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Kurzfassung

Elektroautomobile bieten eine Vielzahl an Vorteilen gegenüber konventionellen, mit fossilen

Brennstoffen betriebenen Kraftfahrzeugen. Insbesondere die Möglichkeit, lokale Schadstoffe-

missionen zu vermeiden, wird oftmals als ihr größter Vorteil angesehen. Nichtsdestotrotz sind

die Verkaufszahlen in vielen Ländern äußerst gering. Hohe Anschaffungskosten und eine typi-

scherweise geringe Reichweite werden häufig als die Kernursachen hierfür angesehen. Geringe

Reichweiten führen zur sogenannten ”Reichweitenangst“. Dieser Begriff beschreibt die Angst

davor, dass während der Fahrt die in der Batterie gespeicherte Energie vollständig aufgebraucht

wird und das Fahrzeug stehen bleibt. Die vorliegende Doktorarbeit wurde durch die Annah-

me motiviert, dass Fahrern von Elektroautomobilen ihre Reichweitenangst genommen werden

kann, indem ihnen präzise und zuverlässige Navigationsinformationen zur Verfügung gestellt

werden. Solche Navigationsinformationen beschreiben hierbei nicht nur Routen, sondern auch,

an welchen Ladesäulen und bis zu welchem Ladezustand das Elektroautomobil wieder aufgela-

den werden soll. Diese Art der Information wird hier als ”Ladestrategie“ bezeichnet und kann

als eine Art Boxenstopp-Strategie für Elektroautomobile interpretiert werden. Dabei ist ent-

scheidend, dass die Anweisungen, aus denen eine solche Ladestrategie besteht, ein Erreichen

des Ziels sicherstellen, was bedeutet, das Risiko stehen zu bleiben muss sehr gering gehalten

werden. Zugleich sollen aber auch unnötige und unnötig lange Ladestopps vermieden werden.

Um solche Ladestrategien berechnen zu können, wird innerhalb der ersten Kapitel der Arbeit

ein geeignetes mathematisches Optimierungsmodell entwickelt. Zunächst werden zu diesem

Zweck bereits existierende wissenschaftliche Arbeiten im Bereich der Navigationsanwendun-

gen für Elektroautomobile näher beleuchtet. Dabei stellt sich heraus, dass das Problem des Fin-

dens optimaler Ladestrategien zwar bereits einige Male untersucht wurde, dass aber die vorge-

schlagenen Problemformulierungen häufig starke Vereinfachungen realer Situationen darstell-

ten. Insbesondere wird die Existenz von Unsicherheiten innerhalb der für die Berechnungen

notwendigen Prognosen (z.B. hinsichtlich des für den Fahrtvorgang notwendigen Energiever-

brauchs) nicht oder nur unzureichend berücksichtigt. Um diese Forschungslücke zu schließen,

wird eine generische Formulierung als sogenanntes Multistage Decision Problem vorgeschla-

gen. Diese Formulierung ist sehr flexibel und erlaubt das Miteinbeziehen praktisch beliebiger

Faktoren. Allerdings ist das Finden einer Lösung auf numerischem Wege kaum mehr möglich.
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Daher wird, basierend auf diesem ersten Vorschlag, eine zweite, deutlich anwendungsorientier-

tere Problemformulierung vorgeschlagen. Hierbei wird das Problem, optimale Ladestrategien

zu finden, als deterministisches kürzeste Wege Problem modelliert. Ladestrategien werden in

diesem Zuge hinsichtlich der erwarteten Reisezeit optimiert. Das vollständige Entleeren der

Batterie wird über eine Nebenbedingung verhindert. Diese Formulierung als kürzeste Wege

Problem stellt einen Kompromiss zwischen der notwendigen Realitätsnähe und numerischer

Lösbarkeit dar. Eine Analyse der Eigenschaften dieser Problemformulierung weist nach, dass

das Berechnen einer Lösung trotz der erheblichen Vereinfachungen im Vergleich zur ersten

Formulierung immer noch sehr aufwändig ist. Es werden zwei auf Dijkstra’s Algorithmus ba-

sierende Optimierungsansätze vorgestellt. Der erste erlaubt es, optimale Lösungen für das ent-

wickelte Modell zu berechnen. Der zweite Algorithmus kann dies nicht mehr garantieren, aber

er ermöglicht es, Berechnungszeiten auf ein für praktische Anwendungen realistisches Maß zu

reduzieren.

Auch diese zweite Formulierung als deterministisches kürzeste Wege Problem stellt nur einen

weiteren Zwischenschritt dar. Ihre zentrale Schwäche ist, dass es – wie bereits in früheren

wissenschaftlichen Arbeiten – nicht möglich ist, Unsicherheiten explizit zu berücksichtigen.

Liegen nämlich prognostizierte Energieverbräuche unter den real auftretenden, so kann es pas-

sieren, dass ein Fahrzeug, welches einer auf diesem Modell basierenden Ladestrategie folgt,

mangels Energie auf der Strecke liegen bleibt. Um derartige Situationen zu vermeiden, wird

die zuvor erwähnte Nebenbedingung erweitert. Nun werden nicht nur solche Ladestrategien in

der Betrachtung ausgeschlossen, für die prognostiziert wird, dass der Ladezustand während der

Fahrt auf null sinkt, sondern es wird darüber hinaus ein Teil der Batteriekapazität als Energie-

Puffer reserviert. Dieser dient ausschließlich dazu, unerwartet hohe Energieverbräuche kom-

pensieren zu können. Das bedeutet, dass eine Ladestrategie nur dann empfohlen wird, wenn

diese ohne den als Puffer definierten Teil der Batterie auskommt. Entscheidend ist in diesem

Zusammenhang, dass kein zu großer Teil der Batteriekapazität als Puffer veranschlagt wird, da

man durch diesen letztendlich die für die Ladestrategieoptimierung verfügbare Energie redu-

ziert. Große Energie-Puffer machen es daher notwendig, häufiger zu laden, beziehungsweise

es kann vermehrt zu Situationen kommen, in denen überhaupt keine Ladestrategie, die einen

solchen Puffer unberührt lässt, empfohlen werden kann. Anderseits darf der Puffer auch nicht

zu klein gewählt werden, da er sonst nicht ausreicht, um die auftretenden Unterschiede zwi-

schen realem und prognostiziertem Energieverbrauch zu kompensieren. Im Rahmen dieser Ar-

beit werden verschiedene Ansätze zur Bestimmung der Größe des Energie-Puffers vorgestellt.

Ihnen allen ist gemein, dass sich die vorgeschlagene Größe des Puffers im Laufe einer Fahrt

ständig verändert. So wächst der Puffer beispielsweise für Streckenabschnitte, die besonders

hohe Unsicherheitsfaktoren aufweisen, und er schrumpft, falls es unwahrscheinlich ist, dass der

reale Energieverbrauch deutlich über den prognostizierten steigt. Das so resultierende kürzeste
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Wege Problem erlaubt es, mit Unsicherheiten umzugehen, und kann weiterhin durch die zuvor

erwähnten Modifikationen von Dijkstra’s Algorithmus gelöst werden. Hierdurch wird ein wei-

teres Anwachsen von Rechenzeiten bei der Problemlösung verhindert.

In einem nächsten Schritt wird mittels Simulation getestet, inwieweit das Konzept des Energie-

Puffers tatsächlich fähig ist, mit auftretenden Unsicherheiten umzugehen. Zu diesem Zweck

wird das bisher noch weitestgehend abstrakte Modell dahingehend konkretisiert, dass der Ein-

fluss von Verkehrszuständen entlang der Streckenabschnitte einer Route auf Energieverbrauch

und Reisezeit abgebildet wird. Darüber hinaus wird im Rahmen der Simulation davon ausge-

gangen, dass zu dem Zeitpunkt, zu welchem eine Ladestrategie berechnet und empfohlen wird,

lediglich fehlerbehaftete Verkehrsprognosen zur Verfügung stehen. Ein einzelner Simulations-

lauf ist dann wie folgt aufgebaut: Grundsätzlich soll die Fahrt eines Elektroautomobils entlang

einer langen Strecke simuliert werden. Zunächst wird eine Ladestrategie für ein gegebenes Sze-

nario an dieser Strecke berechnet. Ein solches Szenario ist definiert durch die sich entlang der

betrachteten Strecken befindende Ladeinfrastruktur, den Ladezustand des Elektroautomobils zu

Beginn der Fahrt sowie durch weitere Aspekte, die im Kontext der Ladestrategieoptimierung

von Relevanz sind. Während des eigentlichen Simulationslaufes folgt das Elektroautomobil der

berechneten Ladestrategie. Dabei trifft es, wie bereits angedeutet, auf Verkehrssituationen, die

teilweise von der für die Berechnung der Ladestrategie prognostizierten Verkehrssituation ab-

weichen. Entsprechend weichen auch Fahrgeschwindigkeiten, Reisezeiten, Energieverbräuche

und die Entwicklung des Ladezustands von der Prognose ab. Allerdings wird das Elektroauto-

mobil während der Fahrt ständig mit neuen Ladestrategien versorgt. Diese Updates beziehen

die bis zum Zeitpunkt der Berechnung tatsächlich eingetretenen Energieverbräuche und Reise-

zeiten mit ein und basieren zudem auf aktualisierten Verkehrsprognosen. Falls nun, im Rahmen

der Simulation, das Elektroautomobil in der Lage ist, das Ende des vorgegebenen Streckenab-

schnitts zu erreichen, so wird der Simulationslauf als Erfolg gewertet. Falls die Abweichungen

zwischen Realität und Prognose dazu führen, dass das Fahrzeug mangels Energie auf der Stre-

cke liegen bleibt, wird der Simulationslauf als Versagen gewertet.

Um nun den Einfluss unterschiedlicher Arten von Verkehrsprognosen (z.B. das Verwenden von

auf historischen Daten basierender Durchschnittsgeschwindigkeiten oder die Anwendung so-

genannter instantaner Fahrgeschwindigkeiten) und unterschiedlicher Ansätze zur Bestimmung

der Größe des Energie-Puffers auf die Qualität der resultierenden Ladestrategien zu bestim-

men, wird eine Vielzahl von Simulationsläufen durchgeführt. Dabei werden unterschiedlichste

Szenarien betrachtet, um möglichst robuste, das heißt allgemeingültige Ergebnisse zu erhalten.

Folglich ist es notwendig, die Rechenzeiten für einen einzelnen Simulationslauf sehr kurz zu

halten. Dies wird dadurch erreicht, dass – wie bereits zuvor erwähnt – lediglich eine einzelne,

lange Strecke (ca. 360 Kilometer) betrachtet wird statt eines gesamten Verkehrsnetzes, welches
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dann auch eine Alternativroutenwahl erlauben würde. Durchschnittliche Reisezeiten und Er-

folgsraten werden verwendet, um die Qualität der berechneten Ladestrategien in Abhängigkeit

der verwendeten Verkehrsprognose und der angewandten Methode zur Bestimmung der Größe

des Energie-Puffers zu bestimmen.

Eine Analyse der Simulationsergebnisse zeigt, dass sowohl die Art der Verkehrsprognose als

auch die Methode zur Bestimmung der Größe des Energie-Puffers erheblichen Einfluss auf die

Erfolgsrate haben. Allerdings stellt sich deren Einfluss auf Reisezeiten als eher gering heraus.

Darüber hinaus zeigt sich ebenfalls, dass die Beziehung zwischen der Qualität der Ladestrategi-

en und der Güte der Verkehrsprognosen äußerst komplex ist. Die Ergebnisse belegen, dass die

Wahrscheinlichkeit, auf der Strecke liegen zu bleiben, nicht nur davon abhängt, wie zutreffend

die Verkehrsprognose, auf der die verwendete Ladestrategie basierte, war – obwohl der Unter-

schied zwischen Verkehrsprognose und realer Verkehrssituation die einzige Unsicherheitsquel-

le innerhalb der Simulation darstellt. Zudem wird durch die Simulationsergebnisse deutlich,

dass akkuratere Verkehrsprognosen nicht zwingend zu besseren Ladestrategien führen. Am

wichtigsten ist aber die Beobachtung, dass die Wahl eines geeigneten Energie-Puffers stets ein

Qualitätslevel der Ladestrategien sicherstellt, welches auch eine Anwendung in der Realität er-

lauben sollte. So kann ein Liegenbleiben in praktisch allen simulierten Situationen verhindert

werden. Zugleich wird aber auch ein übervorsichtiges Verhalten in der Regel vermieden, das

heißt es ist (fast immer) möglich, eine Ladestrategieempfehlung abzugeben.

Im letzten inhaltlichen Kapitel der Arbeit werden reale Testläufe auf Basis des entwickelten

Modells durchgeführt. Ein Elektroautomobil mit einer offiziellen Reichweite von 170 Kilome-

tern wird hierbei dazu genutzt, eine mit ausreichend Ladeinfrastruktur ausgestattete Strecke

von über 400 Kilometern zurückzulegen. Den Testfahrern wird eine prototypische Softwa-

re zur Verfügung gestellt, die diesen während der Fahrt – auf Basis des aktuellen Ladezu-

stands, der aktuellen Position sowie aktueller Verkehrsinformationen – optimierte Ladestrate-

gien empfiehlt. Eine Auswertung der resultierenden Fahrtverläufe ergibt, dass Energie-Puffer

grundsätzlich auch für reale Anwendungen geeignet sind. Allerdings zeigen die Testfahrten

auch einen Schwachpunkt der vorgeschlagenen Modellierung auf: Ausfälle von Ladeinfra-

struktur sind zum Zeitpunkt der Testfahrten vergleichsweise häufig aufgetreten. Das entwi-

ckelte Modell erlaubt es aber nicht, diese Art von Unsicherheiten zu berücksichtigen. Ent-

sprechend muss für eine Anwendung der entwickelten Konzepte entweder solange gewartet

werden, bis Fehlfunktionen von Ladestationen weitestgehend ausgeschlossen werden können,

oder das Modell muss noch einmal grundlegend angepasst werden.
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Executive Summary

Battery electric vehicles (BEVs) provide many advantages in comparison to conventional, in-

ternal combustion engine vehicles. Especially their ability to avoid local exhaust emissions is

often understood as a possible solution for cities which suffer from air pollution. Still, in many

countries BEV selling numbers are low. It is assumed that this is primarily caused by high ac-

quisition costs and their limited driving range. The latter leads to the so-called ”range anxiety“,

i.e., the fear of running out of energy during a trip. This limits application possibilities. For

instance, it seems to be commonly accepted that BEVs cannot be used for long-distance trips.

The main motivation of this thesis is to reduce or, in the best case, to eliminate range anxiety

(particularly for long-distance trips) by providing accurate and reliable navigation information

to BEV drivers. In this context, a navigation system is not only intended to recommend routes,

but also to suggest where the BEV should be charged and how much energy should be charged.

This kind of information is here denoted as ”charging strategy“. A charging strategy can be

understood similarly to a pit strategy in Formula One. For its construction, basically two ob-

jectives are pursued: First and foremost, the given instructions have to ensure a reliable arrival,

i.e., the risk of running out of energy has to be kept very low. Second, the total travel time and

along with it the number and duration of charging stops has to be kept low.

To be able to compute such charging strategies, a suitable mathematical framework is devel-

oped in the first chapters of the thesis. A literature review, where the focus is set on prior

works about navigation applications that are primarily intended for BEVs, forms the funda-

ment. It turns out that the problem of finding ”optimal“ (different interpretations of optimality

exist) charging strategies has already been addressed several times. However, the correspond-

ing problem formulations lack realism, since several potentially relevant aspects are not taken

into account or not considered in a realistic way. To fill this research gap, a generic formulation

as a multistage decision problem is suggested. This formulation surpasses prior approaches in

terms of generality and flexibility. On the other hand, this optimization problem can hardly be

handled numerically. Hence, a second, more practical problem formulation is provided, where

the problem of finding optimal charging strategies is interpreted as a deterministic shortest path

problem (SPP). This reformulation is intended as a compromise between ensuring realism and
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achieving numerical computability. Minimizing total travel times is applied as the optimiza-

tion criterion and avoiding empty batteries is ensured via a side constraint. An analysis of the

properties of this SPP is conducted. It shows that, despite the simplifications that result from re-

ducing the originally suggested multistage decision problem to a deterministic SPP, computing

optimal solutions is still quite expensive. Two different modifications of Dijkstra’s algorithm

are introduced to solve the problem efficiently. The first one is able to compute optimal charg-

ing strategies for the described setting. The second one leads to in general very good, though

suboptimal solutions. At the same time, the second approach is able to reduce computation

times down to a level which should be sufficient for practical applications.

Also this formulation as a deterministic SPP is just another intermediate step. The issue is

that charging strategies, particularly if they are intended for long-distance trips, need to take

information about future events into account to achieve a high level of quality. Such predic-

tions, on the other hand, are often not absolutely correct. The suggested deterministic SPP is

at this point of the thesis unable to handle uncertainties caused by imperfect predictions about,

for instance, energy consumption. The consequence is that following recommended charging

strategies would often lead to an empty battery, at least under realistic conditions. To solve this

issue, the side constraint which is intended to ensure that running out of energy is avoided is

adjusted. Instead of only demanding that the battery’s state of charge has to always be above

zero during a trip, a certain percentage of the battery’s maximal energy capacity is reserved to

compensate for unexpectedly high energy consumption. Such ”energy buffers“ need to be kept

as small as possible. Otherwise significant parts of the battery capacity would remain unused.

This would cause additional charging stops and, along with that, increased travel times. On the

other hand, the buffers need to be big enough to be able to compensate for prediction errors.

Several different approaches for quantifying the size of this energy buffer are introduced. The

motivation for all of these approaches is to adjust the size of the energy buffer dynamically

during a trip depending on the level of uncertainty which exits in the respective situation. The

resulting problem formulation is more robust against uncertainties and can again be solved

by the aforementioned modifications of Dijkstra’s algorithm. Thus, no significant increase of

computation times needs to be expected.

In a next step, it is tested via simulation how well the concept of energy buffers allows handling

uncertainties. For this purpose, some preparatory steps are necessary. The yet very general

problem formulation is concretized in such a way that the impact of traffic conditions on en-

ergy consumption and travel times is included into the problem formulation. Furthermore, it is

assumed that at the time at which a charging strategy is requested, computed and recommended,

only imperfect information about the future development of traffic is available. Based on these

preparatory steps, a single simulation run is structured as follows: First, a charging strategy is
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computed for a given scenario. A scenario is defined by the available charging infrastructure,

the state of charge at the beginning of the trip, and by other aspects which are of relevance

in the context of charging strategy optimization. Then, a simulated BEV starts following the

recommended charging strategy while facing a traffic situation that is possibly different to the

one which was presumed during the computation of the charging strategy. Hence, experienced

driving speeds and states of charge differ from the predicted values. During the simulated trip,

steadily new charging strategies are computed. These computations take updated traffic pre-

dictions and updated information about the BEV’s state of charge into account and provide

guidance for the remaining part of the trip. The BEV always follows the latest charging strat-

egy. If the simulated BEV is finally able to reach the destination, it is counted as a success. If

the experienced situation makes it run out of energy, then the simulation run is counted as a

failure.

To test the influence of different traffic prediction methods (for example, using average driv-

ing speeds based on historical data or applying instantaneous driving speeds as a best guess

for the future) and different approaches for quantifying the size of the applied energy buffers,

many simulation runs are carried out. Robustness of the results is ensured by considering many

different scenarios. This makes it necessary to keep the computation time which is necessary

for a single simulation run reasonably low. For this purpose, charging strategies are always

computed for a single, predetermined (long-distance) route, i.e., the simulated BEV is unable

to take alternative routes to reach its destination. Success rates and total travel times are used to

measure the quality of charging strategies in dependency of traffic prediction approaches and

energy buffer methods.

An analysis of the simulation results shows that both traffic prediction approaches and energy

buffer methods have significant influence on success rates. Their impact on travel times, how-

ever, is comparably small. It can also be observed that the relation between traffic prediction

quality and charging strategy quality is not trivial. The findings prove that the risk of running

out of energy does not only depend on the traffic prediction quality, even though it represents

the only source of uncertainty. Furthermore, it turns out that better traffic predictions not nec-

essarily lead to better charging strategies. On the other hand, it can at least be stated that

sufficiently accurate traffic predictions ensure charging strategies of high quality. Moreover,

the results of the simulation study also indicate that the concept of energy buffers is well-suited

to handle uncertainties, at least if these uncertainties are caused by error-prone traffic predic-

tions. For most of the tested scenarios, the risk to run out of energy can almost be eliminated.

At the same time, an over-cautious behavior can be avoided.

Finally, in order to gain a different and more practical perspective on the problem of finding

optimal charging strategies, a few field tests are conducted. An electric vehicle with an official
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electrical driving range of 170 kilometers is used to cover a distance of more than 400 kilo-

meters. A prototypic implementation of a software tool for computing charging strategies is

provided to the test drivers in order to support them during their trips. The gathered experi-

ences indicate that the proposed framework is basically suited to provide reasonable charging

strategies also for practical applications. However, the gathered experiences also show that,

currently, one cannot rely on the existing charging infrastructure. This is a major thread to

the proposed framework, since the concept of energy buffers, the way it is described in this

thesis, is hardly able to compensate charging station failures. Hence, either the reliability of

the charging stations has to be improved or the developed framework needs further adjustments.

In conclusion, there are two main contributions of this research: The first one is the formulation

of the problem of finding optimal charging strategies as an optimization problem which

• provides the possibility to take those aspects in realistic way into account which show

the highest influence on charging strategies

• optimizes charging strategies with regard to reliability and total travel time

• is able to handle the existence of uncertainties

• can be solved rather efficiently.

Particularly the ability to handle uncertainties represents a significant enhancement in compar-

ison to existing approaches for charging strategy optimization. Moreover, a detailed analysis of

the properties of the developed problem formulation as a deterministic SPP is conducted and,

based on the findings of this analysis, two solution algorithms are suggested.

The second important contribution of this work is the intensive analysis of the ability of the de-

veloped problem formulation to handle uncertainties. The simulation study provides detailed

insights into the complex relation between existing uncertainties and the quality of charging

strategies. Moreover, the findings of this study show that the concept of energy buffers allows

handling uncertainties for a huge variety of scenarios. The conducted field tests complement

the simulation study and indicate that, even though some issues need to be solved before, the

developed framework can also be applied in practice.
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Chapter 1

Introduction

In this chapter, the conducted research is motivated, followed by an introduction of desired

research objectives. At the end, an outline of the thesis is provided.

1.1 Research Context
In 2011, the German government stated the goal of bringing one million battery electric vehi-

cles (BEV) onto the roads by the year 2020. This goal is motivated by a variety of advantages

that BEVs show in comparison to internal combustion engine vehicles (ICEV): No local emis-

sion of pollutants, less noise emissions, less dependency on oil imports, and even the possibility

to use car batteries as a dynamic energy storage to compensate for irregular electricity supply

caused by renewable energies (6). Unfortunately, with each passing day, it becomes more ob-

vious that this goal won’t be reached. High acquisition costs and the deeply rooted fear of

potential customers to run out of energy while driving a BEV, the so-called ”range-anxiety“,

are often assumed to be the main reasons for the limited demand for BEVs (see p. 10 in (104)).

To counter the former, the German government recently followed the example of other coun-

tries, such as Norway, and started offering monetary incentives to people who buy a BEV (24).

To counter the latter, a closer look at the topic of BEVs is necessary.

The maximum driving range of BEVs, i.e., the distance that can be covered without recharging,

is very small compared to ICEVs. At the moment, the official maximal driving range lies only

for a few models above 250 kilometers (98) (155). Furthermore, low outdoor temperatures or

high driving speeds may reduce this in most cases too optimistic estimation drastically (66).

ICEVs, by contrast, achieve driving ranges of several hundred and some even of more than one

thousand kilometers. Thus, thinking about driving ranges usually has not been necessary. An-

other relevant aspect is that the publicly accessible charging infrastructure is in many countries,

including Germany, sparsely distributed over the road network, at least when being compared

to the coverage with gas stations. According to (27), currently there exist about 4,800 charging

stations in Germany. The number of gas stations is three times as high (3) and due to charging

1
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durations of up to several hours, a charging station is not able to serve the same number of

vehicles that can be served by a gas station. The comparably low number of publicly available

charging infrastructure along with the significantly lower driving ranges are the main reasons

for the fear that driving BEVs leads to situations in which it is impossible to reach the next

charging station (120).

Based on these considerations, two obvious approaches to counter range-anxiety can be de-

rived: Additional charging stations could be built or the driving range of BEVs could be in-

creased. Currently, both approaches are realized. Between July 2015 and June 2016 alone,

the number of charging stations was raised by 1,200 in Germany (27). Furthermore, many

car manufacturers launched improved versions of their first generation BEVs, which provide

enhanced battery capacities (98). Unfortunately, both approaches lead to drawbacks. Infras-

tructure measures, for instance, are expensive. According to (104), average costs for building a

publicly accessible charging station ranged in 2013, depending on the energy throughput of the

charging station, between 10,000 and 27,000 Euros. Operating costs between 1,700 and 3,000

Euros per year and charging station need to be added. The critical point is that these costs are

too high. Making profit by selling electricity is, at least at the moment, not realistic (p. 35 in

(106)). Hence, often the public is left with building up or subsidizing charging infrastructure.

Increasing battery capacities, unfortunately, also hides some drawbacks. Costs for research in

the area of battery technologies are included into the acquisition costs of BEVs and keep them

high. A side-effect of this is that low-budget BEVs will be offered in the near future, which

ensure lower acquisition costs by using less-efficient or comparably small batteries (40). The

possibility to make trade-offs between acquisition costs and battery capacity already exists to-

day, since for more and more BEV models the option of including an enlarged (16) (or reduced

(144), respectively) battery is available. Hence, the topic of limited driving ranges probably

remains relevant during the next years, even though ranges of BEVs in general will improve.

In this thesis, a third approach to tackle range-anxiety is pursued. The central goal is to re-

duce range-anxiety via advanced navigation applications which are particularly developed for

BEVs. This is motivated by the fact that a well-informed driver, i.e., a driver who is aware

that she/he receives reliable information about remaining driving ranges and trustworthy in-

structions concerning future charging processes, is less vulnerable to range-anxiety (120). To

illustrate the idea, let the situation that is described in the left part of Figure 1.1 be considered:

A person wants to use a BEV to drive from her/his current location to a certain destination.

The battery’s state of charge (SOC) is at about 50 percent, which is not enough to reach the

destination. There exist several different routes leading from the BEV’s current position to the

destination. Along each route several charging stations can be found. The driver wants to reach

the destination reliably, i.e., she/he has to prevent the BEV from running out of energy during
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Figure 1.1: The problem of finding charging strategies.

the trip. At the same time, the trip should be conducted efficiently, i.e., the number of charging

stops and their duration should be kept low. The following questions arise in this context:

• Which route should be taken?

• At which charging stations along this route should be charged?

• How much energy should be charged?

First experience reports about people using BEVs for trips of several hundred kilometers show

that answers to these questions are very important for drivers (2) (39). The main problem is

that there are many aspects which have influence on energy consumption and thus should be

taken into account. Some of these potentially relevant aspects are indicated in Figure 1.1, such
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as outdoor temperature, traffic conditions, charging durations, and road steepness. For a single

person, however, it is hard to gather and consider all this information. Hence, it seems reason-

able to let these questions be answered by the navigation system of the BEV. This means that,

similar to current navigation systems, the driver requests a route describing the way from his

current position to a certain destination. The navigation system, on the other hand, not only

provides route guidance, but also information defining at which charging stations the BEV has

to be recharged and up to which state of charge it has to be recharged. Such a type of informa-

tion, which consists of route and charging instructions, is from here on denoted as charging
strategy. Note that a necessary condition for the existence of reasonable charging strategies

is the availability of fast-charging stations. Such stations allow recharging large parts of the

battery of current BEVs in less than half an hour (17). This represents a huge improvement in

comparison to ”conventional“ charging which causes, depending on the charging technology,

charging durations of up to several hours. Without the possibility to quickly charge energy,

recharging during a trip was not practicable.

Three examples of charging strategies are shown in the right part of Figure 1.1. They refer to

the situation in the left part of Figure 1.1. The conditions at the start of the trip are the same

for all three charging strategies: The state of charge is equal to about 40 percent and the trip

is started at 15:00. All three strategies suggest taking the gray route, i.e., charging stations

one, three and six can be visited during the trip. A BEV following the first strategy, which

is denoted as strategy A, drives to charging station one and then completely recharges its bat-

tery. This consumes lots of time and thus it is already 16:15 when the BEV again proceeds

with driving. The BEV experiences a traffic jam shortly before reaching charging station three.

This causes some delay. At charging station three, it is again fully recharged until 18:10. As

a consequence, the BEV has enough energy stored to get over the mountains, which can be

found shortly before charging station six, and to skip charging at station six. It arrives at the

destination at 19:10 with a very low state of charge. Charging strategy B represents an ex-

treme case. To avoid the rush hour traffic between charging stations one and three, which is

for the sake of the example assumed to emerge at around 16:30, no charging at station one

is suggested. Unfortunately, the available energy is not enough to reach station three and the

BEV runs out of energy shortly after passing charging station one. The last charging strategy

suggests charging up to a state of charge of about 80 percent at charging station one. This

allows leaving station one twenty minutes earlier than when following charging strategy A, but

the charged energy is still enough to reach station three. Hence, the rush hour traffic between

stations one and three can be avoided as the corresponding road stretch is passed earlier. Anal-

ogously to strategy A, strategy C also specifies to fully recharge the battery at station three.

In contrast to strategy A, however, an additional charging process is suggested at station six.
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The consequence is that the destination is reached with a higher state of charge than when fol-

lowing strategy A. Additionally, the destination is even reached earlier. In conclusion, it can

be assumed that strategy C takes a prediction about a probably occurring congestion into ac-

count to keep travel times low. This travel time reduction is afterwards used to avoid low states

of charge, which are critical if the real energy consumption exceeds the predicted consumption.

It is important to mention that the example which is described by Figure 1.1 is artificially

generated and not based on real data. Nevertheless, the example and the described charging

strategies express the idea to achieve reliable and efficient trips through a smart planning of

charging stops. For the purpose of reducing range-anxiety, a navigation system which is able

to provide such high quality instructions represents an attractive supplement to the aforemen-

tioned approaches (more charging infrastructure and bigger batteries). It is attractive, because

it can be expected that developing a charging strategy optimization (CSO) functionality and

implementing it into existing navigation devices is significantly cheaper than expensive in-

frastructure measures. Moreover, long-distance trips with BEVs would become much more

convenient, since no trip planning was necessary. Hence, it would also be more likely that

long-distance trips are conducted with BEVs. Furthermore, CSO should be able to ensure that

unnecessary charging stops, which are often the consequence of an over-cautious charging be-

havior due to range anxiety (50), are avoided. Along with this, an efficient usage of available

battery capacities could be encouraged. In the long run, this may even allow reducing battery

capacities, which again could lead to lower acquisition costs and less weight of BEVs.

1.2 Research Objectives
The primary intention of the described research is providing a first basis for a later inclusion of

CSO functionalities into real world navigation systems. Achieving this objective requires the

development of a mathematical framework which allows deriving practicable charging strate-

gies. This leads to the first central research objective (RO) of this work:

RO 1: Formulate a mathematical optimization problem that allows computing reliable and ef-

ficient charging strategies.

Note that several such ROs are stated in the following. This will make it easier to motivate and

explain the structure of the thesis.

The formulation of the first RO is not very specific. To make the idea of RO 1 more concrete,

three additional and more specific subobjectives regarding the problem formulation are intro-

duced. The first of these subobjectives, denoted by RO 1a, can be found below:
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RO 1a: The suggested problem formulation has to be able to realistically represent those as-

pects which are relevant for a practical application of CSO.

All kinds of factors that have influence on the energy consumption of the BEV or on travel time

may be understood as relevant aspects, such as traffic conditions or vehicle specific parameters.

