procedure for a sample
and provides information about the reference implementation for this work.

My reference implementation contains two major parts:

• the keyword extraction and combination approaches and

• the CPD approach.

Both implementations were created with Java, version Java SE 1.7. Section A.2
depicts the trie construction and Section A.1 provides an overview of the code
structure of the keyword extraction software part. The structure of my reference
implementation for the change-point analysis is described in Section A.3.

A.1 Keyword Extraction Reference
Implementation

The package KeywordExtraction contains the main Java code for the keyword
extraction approaches and their combination methods. Figure A.1 provides an
overview of the main classes that implement the analysis. The input text data is
represented by the class document, that contains zero or more Windows – the
classes are associated. Each Window has a content that consists of zero or more
Terms.

The class KeywordExtraction uses the class Preprocessor to preprocess input
text for the analysis. The class Preprocessor performs all preprocessing tasks,
extracts raw text from websites and file formats such as Portable Document
Format (PDF). Additionally, the class Preprocessor performs different
segmentation techniques on the input text into windows.

The class Analyzer analyzes an instance of the class Document. It contains a
number of different methods to count term frequencies and term distances. The

145

146 APPENDIX A. THE REFERENCE IMPLEMENTATION

KeywordExtraction

0..1

0..1 0..*

0..*

0..1

KeywordExtraction

Preprocessor

Analyzer

Information

Document Window

Term

Figure A.1: This Unified Modeling Language (UML) class diagram provides an
overview of the structure of the reference implementation for the combination of
the heuristics.

class Information is a specialization of the class Analyzer. It contains all
described methods to calculate and to combine different term weights, based on
the data generated by an instance of the class Analyzer.

The class KeywordExtraction instantiates the required classes for a keyword
extraction task. It coordinates the processes necessary for a certain keyword
extraction algorithm for a specific type of input data.

A.2 Detailed description of the Trie-Structure

This section provides a detailed description of the input procedure of the
trie-based dictionary described in Section 7.2. At the beginning, the trie is
empty and contains the root node only. At that time, the root node is the only
leaf node in the trie and the trie has to be built up. The input sequence
“abrakadabra” is read character by character.

Figure A.2a shows the trie after the first character “a” has been read. After
adding “a” to the trie, the time τ of the trie increases and τ = 1 for the root
node. The same happens for the letters “b” and “c” in Figure A.2b and A.3a.

A.2. DETAILED DESCRIPTION OF THE TRIE-STRUCTURE 147

root, 1

“a”, 0

(a) The first character has been
read.

root, 2

“a”, 0 “b”, 1

(b) Character “b” has been read.

As the trie already contains character “a”, the next input sequence is “ak”.
Consequently, the node with the character “a” is updated and a child node with
character “k” is attached to the parent with character “a”. The time of the node
with the character “a” is updated and the time of the root node increases to
τ = 5 because two nodes were added to the trie.

root, 3

“a”, 0 “b”, 1 “r”, 2

(a) Character “r” has been read.

root, 5

“a”, 3

“k”, 4

“b”, 1 “r”, 2

(b) “a” was recognized and “ak” has
been read.

Since the trie contains the information of sequence “ak” already – the first letter
is an “a” – the algorithm recognizes the “a” and reads the next character of the
input sequence. The next character is a “d”. Consequently, a child node “a” is
added to the node with character “a” at level one. The following step is very
similar to the last one: the sequence “ab” is added to the trie. Whenever the
node with character “a” gets another child node, its lifetime is updated.

148 APPENDIX A. THE REFERENCE IMPLEMENTATION

root, 7

“a”, 5

“k”, 4 “d”, 6

“b”, 1 “r”, 2

(a)“a”was recognized and“ad”has been
read.

root, 9

“a”, 7

“k”, 4 “d”, 6 “b”, 8

“b”, 1 “r”, 2

(b) Character “a” is recognized in the trie
and “rb” is read and inserted into the trie.

The next character of the input sequence is “r”. Since the trie contains a node at
level one with the character “r”, the subsequent character of the input sequence
can be read. As the node with the character “r” is a leaf node, a node with the
character “a” is added as a child node. The complete trie is displayed in Figure
A.5g. After reading the complete input sequence with 11 characters, the trie
contains 8 nodes.

root, 11

“a”, 7

“k”, 4 “d”, 6 “b”, 8

“b”, 1 “r”, 9

“a”, 10

(g) Character“r”is recognized in the trie and
“ra” is read and inserted into the trie. This
figure shows the dictionary trie after pro-
cessing the input sequence “abrakadabra”.

A.3 Structure of the Reference
Implementation for Change-Point Analysis

This section provides a general overview of the reference implementation for this
thesis. The focus here is CPD. The UML class diagram in Figure A.6 shows the
main classes in the package CPD. The classes Document, Window, and Term
contain the input data, similar to the ones in Section A.1.