Also the driver’s level of risk aversion may be seen as a relevant aspect. However, it is very

likely that a unique list of aspects that have to be included into the problem formulation does

not exist. This is also a consequence of an often limited data availability. For example, the

driver’s mood may have influence on his driving style and, along with that, on the energy that

the BEV consumes when passing a certain road segment. Thus, the driver’s mood also impacts

the amount of energy that is necessary to be able to pass a certain road segment. If no infor-

mation about her/his mood (or about the influence it has on her/his driving style) is available,

then this aspect can hardly be taken into account within the formulation of a mathematical op-

timization problem. In order to make it possible to flexibly integrate different sets of aspects

into the developed model, it should be formulated generically.

A further important component of RO 1a is the requirement of realism. Those aspects which

are represented within the optimization model need to be represented in a realistic way. Oth-

erwise, computed solutions may not be applicable in reality. Realism can easily be lost during

the construction of optimization problems. One of the main reasons for this is that often sim-

plifications are necessary for the formulation of certain types of optimization problems. An

example of such simplifications are discretizations of decision variables whenever a problem

is modeled as an integer program. Another widely applied simplification is the deterministic

representation of in fact stochastic problem components.

To introduce the second subobjective, RO 1b, it is necessary to describe how ”efficiency“ and

”reliability“ are interpreted in the context of charging strategies (these interpretations have been

mentioned in section 1.1): A charging strategy is denoted as efficient if the number and dura-

tion of charging stops is kept low. A charging strategy is denoted as reliable if the probability

that a BEV which follows this charging strategy runs out of energy is very low1. These in-

terpretations are again not very concrete. Finding adequate mathematical definitions for both

terms is understood here as a part of the model development process and thus will be done later

on. Though, already these vague interpretations show the contrast between both criteria. This

makes it clear that it won’t be possible to construct charging strategies which are optimal with

regard to both criteria. At the same time, it is not reasonable to compute charging strategies

which are only efficient or only reliable. The result would be that either no charging stops are

1The interpretations of the terms ”efficiency“ and ”reliability“ which exist in literature differ significantly –
even if only contributions in the area of routing are considered: Efficiency often refers to travel time or fuel/energy
consumption minimization (125) (128). A whole set of possibilities to define and measure reliability in the context
of routing can be found in (77). The fundamental idea of both terms, however, remains basically the same in all of
these works.
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suggested or that charging stops are recommended whenever a charging station is passed. The

former leads to a high risk of being stranded, the latter to unbearably long travel times. These

considerations lead directly to RO 1b:

RO 1b: The suggested problem formulation has to ensure that charging strategies are opti-

mized with regard to both efficiency and reliability.

Note that the described interpretation of reliability is particularly intended for situations in

which uncertainty exists. If any current and future aspect which has influence on the BEV’s

condition (state of charge, arrival times, etc.) was known with absolute precision at the time

at which a charging strategy is computed, then it actually would not be necessary to speak of

reliability. The reason for this is that it could be decided with absolute certainty whether a

specific charging strategy leads to an empty battery or not. As a consequence, it would be more

reasonable to speak of ”feasible“ charging strategies instead of ”reliable“ charging strategies.

However, presuming absolute certainty lacks realism in the context of CSO. Future energy

consumption or arrival times can solely be estimated. Note that imperfect predictions represent

not the only source of uncertainty. Missing data (recall the aforementioned example about the

unknown mood of the driver), incorrect data, or inappropriate models may lead to issues, too.

The third subobjective concerns the solution process and not, which is the case for ROs 1a and

1b, the problem formulation itself:

RO 1c: The suggested problem formulation has to make a practical computation of solutions

possible.

Here, practicability primarily means that computing problem solutions must be possible in rea-

sonable time. In the context of navigation applications, computation times of a few seconds or,

at most, of half a minute can be understood to be reasonable. Computation times depend on

the computational effort and the available hardware. The computational effort that is necessary

to solve a mathematical optimization problem depends again on the problem itself, i.e., on the

problem structure and the amount of input data, and on the applied optimization algorithm,

i.e., on the applied method and its implementation. Trade-offs between computational effort

and solution qualities are usually possible. In the end, the suggested problem formulation is

intended to make the computation of near-optimal solutions, within a few seconds, on the basis

of the hardware limitations of navigation systems possible.

In the following, RO 2 is formulated. The motivation for RO 2 is the assumption that it is not

sufficient, which is postulated by RO 1b, to simply consider efficiency and reliability in parallel
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when computing charging strategies. Instead, charging strategies need to show a certain level

of efficiency and reliability. Otherwise, an application in practice is not reasonable. This means

particularly that a high level of reliability has to be achieved without causing unbearable travel

times. As a consequence, it appears to be reasonable to demand within the second RO that it

has to be shown that the developed framework leads to charging strategies which show a level

of reliability and efficiency that makes an application in practice possible. Unfortunately, the

quality of charging strategies is not only a consequence of the applied optimization framework.

In some situations, a reliable charging strategy does not even exist. This is the case, for in-

stance, if a trip is started with a state of charge that is not sufficient to reach the next charging

station. Due to these considerations, RO 2 is formulated less strongly:

RO 2: Test the suggested problem formulation under the existence of uncertainties and evalu-

ate its ability to ensure charging strategies of practicable quality.

The ”quality“ of charging strategies is here understood to describe both their level of efficiency

and their level of reliability. RO 2 basically consists of two tasks: First, a framework which

allows conducting adequate tests has to be developed. Second, the corresponding results have

to be evaluated in order to decide whether the achieved charging strategy qualities can be said

to be practicable. Note that RO 2 can be interpreted as a preliminary step. Eventually, the goal

has to be to identify the conditions under which a specific framework is able to ensure practi-

cable charging strategies. However, this will not be in the scope of the described research.

1.3 Outline of the Dissertation
The design of the described research and, along with it, the structure of the thesis are the result

of the attempt to achieve the introduced ROs. An overview of the chapters and their content

can be found in Figure 1.2. The thesis starts with a description of the state of the art in chapter

2. It forms the basis of all further considerations. Its purpose is to gain an overview of work

in potentially relevant areas of research, such as estimating energy consumption of BEVs or

modeling uncertainty within routing applications. The focus of the review, however, is set on

existing studies concerning CSO. It is discussed up to which degree these prior works allow

achieving the stated ROs.

This discussion reveals several aspects which are particularly necessary for RO 1a and RO 1b,

but have not been addressed sufficiently by existing models. To make up for these shortcom-

ings, the problem of finding optimal charging strategies is formulated as a multistage decision

problem in chapter 3. This initial model marks the start of an iterative process, which is il-

lustrated in Figure 1.3. During this process, a potential problem formulation is analyzed with

regard to its ability to fulfill ROs 1a, 1b and 1c. Depending on whether a considered problem

formulation satisfies these requirements, it is either extended, simplified or, at the end of the
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Figure 1.2: Structure of thesis.

whole process, accepted. During this iterative process, the initial formulation as a multistage

decision problem is at first reduced in chapter 4 to a deterministic shortest path problem (SPP)

and afterwards, in chapter 5, extended again. The reduction is necessary for the development of

optimization algorithms which allow computing solutions in reasonable time, the extension in

order to address the potential existence of uncertainties. The final result, at the end of chapter 5,

is a problem formulation that fulfills all criteria defined by the subobjectives belonging to RO 1.

In order to achieve the second RO, an extensive simulation study is conducted. For this pur-

pose, some preparations are necessary to be able to provide charging strategies to simulated

BEVs. During these preparations, it is defined which input data (weather, steepness, etc.) are
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Figure 1.3: Iterative process leading to final problem formulation.

considered and how they affect energy consumption and arrival times. Moreover, error-prone

traffic information is introduced as source of uncertainty, i.e., the traffic information that is

considered during the computation of charging strategies may not mirror the simulated reality

perfectly. These preparatory steps are primarily conducted in chapter 6. The simulation itself

is described in chapter 7. A BEV driving from its starting location to a destination is simulated.

During this trip, the BEV follows charging strategies which are provided to it. These charg-

ing strategies are based on partly incorrect information about current and future traffic states.

Thus, the BEV may face a simulated reality that differs from the situation which was presumed

during the computation of the charging strategy it follows. The quality of charging strategies

resulting from different types of traffic prediction approaches, which show different levels of

similarity to the simulated reality, is analyzed. These analyses allow drawing conclusions on

the ability of the suggested mathematical framework to handle uncertainty, at least for the case

of error-prone traffic information.

As a supplement to the simulation study, the execution of a small number of field tests is fi-

nally described in chapter 8. An electric vehicle is used to cover a distance of several hundred

kilometers. To support the test drivers, a prototypic implementation of a software tool for

computing charging strategies is provided to them. The purpose of the field tests is to test the

developed framework under realistic conditions. Moreover, it allows identifying aspects which

may be relevant from a practical perspective, but which have not been considered up to this

point.



Chapter 2

State of the Art

The purpose of the following chapter is to provide an overview of prior works in areas that are

related to the problem of finding optimal charging strategies. At the beginning, in section 2.1,

the estimation of the energy consumption of BEVs is thematized. Based on this, different types

of navigation services for BEVs are considered. The focus is set on literature about CSO. It is

discussed up to which degree existing models are able to fulfill the requirements defined by the

stated ROs. The result of this discussion is that particularly the topic of handling uncertainty is

not addressed sufficiently. Due to this, the focus of the literature review is shifted in section 2.2

from CSO to modeling uncertainty in routing problems. Finally, in section 2.3, an overview

of existing studies on traffic information services that are used in practice is provided. This

excursus is motivated by the fact that, as mentioned in the outline of the thesis in section 1.3,

imperfect traffic information represents the only source of uncertainty within the simulation

study in chapter 7. In order to be able to ensure a high level of realism of the simulation runs in

chapter 7, it seems helpful to gain an understanding of the features of traffic information which

is provided by professional traffic content providers.

2.1 Battery Electric Vehicles
The main objective of the described research is to provide a basis for an inclusion of CSO func-

tionalities into navigation systems. This makes it necessary to be able to estimate the amount

of energy a BEV consumes when passing a certain road segment. Section 2.1.2 addresses

this topic. In section 2.1.3, prior works regarding navigation services which are particularly

intended for BEVs are considered. But at first, a general introduction to electric vehicles is

given.

2.1.1 Introduction to Battery Electric Vehicles
In the context of cars, electric engines are used for propulsion in various ways. Besides purely

electrically driven vehicles (which are denoted as BEVs), also so-called hybrid electric vehicles

11
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(HEV) exist. This type of electric cars combine electric with combustion engines2. Depending

on the architecture of the power train, it can be differentiated between three different types of

HEVs (96): Serial, parallel, and combined HEVs3.

Serial HEVs The internal combustion engine of a serial HEV does not work as a propul-

sion device. It is just used to generate electricity, which is either used to recharge the battery

or directly for propulsion. In contrast to parallel or combined HEVs, serial HEVs show the

advantage that the size of the internal combustion engine typically can be kept rather small.

Furthermore, the complexity of the whole power train is comparably low. It is also simpler

than the power train of a conventional ICEV, since, for instance, only a simplified gearbox

needs to be integrated. On the downside, the serial structure of the power train tends to reduce

energy efficiency (26).

Parallel HEVs For parallel HEVs, the internal combustion engine is no longer used as a

generator for electricity (see Figure 2 in (26)). Instead, both the internal combustion engine

and the electric motor have the possibility to propel the vehicle. It is possible that both engines

work in parallel, but also that only the internal combustion engine or only the electric motor

is activated. It depends on the driving situation, which of these possibilities is applied. The

most important advantage of parallel HEVs is that the torque generated by the electric engine

and the torque generated by the combustion engine add up. Hence, in comparison to the serial

HEVs, a smaller electric motor can be used without loosing performance. On the contrary, the

whole system becomes more complex. See (51) for more detailed explanations.

Combined HEVs For combined HEVs, the internal combustion engine can work as a gen-

erator, but it is in addition able to directly propel the vehicle. This allows combining the the

advantages of the serial and the parallel HEVs – up to some degree. On the other hand, the

power train of combined HEVs are even more complex than those of parallel HEVs and, along

with this, also their costs tend to be higher (26).

In general, there exist three ways for recharging the battery of an HEV (or BEV, respectively):

First, the battery can be charged via ”recuperation“ or ”regenerative braking“, respectively.

This is a mechanism that allows converting kinetic energy into electricity. To achieve this, the

electric motor is used in reverse function, i.e., it is used as a generator. Electricity is generated

2The term ”hybrid electric vehicle“ basically refers to a car which has (at least) a second type of energy storage
– besides its battery. In this work, the term solely refers to cars which are equipped with an internal combustion
engine and an electric engine.

3Depending on the literature which is considered, several different classification schemes can be found. These
schemes in most cases distinguish between three (51) (96) or four (26) (85) types of HEVs. Furthermore, also the
way the classification is done varies.
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and stored in the vehicle’s battery while the vehicle’s speed is reduced. Using the internal com-

bustion engine as an electricity generator represents the second possibility to charge the battery

of an HEV. This is not possible for parallel HEVs and obviously not for BEVs. The third

method is to make use of an external source of electric power. At the moment, the transmission

of energy from an external source to the battery of a BEV or an HEV is usually done via a cable

and a plug. Corresponding HEVs are denoted as plug-in hybrid electric vehicle (PHEV) (85)

(163). Depending on the available charging technology, the energy throughput varies between

3.7 kilowatt and almost 50 kilowatt (56). Assuming typical battery capacities (see Table 2.1),

these values lead to charging durations between less than one hour and almost a whole day.

The highest charging throughput is at the moment achieved via direct current (DC) charging.

However, building up infrastructure which enables DC charging is expensive. Moreover, it

Table 2.1: Most sold electric vehicles in Germany in 2015

Model Type Battery
Capacity

Pure Electrical
Range (NEDC)

DC-Charging
Standard

Kia Soul EV (54) BEV 27 kWh 212 km CHAdeMO

BMW i3 (18) BEV
19.8 kWh
(27.2kWh)

190 km
(300 km)

CCS

Mitsubishi
Outlander PHEV (55)

PHEV 12 kWh 52 km CHAdeMO

Volkswagen
Golf GTE (150)

PHEV 8.7 kWh 50 km -

Audi A3 e-tron (4) PHEV 8.8 kWh 48 km -

Renault Zoe (124) BEV
22 kWh

(41 kWh)
240 km

(400 km)
-

Tesla Model S (83) (142) BEV
70 kWh

(85 kWh)
442 km

(502 km)
Supercharger

should be mentioned that a further drawback of DC charging is the fact that several different

standards were established. The CHAdeMo standard (derived from ”CHArge de MOve“), the

combined charging system (CCS), and Tesla Motor’s ”supercharger“. These standards are not

compatible.

Besides the approach to directly connect to the electricity grid, there exist two alternative ap-

proaches which allow making use of external power sources: It is possible to completely switch

the battery or to transfer electric energy wirelessly via electromagnetic induction. Switching

batteries can be done rather quickly and thus saves time, but it also requires a high level of

standardization and such systems show currently no relevant market share (56). Recharging

car batteries via electromagnetic induction possibly will be of importance in the future, but at

the moment it is realized only on a prototypic level, mainly within research projects (56) (158).
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Until today, a huge variety of electric vehicles (BEVs and HEVs) has been released. See (114)

or (155) for corresponding lists of vehicle models. Table 2.1 provides a tiny excerpt from these

lists. It shows the seven electric vehicles which were sold most often in Germany in 2015

(23). This short list is intended to give an idea of currently achieved driving ranges. It is worth

mentioning in this context that the driving ranges which the BEVs that can be found in Table

2.1 achieve are upon the highest of all available BEVs. Furthermore, note that the driving

ranges are based on the ”New European Driving Cycle“ (NEDC). These official driving ranges

tend to lie significantly above the driving ranges which can be experienced in practice (66).

If two different values for battery capacity or driving range are stated in Table 2.1, then this

means that the vehicle can be equipped with batteries of different size. The two given values

represent the lowest and the highest (in brackets) of all possible battery capacities.

2.1.2 Energy Consumption of Battery Electric Vehicles
First, factors influencing the energy consumption of BEVs are considered. Second, it is sketched

how energy consumption estimations are typically conducted.

Factors Influencing Energy Consumption of BEVs The comparably small amount of en-

ergy currently available car batteries are able to provide leads to the need of highly accurate

energy consumption models. To achieve such a high level of precision, all factors which signif-

icantly influence the energy consumption of BEVs have to be identified. In literature, factors

known to influence the fuel consumption of ICEVs, such as driving behavior (44), traffic con-

ditions (148) (164) and vehicle parameters (49), are often initially considered. For BEVs, the

importance of traffic conditions on energy consumption is confirmed in (86) and (123). The

dependency of energy consumption on the characteristics of the considered BEV is empha-

sized in (57) and (123) and the impact of individual driving style is included in the energy

consumption model in (57). However, in recent studies, it has been shown that road steepness

(92) and weather conditions (66) also have significant impact on the range of BEVs. Note that

road steepness (due to increased driving resistance) and weather conditions (primarily if the air

conditioning or the heating are activated) influence the fuel consumption of ICEVs, too. The

difference is, as mentioned, that the battery of BEVs in most cases cannot provide the same

amount of energy which the fuel in the tank of an ICEV provides. Thus, more detailed models

are applied to get a more precise estimation of the remaining driving range. Another reason

for the consideration of road steepness in the context of BEVs is their ability of regaining en-

ergy via recuperation. This implies that by driving downhill, the BEV’s battery may even be

recharged. Furthermore, the effect of weather conditions is stronger on BEVs than on ICEVs:

Battery capacity reduces at low temperatures (66). This effect does not increase energy con-

sumption, but achievable driving ranges still get reduced. Furthermore, ICEVs automatically

generate a lot of warmth while driving. This warmth can be used for heating. BEVs, on the

other hand, have to operate an electric heating and thus need additional energy for heating.
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Energy Consumption Estimation To get from factors influencing energy consumption to

specific energy consumption values, energy consumption models are necessary. In principle,

energy consumption models for BEVs are based on the same ideas as fuel consumption models

for ICEVs. In (161), for example, a regression model is suggested to estimate energy con-

sumption. This model describes the dependency of energy consumption on a set of explanatory

variables which are primarily based on instantaneous driving speeds and instantaneous accel-

erations. Alternatively, physical consumption models are applied (86). Such models include

a variety of vehicle parameters (frontal area, vehicle mass, etc.) to determine driving resis-

tance4 in dependency of driving speed, acceleration and road steepness. Based on the driving

resistance, the BEV’s mass, and the energy conversion efficiency of the electric motor, the en-

ergy which is necessary to move and accelerate the BEV can be derived. Besides the energy

consumption caused by movement, which is also denoted as primary energy consumption, ad-

ditional energy is necessary for operating the so-called secondary consumers, such as the radio

or the air conditioning system.

To predict the energy or fuel that is necessary to pass a certain road segment, typically a two-

step proceeding is executed in literature: First, a speed profile is estimated, i.e., the temporal

development of the speed with which the considered vehicle passes the relevant road segment

is estimated. These estimations are usually based on historical traffic data, current traffic infor-

mation or road categories (highway, freeway, etc.). In a second step, an energy consumption

model is applied to the estimated speed profile. In (57), for instance, real speed profiles were

recorded. Then, these profiles are used to predict driving characteristics (such as the num-

ber of stops, average speeds along road segments, etc.) depending on road class. The energy

consumption model is afterwards fed with these characteristics to estimate energy consumption

necessary for passing road segments. In (123), recent information on the current (macroscopic)

traffic state is taken into account for simulating potential future speed profiles. These profiles

are again used as input for energy consumption models and the resulting energy consumption

values are applied to find routes that keep energy consumption as low as possible. Such routes

are denoted as energy efficient routes. Comparable approaches can also be found in (74), (86)

or (90). This already leads to the topic of navigation services for BEVs.

2.1.3 Navigation Services for Battery Electric Vehicles
Scientific work on three different types of navigation services, which are relevant for BEVs,

are considered in the following: The provision of energy efficient routes, the recommendation

of refueling or recharging stops, and the coordination of fleets of BEVs. In order to be able to

follow the subsequent statements, it is important to know that, within optimization problems in

4Driving resistance consists of rolling resistance, climbing resistance, aerodynamic resistance, and inertial re-
sistance.
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the context of navigation applications, road networks are usually represented by mathematical

graphs. The edges of the graph represent road segments and the nodes represent intersections.

Furthermore, costs are assigned to edges. These costs can be interpreted, for instance, as the

time that is necessary for passing the road segment which is represented by the edge to which

the costs are assigned. Alternatively, these costs can also be interpreted as the length of the

corresponding road segment or as the fuel/energy that is necessary to pass it.

Energy Efficient Routing In literature, the problem of finding energy efficient routes (i.e.,

to minimize energy consumption) is typically modeled as an SPP. In this context, some of the

characteristics of BEVs need to be explicitly taken into account. In (7), (12) and (42), for

instance, it is shown how it can be included into the formulation of SPPs that the battery of

a BEV is not charged up to more than 100 percent due to recuperation. Moreover, routing

algorithms known from travel time and travel distance minimization are modified in such a

way that paths leading to an empty battery are not considered within the route search process.

Another frequently discussed issue is the possible existence of negative edge costs (12) (42)

(74) (128), which is also caused by the recuperation ability of BEVs. This has significant

influence on the applicability of many established routing algorithms. A detailed discussion on

the topic of negative edge costs will be provided later on in section 4.2.

Vehicle Refueling Problem Charging strategies consist of two components: Route recom-

mendations and charging recommendations. Route recommendations are important for both

BEVs and ICEVs. Instructions where a vehicle has to be recharged or refueled, respectively,

and how much energy/fuel has to be charged/fueled appear to be less important for ICEVs than

for BEVs. Nevertheless, there exist some articles about the so-called vehicle refueling prob-

lem: Let it be assumed that a road network and a set of gas stations spread across this network

are given. Furthermore, the ICEV’s current position and a destination are specified. Moreover,

the prices for fuel differ between the gas stations. The goal is to provide a refueling strategy

which minimizes fuel costs and assures a reliable arrival at the destination. This problem was

discussed for the first time in (93). In this study, it is assumed for simplicity that the considered

ICEV can only take a single, pre-determined route. In (140), the vehicle refueling problem

is extended to the network level, i.e., alternative routes are possible. Furthermore, long de-

tours, which are a possible result when minimizing total fuel costs, are penalized to achieve

more practicable route recommendations. In (127), a real-world case study is described. The

money savings, which a trucking company obtained after introducing a software-tool for refu-

eling optimization, are analyzed. In (82), refueling issues are even included into the context of

traveling salesman problems. In this work also a fuel-buffer, i.e., a minimal amount of fuel that

has to remain in the tank to be able to compensate for unexpectedly high fuel consumption, is

suggested to keep the risk of running out of fuel low.
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Charging Strategy Optimization for Single Vehicles During the last years, along with an

increasing interest in BEVs, the basic idea of the refueling problem has been transferred to

BEVs, i.e., the task of finding optimal charging strategies emerged. Probably one of the first

publications about charging strategies for BEVs is (87) (published in 2011). There, a formu-

lation as an SPP5 is proposed. A graph is considered which represents a road network and a

few nodes are selected which mark the positions of charging stations. A shortest path between

a start node and a destination node has to be computed. Shortest paths are associated with

charging strategies by assuming that a BEV following such a path is fully recharged at each

visited node that marks the position of a charging station. The paths or charging strategies,

respectively, are optimized in (87) either with regard to the total distance traveled or the total

travel time. ”Total“ travel time refers to the time for driving plus the time for charging. Fur-

thermore, it is assumed that the energy consumption of a BEV solely depends on the traveled

distance. This implies that energy consumption costs are assumed to be static, i.e., the energy

consumption costs for passing an edge remain the same under all circumstances. Also time

costs are assumed to be static in (87). For travel times and energy consumption, this represents

a significant simplification, since dynamic impacts, such as changing traffic conditions, cannot

be taken into account. On the other hand, presuming static edge costs facilitates the application

of so-called preprocessing methods. Such approaches are applied a priori, i.e., before the first

route search is carried out, to generate auxiliary data for a given graph and given edge cost

functions. These data are afterwards taken into account by (conventional) route search algo-

rithms to prune their search space.

In (87), such additional data are generated a priori. Time and distance costs between pairs

of charging stations are calculated. Based on this information, an additional graph consisting

only of those nodes which represent charging stations and edges between pairs of charging

stations is constructed. The edges, however, are left out if the distance between a pair of charg-

ing stations is very high. Let this graph be denoted as auxiliary graph. The route search is

then conducted as follows: First, the set of all nodes which can be reached from the start node

based on the currently available energy is computed. Dijkstra’s algorithm (36) is used for this

purpose. Second, all nodes are identified from which the destination can be reached under the

assumption of a fully recharged battery. This is again done via Dijkstra. It is checked whether

in both nodes sets at least one charging station is available. If this is not the case and if the des-

tination cannot be reached directly from the start node, then no appropriate charging strategy

exists. Otherwise, all routes from charging stations, which can be reached from the start node,

to charging stations, which allow reaching the destination, are computed. This route search is

done on the auxiliary graph (again by applying Dijkstra’s algorithm). The result of this pro-

ceeding are three types of routes or paths, respectively: The first type leads from the start node

5SPPs are typically interpreted as dynamic programs, even though there exist also formulations of SPP as, for
example, integer linear programs. If not stated differently, SPPs are in this work always interpreted as dynamic
programs.
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Figure 2.1: Computation of charging strategies according to the methodology described in (87).

to a nearby charging station on the original graph, paths of the second type are part of the aux-

iliary graph and describe a sequence of charging stations leading from a possible first charging

station (near the start) to a possible last charging station (near the destination), and paths of the

third type describe routes on the original graph from one of the possible last charging stations

to the destination. To receive a complete charging strategy, the concatenation of paths needs

to be found which leads from the start to the destination and, in parallel, minimizes the overall

travel time or traveled distance, respectively. This is again achieved on the basis of Dijkstra’s

algorithm.

Besides the described preprocessing, another speed-up technique is applied in (87) in order to

reduce computation times. At the time at which a request for a charging strategy is stated, a set

of relevant charging stations is identified in a first step. For this purpose, an approach is pro-

posed in (87) which selects only charging stations (from the set of all charging stations) which
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are located (more or less) between the start and the destination. No detailed description of

this approach is provided here. Then, the auxiliary graph is reduced correspondingly, i.e., only

those nodes and edges remain in the auxiliary graph, which represent either one of the selected

charging stations or a route between two of these charging stations. In total, it is proceeded as

follows (compare also Figure 2.1): A priori, costs to get from one charging station to another

are calculated. As soon as a charging strategy is requested, a set of reasonable charging sta-

tions is selected. An auxiliary graph consisting of the corresponding set of nodes is generated.

Edge costs for this graph are based on the preprocessed data. Finally, the route search is first

conducted on the original graph to identify reachable charging stations, then on the auxiliary

graph in order to get close to the destination, and finally again on the original graph to reach

the destination. Note that the preprocessing step and the two-steps process (identify reasonable

charging stations, afterwards compute a charging strategy by considering only these charging

stations) during the route search are explained here in detail, since several studies concerning

CSO propose similar approaches.

In (138), a mathematical framework is described that allows deciding whether a certain desti-

nation can be reached without charging (given a starting location and a starting state of charge),

whether it is possible to reach this destination on the basis of the existing charging infrastruc-

ture, and how the number of necessary charging stops can be minimized. All these problems

are formulated as SPPs and modified versions of Dijkstra’s algorithm are used for the compu-

tation of solutions6. In contrast to (87), energy consumption costs are the only type of edge

costs which are considered in (138). These costs are again assumed to be static. Furthermore,

a preprocessing step is conducted in (138), too. However, not only costs to get from one charg-

ing station to another are computed. Instead, the amount of energy that is necessary to get

from one node to another is calculated and stored for pairs of nodes where at least one of both

nodes represents a charging station. It is shown how these additional data can be exploited

by dynamic programming approaches. A conducted case study confirmed that the suggested

procedure allows solving the described problems very quickly, even for huge road networks

consisting of millions of road segments and intersections. Another relevant aspect is the fact

that the described framework is developed for so-called battery switch stations. This means

that the considered BEVs are actually not assumed to charge energy. Instead, the whole battery

is switched. As a consequence, similar to (87), a state of charge of 100 percent is obtained

after each ”charging“ process. Hence, a driver cannot decide how much energy she/he wants

to recharge. Charging strategies as, for example, strategy 3 from Figure 1.1, where the BEV is

charged up to a state of charge less than 100 percent, cannot be represented.

In (137), the framework from (138) is extended. Now, multicriteria SPPs related to BEVs are

investigated. The considered problem formulations are intended to represent the wish to find

6The original version of Dijkstra’s algorithm cannot be applied here, since it is taken into account that energy
consumption costs may be negative.
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compromises between consumed energy, travel time, and traveled distance. This is motivated

by the conjecture that even very eco-friendly drivers are not willing to accept extremely long

detours or drastically increased travel times just to save some energy. Similar to (138), the need

to recharge and, along with that, times for charging processes are taken into account. Problem

formulations, such as ”Find the fastest path with at most two charging stops“ are investigated.

All problems are formulated as SPPs and modified versions of Dijkstra’s algorithm are applied

for the computation of solutions. Again, all edge cost functions (energy consumption, distance,

travel time) are assumed to be static, which allows keeping computation times low. Further-

more, it is again solely possible to fully recharge the battery.

In (141), the problem of finding optimal charging strategies is modeled as a dynamic program,

where total travel time is minimized. For the proposed optimization framework, some sim-

plifying assumptions are made: First, it is assumed that a possibility to charge exists at each

node of the graph. Second, time and energy costs are again assumed to be static. Third, energy

consumption for passing edges is assumed to be non-negative, i.e., the possibility of BEVs to

recuperate energy is up to some degree ignored. In contrast to these simplifications, the set of

possible charging actions is modeled flexibly. Instead of providing solely the option to fully

recharge the battery whenever a charging process is started (compare the aforementioned pa-

pers (137) and (138)), any state of charge between the BEVs initial state of charge and a fully

recharged battery can be obtained within the proposed formulation as a dynamic program.

Such a continuous set of decision possibilities is very uncommon for dynamic programming

approaches. Usually, all aspects of a dynamic program need to be discretized. Otherwise,

typical solutions approaches for dynamic programs are unable to guarantee optimality of the

computed solutions. In (141), however, a backward recursion algorithm is suggested, which is

able to ensure optimality of the calculated solutions under some mild assumptions. Besides the

backward recursion algorithm, an approximate dynamic programming algorithm is described,

which is able to find at least good solutions even if these mild conditions are not fulfilled.

However, this second algorithm discretizes the set of possible charging actions. Discretizing

the set of possible charging actions means that the recommended state of charge, i.e., the state

of charge which has to be reached at the end of a charging process, can solely be equal to one

of a few, a priori defined values. For example, all suggested charging processes end with a

state of charge that is a multiple of five percent (5%, 10%, ..., 95%, 100%). Since not all pos-

sible charging options are considered by the approximate dynamic programming algorithm,

optimization potential is lost up to some degree and consequently, optimality of computed so-

lutions cannot be guaranteed.

The most remarkable aspect of (141) is that the condition that ensures that a suggested charg-

ing strategy does not lead to an empty battery is designed in a more flexible way than in other

contributions about CSO. A (static) positive value is defined as the minimal necessary state of
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charge. If a charging strategy leads to a state of charge during the trip which is lower than the

minimal state of charge, then the corresponding charging strategy is not accepted. The idea is

the same as for the case of the vehicle refueling problem in (82), where a fuel buffer is sug-

gested to be able to compensate for unexpectedly high fuel consumption.

In (152), the problem of finding optimal charging strategies is again modeled as an SPP. In

contrast to previously mentioned studies, energy consumption costs are here interpreted as

time-dependent quantities and thus are no longer static. Furthermore, similar to (141) for the

case of the approximate dynamic programming approach, the set of possible charging actions

is discretized. Charging strategies are optimized with regard to two different objectives: Travel

time minimization and, as an alternative, a combination of travel time and energy consumption

minimization. In addition, two different solution approaches are suggested. The first one is a

modified version of the so-called A∗-algorithm (62) (63). The A∗-algorithm can be interpreted

as an extension of Dijkstra’s algorithm. It uses additional information, for instance informa-

tion about geographical coordinates, to direct the route search to the destination. The second

approach is an approximate dynamic programming approach. It uses basically again the A∗-

algorithm to compute routes. The difference to the first approach is that a heuristic is applied

to determine the sequence of charging stations that are visited. This means that the heuristic

proposes which charging station has to be visited next and then a route to this charging station

is computed. If this is not possible, then the corresponding charging station is excluded from

further consideration and another charging station is selected. One proceeds until either the

destination is reached or no more charging stations are left. A traffic simulation tool is used at

the end of (152) to compare the two solution approaches with regard to the total travel time and

the total energy consumption that result from the corresponding charging strategies.

In (10), a similar approach as in (87), (137) and (138) is pursued. A formulation of the problem

of finding optimal charging strategies as an SPP is suggested. Again, a preprocessing step is

executed, in which the energy consumption that is necessary to get from one charging station to

another is computed for any pair of charging stations. The corresponding energy consumption

values are computed using the dynamic programming approach which is applied in (7) for the

generation of energy efficient routes for BEVs. Though, in (7) the possibility to recharge is

not considered. Note that again static edge costs are presumed in (10). The route search itself

is executed analogously to (87), but no pre-selection of charging stations is proposed. Opti-

mality is interpreted as a combination of minimizing total travel time and minimizing energy

consumption. Even though it is not explicitly stated, it seems that the described framework al-

lows only full rechargings. At the end of (10), a case study is mentioned shortly, which showed

that low computation times (less than one second on average) are achieved on rather big graphs.
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In (25) and (151)7, a mixed integer nonlinear program is formulated to compute optimal charg-

ing strategies for single BEVs. Total travel times are considered as the optimization criterion

and a constraint is added to the problem formulation in order to avoid an empty battery. En-

ergy consumption and travel time costs are again modeled as static quantities. Analogously to

(141), solutions of the described optimization problem may recommend arbitrary recharging

amounts. To solve the mixed integer nonlinear program, it is separated into two subproblems.

Both of these are linear programs. Solving the first subproblem leads to a route. Based on

this route, the second subproblem is formulated. Solving the second problem leads to recom-

mendations concerning the amount of energy that has to be charged at the charging stations

which are available along the already computed route. It is shown that the separation into two

subproblems still ensures optimality of the computed solution for the described setting. Fur-

thermore, because both subproblems are linear programs, low computation times even for big

problem instances can be expected.

Figure 2.2: Screenshot taken from www.erouting.net (45). The output information of an exist-
ing web-service for charging strategy computation is shown.

First approaches to provide charging strategies also emerged in practice. The eridea AG, a

small engineering company, launched a non-profit project allowing users to request charging

strategies via a website (45). It is possible to choose from a range of BEV models and to define

7(25) is a more detailed, but unpublished version of (151).

www.erouting.net
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at which charging stations the customer who requests the charging strategy is able to charge8.

After a, compared to typical routing applications, long computation time, the user receives a

route, a list of charging recommendations, and information about the time at which the charg-

ing stations are reached and with which state of charge they are reached (see Figure 2.2). A

similar web-service can be found in (60). In 2015, with Tesla Motors, the first car manufac-

turer started providing charging strategies (143). The corresponding tool is denoted as ”Trip

Planner“ and it is embedded in the in-dash navigation system.

Table 2.2 summarizes the central aspects of the above described literature about CSO. Note

that no contributions from practice are listed here, since not much information concerning the

underlying optimization problems and algorithms is available. It is remarkable that almost all

listed contributions suffer from two significant simplifications: First, except for (152), edge

costs are always modeled as static values. This makes it impossible to take the influence of

dynamic aspects into account. For example, the impact of changing traffic situations on energy

consumption or travel time cannot be represented. As a consequence, the accuracy of the whole

model and, along with this, the quality of the resulting charging strategies is limited. Second,

the topic of reliability is only addressed in a very basic form. A constraint which ensures that

the considered BEV does not run out of energy is part of each of the listed problem formu-

lations. However, the possibility that energy consumption values that are considered within

the models may not mirror real energy consumption absolutely correctly cannot be taken into

account by the suggested problem formulations. This is extremely critical, since without the

ability to handle unexpected developments, reliability cannot be ensured in practice. The only

exception is the model described in (141), where a static part of the battery capacity can be

used as an energy buffer. This concept is rather simple. Its main limitation is that the minimal

state of charge remains the same, independently of the intended trip. If five percent of the

battery capacity are reserved to account for unexpectedly high energy consumption, then this

is probably a rather big buffer if the destination is one kilometer away. On the other hand, the

buffer may be too small if the destination is 100 kilometers away. Considering the importance

of reliability for drivers, it is surprising that not more attention is drawn to this topic. On the

other hand, keeping the models simpler reduces the computational effort which is necessary

for solving the corresponding optimization problems. Some of the listed studies prove this (10)

(137) (138) .

8It is not possible to charge BEVs at arbitrary charging stations. It was already mentioned that different technical
standards exist. Furthermore, specific user accounts are often necessary. These accounts allow recharging BEVs at
charging stations of a certain charging station operator and only of this operator.
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Table 2.2: Existing studies on CSO for single BEVs

Study
Reference

Problem
Formulation

Optimization Criteria Solution Approach Model Characteristics

Kobayashi & et

al. (87)

SPP (dynamic

program)

- minimize trip distance

- minimize total travel

time

- Dijkstra’s algorithm

- preprocessing costs between

charging stations

- ex ante reduction of

considered charging stations

- only full recharging possible

- static edge costs

- energy costs assumed to be directly

proportional to distance traveled

Storandt (138) SPP (dynamic

program)

- minimize number of

rechargings

- modified Dijkstra

- preprocessing costs between

charging stations and nodes

- only full recharging possible

- static edge costs

- case study proved low computation times

for huge graphs

Storandt &

Funke (137)

SPP (dynamic

program)

- different compromises

between consumed

energy, travel time and

traveled distance

- modified Dijkstra - only full recharging possible

- static edge costs

- case study proved low computation times

for huge graphs

Sweda (141) dynamic

program

minimize total travel

time

- backward recursion

- approximate dynamic

programmig approach

- arbitrary recharging amounts possible

- static edge costs

- recharging possible at each node

- energy buffer to account for uncertainty

Table continuation on next page
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Table 2.2 – Existing studies on CSO for single BEVs continued

Study
Reference

Problem
Formulation

Optimization Criteria Solution Approach Model Characteristics

Wang & et al.

(152)

SPP (dynamic

program)

minimize energy costs

along total travel time

- modified A∗-algorithm

- heuristic selection of

charging station order for

speed-up

- discretized set of possible recharging

amounts

- time-dependent edge costs

Baouche, et al.

(10)

SPP (dynamic

program)

minimize energy costs

along total travel time

- dynamic programming

approach from (7)

- preprocessing costs between

charging stations

- static edge costs

- (probably) only full recharging possible

- case study showed reasonably low

computation times

Wang &

Cassandras (25)

(151)

mixed integer

nonlinear

program

minimize total travel

time

- linear programming

approaches

- arbitrary recharging amounts possible

- static edge costs

- reduction to linear programs ensures low

computation times
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In conclusion, it seems that most existing models for CSO were primarily developed to achieve

good computation times. If necessary, unrealistic simplifications were accepted. Hence, the

requirements which are defined by ROs 1a and 1b cannot be fulfilled on the basis of prior work.

Especially the question of how uncertainty can be handled is not or not sufficiently answered.

To construct a problem formulation for CSO that is able to adequately include the possible

existence of uncertainties, it seems reasonable to shift the focus of the literature review. In the

following, scientific works about taking uncertainty within routing applications into account is

considered. But before this is done, existing work about providing charging strategies to whole

fleets of BEVs is described.

Coordination of Electric Fleets Besides situations in which solely one BEV has to be led to

a destination, situations in which a whole fleet of BEVs needs to be managed are also treated

in research. Given a road network and limited charging infrastructure, the goal for this type

of problem is to provide route guidance to each of the BEVs of the considered fleet. For this

purpose, charging processes need to be scheduled to ensure that each BEV can reach its desti-

nation. There exist many different formulations of this type of problem, each of them focusing

on different aspects: In (101), a rather simple approach is described. A framework is sketched

in which for each BEV the route which leads to the lowest energy consumption is computed.

The BEVs are routed to free charging stations during their trips if this is necessary to reach the

destination. In (126), BEVs are modeled as agents intending to minimize their travel times and

monetary costs for charging energy. One of the goals of this research is to achieve an equal

distribution of charging demand over the available charging stations and over time. For this

purpose, several pricing strategies, which define the price of electricity in dependency of, for

example, the expected utilization of the corresponding charging stations, are suggested. The

effects of the described pricing strategies are compared via simulation. In (11) and (131) , a

fleet of BEVs is assumed to visit a set of customers. It is assumed that each customer can

only be visited during a limited time period. The problem is formulated as a so-called vehicle

routing problem with time-windows, which is a frequently studied type of a (mixed) integer

linear program. The route planning includes an assignment of customers to vehicles to ensure

that each customer is visited at least once. In (73), an approach to manage a fleet of electric

taxis is described. In contrast to the approaches which were mentioned up to this point, the

problem formulation which is suggested in (73) also includes the possibility that charging sta-

tions are occupied by ”external“ BEVs, i.e., by BEVs which are not part of the managed fleet.

The charging demand caused by these BEVs is modeled as a random variable. Recently, also

contributions considering the management of fleets of autonomous BEVs appeared (29) (76).

The most significant difference to managing fleets of conventional BEVs is the ability of the

vehicles to drive on their own. This can be used to conduct necessary charging processes with-

out any human intervention.
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Providing charging strategies to a single BEV is obviously easier than managing a whole fleet

of BEVs. This fact has influence on the structure and complexity of the resulting optimization

problems and, along with this, also on the applied solution approaches. If fleets are coordi-

nated, then quickly rising computation times often make it impossible to apply optimization

algorithms to big problem instances or necessitate keeping problem formulations very simple,

which in most cases leads to unrealistic assumptions. These drawbacks represent a contrast to

ROs 1a to 1c. Hence, the focus for the described research is set on the single-vehicle case. The

fundamental idea is that as long as this situation cannot be handled in such a way that ROs 1a

to 1c are achieved, it is not reasonable to attempt more complex scenarios.

2.2 Routing under Uncertainty
In this thesis, uncertainty refers to situations in which a decision has to be made or a compu-

tation has to be carried out, but there exists no or possibly incorrect information about one or

several aspects that are relevant for the decision or computation, respectively. Within mathe-

matical models, uncertain aspects (predictions are a typical source of uncertainty) are in most

cases represented via random variables – if uncertainty is represented at all. In the context of

traffic and especially in the context of navigation applications, a wide range of literature about

uncertainty exists, particularly about uncertainty of travel time predictions.

Travel Times and Uncertainty Initial research showed that trip travel times are not static and

usually follow a skewed distribution with a long tail (153). The consequence is that predicting

travel times is not trivial. Hence, real travel times often differ from predicted travel times. In

(112), it is distinguished between two reasons for potentially incorrect travel time predictions:

Forecasting errors of (macroscopic) traffic state predictions and uncertainty due to individual

driving style. Other studies attempt to disaggregate the random aspects of travel time into reg-

ular components (depends primarily on demand), irregular components (depends primarily on

capacity), and real random aspects (157). In (91) and (121), based on conducted surveys, it is

concluded that not only expected or mean travel times, but also travel time uncertainty has sig-

nificant influence on route choice and thus is important for drivers. These findings motivated

further, more application related contributions. In (15), for instance, it is argued that traffic

management operations need to improve travel time reliability. Building on these considera-

tions, a methodology for rating managed lane operations based on their influence on travel time

reliability is suggested. In the context of routing applications, so-called risk-averse or robust

routing approaches are often thematized when it comes to taking uncertainty into account. In

(80) and (81) a neural networks approach for predicting travel times is described which fore-

casts lower and upper travel time bounds instead of specific values. Most important for the

described research, however, are studies describing how uncertainty of travel time predictions

can be integrated into problem formulations that are related to navigation applications, such as

SPPs.
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Modelling Uncertainty in Shortest Path Problems Uncertainty is typically addressed in

SPPs by considering random instead of deterministic edge costs. From literature, basically two

different types of SPPs resulting from this are known (77): Stochastic SPPs and robust SPPs.

For stochastic SPPs, it is necessary to know for each edge of the considered graph the proba-

bility distribution of the corresponding edge costs. Based on this information, different types

of optimality criteria can be considered. The most common criterion is to minimize expected

paths costs (53) (160). Other approaches suggest maximizing the probability that the costs for

reaching the destination do not exceed a certain, a priori given cost budget (129) (136). Alter-

natively, the goal is to determine a cost budget, which is, on the one hand, as small as possible,

on the other hand, it needs to be big enough to ensure that the probability that this budget is

exceeded is not higher than a given maximal probability (28) (159).

Similar to stochastic SPPs, it is additionally assumed for robust SPPs that edge costs are ran-

domly distributed. The main difference to stochastic SPP is that not the probability distributions

are known, but only a continuous interval in which possible realizations of the random edge

costs must lie, i.e., a lower and an upper bound are known for each edge. The path is denoted

as optimal which fulfills the ”minmax regret criterion“ (also denoted as ”minmax robust de-

viation criterion“ (77)). This means that the path has to be found which is able to keep the

maximal difference to the best solution as small as possible, independently of the realizations

of the random edge costs (89). This can be interpreted in the context of game theory: Player A

intends to choose a path that leads to costs that are not much higher than the costs of the best

possible path. It is important in this context that player A does not know the realizations of the

random edge costs. After player A has selected a path, player B, who is the opponent of player

A, constructs a scenario, i.e., a combination of realizations of random edge costs, which makes

the selected path as expensive as possible and, at the same time, generates another, extremely

cheap path. The goal of the opponent is to achieve a large difference between the costs of the

selected path and the costs of the path which leads for the constructed scenario to the lowest

possible costs. Solving a robust SPP is the same as finding an optimal solution for player A.

Solving both stochastic SPPs and robust SPPs is computationally expensive (102) (165). In

order to reduce computational effort, some works propose deterministic frameworks. In (30)

and (78), for example, travel times are considered to be the optimization criterion. The goal is to

compute paths which lead to low travel times and, simultaneously, achieve a high level of travel

time reliability. This means that edges which often lead to significantly higher travel times

than the expected travel time9 should be avoided. However, instead of explicitly considering

travel time distributions on an edge level, unreliable edges are simply penalized by increasing

their deterministic edge costs in dependency of the variability of the corresponding travel time

distribution. Hence, unreliable edges can be avoided, even though edge costs are modeled in a

9The travel time distributions of such edges show long tails.



2.3. REAL-TIME TRAFFIC INFORMATION 29

deterministic way. Note that the already mentioned idea of applying fuel/energy buffers in the

context of vehicle refueling problems (82) or CSO (141) can also be understood as a possibility

to handle uncertainty of edge costs within a deterministic framework.

Energy Consumption and Uncertainty There are probably some parallels between energy

consumption uncertainty and travel time uncertainty. The dependency of energy consumption

on driving speeds and accelerations, for example, indicates that forecasting errors of traffic

state predictions and uncertainty due to individual driving style are likely to cause not only

uncertainty of travel time predictions (112), but are a potential reason for uncertainty of en-

ergy consumption predictions, too. However, only few scientific contributions seem to exist

which address the uncertainty of energy consumption predictions. This is surprising, since it

can be expected that it is more important for a driver of a BEV to take the uncertainty of en-

ergy consumption predictions into account than it is important for a driver of an ICEV to take

uncertainty of travel time predictions into account. An example of such a contribution is (47).

There, a robust optimization approach is described that allows computing solutions for SPPs

where stochastic energy consumption costs have to be minimized. In (107), a framework to

interpret remaining driving ranges for BEVs as stochastic variables is explained. Uncertainty

of future driving profiles is modeled via a discrete-time Markov chain.

2.3 Real-time Traffic Information
As mentioned, the simulation study in chapter 7, where the impact of uncertainty on the qual-

ity of charging strategies10 is analyzed, takes imperfect traffic information as the only source

of uncertainty into account. Note that in this thesis, a differentiation is made between traf-

fic information, traffic state estimations, and traffic predictions. Traffic state estimations are

intended to describe the current traffic situation, traffic predictions try to describe the future

development of traffic conditions, and traffic information denotes both traffic state estimations

and traffic predictions. In order to gain a comprehensive understanding of the dependency

of charging strategy quality on the quality of the available traffic information, different ap-

proaches to generate traffic information are considered during the simulation study. Depending

on the generation approach, the resulting traffic information shows different levels of quality11.

It is important that, besides artificially produced traffic information, actual traffic information

which is used within market-ready tools, such as navigation devices, is also considered. Oth-

erwise, the risk exists that some aspects, which are relevant for bringing CSO into practice, are

ignored within the simulation study. These considerations motivate taking a closer look into

commercially provided traffic information.

10Recall that the quality of charging strategies consists of reliability and efficiency.
11Quality in the context of traffic information is in this work interpreted as the level of similarity between the

considered traffic information and the real traffic situation.
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Introduction to Traffic Information in Practice Modern navigation systems, but also other

types of traffic related services that can be found in practice, typically base their route recom-

mendations on so-called real-time traffic information (RTTI). For the remainder of this work,

RTTI denotes information which fulfills the following properties:

1. The information is primarily based on recently collected, traffic related data.

2. The information is frequently updated.

3. The information either intends to describe current traffic states or to predict future traffic

states.

Thus, such navigation systems not only suggest routes which depend on static factors like his-

torical speed averages or the road network, but also include recent incidents. In practice, the

Figure 2.3: Map of Portland (United States of America) visualizing real-time traffic informa-
tion (115)

considered RTTI is usually not generated by the manufacturers of the navigation systems them-

selves. Instead, traffic predictions and traffic state estimations are received from private traffic

content providers, such as TomTom or INRIX. These companies have access to a wide range

of traffic related data, for example, speed and flow data gathered by inductive loop detectors or

so-called journalistic data (information about road works, events, etc.; see (71) for an overview

of data sources). Their main data source, however, are probe data. This kind of data is gathered

via mobile devices that are located within vehicles, for example navigation systems or smart

phones. These devices regularly report their current location and possibly further information.
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All available data are fused by the traffic content providers. The primarily purpose is to es-

timate the current traffic situation. Recently, traffic content providers also started to compute

and broadcast traffic predictions in real-time.

In many cases, average driving speeds are used to describe traffic situations, i.e., RTTI is infor-

mation about speeds. If nothing else is stated, in this work RTTI is considered to be information

about speeds, too. To be able to associate speed information with specific locations, usually

standardized digital maps are applied. These maps separate the road network into road seg-

ments and denote each road segment with a unique identification key. Traffic content providers

regularly send speed information along with an identification key to their customers, who use

this information for the provision of their own traffic related services. Examples for such ser-

vices are routing apps or illustrations of road networks, where each road segment is colored

according to the estimated current average driving speed. An example of such a map is dis-

played in Figure 2.312. Note that the identification key is necessary in order to be able to

associate a broadcasted speed value with a road segment.

RTTI provided by professional traffic content providers shows some important features. This

type of information covers road networks comprehensively. For the case of CSO, which is

particularly relevant if longer distances have to be covered with BEVs, the availability of reg-

ularly updated traffic information along the whole distance is essential, at least if one intends

to take the impact of traffic on energy consumption and travel times into account. Commercial

RTTI is probably the only possibility to ensure this. Another benefit is that professional traffic

content providers have lots of data available. It was impossible for most companies to gain and

handle comparably huge amounts of traffic related data. More data provides, in principle, the

possibility to obtain more accurate estimations of current and future traffic states. Though, it

cannot be expected that recent data are always (24 hours a day, seven days a week) available

for each part of the whole road network. To detect congestion, for instance, there needs to

be either some kind of stationary detector at the corresponding position or a vehicle equipped

with a mobile device which experiences the congestion. Hence, the detection of traffic related

incidents may take some time or is not achieved at all. Moreover, gathered data need to be

aggregated, interpreted, and a corresponding traffic information has to be broadcasted. Each of

these steps consumes time and may cause errors (misinterpretations, transmission errors, etc.).

The consequence is that even traffic state estimations provided by professional traffic content

providers often are unable to mirror the real traffic situation accurately (19) (21). This raises

the question about the quality of RTTI and how it can be measured.

Assessment of Real-time Traffic Information An important task, which is frequently ad-

dressed in literature, is the assessment of the quality of commercial RTTI. For the intended

12The dashed rectangle in Figure 2.3 will be relevant later on.
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simulation study in chapter 7, where the dependency of the quality of charging strategies on

the quality of the available traffic information is analyzed, it is also important to be able to mea-

sure the quality of RTTI quantitatively. Before this can be done, however, the term ”quality“

needs to be defined in the context of RTTI.

There exist very detailed considerations about the definition of information quality in general.

In (156), for instance, seven different facets of information quality are listed (accuracy, consis-

tency, completeness, availability, recentness, metric precision and semantic precision). Even

though this contribution has a traffic related background, the suggested concept for defining

information quality differs significantly from the interpretation of quality which can be found

in studies that particularly deal with the assessment of commercial RTTI13. In these studies, it

is always proposed to generate at first a numerical representation of the real traffic situation,

and then define quality as the level of similarity between broadcasted RTTI and the generated

representation.

Basically, it can be distinguished between two different types of methods for generating numer-

ical representations of traffic situations (21). One possibility is the execution of test drivings

where the global positioning system (GPS)-traces of the test vehicles are recorded. Such traces

consist of data about the vehicle’s position in dependency of time. This makes it possible to

derive driving speeds, which again allows drawing conclusions on prevailing traffic conditions.

Methods for rating the quality of RTTI compare the trace-data or probe-data, respectively, with

the RTTI. In (20), for example, road segments where congestion was experienced by the drivers

during the tests drive are identified based on the probe-data. For this purpose, a speed threshold

is defined. If the average driving speed along a road segments fell below this threshold, it is as-

sumed that the considered vehicle encountered congestion. Afterwards, the times and segments

for which congestion was experienced during the test drivings are compared to the times and

segments for which congestion should have been experienced according to the analyzed RTTI.

A false alarm rate and a hit rate are derived to assess the quality of the RTTI. In (95), a simi-

lar procedure is suggested. However, the RTTI is rated according to the amount of additional

travel time which a routing recommendation on the basis of the broadcasted RTTI may cause

in comparison to the situation of having perfect RTTI available. The term ”perfect“ means in

this context that RTTI meets exactly the situation described by the recorded GPS-traces.

The other possibility for generating numerical representations of traffic situations is the con-

struction of spatio-temporal descriptions of the development of traffic. Such descriptions show,

for example, average driving speeds in dependency of space and time (usually for a certain

road corridor during a specific time period). Methods for generating such spatio-temporal traf-

fic state reconstructions are the ASDA/FOTO (automatische Staudynamikanalyse/forecasting

of traffic objects) models, which are based on Kerner’s three phase traffic theory (chapters 2

13Whenever rating commercial RTTI is addressed in studies, then solely traffic state estimations and no traffic
predictions are considered. The described ideas, certainly, can in most cases be directly transferred to the latter, too.
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and 9 in (79)), and the adaptive smoothing method (ASM) proposed in (146). More details

about macroscopic traffic state reconstructions will be provided later on in section 6.2. Meth-

ods for rating the quality of RTTI compare the spatio-temporal traffic state reconstructions

with the RTTI. In (19), spatio-temporal regions of congestion are identified on the basis of a

traffic state reconstruction which is computed according to the ASM. These regions are com-

pared to broadcasted congestion warnings (according to the analyzed RTTI) and, similar to

(20), a false alarm rate and a hit rate are derived to assess the quality of the RTTI. In (122),

the ASDA/FOTO-models are used to produce spatio-temporal traffic state reconstructions for

a certain road corridor. Then, (instantaneous) travel times resulting from this reconstruction

are compared to (instantaneous) travel times resulting from the considered RTTI. The RTTI is

rated depending on the differences between both types of travel times.

Data Availability and Real-time Traffic Information Quality Instead of assessing traffic

information quality, it is often analyzed in literature which level of quality can be achieved

given a certain level of data availability. In (22), a pure statistical analysis is carried out to de-

rive a relation between traffic volume, percentage of vehicles that constantly send their driving

speeds to a traffic content provider, and the time that is necessary to detect congestion after its

occurrence. Another approach for analyzing the relation between data availability and the pos-

sible traffic information quality is stated in (110). In this study, a freeway corridor is simulated

using a microscopic traffic simulation tool. Hence, the movements of all vehicles and along

with them the ”real“ (real refers to the reality within the simulation) traffic situation are fully

available. In a next step, a certain percentage of the vehicles is randomly selected and, based on

the data belonging to the selected vehicles, a traffic state reconstruction is executed. This traffic

state reconstruction resulting from considering only a reduced data set is compared to the real

traffic situation. This allows deriving a relation between penetration rate (number of tracked

vehicles divided by the number of total vehicles) and achievable traffic estimation accuracy. In

(105) the procedure is almost the same. Other works do not rely on traffic simulation to get

a close idea of the real traffic situation. In (65) and (100), the traffic situation on a freeway

corridor during a period of a few hours was comprehensively captured by organizing hundreds

of test drives. Each of the corresponding vehicles sent its current position and driving speed

every few seconds. With having a set of traces that is big enough to describe the real traffic

situation adequately, the procedure itself is then the same as in (110). In (5), so-called next

generation simulation (NGSIM) data are analyzed in an urban scenario. For the generation

of the NGSIM data, the movement of all vehicles within a small part of a road network was

fully recorded via cameras for a short time period. Based on the resulting videos, the exact

movement of each vehicle is derived, providing an almost perfect picture of the whole traffic

situation. Again, data from different percentages of randomly selected vehicles are used for

traffic state estimations and the result is compared to the real traffic states, i.e., to traffic state

reconstructions that are based on the whole data set.
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2.4 Summary
In chapter 2, literature in areas that are related to the problem of finding optimal charging

strategies has been described. It started in section 2.1 with a general introduction to the topic

of electric vehicles. Studies were discussed, which describe which factors have influence on

the energy consumption of BEVs and how energy consumption can be estimated or predicted,

respectively. Next, different topics in the context of navigation applications for BEVs were

considered. Besides contributions about energy efficient routing, the vehicle refueling prob-

lem, and fleet management approaches for BEVs, also prior works on CSO were described. It

turned out that existing problem formulations are too simple as if they were able to fulfill the

requirements defined by ROs 1a and 1b. Particularly the uncertainty of future energy consump-

tion has not yet been addressed sufficiently. As a consequence, the focus was shifted in section

2.2 to modeling uncertainty within routing applications. Finally, in section 2.3, traffic infor-

mation which is available in practice was described. It was sketched how traffic information

is generated and why errors occur. Moreover, an overview of existing approaches to measure

the quality of such information was provided. Section 2.3 was intended as a preparation for

the simulation study in chapter 7, where error-prone traffic information is considered to be the

only source of uncertainty.



Chapter 3

Charging Strategy Optimization as a
Multistage Decision Problem

From the literature review in chapter 2, it can be observed that prior work on CSO primarily fo-

cuses on achieving low computation times. To obtain this, the suggested models are kept rather

simple. It is assumed, for example, that all charging stops lead to a fully recharged battery or

that time and energy necessary for passing road segments are static values. The most crucial

simplification, however, is that the possibility of incorrectly predicted energy consumption is

not taken into account at all. Due to this, it is concluded in chapter 2 that existing approaches

are inappropriate for achieving ROs 1a and 1b. The goal of chapter 3 is to start closing exist-

ing research gaps. For this purpose, the problem of finding optimal charging strategies will be

modeled as a multistage decision problem (MDP). This problem formulation will be primarily

designed to lead to a realistic modeling and to be able to include all relevant problem aspects.

This will ensure that particularly RO 1a can be achieved. Moreover, the formulation as an MDP

will form the basis for further models, which will finally be able to fulfill all subobjectives of

RO 1.

Chapter 3 is structured as follows: At the beginning, fundamentals in decision theory are ex-

plained and the essential components of sequential MDPs are described. In a next step, it is

motivated why the problem of finding optimal charging strategies is formulated as an MDP.

The meaning of each of the components of MDPs in the context of CSO is discussed and ap-

propriate adjustments of their definitions are provided. It is finally analyzed up to which degree

the resulting problem formulation as an MDP is sufficient to achieve RO 1a to RO 1c.

3.1 Fundamentals of Decision Theory
Consider the following situation: With her/his actions a decision maker has the possibility to

influence the behavior of a (probabilistic) system as it evolves through time. She/he can only

35
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act at specific points in time (so-called decision stages) and there exists a number of action

possibilities from which she/he can choose at each of these points in time. Her/his goal is to

influence the system in such a way that it behaves optimally with regard to some criteria. Then,

an MDP can be formulated in a non-formal way as follows: Find a sequence of actions (one

action at each decision stage) which optimizes the system’s development with respect to the

given criteria (formulation is taken from p. 17 in (117)).

For a mathematical formulation of MDPs, the subsequent notations are used. Similar defini-

tions can be found in section 2.3 in (34):

1. A finite set of decision stages t1, t2, ..., tK with K ∈ N, a starting time t0 and an ending

time tK+1.

2. A set of decision spaces Uk with k ∈ {1, 2, ...,K}.

3. A sequence of real-valued random variables ξk with k ∈ {0, 1, ...,K + 1}. The corre-

sponding realizations are denoted by ξ̄k ∈ Rm with m ∈ N \ {0}.

4. A real-valued performance measure f .

5. A decision policy π consisting of decision rules πk with k ∈ {1, 2, ...,K}.

Decision stages t1, t2, ..., tK represent points in time at which the decision maker is able to

act. Decision spaces Uk describe the set of feasible actions at time tk, from which the deci-

sion maker can choose. The development of the system over time is represented by random

variables ξk and performance measure f represents the criteria according to which the system

behavior shall be optimized. Performance measure f returns a penalty (or revenue, respec-

tively) depending on the chosen decisions uk ∈ Uk and the system’s development ξ̄k (recall

that ξ̄k ∈ Rm for all k ∈ {0, 1, ...,K + 1}):

f : R(K+2)∗m × U1 × U2 × ...× UK −→ R. (3.1)

Finally, a decision rule πk describes which decision is recommended at decision stage tk ac-

cording to decision policy π.

Figure 3.1 illustrates a sequential multistage decision process. In this context ”sequential“

means that the decision stages are ordered, i.e., tk ≤ tk+1 ∀k ∈ {0, 1, ...,K}, and that when

reaching decision stage tk, all previous decision stages tk∗ with k∗ < k have been visited be-

fore. The whole process starts at time t0. ξ̄0 represents the system’s initial state14. Variable

ξ0 (and all further ξk) usually consists not only of one single number, but of a whole vector of

14The initial state is usually understood as a given set of values and not as a random variable. Nevertheless, it is
distinguished between the vector ξ̄0 ∈ Rm and the deterministic variable ξ0
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𝑡0 𝑡1 𝑡2 𝑡𝑘 𝑡𝐾 𝑡𝐾+1 

Former Actions 𝒖𝟏, … , 𝐮𝒌−𝟏  Realizations 𝛏𝟎 ,… , 𝛏𝒌  

Prior Distributions: 𝚸(𝛏𝒌+𝟏, … , 𝝃𝑲+𝟏 ∣ 𝛏𝟎 ,… , 𝛏𝒌 , 𝐮𝟏, … , 𝐮𝐤−𝟏, 𝒖 𝒌 ) 

Selected Action 𝒖𝒌 

Decision Rule 𝝅𝒌 

Possible Current Actions 𝒖 𝒌 

Figure 3.1: Overview of information which is available at the time at which an action needs to
be chosen (for the case of a sequential MDP).

quantities which are relevant for the decision maker. Quantities are relevant if they are consid-

ered directly by the performance measure f , if they have influence on the available actions or if

they allow deriving a more accurate prediction of the future development of relevant quantities.