A.3. REFERENCE IMPLEMENTATION FOR CPD 149

CPD

0..*0..*

0..*

0..* 0..1

ChangePointAnalysis

ChangePointDetection

Preprocessor

Analyzer

CPD

Document Window

Term

Figure A.6: This UML Class diagram provides an overview of the structure of
the reference implementation of the CPD algorithm.

The class ChangePointAnalysis coordinates the change-point analysis and
instantiates all required classes for a specific approach. The class Preprocessor
performs all necessary preprocessing steps for a document if required. My main
approaches are performed by the methods of class CPD, which is a specialization
of the class Analyzer. The class Analyzer performs document analysis and
provides different frequency data for an instance of the class Document.

The reference approach described in Section 7.1 is implemented with the class
ChangePointDetection. This class does not require and of the analyses
performed by the class Analyzer.

The trie data structure is implemented in a separate package Trie, which is
presented in Section 7.6. Different types of tries have been implemented in this
package:

• a trie that grows while reading input data,

• a tries that is based on a window of fixed size, and

• an adaptive trie with a decay value for its nodes.

The different algorithms for CPD and the different types of tries can utilized for
character or term-based CPD.

150 APPENDIX A. THE REFERENCE IMPLEMENTATION

Acronyms

ACM Association for Computing Machinery.

API application programming interface.

BC Borda Count.

BIM Binary Independence Model.

bpc bits per character.

C&T Communities and Technologies.

CC Content-Content.

CPD change-point detection.

CSCM Cooperation Systems Center Munich.

CUSUM cumulative sum.

DARPA Defense Advanced Research Projects Agency.

DocEng Symposium on Document Engineering.

ECBS Engineering of Computer Based Systems.

HTML HyperText Markup Language.

IDE integrated development environment.

IDF Inverse Document Frequency.

IE Information Extraction.

IR Information Retrieval.

IWF Inverse Window Frequency.

JIT Just-In-Time.

JVM Java Virtual Machine.

151

152 Acronyms

kB Kilobyte.

KEA Keyphrase Extraction Algorithm.

KL Kullback-Leibler.

LM language model.

LSA Latent Semantic Analysis.

LSI Latent Semantic Indexing.

LZ Lempel-Ziv.

MB Megabyte.

MUC Message Understanding Conference.

NLP natural language processing.

ODF Open Document Format for Office Applications.

PC Person-Content.

PCA Principal Component Analysis.

PDF Portable Document Format.

POS part of speech.

PP Person-Person.

SVD Singular Value Decomposition.

TD Topic Detection.

TDT Topic Detection and Tracking.

TF term frequency.

TF-IDF Term Frequency - Inverse Document Frequency.

TF-IWF Term Frequency - Inverse Window Frequency.

TOP Term Occurrence Probability.

TPM Tweets per minute.

TREC Text REtrieval Conference.

UML Unified Modeling Language.

URL Uniform Resource Locator.

US United States.

Acronyms 153

USA United States of America.

VM Virtual Machine.

VSM Vector Space Model.

XML Extensible Markup Language.

	Kurzfassung
	Abstract
	Legend
	Contents
	Introduction
	Context of this Work
	Classification of this Thesis
	Goal and Approach
	Scientific Contributions
	Outline

	IR for Single Documents
	Mathematical Background
	What is a Document?
	Segmentation of Documents
	Information Retrieval Models
	The Key Adaptations

	Related Work
	Automatic Summarization for Single Documents
	Keyword Extraction Algorithms
	Change-Point Detection Literature Review

	Term Weighting Algorithms
	Keyword Extraction Procedure
	Analytical View of Retrieval Constraints
	Frequency-based Information Measures
	Burstiness
	Analysis of the models based on the retrieval constraints
	Performance Analysis of the Heuristic Algorithms

	Combination of Heuristic Measures
	The Divergence from Randomness Framework
	Ranking Aggregation Methods
	PCA
	The relation between PCA and ''SVD

	Structural Information in Textual Data
	Basic Idea
	Entropy – An Information Measure
	Grassberger's Match Lengths
	LZ'77

	Change-Point Detection for Textual Data
	A Match-Length-Based Approach
	Trie-based Text Analysis
	The Trie Transformation Procedure
	Trie-Based Change-Point Detection
	Adaptive Window
	Reference Implementation

	Evaluation
	Experimental Setup
	Evaluation of Keyword Extraction Approaches
	A Specific Combination Approach
	Evaluation of the Combination Approaches
	Selection for a Successful Combination
	Trie-Based Change-Point Detection Algorithm

	How Keywords link Social Media
	CommunityMashup
	Link Building
	Visualization

	Conclusions
	Summary
	Discussion
	Future Work

	The Reference Implementation
	Keyword Extraction Reference Implementation
	Detailed description of the Trie-Structure
	Reference Implementation for CPD