After the start, the system evolves between times t0 and t1. The results of this development

(and possibly also the development itself) are represented by ξ̄1. Then, the decision maker is

allowed to choose her/his first action from decision space U1, since the first decision stage is

reached at time t1. All information that is available at time t1 can be taken into account for this

first decision. As shown in Figure 3.1, it is assumed that the realized system states ξ̄0 and ξ̄1 are

known at that time. For all following decision stages tk with k ∈ {2, 3, ...,K}, all former deci-

sions u1, ..., uk−1 are assumed to be known, too. However, it is also assumed that some kind of

knowledge about the system’s future behavior is given. This is an essential assumption in deci-

sion theory. It means that some information about random variables ξk for k ∈ {2, 3, ...,K+1}
and about their dependency on the current action has to be available. If this was not the case,

then the future impact of current actions could not be estimated. At decision stage tk, this

knowledge of the system’s future behavior typically is represented by conditional probability

distributions. These distributions depend on former realizations, on former decisions, and on

the action that will be executed at the current decision stage:

P(ξk+1, ξk+2, ..., ξK+1 | ξ̄0, ξ̄1, ..., ξ̄k, u1, u2, ..., uk−1, ûk). (3.2)

These distributions are often referred to as prior probability distributions or priors. In equa-

tion 3.2, variables u1, u2, ..., uk−1 denote actions which have already been executed at previ-

ously reached decisions stages. The -̂symbol, on the other hand, is intended to emphasize that

the corresponding action ûk is now (i.e., at time tk) available, but it has not been executed yet.
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This means that, depending on the current decision, the probabilities of future system devel-

opments change. Now, return to the situation where decision stage t1 has just been reached.

The decision maker selects one feasible action from decision space U1 based on her/his current

knowledge. It is assumed that for any feasible actions û1 ∈ U1 the corresponding prior dis-

tribution is known. The procedure or methodology according to which the action is selected

by the decision maker at a specific decision stage tk is denoted as decision rule πk. πk is a

function which returns, depending on former actions and realizations of random variables, an

action from the current decision space:

πk : Rm·(k+1) × U1 × ...× Uk−1 → Uk
πk(ξ̄0, ..., ξ̄k, u1, ..., uk−1) = uk

(3.3)

Here, it is used that each random variable ξk obtains values in Rm. Any function of the form

described by equation 3.3 can be applied as a decision rule. Certainly, solving a decision

problem means to find a decision policy π = (π1, ..., πK), which optimizes the value that is

returned by f . For formulating a decision problem mathematically, it is important to stress that

πk can solely depend on information that is available at time tk. A decision policy consisting

only of decision rules which fulfill this property is denoted as non-anticipative (p. 11 in (34)).

This notion allows giving a general formulation of (sequential) MDPs:

minimize E[f(ξ, π(ξ))]

subject to πk ∈ F(Rm·(k+1) × U1 × ...× Uk−1,Uk)

π non-anticipative

(3.4)

Here, variable ξ is defined as the vector (ξ0, ..., ξK+1) and furthermore

F(Rm·(k+2) × U1 × ...× Uk−1,Uk) (3.5)

as the space of all functions mapping from Rm∗(k+1)×U1× ...×Uk−1 to Uk. So far, a general

mathematical formulation of decision problems is derived, but it seems necessary to state some

additional remarks:

Even though ξk is considered to be a random variable, the processes which are described by ξk
not necessarily need to be understood to be random processes. The randomness may just be a

way to represent uncertainty or missing knowledge.

Formulating the optimization problem as a minimization problem does not limit its generality,

since (in the case of maximization problems, i.e., if f is a utility function and not a penalty func-

tion) there is no difference between maximizing E[f(ξ, π(ξ))] or minimizing E[−f(ξ, π(ξ))].
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Optimizing the expected value E[f(ξ, π(ξ))], on the other hand, can be understood as a mi-

nor limitation of generality (see p. 11 in (34)). Nevertheless, it is the typical way of han-

dling random variables within objective functions of optimization problems. In this context,

E[f(ξ, π(ξ))] is from here on denoted as objective function, whereas f is denoted as perfor-

mance measure. This distinction will keep further statements clearer.

In the formulation of problem 3.4, it could be expected that the decision policy π within the ob-

jective function does not only depend on ξ. It should also depend on chosen actions u1, ..., uK ,

since the decision rules πk depend on them (see equation 3.3). However, it is not necessary

to explicitly state this within the problem formulation, since all made decisions directly result

from the decision policy itself and the realizations of random variables ξk.

The suggested formulation of the decision problem can be generalized further, for instance, by

making random variables ξk, actions spaces Uk or decision stages tk dependent on previously

made decisions and realizations. For this purpose, it can be written

ξk(ξ̄0, ..., ξ̄k−1, u1, ..., uk−1) instead of ξk, (3.6)

Uk(ξ̄0, ..., ξ̄k, u1, ..., uk−1) instead of Uk, (3.7)

tk(ξ̄0, ..., ξ̄k, u1, ..., uk−1) instead of tk. (3.8)

Some of these additional dependencies are necessary to adequately formulate the problem of

finding optimal charging strategies as an MDP. In order to reduce notational complexity, it

is still written ξk – even though these realizations may also depend on former actions or the

system’s former development. For any other component of the decision model, i.e., for de-

cision stages, decision policies and rules, decision spaces and the performance measure, all

dependencies are explicitly formulated.

3.2 Decision Problem Components for Charging Strategies
There are three main reasons suggesting to formulate the problem of finding optimal charging

strategies as an MDP: First, a person who wants to use a BEV to reach a specific destination

needs to make decisions: Should she/he turn left or stay on the current road, should she/he

charge at the next charging station up to 40 or 50 percent? Consequently, applying considera-

tions from decision theory to compute charging strategies appears to be reasonable. A further

important aspect is that the driver of the BEV can only take actions when certain locations

are reached, such as intersections and charging stations. Many other real world problems, for

instance problems known from control theory, usually allow taking actions continuously. This

suggests to model the problem of finding optimal charging strategies as a ”multistage“ decision

problem, since this special version of decision problems represents the idea of having solely

a limited number of stages at which the considered system can be influenced. To explain the
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third reason for favoring a formulation as an MDP, let it be considered that different types of

mathematical optimization problems (linear programs, dynamic programs, etc.) typically lead

to different types of restrictions during the modeling process. For instance, linear programs, as

the name implies, allow only representing relations which can be described by linear models.

Integer programs make the discretization of problem components necessary. Such restrictions

are in most cases intended to enable an efficient computation of solutions, but they are not nec-

essary to represent the properties of the considered real world problem. The main restriction

caused by formulating a problem as an MDP is the aforementioned limitation to be only able

to take action when a decision stage is reached. However, it has already been explained that

this is actually no restriction in the context of CSO. Later on, other potential formulations of

the problem of finding optimal charging strategies will be discussed, which do, in contrast to

the formulation as an MDP, lead to unnatural model properties and limitations, respectively.

To formulate the problem of finding optimal charging strategies as an MDP, the meaning of all

components of MDPs (decision stages, actions spaces, the system’s development, performance

measure, and decision policy) needs to be explained for this specific context. Partly, the def-

initions of these components are also adjusted. Two preparatory steps are necessary for this

purpose.

First, basic notions in the context of graph theory have to be introduced: A directed graph ~G

is a tuple of nodes V and edges ~E, i.e., ~G = (V, ~E). Each edge is a directed connection be-

tween two nodes, i.e., ~E ⊆ V × V . Here, only finite graphs, i.e., |V | < ∞, are considered.

A path P on a graph ~G is defined as a finite sequence of nodes P = [v1, v2, ..., vQ], with Q

∈ N \ {0} and (vi, vi+1) ∈ ~E for all 1 ≤ i < Q. The subpath of P which consists only of

nodes [vi, vi+1, ..., vj ] with 1 ≤ i ≤ j ≤ Q is denoted by Pi:j . Given two nodes s, d ∈ V , any

path starting at s and ending at d is called an s-d-path and the corresponding set of all paths on
~G leading from s to d is denoted by P(~G, s, d). A cycle is an s-d-path with s = d.

The second preparatory step is the construction of a graph representing the spatial situation,

i.e., the graph has to represent the starting location of the driver, her/his destination location,

the relevant parts of the road network, and the available charging stations. This can be achieved

by using a graph representing the considered part of the road network and adding one additional

node for each location at which a charging station is available. Moreover, one further node is

added for the starting location. The resulting graph is from here on denoted as decision graph
~GD = (VD, ~ED). Figure 3.2 visualizes an example. Here, it is assumed that a person located

at node v0 wants to use a BEV to get to node v7 when starting at a specific starting time tS
with a specific starting state of charge SOCS . Charging stations can be found between nodes

v1 and v3, nodes v1 and v5, and nodes v5 and v7. Note that nodes v0, v2, v4 and v6 possibly

are not part of the original graph, which just represents the road network. Moreover, it can be
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assumed that v0 and v1 are located at the same spatial position, i.e., the driver actually starts at

node v1. Node v0 is just added as a dummy node. In the following, this allows avoiding that

v0 v1 v3

v5

v7v2

v4 v6

charging station 2

charging station 4 charging station 6

Figure 3.2: Example of a graph used to model the problem of finding optimal charging strate-
gies as a non-sequential MDP.

already at the starting node a decision has to be made. Otherwise, it would not be possible to

keep notation consistent with section 3.1. There, no decision can be made at starting time t0.

Decision Stages According to section 3.1, decision stages are points in time at which a choice

has to be made by the decision maker. In the situation described by Figure 3.2, the decision

maker has the possibility to choose from two different routes at nodes v1 and v3. At nodes v2,

v4 and v6, she/he can decide whether to charge at the corresponding charging station or not and,

in the case that her/his decision is positive, she/he additionally has to decide how much energy

she/he wants to charge. Therefore, decision stage tk is defined as the the time at which node vk
is reached by the BEV. To keep notation consistent with section 3.1, there is one decision stage

for each node of the graph, except for the starting node and for the destination node15. Thus,

there is also a decision stage t5 when reaching node v5 in the graph of Figure 3.2, although

there exists neither a routing nor a charging choice at this location.

The central difference between the situation in Figure 3.2 and the decision model described in

section 3.1 is the fact that the sequential structure of the decision problem is lost. This means

that the sequence of decision stages is not fixed. It depends on the executed actions. Some

of the decision stages may not even be reached before the destination node. Consequently,

15According to section 3.1, t0 and tK+1 are no decision stages!
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they are actually not part of the decision process. The sequential structure is lost as soon as

route choices can be made. For the example in Figure 3.2, node v4 (and along with it decision

stage t4) cannot be reached if the driver decides at stage t1 to take the road segment leading to

node v2. Note that, for the sake of simplicity, it is assumed that decision graphs do not include

cycles. Otherwise, it would be possible to visit nodes multiple times, which again would make

notational adjustments necessary. From a practical perspective, this is actually no significant

restriction, since visiting a location twice is not meaningful when trying to get from a location

A to a location B.

Decision Spaces For each decision stage tk, a decision space Uk has to exist. Here, the

definition of Uk depends on the type of node vk. If vk represents a charging possibility, then Uk
is defined as the set of all possible states of charge that can be obtained. As the state of charge

is measured in percent, it holds:

Uk := [0%, 100%] = [0.0, 1.0] ∀vk ∈ V cs
D , (3.9)

where V cs
D denotes the set of all nodes which represent locations of charging stations. It is

important in this context that the decision model is able to handle infeasible charging actions.

For example, if a vehicle arrives at a certain node with a state of charge of 80 percent, then it

makes no sense that the driver decides to recharge the battery up to a state of charge less than

80 percent. Later on in this section, it will be shown how the model can be adjusted to avoid

such decisions.

If vk does not indicate the position of a charging station (for example, if vk embodies an inter-

section), then Uk is defined as the set of all edges leaving this node:

Uk := {(vi, vj) ∈ ~ED | vi = vk} ∀vk ∈ VD \ {V cs
D ∪ {v0, vK+1}}. (3.10)

The System’s Development Random variable ξk represents the development of the ”system“

until time tk. Keep in mind that each random variable ξk actually is a vector of random vari-

ables and thus can theoretically store an arbitrary amount of information. Any aspect which

has a direct or indirect influence on the planned trip may be part of ξk. In this context, ”indi-

rect“ means that some quantities may only be considered as they allow making more precise

predictions of other (directly influencing) aspects which are considered by performance mea-

sure f , i.e., they contribute solely to prior distributions. Here, the description of ξk is kept very

general. The intention is to keep also the resulting decision model general, despite the fact that

the problem of finding optimal charging strategies is modeled. However, it is assumed that ξk
contains at least two specific quantities, namely the arrival time tAk ≥ 0 of the considered ve-

hicle at node vk and the vehicle’s state of charge SOCk ∈ [0.0, 1.0] when arriving at node vk,

i.e,. ξk = (tAk , SOCk, ...). The dots indicate that ξk may contain additional random variables.
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Correspondingly, tA0 is equal to the starting time tS and SOC0 is equal to the state of charge at

the beginning, which is denoted by SOCS .

Information about the state of charge of the vehicle is crucial for estimating whether or not a

sequence of actions leads to an empty battery. Furthermore, SOCk allows adjusting decision

space Uk to avoid the aforementioned infeasible charging actions. This is done by making the

definition of decision spaces which represent charging possibilities (compare definition 3.9)

dependent on the realized state of charge:

Uk(SOCk) := [SOCk, 1.0] ∀vk ∈ V cs
D (3.11)

The realizations of tAk , i.e., the actual arrival times, are necessary in order to be able to define

decision stages tk mathematically:

tk(ξ̄k) = tk(t̄
A
k , SOCk, ...) := t̄Ak . (3.12)

Here, t̄Ak denotes the realized16 arrival time at node vk and is set equal to∞ if vk is not reached

during the decision process. If tAk was not part of ξk, there would be no part of the decision

model which provides the possibility to compute arrival times. This would make adjustments

of the definition of decision stages necessary, since they could no longer be understood to be

points in time. Furthermore, knowing realized and estimating future arrival times is essential to

predict the influence of dynamic factors (such as traffic or outdoor temperature) on the BEV’s

future experiences (such as energy consumption).

Performance Measure There are many reasonable ways for defining the performance mea-

sure f in the area of CSO. Measures which are typically applied within routing applications,

such as the total travel time or the total energy consumption, could be used. According to the

described formulation of general decision problems, f depends on the realizations of ξ and

on the executed actions. Since the decision model for the case of CSO is, in general, not se-

quential and thus not all decision stages may be reached, the performance measure may simply

ignore the corresponding ξk and uk. To emphasize that f does not depend on any decision

model component belonging to such decision stages, it is written f(ξ̄≤K+1, π(ξ̄≤K+1)) instead

of f(ξ̄, π(ξ̄)) (compare the definition of general MDPs in equation 3.4). The vector ξ̄≤K+1

consists of all ξ̄k with t̄Ak ≤ t̄AK+1, i.e., of all realizations of random variables which belong to

decision stages that are visited until the destination is reached. The corresponding sequence of

decisions is represented by π(ξ̄≤K+1).

16Random variable tAk is part of random process ξk. Its realizations are denoted by t̄Ak , even though the arrival
time typically depends on former decisions. It has already been mentioned that this is done to reduce notational
complexity.
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Another aspect which can be handled by f is the penalization of executed sequences of actions

π(ξ̄≤K+1) that lead to an empty battery. If the available energy, which results from the executed

decision policy and the realizations of the random variables, at some point is not enough to pass

a certain road segment, then none of the following decision stages can be reached anymore.

Consequently, destination vK+1 is also never reached. The realized arrival time t̄AK+1 is set to

infinity according to equation 3.12. To penalize such situations, any performance measure f

could be modified as stated below:

f(ξ̄, π(ξ̄)) :=∞ if t̄AK+1 =∞ (3.13)

Alternatively, instead of using f to exclude unreliable sequences of actions from consideration,

the definition of decision spaces could be adjusted. However, no details are shown here. It is

worth mentioning that assigning a value of ∞ to certain sequences of actions is problematic

for computing the expected value E[f(ξ̄, π(ξ̄))], since it is possibly not well-defined. To avoid

this, the infinity sign in equation 3.13 could be replaced with a large positive numberM ∈ R>0.

Decision Policy According to section 3.1, a decision policy π consists of decision rules πk.

These decision rules πk are functions mapping from the space of all possible system develop-

ments and all possible combinations of former actions to the set of available actions Uk. This

implies that in the context of CSO, a decision rule πk for vk /∈ V cs
D suggests which road seg-

ment should be taken next. If vk ∈ V cs
D , then the decision rule states whether the BEV should

be charged at the charging station represented by node vk and, if this statement is positive, up

to which state of charge it should be charged.

In section 2.1.5 in (117), it is mentioned that in decision theory often the term ”strategy“ is

used as a synonym for the term ”policy“. For the described research, it is distinguished be-

tween these two terms to be notationally consistent with the idea of charging strategies which

was mentioned in chapter 1:

A decision strategy is defined as the sequence of actions π(ξ̄) (or π(ξ̄≤K+1), respectively),

which results from the applied decision policy and the realizations of the random variables

which describe the system’s development.

In contrast to a decision policy, a decision strategy consists of actions or instructions, respec-

tively, and not of decision rules, which themselves return instructions. This means that a de-

cision policy π can be interpreted as a function which returns, depending on the considered

system’s development ξ̄, a specific decision strategy π(ξ̄). Table 3.1 lists the differences be-

tween a decision strategy and a decision policy. An interesting aspect is that, even though

π itself is a deterministic function, π(ξ) (or π(ξ≤K+1), respectively) can be interpreted as a
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Table 3.1: Difference between decision policy and charging strategy.

Mathematical Verbal Explanation Verbal Term Mathematical
Formula Interpretation

π(ξ̄) sequence of decision realizations of

actions/instructions strategy random variable π(ξ)

(deterministic) scheme decision deterministic function

π defining how to react policy

to realizations of ξ

random variable. The reason for this is that deterministic functions applied to random vari-

ables again can be interpreted as random variables. Note that in the context of CSO, the terms

”charging policies“ and ”charging strategies“ are used as alternatives for ”decision policies“

and ”decision strategies“.

To clarify the difference between charging strategies and charging policies and to illustrate the

meaning of some of the components of the suggested multistage decision model in the context

of CSO, an example based on the graph displayed in Figure 3.3 is discussed in the following.

This graph is basically the same as shown in Figure 3.2. For the moment, let it be assumed

that a driver located at node v0 wants to drive (now, at time tS = t0) to node v7 with a BEV.

Furthermore, the performance measure f is defined as the total travel time, i.e., the goal is to

minimize the expected travel time E[tA7 − tS ] for the given starting time tS . Moreover, it is

v0 v1 v3

v5

v7v2

v4 v6

Edge Costs [min] Probability (v2, v3) (v3, v7) other edges
Scenario 1 90% 1 1 1
Scenario 2 10% 2 11 1

Figure 3.3: Example Graph: Difference between charging policies and charging strategies.

assumed that the initial state of charge SOCS , for any realization of ξ and independently of the
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chosen route, is sufficient to reliably reach v7. Correspondingly, it is not necessary to consider

any charging stops in this example. The travel time for any of the edges of the graph is equal

to one minute, except for the edges (v2, v3) and (v3, v7). For them, random travel times are

assumed: With a probability of ten percent, the travel time for passing edge (v2, v3) is equal to

two minutes, with a probability of ninety percent, it is also equal to one minute:

cT (v2, v3) := tA3 − tA2
P(cT (v2, v3) = 1 minute) = 0.9

P(cT (v2, v3) = 2 minutes) = 0.1

(3.14)

In equation 3.14, cT (v2, v3) denotes the travel time necessary for passing edge (v2, v3). The

travel times for edge (v3, v7) are distributed as follows:

cT (v3, v7) := tA7 − tA3
P(cT (v3, v7) = 1 minute) = 0.9

P(cT (v3, v7) = 11 minutes) = 0.1

(3.15)

Finally, it is assumed that if cT (v2, v3) is equal to two minutes, then cT (v3, v7) is always equal

to eleven minutes. Consequently, if cT (v2, v3) is equal to one minute, then the probability that

cT (v3, v7) is equal to eleven minutes is zero. All resulting conditional prior distributions can

be found below:

P (cT (v3, v7) = 1 minute | c̄T (v2, v3) = 1 minute) = 1.0

P (cT (v3, v7) = 11 minutes | c̄T (v2, v3) = 1 minute) = 0

P (cT (v3, v7) = 1 minute | c̄T (v2, v3) = 2 minutes) = 0

P (cT (v3, v7) = 11 minutes | c̄T (v2, v3) = 2 minutes) = 1.0

(3.16)

Random variable cT (v2, v3) is here interpreted as a part of ξ3 and c̄T (v2, v3) denotes the corre-

sponding realization. To simplify the following explanations concerning charging policies and

charging strategies, the subsequently described notations are introduced:

Route A := [v0, v1, v2, v3, v7]

Route B := [v0, v1, v4, v5, v6, v7]

Route C := [v0, v1, v2, v3, v5, v6, v7]

(3.17)
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The distributions of travel times resulting from following these routes are stated below:

P(cT (A) = 4) = 0.9

P(cT (A) = 15) = 0.1

cT (B) = 5

P(cT (C) = 6) = 0.9

P(cT (C) = 7) = 0.1

(3.18)

Expected travel times result as follows:

E[cT (A)] = 5.1

E[cT (B)] = 5

E[cT (C)] = 6.1

(3.19)

Based on the stated travel time expectations, it seems reasonable to assume that an optimal

charging policy recommends taking route B. However, this is not the case. It can be verified

easily that the best policy is to follow paths A and C at decision stage t1 and to make the

decision at stage t3 dependent on the realization of cT (v2, v3). Formally, this can be expressed

by defining the sequence of decision rules as subsequently described:

π1 := (v1, v2) (3.20)

π2(SOC2) := SOC2 (3.21)

π3(c̄T (v2, v3)) :=

(v3, v5) if c̄T (v2, v3) = 2 minutes

(v3, v7) else
(3.22)

π4(SOC4) := SOC4 (3.23)

π5 := (v5, v6) (3.24)

π6(SOC6) := SOC6 (3.25)

Decision rule π4 is never applied, since node v4 cannot be reached when following the recom-

mendations of charging policy π. Decision rules π2, π4 and π6 are a consequence of the fact

that the BEV does not need to be recharged. The expected travel time resulting from this charg-

ing policy is equal to 4.3 minutes, since for the case of increased travel time at edge (e2, e3)

route C is chosen, otherwise route A (90 percent probability to choose path A with costs of 4

minutes, 10 percent probability to choose path C with costs of 7 minutes). This means that the

suggested charging policy leads to one of two possible charging strategies. The first charging

strategy consists of instructions that can be represented by route A, the second one of instruc-

tions leading to route C. Note that, independently of the system’s development, the charging

policy π itself does not change during the trip. Only the resulting charging strategies change.
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Model Extension: Decisions during Charging Processes The suggested definitions of the

components of an MDP in the context of CSO hide one minor restriction: In the current version

of the model, the state of charge that needs to be reached at the end of a charging process is

determined when the BEV arrives at the corresponding decision stage, i.e., it is determined at

the beginning of the charging process. Instead, it could be suggested to simply start charging

and then it could continuously be asked whether or not the charging process has to be continued.

The advantage of this idea is that the charging policy could react to changes of the system that

occur during the charging process. Let it be assumed, for example, that a BEV is currently

charged at a charging station. Furthermore, it is assumed that a traffic accident causes the

blockage of one lane of a two-lane freeway a few kilometers downstream of the BEV’s current

position. In this case, it may be beneficial to stop charging and continue the trip in order to

pass the accident before a long queue is formed. In order to allow charging policies considering

such options, adjustments concerning the definition of decision stages and decision spaces are

necessary. Decision stages tk for nodes vk ∈ V cs
D need to be understood as time periods and

not as points in time, i.e.:

tk := [tstartk , tendk ] ⊂ R≥0 (3.26)

Here, tstartk simply represents the arrival time at the charging station and tendk the end of the

charging process. Decision spaces belonging to charging stations, on the other hand, are no

longer defined as continuous intervals, but as a discrete set of options:

Ut(SOCt) :=

{0, 1} if SOCt < 100%

{0} else
∀vk ∈ V cs

D , ∀t ≥ tstartk (3.27)

Variable SOCt describes the state of charge at time t. Moreover, let ut denote the action that

is executed at time t. If decision ut ∈ Ut(SOCt) is set equal to zero, then it means that the

charging process is stopped at time t. Setting ut = 1 means that the process is continued at

time t. If utstartk
= 0, then it is decided that the BEV is not charged when it arrives at the

charging station. Based on these considerations, the end of the charging process tendk is a result

of a continuous sequence of decisions ut:

tendk := min{t ≥ tstartk | ut = 0} (3.28)

Besides the definition of decision stages and decision spaces, some further modifications of the

formulation as an MDP are necessary when it is allowed to make decisions during charging

processes. For instance, due to a possibly infinite number of decision stages, the set of random

variables ξk may no longer be finite. However, these modifications primarily a question of

notation and do not affect the underlying ideas. Thus, no further details are mentioned – except

for one aspect: The new problem formulation should no longer be denoted as a ”multistage“

decision problem, since the concept of discrete stages represents the essential feature of MDPs.
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For the remainder of this work, the basic MDP is considered and not its extended version. The

main reason for this is that, when returning to a practical perspective, it seems unrealistic that

a driver constantly waits during charging processes for new instructions of her/his navigation

device. Furthermore, it will turn out that the original formulation can be used as the fundament

for an adjusted model formulation for the problem of finding optimal charging strategies. This

will be relevant in chapter 4.

3.3 Model Assessment with Regard to Research Objectives
In the following, based on the considerations made in chapter 3, the suggested formulation of

the problem of finding optimal charging strategies as an MDP is analyzed with regard to ROs

1a to 1c.

RO 1a: This RO consists of two main parts: The developed problem formulation has to be

able to include all relevant aspects (whatever aspects are considered to be relevant) and the

problem formulation needs to achieve a high level of realism.

The generic form of the introduced MDP (recall the problem formulation in equation 3.4) pro-

vides lots of flexibility. This is especially a consequence of the fact that random variables ξk
and performance measure f have not been concretized. Thus, it can be expected that almost

any factor which is considered to be relevant can be represented.

Regarding the topic of realism, it needs to be considered if the applied type of optimization

problem shows unnatural model properties. In this context, it has already been argued that

MDPs are particularly suitable to model the problem of finding optimal charging strategies.

The main limitation, to which MDPs are bound, is the idea of discrete decision stages. It was

argued at the beginning of section 3.2 that this represents no significant restriction in the context

of CSO, since decisions primarily can be made when the BEV reaches certain locations (inter-

sections or charging stations). The only restriction is that the option to adjust recommended

instructions during charging processes is not given. As a consequence, some optimization po-

tential is lost. From a practical perspective, however, being unable to adjust recommended

instructions while charging seems irrelevant.

When considering prior models for CSO, it has already been mentioned that several unrealistic

assumptions are made in order to simplify the resulting optimization problem. Particularly the

missing possibility to represent uncertainty and the interpretation of travel times and energy

consumption as static factors appear to be critical. The suggested MDP does not suffer from

these limitations. The possible dependency of random variables ξk on former system develop-

ments (compare equation 3.6) provides the possibility to model the energy consumption and
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the travel times which are necessary for passing road segments dynamically. Moreover, ran-

dom variables ξk are, due to their random nature, able to represent randomness or uncertainty,

respectively. However, as long as no concrete definitions for performance measure f and ran-

dom variables ξk are made, it is not possible to decide whether or not the suggested problem

formulation obtains a high level of realism. On the other hand, it can at least be stated that it

provides the possibilities to ensure this.

RO 1b: For RO 1b, the same holds as for RO 1a: Up to which degree RO 1b can be achieved

on the basis of the suggested MDP depends on how the problem components are specified.

The model basically provides enough flexibility to ensure that resulting charging strategies (or

charging policies, respectively) are efficient and reliable. In the end, performance measure

f needs to be defined appropriately. Note in this context that f already penalizes charging

policies that are likely to lead to an empty battery (compare equation 3.13).

RO 1c: Considering RO 1c, one pays for setting the focus on constructing a formulation that

shows almost no unnatural properties and does not suffer from model inherent restrictions. Nu-

merical optimization methods cannot directly handle the suggested MDP, since its formulation

in equation 3.4 can hardly be specified with a finite number of optimization variables and con-

straints (p. 12 in (34)). The critical aspect is the space of functions F , which is in general

an infinite-dimensional space. As a consequence, the suggested problem formulation does not

allow achieving RO 1c.

Conclusions: Summarizing the findings of section 3.3, it can be stated that the introduced

MDP offers enough freedom to fulfill the requirements described by ROs 1a and 1b. On the

other hand, RO 1c cannot be achieved. An adjustment of the model is necessary, primarily to

make a numerically treatable representation of the function space F possible17. Such adjust-

ments are typically based on some kind of discretization. For instance, discretizing the space

of possible realizations of any random aspect of the MDP allows interpreting MDPs as stochas-

tic programs (p. 12 in (34)). Hence, algorithms which are able to solve stochastic programs

become applicable. If all decision spaces are discretized, then MDPs can be transformed into

dynamic programs, for which again various numerical solution approaches exist. Developing

an appropriate adjustment of the suggested MDP represents the main purpose of the following

chapters. The MDP will in this context not only be used as a theoretical fundament, on which

further problem formulations can be based. It will also be considered as a reference model.

Other problem formulations, which are intended to fulfill the requirements of all subobjectives

of RO 1, will be compared to it in order to identify model immanent restrictions.

17MDPs offer lots of flexibility, but it is often necessary to adjust them in such a way that they fit into a numeri-
cally treatable framework. (34)
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3.4 Summary
This chapter provided a framework for modeling the problem of finding optimal charging

strategies as an MDP. For this purpose, in section 3.1, a short description of the five compo-

nents (decision stages, decision spaces, system development, performance measure, charging

policy) of a sequential MDP was given. In section 3.2, these components and their meaning

were interpreted in the context of CSO. The descriptions of the adjusted components were kept

on a rather abstract level to achieve a very general and flexible problem formulation. The re-

sulting problem formulation differed structurally from the original MDP from section 3.1, as

the sequential nature of traditional MDPs is lost. This is a consequence of representing the

possibility to make route choices, which causes the order according to which decision stages

are reached to be dependent on previously chosen actions. Finally, in section 3.3, the developed

MDP is analyzed with regard to ROs 1a to 1c. It turns out, as already expected, that the generic

formulation allows achieving RO 1a and RO 1b. On the other hand, the problem cannot be

addressed numerically. Thus, an alternative formulation needs to be found.



Chapter 4

Charging Strategy Optimization as a
Shortest Path Problem under
Deterministic Conditions

In chapter 3, the problem of finding optimal charging strategies was modeled as a multistage

decision problem. This allowed representing the problem’s characteristics in a very natural and

generic way, but leads to issues concerning numerical solvability. Now, in chapter 4, the goal is

to derive, based on these former considerations, an alternative problem formulation, which al-

lows applying efficient (numerical) optimization algorithms and, along with that, to achieve RO

1c. For this purpose, the introduced formulation as an MDP is reduced to a deterministic SPP.

Several simplifications come along with this reduction. Moreover, some of the components of

the described deterministic SPP are concretized causing a less generic problem formulation.

The concretization is necessary, since for the design of efficient shortest path algorithms, spe-

cific information about certain components of the considered SPP is required. The resulting

problem formulation, however, again forms just an intermediate step towards the final problem

formulation provided in chapter 5.

Chapter 4 is structured as follows: In section 4.1, reasons for reducing the MDP to an SPP

are stated. Next, an intuitive scheme for constructing graphs representing road networks and

charging stations is presented, which allows associating paths with charging strategies. Af-

terwards, two deterministic edge cost functions are derived, which are assumed to be relevant

in the context of CSO. These cost functions are used as ingredients for the definition of the

performance measure f and eventually for providing the final problem formulation as a de-

terministic SPP. In section 4.2, properties of the two considered edge cost functions and their

influence on the solvability of the SPP are analyzed. Based on these considerations, in section

4.3, two different shortest path algorithms are described. One guarantees optimal solutions, the

52
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other one promises improved computation times. The chapter finishes with a comparison of

the deterministic SPP and the MDP, and a discussion concerning the SPP’s abilities to satisfy

the requirements postulated by ROs 1a to 1c.

4.1 Representation as a Deterministic Shortest Path Problem
The formulation of the problem of finding optimal charging strategies as an MDP, which was

introduced in chapter 3, can hardly be solved numerically. This is, in fact, not uncommon

for MDPs. Usually, they are modified in such a way that they fit into an optimization frame-

work which allows applying efficient optimization algorithms. Among others, the most popular

ideas are the reformulation as a linear program (64) or their interpretation as a dynamic pro-

gram (section 4.2 in (117)). Which approaches work well and which do not depend on the

problem’s structure and often it is hardly possible to find out which approaches work best with-

out testing them. However, all of them lead in some sense to inaccuracies during the solution

process. For example, to transform a problem like problem 3.4 into a linear program, it is

necessary to postulate that the number of possible realizations of ξ is finite. Otherwise, the

linear programming reformulation of problem 3.4 can not be specified by a finite number of

optimization variables and constraints (section 2.5 in (34)). From a practical perspective, the

impact of this postulation on the resulting solutions might not be critical. Nevertheless, such

adjustments lead to problem and solution properties which are, in fact, unnatural.

For the remainder of this work, the problem of finding optimal charging strategies is tackled

via dynamic programming approaches. This also leads to some drawbacks, which will be dis-

cussed later on in this chapter. On the other hand, there are also some reasons for favoring

using ideas from dynamic programming. For example, within navigation applications, in most

cases optimal routes are computed via algorithms known from dynamic programming – often

variations of Dijkstra’s algorithm. Hence, to reduce potential barriers for a future implementa-

tion into market-ready navigation tools, it seems reasonable to rely on optimization approaches

which are widely applied in this area. This may even allow making use of existing software in-

frastructure. Moreover, considering the literature review in chapter 2, there exists lots of work

about dynamic programming approaches in the context of navigation applications for BEVs.

Especially dynamic programming approaches for solving SPPs are well studied. This makes it

possible to build on a broad fundament of existing knowledge. Note that in a preparatory step,

the problem of finding optimal charging strategies will also here be reformulated to an SPP in

order to make dynamic programming approaches applicable.

4.1.1 Graph Construction
One central component of an SPP is the graph on which shortest paths are computed. Here,

the decision graph ~GD is used as template. Road segments are again represented by edges,

intersections by nodes. The only thing missing in ~GD is the explicit representation of charging
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stations via nodes and edges. In general, it holds that graphs are discrete objects. Hence, it is

hardly possible to represent continuous decision spaces like those which have been introduced

in section 3.2. This makes it necessary to discretize the decision spaces Uk with vk ∈ V cs
D (V cs

D

is the set of nodes which represent locations of charging stations). This can be achieved by

letting the charging strategies solely suggest states of charges which are a multiple of, for in-

stance, five or ten percent. This has already been proposed in (141) and (152). From a practical

perspective, this reduction appears to be insignificant. A driver at a charging station probably

won’t concentrate on charging exactly up to a state of charge of ”86.45” percent. Supposedly,

an instruction ”Please charge up to 90 percent.” is sufficient for him. Correspondingly, the

decision space U∆
k for some node vk ∈ V cs

D and a step length ∆ ∈ R>0 can be defined for a

given realized state of charge SOCk as shown below:

U∆
k (SOCk) := {x ∈ [SOCk, 1.0] | ∃l ∈ N with x = l ·∆} (4.1)

To give an example, let it be considered that ∆ is equal to 0.05 (i.e., five percent) and that

SOCk is equal to 68 percent, i.e., the BEV arrives at the considered charging station with a

state of charge of 68 percent. This results in the subsequently described decision space:

U0.05
k (0.68) := {0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0} (4.2)

The described discretization of the decision spaces can be represented by an appropriate ad-

justment of the decision graph. For the decision graph ~GD which is illustrated in Figure 3.2,

the resulting adjusted decision graph ~G∆
D = (V ∆

D ,
~E∆
D), which represents discretized decision

stages, can be found in Figure 4.1. Basically, the new graph consists of the same parts as the

original one. The only difference is that each node representing the location of a charging sta-

tion is now replaced by a whole set of nodes and edges (compare those graph components in

Figure 3.2 and 4.1 which are bordered by dashed rectangles). This replacement is achieved as

follows: First of all, it is considered that charging stations may not be located directly at the

considered part of the road network. This assumption makes it possible that not each tiny back

road that may be used to get to one of the charging stations has to be represented explicitly.

Instead, is can be assumed that the original graph ~GD represents only major roads, i.e., roads

which are typically used for covering longer distances. The set of these major roads is from

now on denoted as ”main road network“. The idea is to introduce for each node vk ∈ V cs
D ,

which is part of the original graph ~GD, a new node vak marking the position at which the major

road network can be left in order to get to the corresponding charging station. Analogously, a

node vbk is introduced at which one can return to the main road network. Hence, vak and vbk can

be understood as the positions of exit and entrance ramps. The charging station itself and all

possible charging actions are represented by nodes vik, vok, vl·∆k and edges (vik, v
l·∆
k ), (vl·∆k , vok)

with ∆ ≤ l ·∆ ≤ 100% and l ∈ N. Furthermore, an edge (vak , v
i
k) is used to embody the way
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from the main road network to the charging station and an edge (vok, v
b
k) for the way back.

v0 v1 v3

v5

v7

va4 vb4

vi4 vo4

v0.1
4

v0.2
4

...

v1.0
4

va6 vb6

vi6 vo6

v0.1
6

v0.2
6

...

v1.0
6

va2 vb2

vi2 vo2

v0.1
2

v0.2
2

...

v1.0
2

charging station 4 charging station 6

charging station 2

road segment part of charging process

Figure 4.1: Graph-based model of charging possibilities

The goal is to associate charging policies with v0-vK+1-paths on ~G∆
D, i.e., with paths leading

from the starting position to the destination. In this context, a node vl·∆k represents a charging

process leading to a state of charge of l · ∆, i.e., any v0-vK+1-path on ~G∆
D which covers the
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node vl·∆k can be associated with a charging policy that suggests charging at charging station

k up to a state of charge of l · ∆. By allowing a whole set of different target states at each

charging station, various charging policies can be represented by paths on ~G∆
D. In Figure 4.1,

steps of ten percent between the different charging states are used, i.e., ∆ := 10% = 0.1.

Clearly, a smaller step length allows considering a wider range of charging policies. Edges

(vik, v
l·∆
k ) and (vl·∆k , vok) are parts of the charging process itself and are not used to model road

segments. More details on these edges will be given later on. To support understanding, with

path [v0, v1, v
a
2 , v

b
2, v3, v5, v

a
6 , v

i
6, v

1.0
6 , vo6, v

b
6, v7], an example path is visualized in Figure 4.1

(bold nodes and edges). The corresponding charging policy suggests at decision stage t1, i.e.,

at node v1, to follow edge (v1, v
a
2). Then, charging station 2 is ignored and at node v3, it is

recommended to drive to node v5. From there on, no more ”real“ route choices are possible.

It is worth mentioning that in this context decisions, including charging decisions, are reduced

to a route choice on ~G∆
D. For example, at charging station 6, charging is recommended as at

node va6 the edge (va6 , v
i
6) is selected and not edge (va6 , v

b
6). The suggested target state of charge

is defined by node v1.0
6 , i.e., charging up to a state of charge of 100 percent is recommended

before proceeding with the travel to destination node v7.

According to the construction of graph ~G∆
D, all decision spaces can be understood as sets of

edges, since charging decisions are also modeled via route choices:

Uk := {(vi, vj) ∈ ~E∆
D | vi = vk} ∀vk ∈ V ∆

D \ {v0, vK+1}. (4.3)

Nodes v0 and vK+1 are again excluded here to maintain consistency with section 3.1, i.e.,

t0 and tK+1 are not considered to be decision stages. Note that graph ~G∆
D is static, i.e., it

is defined independently from the realizations of ξ. Hence, this graph still represents non-

reasonable charging possibilities, i.e., target states of charge which are lower than the current

state of charge. In contrast to section 3.2, where an adaption of the definition of decision

spaces has been introduced in equation 3.11 to exclude such non-reasonable charging pos-

sibilities, here performance measure f is modified to handle such issues. For this purpose,

performance measure f , independently of its concrete definition, assigns a value of infinity to

any charging policy which is represented by a v0-vK+1-path P on ~G∆
D that contains such edges,

i.e. f(P, ξ̄) := ∞ if path P contains at least one edge (vik, v
l·∆
k ) which violates the following

condition:

l ·∆ > SOC(vik) (4.4)

Here, variable SOC(vik) denotes the state of charge which is realized when reaching node vik.

Algorithmically, this adjustment of f can be handled very efficiently. Edges with a value of

infinity can be ignored, i.e., as soon as such an edge is reached during the route search, it is

simply not considered.
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To define point-to-point18 SPPs uniquely, a graph, a starting node, a destination node, and an

objective function have to be specified. Depending on the properties of the objective function,

further information may be necessary. If, for instance, the objective function is time-dependent,

then a starting time needs to be known in addition. All paths leading from the start to the

destination node are potential solutions for this type of problem. For the case of CSO, the

considered graph is already given by ~G∆
D. Also v0 as starting node and vK+1 as destination

node are defined. The objective function E[ξ, f(ξ)] is not yet specified. Nevertheless, a generic

version of an SPP for the case of CSO can already be formulated:

min E[f(ξ, P (ξ̄0))]

subject to P is a v0-vK+1-path on ~G∆
D

(4.5)

When comparing the original multistage decision problem 3.4 and the SPP 4.5, two main dif-

ferences can be observed: First, the set of possible charging policies is now represented by

the set of v0-vK+1-paths on ~G∆
D. The idea is to associate a path, which solves the SPP, with

a charging policy. It has already been shown how this can be done. Unfortunately, a path

P ∗ which solves the stated SPP remains the same independently of the system’s development

ξ̄1, ..., ξ̄K+1. This means that the route and charging instructions which are associated with

path P ∗ stay the same, too. Therefore, it can be concluded that paths on ~G∆
D can be associated

with charging strategies, i.e., with sequences of charging and route instructions. They cannot

be associated with arbitrary charging policies. Charging policies which recommend different

actions depending on the realizations of random variables ξ1, ..., ξK+1, like the one that was

described in chapter 3 for the problem illustrated in Figure 3.3, cannot be represented by a

path on graph ~G∆
D. To emphasize this restriction, the objective function E[f(ξ, π(ξ))] is now

replaced by E[f(ξ, P (ξ̄0))]. This is the second difference between the suggested MDP and the

SPP in its current form. Information that is available at the time when the SPP is solved19, i.e.,

prior distributions or the system’s initial state ξ̄0, can be taken into account for the computation

of P ∗. This does not hold for realizations of random variables ξ1, ..., ξK+1.

In the following, these considerations are illustrated on the basis of the aforementioned example

from chapter 3. Figure 4.2 shows the same graph as Figure 3.3. It is again assumed that all

edges, except for (v2, v3) and (v3, v7), lead to time costs of one minute. Furthermore, it is again

assumed that the state of charge at the start (at node v0) is high enough to reach destination node

v7 without any charging stop and the goal is to minimize the total travel time. Since no charging

18A point-to-point SPP is a problem where the shortest path between a single starting point and a single destina-
tion needs to be found. Its counterparts are one-to-many, many-to-one or many-to-many SPPs.

19In chapter 3, the time at which the decision process starts is denoted with t0. The start of the decision process
typically also marks the time at which computations are started. Now, in chapter 4, the time at which the BEV starts
to get from v0 to vK+1 is typically denoted with tS . In general, it does not hold that t0 = tS . For instance, if the
introduced SPP is solved at time t0 to prepare a trip with a planned start at tS > t0.
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v0 v1 v3

v5

v7v2

v4 v6

Edge Costs [min] Probability (v2, v3) (v3, v7) other edges
Scenario 1 90% 1 1 1
Scenario 2 10% 2 11 1

Figure 4.2: Example Graph: Difference between charging policies and charging strategies.

stations have to be considered, graph ~G∆
D is equal to graph ~GD. Thus, the best charging policy

is the same as in chapter 3: Drive to node v2 and make the route decision at node v3 dependent

on the experienced travel time for passing edge (v2, v3). The issue is that there exist exactly

three different v0-vK+1-paths on ~G∆
D:

Path A := [v0, v1, v2, v3, v7]

Path B := [v0, v1, v4, v5, v6, v7]

Path C := [v0, v1, v2, v3, v5, v6, v7]

(4.6)

The optimal solution of the SPP that results from the situation in Figure 4.2 is equal to one of

these three paths. As a consequence, the charging policy that is received by solving the SPP is

associated with one of these paths. However, none of these paths is able to represent the opti-

mal charging policy. They are solely able to describe one of three different routes or charging

strategies, respectively.

4.1.2 Derivation of Edge Cost Functions

In the context of SPPs, the considered objective function is typically based on edge cost func-

tions, i.e., on functions that assign costs to edges of a graph. To be able to derive efficient

shortest path algorithms, the properties of the objective function and thus of the considered

edge cost functions are essential. This makes it necessary to state which edge cost functions

are taken into account in this work and also to concretize them up to some degree. Otherwise,

no statements on the properties of the objective function are possible.
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In section 3.2, the meanings of the components of an MDP in the context of CSO have been dis-

cussed. It was postulated that at least information about arrival times and energy consumption

has to be taken into account to handle CSO reasonably. Correspondingly, edge cost function

cT , describing time costs, and edge cost function cE , describing energy costs, are considered

in the following. It is again distinguished between edges representing road segments and edges

representing parts of the charging process. In either case, travel times and energy consump-

tion depend on various factors, such as traffic conditions, the state of charge when arriving

at a charging station, vehicle parameters or individual driving style. As already discussed in

chapter 2, some of these factors are hardly predictable. Consequently, in order to mirror the

resulting uncertainty, it is probably more realistic to assume randomly distributed travel times

and energy consumption than to assume deterministic values. However, for the moment cT
and cE are assumed to be deterministic. Later on, in chapter 5, the non-deterministic case will

be discussed. Besides a simplified notation, deterministic edge costs allow computing shortest

paths on larger graphs than non-deterministic edge costs, since non-deterministic edge costs

typically increase computation times for SPPs drastically (see also section 5.2). Unfortunately,

it will turn out that even for deterministic edge costs, solving the resulting SPP becomes com-

putationally very expensive.

Edge Costs for Road Segments In this section, it is not explained how cost functions cT and

c̀E
20, which assign time and energy costs, respectively, to edges representing road segments,

can be constructed. It is simply assumed that such cost functions are given. They may depend

on many factors, such as prevailing traffic conditions, the driver’s mood, outdoor temperature,

and so on. One possible way to represent these dependencies is to introduce objects ωT and

ωE . Variable ωT is intended to abstractly describe all available information about factors which

influence travel time, ωE correspondingly all information which is relevant for computing en-

ergy consumption. Based on these considerations, cT (e, ωT ) describes the travel time which

is necessary for passing edge e under the conditions defined by ωT . Analogously, c̀E(e, ωE)

describes the energy consumption which is necessary for passing edge e under the conditions

defined by ωE . To simplify the following notations, objects ωT and ωE are left out in most

situations. Instead, only those parts of ωT and ωE , which are explicitly relevant in the corre-

sponding context, are listed. The most important example of such a quantity is arrival time. It

depends directly on cost function cT and typically has influence on cT and c̀E . In the following,

it will turn out to be expedient to explicitly list arrival time t ∈ R≥0
21, whenever edge costs are

20The reasons for writing c̀E instead of cE will be explained later on.
21In order to associate arrival times with real-valued numbers, an arrival time t could be defined as the number

of seconds which elapsed since tR, i.e., since the time at which the charging strategy was requested.



60 CHAPTER 4. CSO AS AN SPP UNDER DETERMINISTIC CONDITIONS

considered. This leads to the following terms for edge cost functions cT and c̀E :

cT : ~E∆
D \ ~E∆

cs × R≥0 −→ R≥0 (4.7)

c̀E : ~E∆
D \ ~E∆

cs × R≥0 −→ R (4.8)

Here, ~E∆
cs denotes the set of all edges in ~E∆

D which represent parts of a charging process.

Cost functions cT (e, t) and c̀E(e, t) describe the travel time or energy, respectively, which is

necessary for passing edge e = (vi, vj), when starting at time t at node vi. Energy consumption

is here measured in percent with regard to the maximal energy capacity of the BEV’s battery.

The idea is to compute the state of charge after passing an edge e at time t by subtracting

c̀E(e, t) from the original state of charge. One problem which occurs in this context is that

either states of charge below zero percent or above 100 percent may be reached. The first case

results if energy consumption exceeds the available energy, the latter may result if passing an

edge leads to a gain of energy due to recuperation. To counter this issue, modified edge costs

cE are introduced. This cost function is based on c̀E , but depends on three quantities:

cE : ~E∆
D \ ~E∆

cs × R≥0 × [0, 1] −→ [−1, 1] (4.9)

cE(e, t, SOC) :=


SOC − 1 if SOC − c̀E(e, t) > 1

SOC if SOC − c̀E(e, t) < 0

c̀E(e, t) else

(4.10)

This ensures that for any e ∈ ~E∆
D , any t > 0 and any SOC ∈ [0, 1], the following condition

holds:

0 ≤ SOC − cE(e, t, SOC) ≤ 1 (4.11)

Condition 4.11 guarantees that neither recuperation nor charging can lead to a state of charge

above 100 percent. Furthermore, if more energy than the battery can provide is necessary to

pass a specific edge, then the resulting state of charge does not become negative, but simply

is set to zero. This definition of cE allows computing energy consumption costs for paths by

summing up the costs of the corresponding edges and it allows representing the case of run-

ning out of energy. Similar proceedings for achieving reasonable states of charge have been

suggested in (12), (42) and (74).

To illustrate the definitions of cT and cE and especially the dependency of cE on c̀E , con-

sider the example shown in Figure 4.3. Here, the costs for all edges but for (b, c) are time-

independent. If the trip is started with a starting state of charge of 0.5 from node a to node

c, then the energy costs cE for edge (a, c) are equal to 0.4. However, starting with a state of

charge of 0.3 leads to energy consumption costs cE(a, c) of 0.3 according to the definition in

equation 4.10.
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a

b

c d

(1,0.2)

(1,0.4)

(1,0.3)

(cT , c̀E)

(4, 0.5), if t ≤ 1

(2, 0.2), if t > 1

starting destination tS SOCS
a d 0 0.9 = 90%

Figure 4.3: Edge costs depending on time and the current state of charge

Now, consider a starting time tS which is equal to zero and a starting state of charge SOCS of

0.9. Then the costs for the path [a, c, d] can be computed as the sum of the costs of its edges.

Here, the so-called frozen link model (108) is used to describe the dependency of costs on time

and the current state of charge. According to this very intuitive model, the computation of

time-dependent costs for a specific edge is done on the basis of the time at which the edge is

reached. For the case of path [a, c, d], for example, time costs for (c, d) can be calculated as

soon as the arrival time at node c is known. This arrival time is the sum of starting time tS and

the time costs for passing edge (a, c). It can be proceeded similarly to take the dependency of

cT and cE on the current state of charge into account, i.e., the state of charge when arriving

at node c is given as the starting state of charge SOCS minus the energy consumption costs

assigned to edge (a, c). Consequently, in order to be able to compute the costs of a path, it has

to be started with computing the costs of its first edge:

cT ((a, c), tS) = cT ((a, c), 0) = 1 (4.12)

cE((a, c), tS , SOCS) = cE((a, c), 0, 0.9) = 0.4 (4.13)

Hence, the time when reaching (c, d) along path [a, c, d] is given by tS + 1 = 1 and the

corresponding state of charge by SOCS − 0.4 = 0.5. This leads to costs for edge (c, d) as

subsequently shown:

cT ((c, d), tS + cT ((a, c), tS)) = 4 (4.14)

cE((c, d), tS + cT ((a, c), tS), SOCS − cE((a, c), tS , SOCS)) = 0.5 (4.15)

Finally, time costs of five and consumption costs of 0.9 result for path [a, c, d].
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Edge Costs for Charging Processes Up to this point, only the case of edges representing

road segments has been discussed. In the following, the focus is set on edges representing

parts of charging processes. Considering the graph-based model described in section 4.1.1

(see Figure 4.1), charging processes are represented by edges (vik, v
l·∆
k ) and edges (vl·∆k , vok).

Variable k is the index referring to the visited charging station and l · ∆ denotes the state of

charge up to which the vehicle is charged at station k according to a strategy which is associated

with a path that covers node vl·∆k . The sum of the time costs of edges (vik, v
l·∆
k ) and (vl·∆k , vok)

has to represent the time which is needed for the whole charging process. Analogously, the sum

of the energy consumption ”costs“ of these two edges has to be equal to ”minus one multiplied

by the amount of gained energy“22.

Anything that happens at the charging station is understood to be part of the charging process.

This may imply waiting times cWT caused by an occupied charging station, time cAT (”A“ for

”additional“) which is necessary, for example, to leave and get back into the car and for paying,

the time cCT for charging the car, and the resulting energy gain represented by cCE . To predict

waiting times, the time of arrival at the charging station, i.e., the time at which node vik is

reached, is essential, since charging demand typically changes throughout the day (9). Thus,

predicted waiting times should be assigned to edges (vik, v
l·∆
k ) and not to (vl·∆k , vok). The time

which is necessary for paying, leaving the car, and getting back into the car is throughout this

work assumed to be independent of time and independent of the charging station. Due to this,

it can be assigned to any of the two possible types of charging process edges. Assuming time

independence is also reasonable for costs cCT and cCE , since charging durations and the amount

of charged energy should not depend on the time at which the actual recharging is started.

Based on these considerations, cost functions cT and cE for edges (vik, v
l·∆
k ) and (vl·∆k , vok) can

be defined as follows:

cT : ~E∆
cs × R≥0 × [0, 1] −→ R≥0 (4.16)

cE : ~E∆
cs × R≥0 × [0, 1] −→ [−1, 0] (4.17)

cT ((vik, v
l·∆
k ), t, SOC) := cWT ((vik, v

l·∆
k ), t) + cCT ((ik, v

l·∆
k ), SOC) (4.18)

cT ((vl·∆k , vok), t, SOC) := cAT (4.19)

cE((vik, v
l·∆
k ), t, SOC) := cCE((vik, v

l·∆
k ), SOC) (4.20)

cE((vl·∆k , vok), t, SOC) := 0 (4.21)

Note that, even though cE is not time-dependent for edges in ~E∆
cs, it is written cE(e, t, SOC)

instead of cE(e, SOC). This is done to keep the notation consistent with the definition of cE
for edges representing road segments.

The energy consumption ”costs“ (actually energy is gained and thus the costs are negative) for

22Gaining energy is here represented by assigning negative edge costs to the corresponding edges
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edges (vik, v
l·∆
k ), i.e., for an intended target state of charge l ·∆, are given as follows:

cCE((vik, v
l·∆
k ), SOC) :=

SOC − l ·∆ if l ·∆ > SOC

SOC else
(4.22)

The formula is rather intuitive as long as l · ∆ > SOC. It is just the difference between the

current state of charge and the target state of charge. If l · ∆ is not bigger than SOC, then

the corresponding charging process is not meaningful, since the state of charge when arriving

at the charging station would be at least as high as the one after charging. To guarantee that

such edges are not considered by any route search algorithm, energy costs leading to an empty

battery are assigned to them. The computation of time costs for charging, i.e., the duration

which is necessary to achieve a state of charge equal to l · ∆, is more complicated. A model

describing the relation between charging duration and the resulting energy gain is necessary.

Here, a rather simple model is applied. It is assumed that a function S is available with

S : R≥0 −→ [0, 1]. (4.23)

S returns for a specific charging duration d ≥ 0 the resulting state of charge if an initial state

of charge of zero is assumed. Such functions clearly vary depending on the technical features

of the vehicle battery and the charging station. However, their shapes are always similar: The

longer the charging process, the more energy is gained in total. Thus, S is strictly monotoni-

cally increasing up to a state of charge of 1.0 and a maximal charging duration dmax > 0, i.e.,

dmax is equal to the time that is necessary to fully recharge a completely empty vehicle battery.

This property allows inverting S on [0, dmax], leading to

S−1 : [0, 1] −→ [0, dmax]. (4.24)

The inverse function returns for a given state of charge SOC the duration that is required to

charge an empty battery up to this state of charge. For all durations higher than dmax, the

battery is already completely recharged and consequently

S(d) ≡ 1 ∀d ≥ dmax. (4.25)

It is worth mentioning that if a battery is almost fully recharged, the energy throughput is usu-

ally reduced to prolong the battery’s lifespan. Due to this nonlinear charging behavior, S is

concave. Figure 4.4 exemplarily illustrates how a function S could look like. Moreover, for

a given initial state of charge SOCinit (the state of charge at the beginning of the charging

process), a given process starting time tinit, and a target state of charge l ·∆, the cost compu-

tation for (vik, v
l·∆
k ) is displayed. The energy consumption costs cCE((vik, v

l·∆
k ), SOCinit) are

calculated according to equation 4.22. The time costs cCT ((vik, v
l·∆
k ), SOCinit) are assumed to
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charging duration d

SOC
S(d)

dmax

1.0

SOCinit

l ·∆

cCE((vik, v
l·∆
k ), SOCinit) = SOCinit − l ·∆

cCT ((vik, v
l·∆
k ), SOCinit) = S−1(l ·∆)− S−1(SOCinit)

Figure 4.4: Relation between charging duration and state of charge.

result from the difference between the charging duration which is required to charge an empty

battery up to l ·∆ and the charging duration which is necessary to charge up to SOCinit:

cCT ((vik, v
l·∆
k ), SOCinit) := S−1(l ·∆)− S−1(SOCinit). (4.26)

4.1.3 Definition of Shortest Path Problems
Having described graph and edge cost functions, performance measure f is defined next. This

is the only missing part to fully describe the problem of finding optimal charging strategies

as an SPP. The performance measure is intended to rate and thus compare different paths on

graph ~G∆
D and it eventually defines what an ”optimal“ charging strategy is. For the introduced

setting, there are two criteria according to which this can be done: Charging strategies could

be rated on the basis of energy consumption costs cE , as shown in (141), or on the basis of the

time costs cT , as proposed in (151). In the case of considering cE as rating criterion, as a first

approach, it could simply be stated for two given paths P1, P2 ∈ P(~G∆
D, v0, vK+1), a given

starting state of charge SOCS , and a given starting time tS that P1 is ”better“ than P2 if and

only if

cE(P1, tS , SOCS) < cE(P2, tS , SOCS) (4.27)

Note that it is assumed that the costs assigned to a path result from the sum of the costs of all

edges of which this path consists. However, the rating criterion described by inequality 4.27

leads to a non-intuitive rating behavior, since cE also includes negative energy consumption

costs caused by charging. Thus, fully recharging the vehicle battery at each charging station

represents a possible way to construct an optimal charging strategy. To avoid this, charging
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strategies could be rated depending on the energy consumption without considering the energy

gain due to charging, i.e., P1 is superior to P2 if and only if

cE(P1, tS , SOCS)− cCE(P1, tS , SOCS) < cE(P2, tS , SOCS)− cCE(P2, tS , SOCS). (4.28)

Here, cCE denotes the cumulative negative energy consumption costs caused by all charging

processes which are represented by a path (see also equation 4.22). Correspondingly, charging

strategies are characterized as good charging strategies if the resulting energy consumption

caused by driving is low. Also this idea leads to an issue: Approaching charging stations, i.e.,

leaving the main road network to get to the charging station (and vice versa), leads to energy

consumption costs. Consequently, by following solely the idea of inequality 4.28, charging

strategies which suggest no stops for charging would receive comparably good ratings. On

the other hand, it would not be considered whether the suggested charging strategy leads to an

empty battery or not. Since leaving the main road network causes additional travel time, the

same issue occurs if charging strategies are solely rated according to the resulting total travel

time, i.e., if a path P1 is superior to P2 if and only if

cT (P1, tS , SOCS) < cT (P2, tS , SOCS). (4.29)

Certainly, the minimum requirement for a charging strategy has to be that the destination is

reached. Other charging strategies should not be considered or should be rated very badly. The

subsequent definition is motivated by this consideration:

Let a path P = [vP1 , v
P
2 , ..., v

P
Q] on ~G∆

D be given. Furthermore, let a starting time tS , a starting

state of charge SOCS , and deterministic edge cost functions cT and cE (as described before)

be given. Then, path P is called feasible if and only if

SOCS − cE(P1:i, tS , SOCS) > 0 ∀i ∈ {2, 3, ..., Q} (4.30)

This means that a path is feasible unless there exists at least one edge along this path, for which

the energy costs for passing this edge are equal to or higher than the energy which is available

when reaching the start of this edge. A similar definition of feasibility in the context of CSO

can be found, for instance, in (137).

Finally, based on the definition of feasibility, the following definition of a performance measure

is suggested:

f(P, tS , SOCS) :=

cT (P, tS , SOCS) if P is feasible

∞ else
(4.31)

Time costs cT are used as the primary rating criterion. In contrast to minimizing the energy
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consumption costs, which would still be a reasonable optimization criterion23, minimizing time

costs has the advantage that optimized charging strategies avoid congestion. If cE was used

instead of cT and if it is assumed that high driving speeds cause high energy consumption24,

then free-flow traffic conditions could be less desirable than, for example, minor congestion.

Hence, a charging strategy leading a car driver into minor congestion could be rated better

than a charging strategy which allows avoiding any kind of traffic jam. This probably does not

mirror the will of drivers. By using performance measure f as the objective function25, the

corresponding SPP results directly:

min f(P, tS , SOCS)

subject to P is a v0-vK+1-path on ~G∆
D

(4.32)

Alternatively, by replacing performance measure f with cost function cT , the feasibility condi-

tion can be removed from the objective function and, instead, be represented by an additional

constraint:
min cT (P, tS , SOCS)

subject to P is a v0-vK+1-path on ~G∆
D

P is feasible

(4.33)

Such types of SPPs are denoted as constrained shortest path problem (7) (47). During the next

sections, problem formulation 4.33 is usually preferred.

4.2 Analysis of Cost Function Properties
Up to this point, the problem of finding optimal charging strategies is formulated as an SPP. As

a next step, it is necessary to identify existing or develop new algorithms that can be used to

find optimal or at least good solutions for problem 4.33 in reasonable time. For this purpose,

the problem’s properties are analyzed, allowing an evaluation of the applicability of known

optimization algorithms and concepts.

There exists already a huge number of optimization algorithms for solving a variety of different

types of SPPs in literature (overviews can be found for example in (33), (109) or (139)). In

this section, the focus is set on modifications of Dijkstra’s algorithm (36). Problem 4.33 will

be solved by an algorithm which is an extended version of Dijkstra’s algorithm. In Figure 4.5,

23It would also be reasonable to consider travel times and energy consumption simultaneously within the objec-
tive function as done in (137).

24In section 7.1, recorded consumption data of real BEVs confirm that BEVs show such an energy consumption
behavior.

25Note that in a deterministic context, i.e., if f represents a deterministic function, it is not necessary to differ-
entiate between the notion ”performance measure“ and the notion ”objective function“, since the expected value
operator E[] applied to a deterministic function f does not show any impact.
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Dijkstra’s Algorithm
Input: A directed graph ~G = (V, ~E), a starting node v0, a destination node vK+1 and a
non-negative cost function c which assigns costs to edges

Initialization: Create label L = (0, ∅, v0) for node v0. Define the set of temporal
labels Ltemp := {L} and the set of permanent labels Lperm := ∅

1 While Ltemp 6= ∅ and no label belonging to vK+1 was added to Lperm, do:
2 Lcur = (ccur, vpre, vcur) := the label in Ltemp with the lowest cost value.
3 Remove Lcur from Ltemp and add it to Lperm.
4 For all vnew ∈ V such that e := (vcur, vnew) ∈ ~E do:
5 Compute cnew := ccur + c(e)
6 Create Lnew := (cnew, vcur, vnew)
7 If there is no label in Lperm that belongs to node vnew

8 If there is no label belonging to vnew in Ltemp then:
9 Add Lnew to Ltemp.

10 Else (i.e., it already exists a label Lold = (cold, vpreold , v
new) ∈ Ltemp):

11 If cold > cnew

12 Delete Lold from Ltemp and add Lnew instead.
13 End if.
14 End if.
15 End if.
16 End for.
17 End while.
18 If possible, return the label L̄ ∈ Lperm that belongs to node vK+1,
19 otherwise return ”No feasible solution found“.

Figure 4.5: Pseudo-code of Dijkstra’s algorithm for solving point-to-point SPPs.

a possible pseudo-code for implementing Dijkstra’s algorithm can be found. The reader is as-

sumed to be familiar with Dijkstra’s algorithm. Hence, no explanations on the procedure itself

are provided here, but one difference between the pseudo-code in Figure 4.5 and the original

version of Dijkstra’s algorithm from (36) shall be pointed out: In line 1 of the pseudo-code,

it is postulated that the algorithm leaves the while-loop (and hence terminates) as soon as a

label belonging to the destination node is found. The original version of Dijkstra’s algorithm

did not have this condition. However, the possibility of including this additional condition

into the shortest path algorithm is one reason for favoring algorithms which are derived from

Dijkstra’s algorithm in the context of CSO: Problem 4.33 is a so-called point-to-point SPP,

i.e., the shortest path from one starting node to one destination node has to be computed. For

such problems, so-called label-setting algorithms, like Dijkstra’s algorithm, in most cases out-

perform other types of shortest path algorithms. Label-setting algorithms typically start their

route-search at the starting node and expand from there on (more or less) circularly into all

directions, while steadily assigning costs to the considered nodes. Such a behavior can also be

observed for the pseudo-code in Figure 4.5. Examples of how the resulting search spaces look
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Figure 4.6: Visualization of typical search spaces of label-setting algorithms in Google Earth.

like can be found in Figure 4.6. There, the starting point is shown in blue, the destination in red

and all edges which were added to the set of temporal labels Ltemp or to the set of permanent

labels Lperm during the route search are marked green26. On the left, Dijkstra’s algorithm is

applied and on the right, a version of the A∗-algorithm (62) (63) is used. The latter approach

can be assigned to the family of the label-setting approaches, too. The graphics are taken

from (67). If the considered cost function obtains no negative values, the circular expansion of

label-setting approaches makes it possible to guarantee optimality of the computed path even

if the route search is stopped as soon as a label belonging to the destination node is added to

Lperm. Other types of shortest path algorithms, like for example label-correcting algorithms27,

which are the most common algorithms for solving SPPs besides label-setting algorithms, do

not show this advantage. If a label-correcting algorithm is terminated prematurely, i.e., before

each edge of the whole graph has been considered during the route search, then optimality of

the computed solution cannot be guaranteed (52). Thus, at least for point-to-point SPPs, label-

correcting algorithms typically suffer from higher running time complexities and consequently

also from higher computation times than label-setting algorithms (7) (42).

Unfortunately, there are several aspects of the suggested deterministic SPP28, which the de-

scribed version of Dijkstra’s algorithm cannot handle: Two different cost functions have to be

considered in parallel. Both of them depend on time and on the state of charge. The energy

consumption costs even assume negative values. Any of these aspects not only impedes the

applicability of Dijkstra’s algorithm, but of most shortest path algorithms. In the following,

26In the context of dynamic SPP algorithms, the sets of temporal and permanent labels are often also denoted as
the sets of opened and closed nodes.

27Both label-setting and label-correcting algorithms are types of dynamic programming approaches.
28If one speaks of problem properties in the context of routing algorithms, then one typically refers to the prop-

erties of the considered edge cost functions.
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each of the mentioned cost function properties and its impact on potential solution approaches

are analyzed in detail. Afterwards, these analyzes are used to derive appropriate optimization

algorithms.

4.2.1 Negative Edge Costs

When optimizing paths with regard to a cost function which can attain negative values, the crit-

ical scenario for label-setting algorithms is that the optimal path P ∗ = [v∗1, v
∗
2, ..., v

∗
M ] is very

expensive at the beginning, i.e., the costs c(P ∗
1:m) form < M are huge, but its last edges lead to

negative costs, i.e., c(P ∗
m+1:M ) < 0. If a suboptimal solution P̄ with c(P ∗) < c(P̄ ) < c(P ∗

1:m)

exists, then a label-setting algorithm typically terminates with returning P̄ before findingP ∗. In

contrast, label-correcting algorithms, like the Moore-Bellman-Ford algorithm (14) (48) (103)

or the algorithm of Floyd and Warshall (46), ensure optimality of their solutions even under the

presence negative edge costs.

Nevertheless, in order to reduce computation times, label-setting algorithms are often applied

even if negative edge costs exist. This can be done, for example, by following the method of

Johnson (72). For this approach, so-called potential functions are computed to transform within

a pre-processing step the relevant edge cost function in such a way that negative edge costs no

longer occur. The essential property of such potential functions is that the shortest paths be-

tween any pair of nodes remain the same, even though the edge costs are changed. In (74),

a potential function is generated on the basis of elevation data. In (12) and (42), preliminary

route computations are carried out during the pre-processing step to construct an adequate po-

tential function. The only restriction to Johnson’s method is that no cycles leading to negative

edge costs are allowed to exist in the given graph. Due to the law of conservation of energy,

this is always fulfilled for traditional energy-efficient routing (7) – at least as long as charging

stops are not considered29.

An alternative to Johnson’s method, which is frequently used in the context of energy-efficient

routing, is to exclude energy consumption costs from the objective function and optimize ac-

cording to another rating criterion (116) (137). To still be able to ensure feasibility of the

computed paths, an additional constraint can be introduced as has been done for the formu-

lation of problem 4.33 (which is the formulation as a constrained SPP). Hence, the potential

negativity of cE is no knock-out criterion for applying label-setting algorithms for CSO.

29The law of conservation of energy implies that, despite recuperation, driving in a circle can never lead to an
increase of the state of charge.
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4.2.2 Multicriteria Shortest Path Problems
Multicriteria SPPs for Z ∈ N>1 different criteria c1, c2, ..., cZ , a starting node s, a destination

node d, and a directed graph ~G can be formulated as subsequently stated:

min
(
c1(P ), c2(P ), ..., cZ(P )

)
subject to P is an s-d-path on ~G

(4.34)

If several objective functions are considered in parallel, then it is in general not trivial to com-

pare different solutions and decide which one is the best. An example illustrating this statement

can be found in Figure 4.7. Here, a shortest path from node a to node e has to be computed by

minimizing the two criteria c1 and c2 at the same time. With PA, PB , PC and PD, one of four

different paths can be chosen. Obviously, it can be concluded that PA is better than PD (and

also better than PC), since it is in both criteria at least as good as PD and if c1 is considered,

it is even superior to PD. Such a trivial statement is not possible when comparing PA to PB .

a

b

c

d

e

(2,2)

(3,0)

(0,2)(0,0)

(0,1) (0,1)

(1,1)

(c1, c2)

c1

c2

PA

PB

PC

PD

PA := [a, d, c, e] PB := [a, c, e] PC := [a, b, e] PD := [a, b, c, e]

1 2 3 4

1

2

3

4

Figure 4.7: Multicriteria SPP and resulting objective function values

Fortunately, the so-called Pareto optimality (111) provides a clear interpretation of optimality

for multicriteria optimization problems: A solution is called Pareto optimal if there exists no

other feasible solution which is for all considered criteria at least as good as the original solu-

tion and additionally for at least one criterion better than the original solution. All solutions

that are not Pareto optimal are denoted as dominated solutions. This means that PA and PB
are Pareto optimal solutions for the optimization problem described by Figure 4.7. Verbally,

this is expressed by stating that ”paths PC and PD are dominated by PA“.
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In literature, many different algorithms for solving multicriteria SPPs are suggested (see (31)

(35) (99) (119) (134); for an overview, see section 9.1 in (41)). In most cases, these algo-

rithms are intended to generate the whole set of Pareto optimal paths. However, computing

the whole set of Pareto optimal solutions is, from a practical perspective, often not necessary.

For the case of CSO, for instance, suggesting a low number of charging strategy recommen-

dations seems sufficient. This is particularly important since the number of Pareto optimal

solutions for multicriteria SPPs can grow exponentially with the number of nodes of the con-

sidered graph (61). Thus, simply listing up all solutions can lead to high computational efforts.

In terms of complexity theory, multicriteria SPPs are proven to be NP-complete (133), i.e.,

the computational effort for solving such a problem typically rise very quickly with the size of

the graph. When applying dynamic programming approaches to multicriteria SPPs, all Pareto

optimal paths from the starting node to any node which is visited during the route search are

computed. Typically, this cannot be avoided even if it is not intended to compute the whole set

of Pareto optimal paths. As label-setting (as well as label-correcting) algorithms encode paths

via labels, dynamic programming algorithms applied to multicriteria SPPs have to be able to

assign several labels to the same node. Otherwise, the parallel existence of several Pareto opti-

mal paths leading from the starting node to another node could not be represented. This makes

it necessary to generate and manage a huge number of labels. High computation times are the

result. More details will be provided later on.

Clearly, the problem of finding optimal charging strategies, the way it is formulated in 4.33,

differs from traditional multicriteria SPP. The main difference is that the energy consumption

costs are (at least in the version stated in 4.33) removed from the objective function and, instead,

represented within an additional constraint. Unfortunately, this does not simplify the problem.

The resulting constrained SPPs is, in fact, a special version of a multicriteria SPP, since still

both cost functions need to be considered simultaneously. As a consequence, the problem’s

complexity remains high30.

4.2.3 Time Dependency of Edge Costs
To model time-dependent edge costs, the possibility to compute the time at which an edge is

reached has to be given. Hence, a starting time and a function assigning time costs to edges are

necessary. Furthermore, it has to be distinguished between minimizing time-costs, i.e., find a

”fastest“ path, and minimizing general time-dependent costs, such as the energy consumption

costs cE which have been introduced in section 4.1.2. For the case of finding fastest paths,

which was considered for the first time in (32), time dependency not necessarily increases

the SPP’s complexity. If the so-called FIFO-property (first-in first-out) holds, even an almost

unchanged version of Dijktra’s algorithm can be applied for finding fastest paths (38). A (di-

rected) network ~G = (V, ~E) (or a directed graph, respectively) is denoted as a FIFO-network
30Constrained SPPs areNP-complete according to section 3.1 in (47).
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if and only if the time-costs, which are here again denoted with cT , fulfill the following condi-

tion for arbitrary times t1 ≤ t2:

t1 + cT (e, t1) ≤ t2 + cT (e, t2) ∀e ∈ ~E (4.35)

This can be understood as ”overtaking is not allowed“. If a vehicle starts passing an edge before

another vehicle, then it will also arrive at the end of this edge before the other one. In the con-

text of routing, it is common to assume the FIFO-property to be true, even though overtaking

is actually possible in reality. The same is assumed for CSO. Be aware that the FIFO-property

may be violated if the time-dependent costs cWT for waiting at a highly frequented charging sta-

tion are modeled inappropriately, i.e., if situations within the model exist in which a car driver

is able to finish her/his charging process earlier if she/he arrives later at the charging station.

This is not reasonable from a practical perspective, nor is it reasonable according to queuing

theory. Note that a car driver facing such a situation would achieve a time-advantage if she/he

simply waits at the charging station for an appropriate time period before she/he starts charging.

For the case of minimizing general time-dependent path costs, the situation becomes more com-

plicated. The problem is that Bellman’s optimality principle may no longer hold. In the con-

text of SPPs, i.e., for finding a shortest path between two nodes v0 and vK+1, this principle pos-

tulates that any subpath P ∗
m:n of an optimal path P ∗ = [v0, ...., vK+1] with 0 ≤ m < n ≤ K+1

again is an optimal solution for the problem of finding a shortest path between vm and vn (13).

General optimization problems which fulfill Bellman’s optimality principle have the property

that optimal solutions can always be constructed by stringing together solutions of subprob-

lems.

Bellman’s optimality principle represents the fundamental idea of any dynamic programming

approach and ensures an efficient implementation of corresponding algorithms. For example,

when applying Dijkstra’s algorithm (or a modified version of it), then labels are constructed

during the route search and assigned to nodes. These labels contain three types of information

(see also the pseudo-code of Figure 4.5): First, the costs of a path which leads from the starting

node to the node to which the considered label belongs. Actually, this path is the shortest path

to this node which Dijkstra’s algorithm has found up to the time at which the label is generated.

Second, the preceding node on this path. The third information stored within labels is the node

to which the label belongs. This is necessary to have a link between labels and nodes. The

information about the preceding node is used to reconstruct the path which leads to the cost

value stored by the label by successively following the predecessors until the starting node is

reached. Thus, each label encodes a path from the starting node to the node to which the label

belongs. The information about the costs is used to eliminate ”bad“ subpaths. This is the point
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where dynamic programming approaches, such as Dijkstra’s algorithm, exploit Bellman’s op-

timality principle: Let it be assumed that a path has been found during the route search leading

from the starting node to another node. Furthermore, assume that, as the dynamic program-

ming algorithm proceeds, a second path leading to this node is found. Dynamic programming

algorithms check whether the new path leads to lower costs than the old one. If this is the case,

then the old label is overwritten with a new one that encodes the new path. If the old label leads

to lower costs, then it remains and the new label is dropped. This means for the multicriteria

case, that labels or paths, respectively, are deleted as soon as they are identified to be domi-

nated. Unfortunately, for time-dependent edge costs, this is no longer possible. In (59), it has

been shown that even under strong assumptions concerning the properties of the considered

time-dependent cost function, subpaths of optimal paths can be suboptimal. This is a contra-

diction to Bellman’s optimality principle and makes it impossible to delete ”bad“ subpaths if

general time-dependent edge cost function are considered and if optimality of the computed

solutions has to be guaranteed. This is an important observation. It shows that during a route

search, the search space cannot be pruned for the case of general time-dependent edge costs

unless possibly suboptimal solutions are accepted. Instead, any possible sequence of edges has

to be considered until the destination is reached. A side-effect of this is that, similar to the

multicriteria case, applied algorithms need to be able to maintain several labels belonging to

the same node during the route search31.

Now, when returning to CSO, it is assumed that the FIFO-property holds for cT . Furthermore,

not general time-dependent costs, but time costs have to be optimized. Thus, it could be ex-

pected that Bellman’s optimality principle still holds. Unfortunately, the example displayed in

Figure 4.8 proves that this is not the case. Here, a time optimal route from v0 to v6 has to be

found. It is assumed that there are altogether five charging stations along a fixed route, i.e., no

route choices can be made. To keep the graphic clear, the first part of the graph between nodes

v0 and va5 is reduced to two edges. These edges represent alternative paths PA and PB between

v0 and va5 and the displayed costs are equal to the accumulated costs of these paths. The start-

ing state of charge and the starting time are provided in the table below the figure. Because

of edge (vb5, v6), cost functions cT and c̀E are time-dependent. Edge costs for charging can be

computed according to section 4.1. Target states of charge are given in steps of one percent,

i.e., ∆ = 0.01. Furthermore, it can be observed that path PB is dominated by PA since it

leads to higher time and higher energy consumption costs. To get from v0 to v6 on path PA, it

is necessary to charge at charging station 5. Otherwise, consumption costs would exceed the

31For the multicriteria case, this is necessary, since several non-dominated paths leading from the starting node
to the currently considered node may exist in parallel (see, for instance, the example in Figure 4.7).
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v0 v6

(cT , c̀E)

va5 vb5

f i5 fo5

99, 0.1

path PA

path PB
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v0.01
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v0.02
5

...

v0.99
5

v1.0
5
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(50, 0.26), if t ≤ 100

(50, 0.23), if t > 100
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starting node destination SOCS tS
s d 40% 0

Figure 4.8: Example showing that subpaths of time optimal paths may be dominated for the
problem of finding time optimal and feasible charging strategies

starting state of charge before node v6 is reached:

SOCS − cE(PA, 0, 0.4)− cE
((
va5 , v

b
5

)
, 99, 0.3

)
− cE

((
vb5, v6

)
, 100, 0.25

)
=

= 0.4− 0.1− 0.05− 0.26 = −0.01
(4.36)

The state of charge when reaching the charging station is equal to 25 percent. For the remaining

route, i.e., for returning to the main route and finally getting to v6, the state of charge is reduced

by 28 percent, since node vb5 cannot be reached before time t = 101. Therefore, the fastest

possible and feasible charging strategy which is based on path PA is to charge up to state of

charge of 29 percent. Assuming that the charging duration for this charging process is given

by a parameter d̂ > 0, the resulting total travel time is equal to 151 + d̂ and v6 is reached with

a state of charge of one percent. On the other hand, when using path PB to get to va5 , then it

is not necessary to charge at station 5, since node vb5 is reached at time t = 101 with a state of

charge of 24 percent. A total travel time of 151 and a final state of charge of one percent are the

result. Hence, this second strategy is optimal for the described setting, even though its subpath

PB is dominated by another subpath.
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Note that Bellman’s optimality principle for CSO, under the assumption that travel times are

minimized, could have been obtained if the energy consumption costs satisfied the so-called

cost consistency assumption (109). The cost-consistency assumption is a generalization of

the FIFO-property from time-dependent time costs to arbitrary time-dependent edge costs. A

time-dependent cost function c fulfills the cost consistency assumption if leaving a node earlier

does not lead to higher costs than leaving it later, i.e., it has to hold for arbitrary times t1 ≤ t2

that:

c(e, t1) ≤ c(e, t2) ∀e ∈ ~E. (4.37)

In Figure 4.8, condition 4.37 is violated by edge (vb5, v6), since arriving later at vb5 reduces the

energy consumption costs from 26 to 23 percent. It has to be remarked that the cost consistency

assumption does not make sense if the energy consumption of a BEV is considered, since

passing a road segment earlier not necessarily reduces the expected energy consumption. This

implies that it cannot be expected that cE fulfills the cost consistency condition.

4.2.4 Dependency of Edge Costs on the State of Charge
According to section 4.1.2, time costs cT and energy consumption costs cE depend for the case

of CSO (at least according to the way the problem is modeled here) not only on time, but on

the state of charge, too. For the dependency of the two considered cost functions cT and cE on

the state of charge, similar statements as given in section 4.2.3 for their dependency on arrival

times can be made. A generalization of the cost consistency assumption could be applied in

this context. However, such a generalization would lead to unrealistic assumptions such as ”If

one car starts passing an edge with a lower state of charge than another car, then it also reaches

the end of the edge with a lower state of charge.“ Another issue is that, besides the dependency

on the state of charge, the dependency on time still remains for both cost functions cE and cT .

According to the author’s knowledge, there exists no literature treating comparable scenarios.

However, for problem 4.33, it has already been reasoned that even without considering the

dependency on the state of charge, Bellman’s optimality principle does not hold. Thus, it could

be stated that, at least from an algorithmic perspective, anything one could make use of is

already lost. Hence, it seems to be a reasonable assumption that the dependency of edge cost

functions cE and cT on the state of charge won’t complicate the optimization problem. Later

on, this conjecture will be confirmed implicitly in theorem 1. This theorem will actually prove

the correctness of a shortest path algorithm proposed for solving the problem of finding optimal

charging strategies.

4.3 Solution Approaches
Figure 4.9 summarizes the findings of section 4.2. Several different cost function properties,

which are relevant in the context of shortest path computations, were discussed: The existence

of negative edge costs, the coexistence of several optimization criteria, and the dependency of
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these criteria on time and the state of charge. By removing energy consumption costs from the

objective function, their potential negativity is supposed to have minor influence on potential

solution approaches. Furthermore, the non-negativity of cT ensures that applied label-setting

algorithms can be stopped as soon as the destination node is reached. Taking two criteria into

account, on the other hand, makes it necessary to consider not only time optimal subpaths dur-

ing the route search. Thus, several labels belonging to the same node may exist in parallel. The

time dependency of cT has no influence, since cT is assumed to fulfill the FIFO-property. In

contrast, the time dependency of cost function cE , along with its missing cost consistency, even

destroys Bellman’s optimality principle. Due to this, dominated subpaths cannot be ignored.

With losing Bellman’s optimality principle, any existing sequence of edges has to be pursued

during the route search, i.e., any possible charging strategy has to be tested to guarantee opti-

mality. This is the most intuitive and, at the same time, the most trivial approach that can be
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Figure 4.9: Cost function properties and their influence on solution approaches

applied. In this section, it will be argued that the resulting computational effort is extremely

high, but also that this approach allows handling the dependency of functions cT and cE on the

state of charge.

As shown in the previous section, approaches for handling most of the cost function properties

can be found in literature, at least for handling them separately. Recent works also concerns

combinations of the listed aspects. In (88) and (37), for example, algorithms for solving time-

dependent multicriteria SPPs are provided. In (59), additionally the potential negativity of edge

costs is addressed. Though, it seems that none of the existing shortest path algorithm is suit-

able for handling problem 4.33 with all its characteristics. As a consequence, an appropriate

algorithm has to be derived. Here, this is done based on analyses conducted in section 4.2.
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Algorithm A: Finding Optimal Charging Strategies
Input: A directed graph ~G∆

D = (V ∆
D ,

~E∆
D), a starting node v0, a destination node vK+1,

a starting time tS := 0, cost functions cT and c̀E as described above, a starting state of
charge SOCS

Initialization: Create label L = (0, 0%, ∅, 0, v0, 1) for node v0. Define set of temporal
labels Ltemp := {L} and set of permanent labels Lperm := ∅;
define the for each node the highest existing index: nmax(v0) := 1,
nmax(v) := 0 ∀v 6= v0

1 While Ltemp 6= ∅ and no label belonging to vK+1 was added to Lperm, do:
2 Lcur = (ccurT , ccurE , vpre, npre, vcur, ncur) := the lexicographically
3 smallest label in Ltemp.
4 Remove Lcur from Ltemp and add it to Lperm.
5 For all vnew ∈ V such that e := (vcur, vnew) ∈ ~E do:
6 Compute SOCcur := SOCS − ccurE

7 Compute cnewT := ccurT + cT (e, tS + ccurT , SOCcur)
8 Compute cE(e, tS + ccurT , SOCcur) according to equation 4.10
9 Compute cnewE := ccurE + cE(e, tS + ccurT , SOCcur)

10 Compute nmax(vnew) := nmax(vnew) + 1
11 Compute nnew := nmax(vnew)
12 Create Lnew := (cnewT , cnewE , vcur, ncur, vnew, nnew)
13 If SOCS − cnewE > 0, then:
14 add Lnew to Ltemp
15 End if.
16 End for.
17 End while.
18 If possible, return a label L̄ ∈ Lperm that belongs to node vK+1,
19 otherwise return ”No feasible solution found“.

Figure 4.10: Pseudo-code of algorithm A

The result of these considerations is described by the pseudo-code which can be found in Fig-

ure 4.10. Algorithm A is based on ”algorithm 1“ from (99), which can be understood as the

straight-forward extension of Dijkstra’s algorithm for the time-independent multicriteria case.

From here on, this original algorithm is denoted as ”Martins’ algorithm“ (named after its in-

ventor). The essential idea taken from Martins’ algorithm is to use an extended type of labels.

When applying Dijkstra’s algorithm, labels contain information about the node to which they

belong, the preceding node, and the costs for reaching the node to which the label belongs. At

most one label is assigned to each node. It was stated in section 4.2 that for multicriteria SPPs,

any non-dominated path can be a subpath of a time optimal path. Hence, several paths leading

to the same node (which is not the destination node) may be relevant for finding eventually a

time optimal solution. As each label can only encode one path, it is necessary to have the pos-

sibility to maintain several labels for each node. Martins’ algorithm achieves this by assigning
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indices to labels. All labels belonging to the same node are numbered consecutively by these

indices (”index 1“ is assigned to the first label, ”index 2“ to the second, and so on). However,

the existence of several labels per node and, along with that, the existence of several relevant

paths leading to the same node, makes it insufficient to save only the information about the pre-

ceding node. It is inevitable to know which of the paths leading to the previous node causes the

costs which are stored in the currently considered label. Thus, besides the preceding node, the

index of the preceding label is also stored in each label. For the case of CSO, i.e., for the case

of cost functions cT and cE , labels are defined as a 6-tuple, i.e., an ordered set consisting of six

entries. A label L := (cT , cE , v
pre, npre, vcur, ncur) belonging to a node vcur contains infor-

mation about the time and energy-consumption costs that arise from the starting node to node

vcur on the path that is encoded by L. Moreover, it stores information which allows identifying

the preceding label uniquely, i.e., the node vpre to which the preceding label belongs and the

corresponding label-index npre. Finally, due to notational reasons, information for describing

the label itself, i.e., the node vcur and the label index ncur, are stored.

Now, algorithm A is applied to the small graph shown in Figure 4.3 in order to explain how it

works and simultaneously to illustrate the idea of extended labels. Analogously to Dijkstra’s

algorithm, there is a set of labels Lperm and a set of labels Ltemp used as storage for permanent

and temporal labels, respectively. Table 4.1 displays the proceeding of algorithm A. As a is the

Algorithm A

Iteration Ltemp Lperm
L1
a := (0, 0%, ∅, 0, a, 1)

It. 1 L1
b := (1, 20%, a, 1, b, 1), L1

a

L1
c := (1, 40%, a, 1, c, 1)

It. 2 L1
c , L

2
c := (2, 50%, b, 1, c, 2) L1

a, L1
b

It. 3 L2
c , L1

d := (5, 90%, c, 1, d, 1) L1
a, L1

b , L
1
c

It. 4 L2
d := (4, 70%, c, 2, d, 3), L1

d L1
a, L1

b , L
1
c , L

2
c

It. 5 L1
d L1

a, L1
b , L

1
c , L

2
c , L

2
d

Table 4.1: Proceeding of algorithm A for the example from Fig. 4.3

starting node, the first label which is created during the initialization isL1
a := (0, 0%, ∅, 0, a, 1).

The first two entries, which encode the cumulated costs, clearly have to be equal to zero. Since

there is no preceding node, entries three and four are filled with dummy-values. The last two

entries are a consequence of the fact that this first label belongs to node a and that it is the first

label assigned to node a. Node a is not the destination and with L1
a ∈ Ltemp, the set of temporal

labels isn’t empty. Thus, algorithm A enters the while-loop. Label L1
a is taken from the set of
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temporal labels, defined as the currently considered label Lcur in line 2, and afterwards added

to the set of permanent labels. Note that always the lexicographically smallest label is taken

from Ltemp:

For two n-dimensional vectors ŷ := (ŷ1, ŷ2, ..., ŷn), ȳ := (ȳ1, ȳ2, ..., ȳn) ∈ Rn, vector ŷ is de-

noted as lexicographically smaller than ȳ if one of the following two conditions hold: Either

ŷ = ȳ or ŷj < ȳj with j := min{i : ŷi 6= ȳi, i ∈ {1, ..., n}}. This means that the first entries

of a vector are most important for comparison. The definition is taken from section 5.1 in (41).

One also writes ŷ ≤lex ȳ.

For algorithm A, a label L̂ := (ĉT , ĉE , v̂
pre, n̂pre, v̂cur, n̂cur) is called lexicographically smaller

than a label L̄ := (c̄T , c̄E , v̄
pre, n̄pre, v̄cur, n̄cur) if the accumulated costs encoded by L̂ are

lexicographically smaller32 than the accumulated costs encoded by L̄, i.e., if

(ĉT , ĉE) ≤lex (c̄T , c̄E). (4.38)

In line 5 of algorithm A, all neighbours of node vcur are considered and labels for these nodes

are created in lines 6 to 12 by adding the costs for the corresponding edges to the accumulated

costs and by using label Lcur as predecessor. At this point, algorithm A differs significantly

from Martins’ algorithm. In contrast to Martins’ algorithm, dominated labels are also added to

Ltemp. It is worth mentioning that nmax(v) denotes the highest index that has been assigned to

a label which belongs to node v. Whenever a new label that belongs to nmax(v) is generated,

this number is increased by one (see line 10). By doing this, it can be ensured that each gener-

ated label can be uniquely identified by the node to which it belongs and by the index which is

assigned to it. A further difference to Martins’ algorithm is that algorithm A includes the path

feasibility condition in line 13.

Note that the development of sets Lperm and Ltemp, which result when applying algorithm A

to the graph from Figure 4.3, is shown in Table 4.1. The i-th row shows the situation after the

while-loop has been executed the i-th time. Here, two iterations are remarkable: During the

second iteration, i.e., when the label L1
b is added to the set of permanent labels, a second label

belonging to node c is added to Ltemp. By following the preceding labels it can be seen that L1
c

encodes path [a, c], whereasL2
c encodes path [a, b, c]. The second interesting iteration is the last

one, when the first label belonging to the destination node d is made permanent and algorithm

A returns the time optimal and feasible path [a, b, c, d]. Then, according to line 1 of algorithm

A, no more iterations are started and the algorithm terminates. This is also a difference to Mar-

tins’ algorithm, which computes the whole set of Pareto optimal solutions by maintaining the

32According to the defintion taken from (41), a vector x is denoted as lexicographically smaller than a vector y,
even if x = y. This also explains writing ≤lex and not <lex in equation 4.38.
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while-loop in any case until set Ltemp is empty. However, it is used that Martin’s algorithm is

a label-setting algorithm and that, due to this, the route search can be stopped as soon as the

destination is reached, since computing one solution is assumed to be sufficient here.

On the basis of the pseudo-code of algorithm A, the following theorem can be shown (a corre-

sponding proof can be found in appendix A):

Theorem 1. Let a finite and directed graph ~G = (V, ~E), a starting node s, a destination node

d, cost functions cT and cE (as described in section 4.1.2), and a starting state of charge SOCS
be given. Furthermore, let there be no cycle on ~G that leads to time costs of zero and let at least

one path from s to d on ~G exist which is feasible under the given conditions. Then, algorithm

A terminates with finding a label that encodes a time optimal and feasible s-d-path.

According to Theorem 1, algorithm A is able to ensure feasible and time optimal solutions in

a very general setting. Neither the FIFO-property for cT , nor the cost consistency for cE are

required during the proof. Also the conditions concerning the graph are very weak, since the

existence of an optimal solution, as well as the absence of zero-time cycles are, from a practical

perspective, negligible restrictions. However, this flexibility causes high computational effort:

With Martins’ algorithm, algorithm A is based on a rather slow approach. Moreover, it even

leaves out the deletion of dominated subpaths, a fact that raises computation times even more.

On the other hand, it can be expected that, besides the premature termination of algorithm A

when reaching the destination node, especially the feasibility condition in line 13 prunes the

search space significantly. This is because the lexicographic selection of candidate labels in

lines 2 to 3 ensures that algorithm A primarily constructs time minimal charging strategies.

Such strategies naturally tend to suggest few and short charging processes and thus often vio-

late the feasibility condition. As a result, many labels can be discarded early during the route

search process. Still, even though it will not be explicitly tested within this thesis, the analyses

of the properties of the considered cost functions in section 4.2 prompt that computation time

does not allow applying algorithm A on large graphs.

Algorithm B: Modification of Algorithm A for Accelerated Computation
...
13 If Lnew is not dominated by another label in Ltemp or Lperm that belongs
14 to vcur and if SOCS − cnewE > 0, then:
15 add Lnew to Ltemp and delete all labels belonging to vcur in Ltemp that
16 are dominated by Lnew.
17 End if.
...

Figure 4.11: Pseudo-code of algorithm B as an extension of algorithm A
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One possibility to counter this problem is to include the deletion of labels which encode dom-

inated subpaths. The corresponding algorithm is here denoted with algorithm B. It results by

replacing lines 13 to 15 in algorithm A by the pseudo-code stated in Figure 4.11. In this con-

text, it has to be considered that new labels are not added to the set of temporary labels Ltemp if

they are dominated. Moreover, existing labels, i.e., labels which were already added to Ltemp
during previous iterations of the while-loop, are also deleted if they are dominated by a recently

constructed label. Despite this modification, algorithm B proceeds analogously to algorithm

Algorithm B

Iteration Ltemp Lperm
L1
a := (0, 0%, ∅, 0, a, 1)

It. 1 L1
b := (1, 20%, a, 1, b, 1), L1

c := (1, 40%, a, 1, c, 1) L1
a

It. 2 L1
c L1

a, L1
b

It. 3 L1
d := (5, 90%, c, 1, d, 1) L1

a, L1
b , L

1
c

It. 4 ∅ L1
a, L1

b , L
1
c , L

1
d

Table 4.2: Proceeding of algorithm B for the example from Fig. 4.3

A. To illustrate this, Table 4.2, analogously to Table 4.1 for algorithm A, provides an overview

of the iterations of algorithm B if it is applied to the example depicted in Figure 4.3. When

comparing both tables, the first difference can be observed during the second iteration, where

algorithm B, in contrast to algorithm A, does not add the dominated label L2
c to Ltemp. This

fact eventually explains that label L2
d is not constructed. Hence, the optimal solution to the

stated problem, which is encoded by L2
d, is not computed. Even though deleting dominated

labels during the route search leads to the already discussed loss of optimality for solutions

generated by algorithm B, this proceeding still seems to be reasonable. If some strategy 1 leads

to a certain location in less time and with a higher state of charge than a strategy 2, it appears to

be reasonable to assume that strategy 1 is at least not much worse than strategy 2. Correspond-

ingly, it can be expected that algorithm B in most cases computes the same or a comparably

good solution as algorithm A. This conjecture is confirmed in (69). In this work, the author

describes a case study, where both algorithms were compared with regard to computational

effort and achieved solution qualities. The findings indicate that algorithm B leads in almost

all cases to the same solution as algorithm A. A further clear advantage of algorithm B can be

observed in Table 4.2: The number of iterations and of constructed labels is already lower for

this very small example than for algorithm A. In (69), this observation is confirmed, too. The

effect becomes even more significant with increasing graph size. Nevertheless, algorithm B

is also not expected to be applicable for graphs of sizes which occur in practical applications.
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However, algorithm B at least offers a perspective. One could, for instance, think of combin-

ing algorithm B with established speed-up methods for shortest path algorithms. More details

about this will be given later on in chapter 9.

4.4 Model Assessment with Regard to Research Objectives
As mentioned, the introduced MDP is used as reference model in order to assess the formu-

lation of the problem of finding optimal charging strategies as an SPP. It particularly allows

identifying restrictions of other models with regard to RO 1a. Now, when comparing the MDP

formulation from chapter 3 to the formulation as a deterministic SPP from chapter 4, then three

major differences can be named: The first difference is that the set of possible charging deci-

sions is no longer continuous. The original decision spaces Uk with k ∈ V cs
D (i.e., the decision

spaces which refer to charging decisions) are replaced by a finite set of decision possibilities

U∆
k . The second one is that there exist charging policies that cannot be represented by solutions

of the deterministic SPP. The last difference is that, for the MDP, a generic description of per-

formance measure f is given. For the SPP, on the contrary, f is specified rather concretely as a

function depending on deterministic edge cost functions cT and cE . Each of these differences

influence up to which degree the requirements defined by ROs 1a to 1c can be fulfilled by the

new problem formulation.

RO 1a: The MDP allowed modelling the problem of finding optimal charging strategies re-

alistically and very generally. The above mentioned differences between the MDP and the

deterministic SPP, however, have some influence on the SPP’s ability to achieve the same. In

this context, it can be expected that the influence of discretized decision stages is rather small.

Reasons for this assumption have been provided in section 4.1.1. The author also assumes

that the SPP’s missing ability to represent all possible charging policies via paths is not very

relevant, at least from a practical point of view. The main reason for this conjecture is that in

practice, a navigation system can be expected to recompute charging strategies during trips.

Therefore, the driver is not bound to the initially recommended sequence of route and charging

instructions. If necessary, these recommendations can be adjusted to react to recent incidents.

A regular updating of charging strategies gets very close to the idea of charging policies. There

may still be some situations in which such an on-trip recomputation of charging strategies does

not achieve the same results as a charging policy, but the author assumes this to be very unlikely

in reality.

In contrast to discretized decision spaces and the restriction to compute charging strategies in-

stead of charging policies, the suggested concretizations are assessed to be very critical with

regard to RO 1a. The main issue is the assumption of deterministic travel times and energy con-

sumption. Due to individual driving style and the influence of non-recurrent traffic incidents,

such as accidents, it is not realistic to expect travel time and energy consumption predictions
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to be absolutely correct. Particularly if the realized energy consumption only slightly exceeds

the energy consumption which is presumed according to c̀E , i.e., according to the deterministic

model, BEVs may run out of energy even though following charging strategies which are as-

sumed to be feasible. The deterministic SPP does correspondingly not satisfy the requirements

that need to be fulfilled for an implementation in practice.

RO 1b: The definition of f which is suggested in section 4.1.3 basically includes both ef-

ficiency and, up to some degree, reliability. Efficiency is achieved by penalizing charging

strategies which cause high travel times, reliability by penalizing charging strategies that lead

to an empty battery. On the other hand, the suggested framework has no possibility to handle

uncertainties. It suffers in this context from the same problems as former models for CSO

(compare the literature review in section 2.1.3). Thus, the achieved level of reliability is unable

to mirror the original intention of RO 1b.

RO 1c: The discretization of the decision spaces makes it possible to transform the MDP to

an SPP, which again makes it possible to handle the problem numerically. The reduction to

a deterministic framework reduces the expected computational effort for solving the problem.

The analyzes conducted in section 4.2, on the other hand, suggest that solving the introduced

deterministic SPP is still expensive. Nevertheless, the developed algorithm B probably offers,

in combination with additional speed-up techniques, a possibility to compute near optimal

charging strategies even on graphs that are large enough to represent the road networks of

whole regions or countries.

Conclusions: In conclusion, the introduced deterministic SPP is not able to achieve RO 1a.

Correspondingly, an adjustment of this model has to be developed. This reformulation has to

allow taking uncertainty into account. It is, furthermore, important to ensure that the adjusted

problem formulation does not cause a significant increase of computation times.

4.5 Summary
The suggested interpretation of CSO as an MDP, which was described in chapter 3, is generic,

but can hardly be addressed numerically. Hence, an alternative formulation as an SPP was

introduced in chapter 4. SPPs consist of two main components: A graph and an objective func-

tion. The construction of graph ~G∆
D, which is based on the decision graph ~GD from chapter

3, was carried out in section 4.1.1. In this context, a discretization of the originally continu-

ous decision spaces Uk became necessary. Moreover, it turned out that ~G∆
D allows associating

paths with charging strategies, but not with arbitrary charging policies. To be able to rate, com-

pare and hence optimize such strategies, a rating criterion was introduced. For this purpose,
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two deterministic edge cost functions, assigning energy consumption costs and time costs, re-

spectively, to edges, were described in section 4.1.2. Energy consumption costs were used to

introduce the notion of feasible charging strategies. These are strategies which allow reaching

the destination without running out of energy. Time costs were used to actually rate charging

strategies. For the final formulation of the problem of finding optimal charging strategies as

a deterministic SPP, both aspects (travel time and feasibility) were taken into account: Charg-

ing strategies leading to low travel times are preferred, but infeasible charging strategies are

directly excluded from consideration. The resulting problem formulation can be interpreted as

a (deterministic) constrained SPP.

The properties of the derived SPP were analyzed in section 4.2. This was necessary to under-

stand how shortest path algorithms behave when being applied to the problem. Based on this

analysis, it turned out that the described SPP is at least NP–complete. Moreover, Bellman’s

optimality principle does not hold. As a consequence, the time necessary for computing op-

timal solutions is expected to rise very quickly with the size of graph ~G∆
D. Nevertheless, two

algorithms for solving the problem were suggested and discussed in section 4.3. The first one

guarantees optimality of generated paths. The other one ignores the absence of Bellman’s op-

timality principle. This allows improving computation times at the cost of risking suboptimal

solutions. Finally, in section 4.4, the developed SPP was analyzed with regard to ROs 1a to

1c. In contrast to the MDP from chapter 3, achieving RO 1a was identified to be critical. The

main issue is the missing possibility to take the existence of uncertainties into account. Thus,

it was concluded that the proposed formulation as a constrained SPP needs further adjustments.



Chapter 5

Charging Strategy Optimization as a
Shortest Path Problem under
Uncertainty

The formulation of CSO as a deterministic SPP significantly simplifies the former formulation

as a sequential MDP. The discretization of the decision spaces, as well as the missing possi-

bility to represent decision policies were mentioned. However, the suggested reduction from

a stochastic to a deterministic system is most critical. If realized energy consumption only

slightly exceeds the consumption which is presumed within the model, then following feasible

charging strategies may still lead to an empty battery. As a consequence, an adjusted problem

formulation is necessary, which achieves robustness against uncertainties, especially uncertain-

ties of energy consumption predictions. Such a reformulation is provided in the following. In

this context, over-cautious strategies also need to be avoided. Otherwise, too many and too

long rechargings are suggested or it is stated in situations, in which the considered BEV could

be used safely for the intended trip, that a reliable arrival cannot be guaranteed.

Chapter 5 is structured as follows: In section 5.1, edge costs are modeled as random variables

and notations are adjusted correspondingly. Based on this, an exemplary formulation of the

problem of finding optimal charging strategies as a stochastic SPP is stated in section 5.2. It

is argued that this formulation allows handling uncertainty adequately, but at the same time

causes a significant increase of computation times. Since solving the suggested deterministic

problem is already expected to cause high computational effort, any further negative impact

on computation times has to be avoided. Consequently, an alternative problem formulation

is proposed in section 5.3. The original deterministic framework is maintained, but an ex-

tended interpretation of the feasibility probability is introduced, where charging strategies are

85
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excluded from consideration as soon as states of charge fall below a certain threshold. Dif-

ferent approaches for defining this threshold dynamically along paths are suggested and their

algorithmic implementation are discussed.

5.1 Non-deterministic Edge Costs
First, the problem of finding optimal charging strategies is reformulated in such a way that

non-deterministic edge costs can be represented. For this purpose, let it be assumed that two

probability density functions gT (e, t, ωT ) and g̀E(e, t, ωE) are given. Function gT (e, t, ωT )

describes the distribution of the travel time which is necessary for passing an edge e = (vi, vj),

when starting at time t at node vi. Analogously to chapter 4.1.2, ωT is again interpreted as an

object which describes the available information about factors which influence travel time, such

as traffic conditions or driving behavior. Also information which allows describing correlations

to other edges may now be included in ωT . Function g̀E(e, t, ωE) represents the distribution of

the energy consumption which is necessary for passing edge e, when starting at time t at node

vi. Object ωE describes factors that influence energy consumption, such as the current state

of charge, vehicle specific parameters (57), traffic conditions (86) (123), driving behavior (57),

weather conditions (66), and road steepness (92). Note that graph ~G∆
D can remain the same as

for the deterministic setting from chapter 4.

In the following, a function C̀E representing energy consumption and a function CT repre-

senting time consumption are defined. Their dependency on objects ωT and ωE is again not

explicitly considered within the notation to keep the notation simpler. Functions C̀E and CT
assign random variables to edges33:

CT (e, t, SOC) ∼ gT (e, t, SOC) (5.1)

C̀E(e, t) ∼ g̀E(e, t) (5.2)

It is worth mentioning that CT (e, t, SOC) and C̀E(e, t) are random variables, whereas CT and

C̀E are functions assigning random variables to edges in dependency of time or the state of

charge. In a next step, analogously to chapter 4, energy consumption distributions are adjusted

in such a way that unrealistic states of charge are avoided (compare equation 4.10):

CE(e, t, SOC) :=


SOC − 1 if SOC − C̀E(e, t) > 1

SOC if SOC − C̀E(e, t) < 0

C̀E(e, t) else

(5.3)

33”X ∼ g” means that random variable X is distributed according to the probability density function g or
cumulative distribution function g, respectively.
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Note that typically significant spatial correlations exist between the cost distributions of differ-

ent edges (136). Hence, the assumption that accurate probability distributions of edge travel

times and edge energy consumption are known for all relevant edges of a graph which repre-

sents a realistic road network is a very strong requirement (112).

5.2 Rating Paths under Random Edge Costs

Having defined edge costs as random variables, some resulting issues shall be described within

the current section. To achieve this, the following formulation of a stochastic SPP in the context

of charging strategies is considered:

min E[FM (P, tS , SOCS)]

subject to P is a v0-vK+1-path on ~G∆
D

(5.4)

Variables tS and SOCS again denote the starting time and starting state of charge, respectively.

Performance measure FM is understood to penalize situations in which the BEV runs out of

energy:

FM (P, tS , SOCS) :=

CT (P, tS , SOCS) if P does not lead to an empty battery

M else
(5.5)

The cumulated time costs of a path P are denoted by CT (P, tS , SOCS), which is again a ran-

dom variable. Note thatM is a large positive number. This ensures that the expected time costs

of any path are well-defined, which may not be the case if M was replaced by∞. Applying

the expected value operator, i.e., to consider E[FM ] instead of FM as the objective function, is

necessary to ensure that the objective function returns values in R.

It has already been stated in the state of the art in chapter 2 that computing shortest paths on the

basis of randomly distributed edge costs leads to an increase of computation times in compari-

son to problem formulations where deterministic edge costs are presumed. Two main reasons

for this are typically mentioned in literature: First, for many stochastic SPPs, again Bellman’s

optimality principle does not hold. This is the case, as soon as the objective function value

which is assigned to a path cannot be expressed as the sum of the ratings of its edges. This

can happen if, for instance, edge costs are correlated (136). The consequence of the absence

of Bellman’s optimality principle is that, as mentioned in section 4.2.3 when considering gen-

eral time dependent edge cost functions, many labels need to be created and managed during

the route search. However, for CSO, Bellman’s optimality principle has already been lost in

the deterministic case. Due to this, it could be expected that considering randomly distributed



88 CHAPTER 5. CSO AS AN SPP UNDER UNCERTAINTY

edge costs do not lead to a significant increase of computation times in comparison to the de-

terministic case. To explain this conjecture more clearly: When applying algorithm A to the

deterministic SPP 4.32, then in fact all available decision possibilities are considered during

the route search as long as the feasibility condition holds. There is no intelligence included in

algorithm A that would allow reducing the search space. Thus, since the considered graph ~G∆
D

and along with it the set of possible decisions remains the same for the suggested stochastic

SPP, the search space is not enlarged. Actually, only the rating scheme is different. Conse-

quently, algorithm A (and algorithm B, too) probably does not need much more time to find

solutions for the stochastic SPP than for the deterministic SPP.

The second source of increased computational effort occurs whenever cost-dependent edge

costs are considered. A typical example of cost-dependent costs are time costs that depend on

arrival times. The critical aspect is that for general edge cost distributions, it is not possible

to derive a closed form probability distribution of path costs (136). This means, for exam-

ple, that it is in general not possible to analytically derive a distribution gT (P, tS , ωT ) with

P = [v1, ..., vQ], even if the edge cost distributions gT ((vi, vi+1), t, ωT ) are known for all pos-

sible arrival times t and all relevant edges (vi, vi+1). Instead, path cost probability distributions

typically need to be estimated numerically by solving a sequence of recursively defined inte-

grals. For the example of time-dependent travel time costs, recursively defined integrals are

caused by the need to compute arrival time distributions based on travel time distributions of

previously passed edges. The consequence is that simply rating single paths can lead to huge

computational effort. An example illustrating this fact can be found in appendix B. This ex-

ample actually shows that even in a very simple setting, in which the random edge costs CT
and C̀E do neither depend on arrival times, nor on the state of charge, the effort for computing

the costs of a path rises quickly with the number of edges of the path. Therefore, the already

high computational effort for solving the deterministic SPP from chapter 4 would be increased

even further if edge costs are considered as random variables. This considerations suggest that

the problem of finding optimal charging strategies should not be modeled as a stochastic SPP.

Instead, it is probably more meaningful to adjust the (up to this point) risky deterministic SPP

in such a way that uncertainties can be handled.

5.3 The Concept of Energy Buffers
According to section 4.2, the interpretation of CSO as a deterministic SPP already leads to

significant computational effort. Hence, despite the goal to achieve robustness against uncer-

tainties (especially against the uncertainty of energy consumption predictions), computational

effort should not be increased any more – or at least not significantly. At the same time, the

current version of the feasibility condition is considered to be very risky. Issues may occur

whenever states of charge only slightly higher than zero are expected, i.e., whenever for some

path P = [v1, ..., vQ] the accumulated energy consumption costs cE(P1:i, tS , SOCS) from

node v1 to node vi almost reach the starting state of charge SOCS . In such situations, the
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corresponding path is considered to be feasible, but if realized energy consumption exceeds the

predicted energy consumption only marginally, then the BEV may run out of energy. Due to

this, a modified version of feasibility is suggested to reduce this risk:

A strategy associated with a path P = [v1, ..., vQ] is denoted as energy secure with respect to

(w.r.t.) SOCmin if

SOCS − cE(P1:i, tS , SOCS) > SOCmin(ω) ∀i ∈ {2, 3, ..., Q}. (5.6)

In this context, SOCmin is a real-valued function. It is from here on denoted as energy buffer
function and the values it returns as minimal energy buffers. Function SOCmin depends

on a set of (not yet specified) variables and parameters ω. Condition 5.6 means that a strat-

egy is denoted as energy secure as long as the predicted state of charge never falls below the

lower bound defined by SOCmin. It is important to mention that whenever it is referred to the

”predicted“ state of charge or the ”predicted“ energy consumption, the values resulting from

considering edge cost functions c̀E and cT are meant, i.e., the values resulting according to the

framework from chapter 4. The bigger the value SOCmin(ω) is, the lower the risk of running

out of energy becomes for charging strategies which are energy secure w.r.t. SOCmin(ω). As-

suming that SOCmin returns independently of ω a static value of, for example, five percent

ensures that the destination is reached as long as the realized accumulated energy consumption

never exceeds the predicted accumulated energy consumption by more than five percent of the

capacity of the battery. Note that the idea of energy- or fuel-buffers, respectively, has already

been considered in (82) and (141). However, only static buffers have been suggested in these

prior works. For the described research, the size of the energy buffer is intended to be only

as big as necessary. This means, for instance, that the size of the energy buffer is rather big

in situations in which energy consumption predictions are expected to be less reliable. On the

other hand, in situations in which it is very unlikely that energy consumption is underestimated

significantly, the buffer should be chosen smaller. The ability of an energy buffer function to

adequately adjust the size of the minimal energy buffer is from here on denoted as adaptivity.

Replacing the feasibility condition with the energy security condition can be expected to cause

not much additional computational effort when solving the corresponding SPP. In fact, addi-

tional computation times result primarily from computing SOCmin. If evaluating this function

does not become too expensive, the corresponding effects should be negligible. A clear draw-

back of the suggested adjustment, particularly in comparison to the formulation as a stochastic

SPP in section 5.2, is that uncertainties of travel time predictions and, along with this, their

impact on energy consumption are not considered at all.

In the following, possible definitions of function SOCmin and parameter set ω are introduced
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and discussed to illustrate this yet rather abstract concept. However, before this is done, one

property is postulated, which any function SOCmin is assumed to fulfill: SOCmin is intended

to avoid that incorrectly predicted energy consumption causes an empty battery. As soon as the

BEV reaches a charging station, this cannot happen until the BEV again leaves the charging

station. Thus, SOCmin is set equal to zero for edges which represent parts of a charging pro-

cess.

5.3.1 Relative Energy Buffer
One of the most intuitive ideas for defining an energy buffer function is to use a certain per-

centage of the predicted energy consumption for buffering. This type of function is from here

on denoted with SOCr,zmin(ω) (”r” for ”relative”). Parameter z ≥ 0 defines the percentage ac-

cording to which the size of the energy buffer is quantified. In Figure 5.1, the pseudo-code of

a corresponding algorithm for computing SOCr,zmin along a path can be found. Based on this

Algorithm for Computing Relative Energy Buffers along a Path
Input: A directed graph ~G∆

D, a path P = [vP1 , v
P
2 , ..., v

P
N ] on ~G∆

D with N ∈ N, a node
vPN∗ for which the minimal energy buffer has to be computed, a starting time tS , costs
functions cT and c̀E as described before, a starting state of charge SOCS , a positive
number z

Initialization: SOColdmin := 0, n := 2

1 tn−1 := tS
2 SOCn−1 := SOCS
3 While n ≤ N∗:
4 If edge en := (vPn−1, v

P
n ) represents a road segment:

5 SOCr,zmin(en, t
n−1, SOColdmin; z) := SOColdmin + z· | c̀E(en, t

n−1) |
6 else (i.e., if en is part of the charging process):
7 SOCr,zmin(en, t

n−1, SOColdmin; z) := 0
8 End if.
9 SOColdmin := SOCr,zmin(en, t

n−1, SOColdmin; z)
10 Compute cE(en, t

n−1, SOCn−1) according to equation 4.10
11 SOCn := SOCn−1 − cE(en, t

n−1, SOCn−1)
12 tn := tn−1 + cT (en, t

n−1, SOC)
13 n := n+ 1
14 End while.
15 SOCr,zmin := SOColdmin.
16 Return SOCr,zmin.

Figure 5.1: Pseudo-code to compute energy buffer SOCr,zmin along a path.

pseudo-code, the set ω consists of the currently considered edge en = (vPn−1, v
P
n ), the time

tn−1 and the state of charge SOCn−1 when reaching the start of this edge, and the energy
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buffer SOColdmin that is assumed to be necessary until node vPn−1 (which is the start of edge en)

is reached. It can be observed that SOCr,zmin grows along sequences of edges which represent

road segments. For each road segment en which is passed, a certain percentage of the corre-

sponding predicted energy consumption c̀E(en, t
n−1) is added to the energy buffer (see line 6

in 5.1). The minimal energy buffer is set back to zero whenever an edge representing a part

of a charging process is passed. Note that taking the absolute value of the predicted energy

costs (in line 6) ensures that negative edge costs do not reduce the size of the buffer. Instead

it grows also if energy gains are predicted due to recuperation. This is done to compensate for

unexpectedly low energy gains.

v0 va1 vi1 v0.4
1 vo1 vb1

nodes v0 va1 vi1 v0.4
1 vo1 vb1

SOC [%] 70 40 10 40 40 10

edge leading to node (v0, v
a
1) (va1 , v

i
1) (vi1, v

0.4
1 ) (v0.4

1 , vo1) (vo1, v
b
1)

SOCr,zmin [%] for z = 1/6 5 10 0 0 5

Figure 5.2: Development of the expected state of charge and the relative energy buffer for
z = 1/6 along an exemplary path.

To explain how SOCr,zmin works, Figure 5.2 shows the development of SOCr,zmin along an ex-

ample path P := [v0, v
a
1 , v

i
1, v

0.4
1 , vo1, v

b
1], i.e., for a charging strategy which suggests charging

at charging station 1 up to a state of charge of 40 percent. For simplicity, it is assumed that

energy consumption c̀E(e, t) is equal to 30 percent for any edge which embodies a road seg-

ment, independently of the arrival state of charge or the arrival time. Furthermore, a z-value of

1/6 is considered and a starting state of charge of 70 percent. The table shown at the bottom of

Figure 5.2 provides information about the development of the predicted state of charge SOC

(when arriving at the corresponding nodes) and about the minimal energy buffer SOCr,zmin,

which describes the state of charge which has to remain after passing the corresponding edge.

The SOC-values after passing edges representing road segments result directly by subtracting

30 percent from the state of charge at the start of the edge. The SOC–values at nodes v0.4
1 and

vo1 are computed according to section 4.1.2 and simply show a recharging up to 40 percent. The

values of SOCr,zmin are computed according to the pseudo-code given in Figure 5.1. Based on

the stated values of z and c̀E(e, t), the minimal energy buffer increases with each passed road

segment by five percent (= z· | c̀E(e, t) |). However, it is instantly reduced to zero percent

as soon as an edge that represents a part of a charging process is passed. As a consequence,

it can be observed that the energy buffer increases until a charging process is conducted at a

charging station. Afterwards, the buffer starts increasing again. The idea behind this is that
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between two successive charging processes, uncertainty can be assumed to increase along with

the covered distance34. However, as soon as a charging process is completed, the resulting

state of charge is known. It is defined by the considered path, i.e., by the considered charging

strategy itself, and it is independent of previous energy consumption – always assuming that

the charging station can at least be reached. Consequently, the energy buffer can be reset to

zero at charging stations. This also avoids that energy buffers become extremely big if paths

are very long and several charging stops are necessary. If the energy buffer were not regu-

larly reset to zero, relative energy buffers would increase further and further. Consequently, in

many cases no energy secure charging strategy could be provided for long-distance trips due

to the high requirements concerning the size of the energy buffer. This would not be reasonable.

Note that if the energy consumption for driving from the lastly visited charging station to the

currently visited charging station has been underestimated, then the time consumption caused

by the suggested charging process increases. If it has been overestimated, then charging times

are lower than expected. Since energy consumption is assumed to be time-dependent, this may

also have impact on the accuracy of energy consumption estimations for the following edges.

However, as already mentioned, the effect of incorrectly predicted arrival times on the uncer-

tainty of energy consumption predictions won’t be taken into account by any of the suggested

energy buffer functions.

Its growth along edges leads to the fact that SOCr,zmin, in contrast to energy or time consump-

tion, does not only depend on the currently considered edge en, the time tn−1, and the state

of charge SOCn−1 when reaching the start of this edge. Moreover, also the old energy buffer

SOColdmin needs to be included. This means that SOCr,zmin always has to be computed along

whole paths and not for each edge separately. Hence, in order to adjust algorithms A and B

in such a way that the concept of energy buffers is applied, it is not sufficient to replace the

feasibility condition by the energy security condition. Moreover, the definition of labels has to

be extended again. The pseudo-code in Figure 5.3 shows how this can be done. The suggested

algorithm is denoted as algorithm A-2. It is a modified version of algorithm A. Instead of the

feasibility condition, now the energy security condition can be found (see line 14). A further

difference to the original version of algorithm A in Figure 4.10 is that each label contains seven

instead of six values. The size of the ”old“ energy buffer is additionally stored. Otherwise, the

computation of SOCr,zmin in line 10 of algorithm A-2 could not be executed. The computational

effort for applying algorithm A-2 instead of A remains almost unaltered. Additional effort is

solely caused by evaluating the minimal energy buffer function. For the case of SOCr,zmin, this

is not expensive.

34Here, increasing uncertainty means that a deviation from the deterministic energy consumption costs of (for
instance) five percent of the maximal battery capacity is more likely to happen on a 100 kilometer trip than on a 10
kilometer trip.
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Algorithm A-2: Finding Optimal Charging Strategies
Input: A directed graph ~G∆

D = (V ∆
D ,

~E∆
D), a starting node v0, a destination node vK+1,

a starting time tS := 0, cost functions cT and c̀E as described above, a starting state of
charge SOCS , a positive number z

Initialization: Create label L = (0, 0%, ∅, 0, v0, 1) for node v0. Define set of temporal
labels Ltemp := {L} and set of permanent labels Lperm := ∅;
define for each node the highest existing index: nmax(v0) := 1,
nmax(v) := 0 ∀v 6= v0

1 While Ltemp 6= ∅ and no label belonging to vK+1 was added to Lperm, do:
2 Lcur = (ccurT , ccurE , SOColdmin, v

pre, npre, vcur, ncur) := the lexicographically
3 smallest label in Ltemp.
4 Remove Lcur from Ltemp and add it to Lperm.
5 For all vnew ∈ V such that e := (vcur, vnew) ∈ ~E do:
6 Compute SOCcur := SOCS − ccurE

7 Compute cnewT := ccurT + cT (e, tS + ccurT , SOCcur)
8 Compute cE(e, tS + ccurT , SOCcur) according to equation 4.10
9 Compute cnewE := ccurE + cE(e, tS + ccurT , SOCcur)

10 Compute SOCnewmin := SOCr,zmin(e, tS + ccurT , SOColdmin; z)
11 Compute nmax(vnew) := nmax(vnew) + 1
12 Compute nnew := nmax(vnew)
13 Create Lnew := (cnewT , cnewE , SOCnewmin , v

cur, ncur, vnew, nnew)
14 If SOCS − cnewE > SOCnewmin , then:
15 add Lnew to Ltemp
16 End if.
17 End for.
18 End while.
19 If possible, return a label L̄ ∈ Lperm that belongs to node vK+1,
20 otherwise return ”No feasible solution found”.

Figure 5.3: Pseudo-code of algorithm A-2

Note that algorithm B can be modified analogously, leading to algorithm B-2. Moreover, func-

tion SOCr,zmin in line 10 can be replaced by other energy buffer functions. Further examples for

such functions will be given in the following sections. For some of these functions, even more

information will be necessary, making further extensions of the definition of labels necessary.
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5.3.2 Quantile-based Approach

Let it be assumed that besides predicted edge costs c̀E(e, t), also energy consumption dis-

tributions g̀E(e, t) of variables C̀E(e, t) are known35. Then, function SOCq,αmin(ω) (”q“ for

”quantile“) is defined for some α ∈ [0, 1] as the sum of the differences between the α-quantiles

of the random edge costs, and the predicted edge costs. Function SOCq,αmin is from here on de-

noted as quantile-buffer function. The set of input quantities ω remains the same as for relative

energy buffers (location, arrival time, state of charge, former energy buffer). The pseudo-code

for computing SOCq,αmin results if line 5 of the pseudo-code in Figure 5.1 is replaced by lines 5

to 7 from Figure 5.4 (and z is replaced by α for the remaining lines). Analogously to SOCr,zmin,

function SOCq,αmin grows along edges representing road segments and is set equal to zero as

soon as a charging station is reached. Note that in the right-hand side of the assignment in

line 7, the energy buffer does not get reduced if qα is smaller than the corresponding predicted

edge costs. Besides replacing SOCr,zmin by SOCq,αmin in algorithm A.2, no more adjustments

are necessary for using algorithm A-2 to compute charging strategies which are energy secure

w.r.t. to SOCq,αmin.

Algorithm for Computing Quantile-based Energy Buffers

4 ...
5 Compute c̀nE := c̀E(en, t

n−1)

6 Compute qα := α-quantile of random variable C̀E(en, t
n−1)

7 SOCq,αmin(en, t
n−1, SOColdmin;α) := SOColdmin +max{0, qα − c̀nE}

8 ...

Figure 5.4: Pseudo-code to compute minimal energy buffer for an edge.

Parameter α allows adjusting the sizes of the energy buffers resulting from functions SOCq,αmin.

Obviously, higher values of α lead to bigger energy buffers and thus to more reliability. In this

context, it has to be mentioned that 1 − α does not describe the probability of running out of

energy for a charging strategy which is energy secure w.r.t. SOCq,αmin. This is a consequence

of the occurring differences between realized energy consumption and the predicted energy

consumption. Hence, the real state of charge may not develop as predicted. The consequence

is that following a charging strategy and charging up to a certain recommended state of charge

may take more or less time than originally expected. Along with that, the time at which fur-

ther edges are reached change. Therefore, possibly not the correct probability density function

g̀E(e, t), which depends on this arrival time, is considered when computing SOCq,αmin. Along

with this, even setting α equal to 1.0 does not ensure an absolutely save arrival.

35The predicted values c̀E(e, t) are typically assumed to be equal to the expected value of C̀E(e, t).
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5.3.3 Trajectory Buffer

In literature, predicting the energy consumption a BEV needs to pass a specific road segment

is typically done in two steps (74) (86) (90) (123): First, one or more potential driving tra-

jectories36 are predicted based on available information about, for instance, prevailing traffic

conditions or historical traffic data. Second, a microscopic energy consumption model is ap-

plied to these driving trajectories to receive energy consumption values. Within a deterministic

framework – and the SPP that results from including the energy security condition remains

a deterministic SPP, even though uncertainties can be handled up to some degree – it is of-

ten assumed that one unique driving trajectory exists and that it can be predicted precisely.

This is a strong presumption. Driving trajectories depend on some highly dynamic and hardly

measurable factors, such as traffic conditions and the driver’s driving style. Hence, instead

of predicting solely one trajectory and hoping that it will mirror the future reality perfectly, it

seems more expedient to generate a whole set of reasonable driving trajectories. Such a set of

trajectories can then be applied to produce a set of corresponding energy consumption values.

In the following, this set of energy consumption values is considered to estimate the maximal

possible energy consumption. The difference between this estimated maximal possible energy

consumption and the predicted energy consumption is then used as the energy buffer.

Before such an energy buffer function can be defined, some preparatory notation concerning

trajectories is introduced. Let from here on be assumed that for any edge e and any time t, a set

ofNT +1 auxiliary trajectories can be computed. NT is a natural number and the correspond-

ing driving trajectories are denoted by Tnt(e, t) with nt ∈ {0, 1, ..., NT}. It is assumed that al-

ways the same nt auxiliary trajectories are assigned to a tuple (e, t). The travel time that results

from a trajectory Tnt(e, t) is denoted by cT (Tnt(e, t)). Analogously, it is assumed that for any

path P = [vP1 , ..., v
P
N ] with N ∈ N, a set of auxiliary trajectories {Tnt(P, tS)}nt=0,...,NT can

be computed. For the proceeding, it is not important how these trajectories are generated37, but

it is essential that for all nt ∈ {0, 1, ..., NT}, trajectory Tnt(P, tS) is equal to the concatena-

tion of the trajectories Tnt(en, tS + cT (Tnt(P1:n−1, tS))). These are the trajectories belonging

to edges en = (vPn−1, v
P
n ) of path P . This postulation allows computing auxiliary trajectories

Tnt(P, tS) step-wise along the edges of path P , which is of relevance when computing trajec-

tories along paths during route search. Besides the possibility to compute sets of reasonable

trajectories, it is assumed that a microscopic version of energy consumption model c̀E is given.

It assigns energy consumption values to edges in dependency of driving trajectories:

c̀E(e, t, Tnt(e, t), ωE) ∀e ∈ ~E∆
D , ∀t ≥ tS . (5.7)

36A driving trajectory describes the location of a vehicle depending on time. Typically, a driving trajectory is
given as a sequence of points {(tk, xk)}k=1,2,...,K , where xk refers to a location and tk refers to a point in time.

37A possible procedure for the generation of such sets of driving trajectories will be discussed in chapter 6 in
detail.
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Here, ωE again abstractly denotes a set of additional factors (for instance, outdoor tempera-

ture), which are considered for the computation of energy consumption38. As was done in

previous chapters and sections, ωE is left out in the following.

Algorithm for Computing Relative Energy Buffers along a Path
Input: A directed graph ~G∆

D, a path P = [vP1 , v
P
2 , ..., v

P
N ] on ~G∆

D with N ∈ N, a node
vPN∗ for which the minimal energy buffer has to be computed, a starting time tS , costs
functions cT , c̀E and cE as described before, a starting state of charge SOCS , a number
NT ∈ N≥2

Initialization: n = 2

1 tn−1
pre := tS , tn−1

nt := tS ∀nt ∈ {0, 1, ..., NT}
2 SOCn−1

pre := SOCS , SOCn−1
nt := SOCS ∀nt ∈ {0, 1, ..., NT}

3 While n ≤ N∗:
4 If edge en := (vPn−1, v

P
n ) represents a road segment:

5 Compute cnT := cT (en, t
n−1
pre )

6 Compute c̀nE := c̀E(en, t
n−1
pre )

7 Compute cnE based on c̀nE and SOCn−1
pre

8 Compute SOCnpre := SOCn−1
pre − cnE

9 Compute tnpre := tn−1
pre + cnT

10 For nt = 0 to NT
11 Generate driving trajectory Tnt(en, tn−1

nt )

12 Compute travel time cn,ntT from Tnt(en, t
n−1
nt )

13 Compute c̀n,ntE := c̀E(en, t
n−1
nt , Tnt(en, t

n−1
nt ))

14 Compute cn,ntE based on c̀n,ntE and SOCn−1
nt

15 Compute SOCnnt := SOCn−1
nt − c

n,nt
E

16 Compute tnnt := tn−1
nt + cn,ntT

17 SOCntmin := max{SOCnnt − SOCnpre, 0}
18 End for.
19 SOCt,NTmin (en) := max{SOCntmin | nt ∈ {0, ..., NT}}
20 else (i.e., if en is part of the charging process):
21 SOCt,NTmin (en) := 0
22 tnnt := tnpre := tn−1

pre + cT (en, t
n−1
pre , SOC

n−1
pre ) ∀ nt ∈ {0, 1, ..., NT}

23 SOCnnt := SOCnpre := SOCn−1
pre − cE(en, SOC

n−1
pre ) ∀ nt ∈ {0, 1, ..., NT}

24 End if.
25 n := n+ 1
26 End while.
27 Return SOCt,NTmin (eN ).

Figure 5.5: Pseudo-code to compute energy buffer SOCt,NTmin along a path.

38Actually, trajectory Tnt(e, t) can be understood as a part of object ωE . Here, both inputs are listed separately
to emphasize the relevance of Tnt(e, t) .
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Given a microscopic energy consumption model c̀E and the possibility to compute driving

trajectories Tnt, the energy buffer function SOCt,NTmin can be introduced in the following. It is

defined as the maximum over all differences between the states of charge which result when

applying c̀E to trajectories Tnt(e, t), and the predicted state of charge. In Figure 5.5, the

pseudo-code of an algorithm for computing SOCt,NTmin along a path P = [vP1 , ..., v
P
N ] can

be found. The algorithm can be separated into two parts: In the first part, it computes the

predicted arrival times and the predicted states of charge analogously to algorithms A and B

from chapter 4. For edges representing road segments, this happens in lines 5 to 9 of the code.

Value tnpre (”pre“ for ”predicted“) describes the predicted arrival time at node vPn and SOCnpre
describes correspondingly the predicted state of charge when reaching node vPn . Note that it is

not uncommon that the predicted energy consumption c̀E(en, t
n−1
pre ) is computed on the basis

of a trajectory, too. This means that for an edge en and a starting time tn−1
pre , a unique trajectory

T pre(en, t
n−1
pre ) is generated for which the following equation holds:

c̀E(en, t
n−1
pre ) = c̀E(en, t

n−1
pre , T

pre(en, t
n−1
pre )). (5.8)

It is from here on assumed that predicted arrival times and energy consumption values are based

on trajectories.

For edges representing parts of charging processes, predicted arrival times and predicted states

of charge are computed in lines 22 and 23 in the algorithm from Figure 5.5. There is no differ-

ence to former chapters.

In the second part, the algorithm does basically the same as in the first part, but now auxil-

iary trajectories Tnt are used as basis. Assuming that trajectory Tnt(P1:n, tS) describes the

movement of the BEV, variable tnnt denotes the time at which node vPn is reached and SOCnnt
denotes the corresponding state of charge. For edges representing road segments, the compu-

tation of states of charge and arrival times is done in lines 11 to 16. Otherwise, in lines 22 and

23. In this context, it is remarkable that as soon as a charging station is reached, all trajectories

are assumed to leave the charging station at the same time. Let this proceeding be explained

considering Figure 5.6. This figure visualizes for an exemplary graph the proceeding of the

algorithm described by the pseudo-code in Figure 5.6. A path P = [vP1 , ..., v
P
6 ] consisting of

six nodes and five edges is illustrated at the left the figure. Edges e4 and e5 represent parts

of a charging process, the remaining edges represent road segments. All trajectories which

are necessary for the computation of SOCt,NTmin (with NT = 1) are displayed. Trajectories

T pre are represented by black arrows, auxiliary trajectories Tnt by gray arrows. Within the

described example, the BEV starts driving along path P at time tS . To compute the size of

the energy buffer at node vP2 , altogether three driving trajectories are generated: The predicted

trajectory T pre(e2, tS) and NT + 1 auxiliary trajectories (T 0(e2, tS) and T 1(e2, tS)). Based

on these three trajectories, arrival times t2nt and t2pre, and states of charge SOC2
nt and SOC2

pre
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Figure 5.6: Trajectory generation scheme for energy buffer quantification.

are computed for nt ∈ {0, ..., NT} (see lines 5 to 9 and 12 to 16 in Figure 5.6). The size of the

energy buffer at node vP2 results as the maximum difference between the states of charge result-

ing from the auxiliary trajectories and the state of charge resulting from the predicted driving

trajectory39 (see line 19). To compute the size of the energy buffer for node vP3 , all three tra-

jectories are extended up to node vP3 , i.e., trajectories T pre(e3, t
2
pre), T 0(e3, t

2
0) and T 1(e3, t

2
1)

are generated and corresponding arrival times and states of charge are derived. The buffer itself

is computed analogously as for node vP2 . The most interesting aspect can then be observed for

the next edge, which represents a part of a charging process. Instead of maintaining NT + 2

separate trajectories and, along with that, computingNT+2 different arrival times andNT+2

different states of charge for node vP4 , all arrival times and all states of charge are set equal to

the predicted arrival time and the predicted state of charge, respectively (lines 22 and 23). This

is done for each edge belonging to a charging process. The consequence is that the resulting

39The energy buffer function is modified within the given pseudo-code in such a way that negative energy buffers
are avoided.
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buffer size (which is defined as the maximal difference between the states of charge result-

ing from auxiliary trajectories Tnt, and the predicted state of charge) is equal to zero in such a

case40. As soon as a road segment needs to be passed again, separate trajectories are computed.

Note that the pseudo-code stated in Figure 5.5 can be included into algorithms A-2 and B-2 sim-

ilarly to the codes for relative and quantile buffers. Though, it is necessary to further extend the

definition of labels for this purpose. Here, all values tnnt and SOCnnt for nt ∈ {0, 1, ..., NT}
need to be stored, leading to 2 · (NT + 1) additional entries for each label. In contrast to

SOCr,zmin, it is not necessary to store the size of the energy buffer of previous edges. Note also

that the usefulness of SOCt,NTmin depends on the considered set of auxiliary trajectories Tnt. If

this set is able to represent the set of all possible driving trajectories adequately, then it can

be expected that using SOCt,NTmin for CSO works well. An adequate representation means two

things in this context: First, it needs to be probable for any edge e and any arrival time tS that

the real future driving trajectory looks similar to at least one of the generated auxiliary trajec-

tories Tnt(e, tS). Otherwise, the corresponding buffer may be too small. Second, any auxiliary

trajectory Tnt(e, tS) has to be reasonable. Unrealistic trajectories may cause the buffer to be-

come too big.

5.3.4 Comparison of Energy Buffer Types

Table 5.1: Comparison of energy buffer concepts.
Relative Buffer Quantile-based Buffer Trajectory Buffer

Notation SOCr,zmin SOCq,αmin SOCt,NTmin

Reliability

Parameter
z ≥ 0 α ∈ [0, 1] NT ∈ N

Computational

Effort
++ ++ −(−)

Requirements ++ −− ©
Adaptivity © ++ +(+)

Three energy buffer functions have been suggested. In the following, they are assessed with

regard to the additional computational effort they cause, to the requirements that need to be

fulfilled to be able to apply these functions, and with regard to their adaptivity. Recall that

adaptivity describes in this context the ability of an energy buffer function to adequately adjust

the size of an energy buffer in dependency of the reliability of the predicted energy consump-

tion. Table 5.1 provides a short overview of the advantages (indicated by plus signs) and
40Recall that keeping energy buffer sizes equal to zero when passing edges belonging to charging processes was

postulated for all energy buffer functions.
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drawbacks (indicated by minus signs) of the introduced approaches with regard to these three

criteria. Circles indicate that no clear statement is possible. Additionally, the parameters (z,

α and NT ) which are part of the three introduced energy buffer functions are listed. Since

these parameters have influence on the size of the resulting energy buffers and, along with this,

on the reliability of the corresponding charging strategies, they are denoted from here on as

reliability parameters.

Relative Buffer: The relative energy buffer function SOCr,zmin can be computed easily and,

moreover, needs no additional information in comparison to the original formulation of the

deterministic SPP from chapter 4, in which the feasibility condition was applied as a constraint

instead of the energy security condition. At the same time, a certain level of adaptivity is

achieved, since the size of this buffer increases along with the predicted energy consumption.

The idea is that if a long distance has to be covered to reach the next charging station, then

this tends to cause a rather high level of uncertainty and consequently a rather large amount

of energy should be reserved. A critical situation for relative buffers occurs if a sequence of

edges represents a long road corridor, but the sum of the corresponding predicted energy costs

is close to zero. This can happen, for instance, if significant energy gains are expected due

to recuperation. In such a case, the size of a relative energy buffer does not grow much, even

though significant uncertainties probably still exist. The energy gain due to recuperation may

be lower than expected or energy consumption may be higher than expected. To reduce the risk

resulting from this issue, a static component could be added to SOCr,zmin. However, no details

are considered here41.

Quantile Buffer: The quantile-based approach causes high requirements concerning the avail-

ability of information, since the distribution of energy consumption needs to be known for all

possible combinations of arrival times and locations. Furthermore, correlations of these dis-

tributions are also relevant. On the other hand, computing quantiles (under the assumption

of given probability distributions) should not increase computation times significantly. More-

over, a high level of adaptivity can be expected for function SOCq,αmin, as this buffer type is

explicitly constructed on the basis of the probability distributions of energy consumption. This

means that SOCq,αmin leads particularly in situations in which real energy consumption is very

likely to exceed predicted values to big buffers. This is also an advantage in comparison to

relative energy buffers: The size of a relative energy buffer solely depends on the predicted

energy consumption. It is not taken into account how reliable this prediction is. Therefore,

the quantile-buffer function does not lead to the same issue for situations in which, due to

recuperation, the predicted energy consumption is close to zero.

41One could think of a variety of different energy functions which combine static components, components grow-
ing linearly with the predicted energy consumption or components that grow nonlinearly (exponential functions,
higher order polynomials) with the predicted energy consumption.
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Trajectory Buffer: For the last method, which is based on computing a range of possible

driving trajectories, computational effort definitely increases. How big this increase is depends

on how expensive the generation of the sets of trajectories is. This again depends on the ap-

plied trajectory generation method and on the number of generated trajectories. Also the level

of adaptivity and the requirements, which have to be fulfilled to allow deriving the trajectories,

primarily depend on the trajectory generation method. It can be expected that some additional

information is necessary, but that this information can be obtained easier than the information

which is needed for the quantile-based approach. If the considered sets of trajectories are able

to represent the sets of all possible trajectories adequately, then a rather high level of adaptivity

can be expected, too.

In conclusion, all three energy buffer approaches appear to be reasonable. Relative buffers

are simple and the mentioned issue concerning close-to-zero energy consumption predictions

won’t be too relevant in practice, since it can be expected that many kilometers lie between

two consecutive charging stops. Thus, it is very unlikely that it is predicted that recupera-

tion keeps energy consumption close to zero. The quantile buffer function probably has the

potential to achieve the best results of the three suggested types of buffer functions, i.e., the

highest efficiency along with the highest reliability. Its main drawback is the requirement that

energy consumption probability distributions need to be known. If the available probability

distributions are unable to mirror reality accurately, then the resulting charging strategies are

also of low quality. Since, from a practical perspective, it seems hardly possible to identify

for all edges and arbitrary arrival times the corresponding probability distributions of energy

consumption, quantile-buffer functions will not be considered in the following chapters. The

description of the last type of energy buffer function, the trajectory buffer function, is quite

generic in its current form. It has not been specified yet, how the necessary trajectories are

generated. The benefits and drawbacks of the trajectory buffer function can be expected to

depend significantly on the applied trajectory construction algorithm. Until such an algorithm

has not been stated, a reasonable evaluation of SOCt,NTmin is hardly possible.

5.4 Model Assessment with Regard to Research Objectives
Even though the replacement of the feasibility condition by the energy security condition is the

only difference between the deterministic SPPs from chapters 4 and 5, the degree up to which

the new problem formulation is able to fulfill ROs 1a to 1c changes significantly:

RO 1a: The problem formulation from chapters 4 and 5 are based on the same graph ~G∆
D.

Hence, some model limitations, such as discretized decision stages and the fact that solutions

of the optimization problem cannot represent arbitrary charging policies, are maintained. The

huge difference is the ability of the new problem formulation to handle uncertainty. Hence,

presuming that an appropriate energy buffer function is applied, resulting charging strategies
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can be expected to ensure a reliable arrival also if they are applied in practice. Nevertheless,

some restrictions still exist in this context. The most important one is that the concept of

energy buffers does not allow taking uncertainties of travel time predictions explicitly into

account. Along with this, also the influence of unexpected arrival times on energy consumption

predictions cannot be considered explicitly42.

RO 1b: The definition of f is the same as in chapter 4. Consequently, efficiency is achieved

by penalizing charging strategies which cause high travel times, reliability by penalizing risky

charging strategies. ”Risky“ denotes in this context charging strategies which do not fulfill the

energy security conditions. Excluding not only infeasible, but also risky strategies from con-

sideration offers some additional modeling opportunities. The understanding of risky strategies

is represented the applied energy buffer function. This function allows making trade-offs be-

tween reliability and efficiency. In theory, it can be designed in such a way that the driver’s

level of risk-aversion is mirrored. In conclusion, the new deterministic SPP from chapter 5 is

able to take both reliability and efficiency into account and even provides lots of flexibility for

defining a compromise between these two criteria.

RO 1c: If SOCt,NTmin is applied as the energy buffer function, then computation times could

rise in comparison to the problem formulation from chapter 4. This increase depends on the

applied method for generating driving trajectories and on the number of generated trajectories

NT . If relative or quantile buffers are applied, then replacing the feasibility condition by the

energy security condition should not cause a significant increase of the computational effort.

Hence, the concept of energy buffers offers the possibility to keep computation times on the

same level, which the optimization problem from chapter 4 achieved.

Conclusions: The modified version of the deterministic SPP, which is described in chapter

5, cannot represent occurring uncertainties perfectly. To obtain this, the influence of incor-

rectly predicted travel times on energy consumption had to be considered. However, ignoring

this aspect allows preventing a further increase of computational effort (in comparison to the

originally suggested SPP from chapter 4). Moreover, the introduction of energy buffers makes

it possible to handle uncertainties of energy consumption predictions. It can be ensured that

charging strategies become robust against underestimated energy consumption values and, at

the same time, are still efficient. In sum, the suggested reformulation of the deterministic SPP

fulfills the requirements defined by ROs 1a to 1c rather well. Therefore, from a theoretical

perspective, there remains no critical issue preventing an implementation of the corresponding

model in reality. Still, it is not yet absolutely certain whether computation times can be kept

low enough and whether the suggested idea of finding a compromise between reliability and

efficiency is really practicable.
42Recall in this context that energy consumption values are assumed to depend on arrival times.



5.5. SUMMARY 103

5.5 Summary
In the introduction of chapter 5, it was stated that under realistic conditions, in which en-

ergy and time consumption typically cannot be precisely predicted, the feasibility condition is

not enough to achieve charging strategies which can be expected to ensure a reliable arrival.

Motivated by these considerations, a potential formulation of the problem of finding optimal

charging strategies as stochastic SPP has been suggested and analyzed in section 5.2. It turned

out that even under simplest assumptions, this reformulation causes a significant increase of

the already high computation times for solving the corresponding optimization problem. To be

able to avoid a further increment of computational effort, the deterministic SPP from chapter

4 is considered again. In order to be able to handle inaccuracies of energy consumption pre-

dictions, the feasibility condition is replaced with the so-called energy security condition. A

charging strategy is denoted as energy secure if the states of charge which are expected never

get too close to zero. This means that some part of the battery is used as an energy buffer to

compensate for unexpectedly high energy consumption. Essential in this context is that the size

of the energy buffer varies along the considered path. Three different concepts for defining the

size of the energy buffer have been introduced and compared in section 5.3. Chapter 5 ends

with an assessment of the reformulated deterministic SPP. The central result of this evaluation

is that, on the basis of the new model, all three subobjectives of RO 1 can be achieved simul-

taneously – at least up to a degree that should make a practical implementation of CSO possible.



Chapter 6

Using Error-prone Traffic Information
for Charging Strategy Optimization

Chapters 3 to 5 focused on RO 1, i.e., on developing an appropriate mathematical formulation

for the problem of finding optimal charging strategies. The motivation for chapter 6 – and later

on for chapter 7 – is to achieve RO 2, i.e., to test the developed formulation as a deterministic

SPP and to assess its ability to handle uncertainties in such a way that charging strategies of

”practicable“ quality can be ensured. The testing is done via a simulation study. This appears

to be reasonable, since making robust statements about reliability probably makes lots of tests

under various conditions necessary. In order to be able to conduct simulation runs, the still

abstract problem formulation as a deterministic SPP has to be concretized. This means partic-

ularly that specific models that enable a numerical computation of (in the best case) realistic

travel times and energy consumption values have to be provided. Moreover, a source of uncer-

tainty has to be included into the simulation.

Chapter 6 is intended as a preparation for the description of the simulation study, which takes

place afterwards in chapter 7. Three preparatory steps are conducted in chapter 6. To motivate

these steps, at first the structure of a single simulation run of the executed simulation study is

explained: A single simulation run represents the trip of a BEV along a very long road corri-

dor under various conditions. Several charging stations can be found along this road corridor.

Furthermore, it is assumed that the BEV is equipped with a navigation system which provides

charging strategies as an on-trip information, i.e., these charging strategies are updated fre-

quently during the trip. The computation of the charging strategies is based on a set of input

data, such as data on the available charging infrastructure, the BEV’s current state of charge,

and data on outdoor temperature. Furthermore, also different types of simulated real-time traf-

fic information (RTTI) are taken into account for the computation of the charging strategies.

The RTTI is used to predict the BEV’s future driving trajectories, which are again used to

predict travel times and energy consumption values. Note that the simulated RTTI is not ab-

solutely correct – in contrast to all other types of input data. Due to this, the simulated BEV

104
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partly experiences traffic situations during a simulation run that differ from the situations which

were presumed for the computation of the charging strategy it follows. The magnitude of these

differences depends on the type of RTTI, i.e., these types show different levels of similarity

to the real traffic situation. The described simulation approach allows analyzing the ability of

the concept of energy buffers to handle uncertainties, at least for the case of uncertainty that is

caused by error-prone RTTI.

The first of the aforementioned three preparatory steps takes place in section 6.1. There, the

proposed formulation of the problem of finding optimal charging strategies as a deterministic

SPP is concretized by introducing a model which allows computing energy consumption and

travel times based on RTTI43. In section 6.2, a method to quantitatively measure the quality of

RTTI is described. This allows analyzing the dependency of charging strategy quality on the

quality of the simulated RTTI and, along with that, the dependency of charging strategy quality

on the level of uncertainty. Additionally, the proposed measure is of relevance in section 6.3,

where the yet abstract concept of trajectory buffers is specified by describing an approach for

computing sets of auxiliary trajectories on the basis of available RTTI. Consequently, it is not

only possible to test relative buffers within the simulation study, but also to test trajectory

buffers.

6.1 Considering Imperfect Real-time Traffic Information
Up to this point, the proposed optimization problems are formulated in a quite generic way. To

conduct simulation runs, however, concrete models are necessary, which make it possible to

explicitly compute energy consumption values and travel times. Moreover, it is necessary to

include some source of uncertainty into the simulation. For the remainder of the described re-

search, the subsequently described setting is presumed in order to achieve both concrete models

and the inclusion of uncertainty.

First and foremost, it is expected from here on that energy consumption is predicted on the

basis of driving trajectories, which again are derived solely from RTTI. In order to estimate

energy consumption on the basis of driving trajectories, it is assumed that a corresponding en-

ergy consumption model c̀E (see equation 5.7 in section 5.3.3) is available. Note that travel

times result directly from driving trajectories, since they describe location in dependency of

time. Moreover, it is assumed that at time t0, which is the time at which a charging strategy

recommendation is requested, a function V tB
RTTI , which represents RTTI, is available for all

relevant locations and times. The value tB ∈ R≥0 denotes in this context the time at which the

RTTI is broadcasted. Since function V tB
RTTI needs to be available at time t0, the corresponding

43Recall that RTTI refers to both traffic state estimations and traffic predictions (see the beginning of section 2.3),
i.e., it describes current and predicts future traffic states.



106 CHAPTER 6. USING ERROR-PRONE TRAFFIC INFORMATION FOR CSO

RTTI cannot be broadcasted after time t0, i.e., tB ≤ t044. Function V tB
RTTI is given as a spatio-

temporal speed function, i.e., it assigns a speed value to any pair (x, t), where x is a location

along an edge of the considered graph ~G∆
D = (V ∆

D ,
~E∆
D) and t a point in time with t ≥ tB .

In this work, driving trajectories are derived from spatio-temporal speed functions (this topic

has been intensively discussed in (149)). For this purpose, let e∈ ~E∆
D be an edge that represents

a road segment and let tS be the time at which a vehicle starts passing this edge45. The (spatial)

start of e is denoted with e and its end with e. Furthermore, let V be a spatio-temporal function

describing the development of driving speeds along e for any time t ≥ tS . If a vehicle starts

passing edge e at time tS while facing traffic conditions described by V , then a unique driving

trajectory T (e, tS , V ) can be derived by solving the ordinary differential equation

dx

dt
= V (x(t), t) (6.1)

with initial condition x(tS) = e. The computation is terminated as soon as e is reached. It is

worth mentioning that x is interpreted in equation 6.1 as a function of time.

Available RTTI is not expected to mirror future traffic situations perfectly. To account for this,

it is differentiated between the real (current and future) macroscopic driving speeds VReal and

the RTTI speeds V tB
RTTI . The real traffic situation VReal itself is unknown at time t0 and it is

interpreted from here on as a random variable, i.e., VReal(x, t) denotes a real-valued random

variable instead of an explicit speed value. The function returning realizations of VReal for any

point (x, t) is denoted by V̄Real. This means that V̄Real(x, t) ∈ R≥0 is equal to the speed with

which cars are driven at a specific location x at a specific time t46. The higher the similarity

between functions V tB
RTTI and V̄Real is, the higher the quality of the RTTI is rated. Note that

with increasing similarity between V tB
RTTI and V̄Real, also the similarity between the predicted

driving trajectory T (e, tS , V
tB
RTTI) and the real driving trajectory T (e, tS , V̄Real) and hence be-

tween predicted and real energy consumption tends to improve.

For the simulation and for the further considerations in chapter 6, predicted time costs cT
and predicted energy consumption costs c̀E are computed on the basis of the available RTTI

44tB ≤ t0 means that a charging strategy computation can be based on traffic prediction which have been made
previously. Usually, it is reasonable to assume that tB = t0.

45Here, distinctions are made between three different times: The planned start of the trip tS , the time at which a
charging strategy is requested t0, and the time at which the RTTI is broadcasted tB .

46Speed value V̄Real(x, t) is here interpreted in a macroscopic sense, i.e., it is intended to describe macroscopic
average driving speeds.



6.1. CONSIDERING IMPERFECT REAL-TIME TRAFFIC INFORMATION 107

function V tB
RTTI , i.e.:

c̀E(e, t) := c̀E(e, t, T (e, tS , V
tB
RTTI)) (6.2)

cT (e, t) := cT (T (e, tS , V
tB
RTTI)) (6.3)

Note that the resulting energy consumption and time costs can only be understood as a ”best

guess“ of the yet unknown real future energy consumption and the yet unknown time costs

that result from trajectory T (e, tS , V̄Real). The issue is that V̄Real is not known at time t0, at

which the charging strategy is requested. In contrast, the typically imperfect function V tB
RTTI is

available at that time. For the simulation study, different types of (partly artificially generated)

RTTI, which show different levels of similarity to V̄Real, are applied for CSO. The simulated

vehicles are assumed to follow the recommended strategies while facing the real traffic situa-

tion and, along with that, energy consumption and time costs which differ from those which

were presumed during the optimization. It is analyzed up to which degree different energy

buffer functions are able to handle the resulting uncertainties.

Various reasons for incorrectly predicted energy consumption values and travel times exist.

Though, RTTI47 shows some properties which make it particularly interesting to consider

RTTI as a source of uncertainty: First of all, traffic conditions have significant influence on

both energy consumption (86) (123) and travel times (148) (164). This leads, in comparison

to uncertainty that solely affects one of both costs functions, to additional dynamics during the

simulation runs, since energy buffers are not able to handle travel time uncertainty (and its in-

fluence on energy consumption) directly. Another reason for considering error-prone RTTI as

a source of uncertainty is that the driver does not have much influence on prevailing traffic con-

ditions. Admittedly, she/he is in most cases able to adjust her/his route to avoid certain traffic

conditions, but this is not always possible or reasonable. This powerlessness, which is proba-

bly one of the main reasons for range-anxiety, represents a contrast to other aspects that could

also be considered to be sources of uncertainty for energy consumption or travel time predic-

tions. The driver has, for example, significant influence on her/his driving style, which again

has influence on travel times and energy consumption (57). In situations, in which it is unclear

whether the next charging station or the destination, respectively, can be reached, she/he can

adjust her/his driving behavior in order to extend the remaining driving range. However, it is

(usually) not possible to adjust prevailing traffic conditions. The third reason for concentrating

on imperfect RTTI as a source of uncertainty is that traffic, in contrast to most other factors

on which the driver has no influence (such as weather conditions, the road network or road

steepness), is highly dynamic and hardly predictable even for comparably short prediction pe-

riods. As a consequence, it is very likely that RTTI is prone to errors in reality. This has been

47The considerations of chapter 6 are not restricted to the case of ”real-time“ traffic information. In most cases,
they are also applicable for other kinds of traffic information. Still, it will usually be spoken of RTTI.
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confirmed in prior studies (19) (84).

These reasons make the influence of RTTI quality on travel times, on energy consumption pre-

diction, and, along with this, on charging strategy quality very interesting – from a scientific,

as well as from a practical point of view. In order to simplify considerations, RTTI errors are

assumed to be the only source of uncertainty in the following. This does not mean that other

potential sources of uncertainty are not relevant. Instead, the suggested procedure can be un-

derstood as a first step, where the focus is set on the probably most crucial aspect. Future work

can then build upon this fundament and extend the stated considerations by including other

sources of uncertainty.

6.2 Measuring Errors of Real-time Traffic Information
Within the simulation study in chapter 7, different types of artificially generated RTTI are ap-

plied for the computation of charging strategies. These types of RTTI show different levels of

similarity to the simulated reality and are used to analyze the dependency of charging strategy

quality on the quality of the available traffic information. The idea is to find a relation between

the level of uncertainty, which is represented by the quality of the error-prone RTTI, and the

quality of the resulting charging strategies. The findings of the conducted analyses allow draw-

ing conclusions on the developed framework’s ability to achieve RO 2. In order to be able to

analyze the relation between charging strategy quality and RTTI quality, a framework for mea-

suring RTTI quality has to be introduced. The proposed approach, which is described in the

following, shows similarities to prior works about RTTI quality: First, a traffic state reconstruc-

tion is carried out on the basis of inductive loop detector data. This traffic state reconstruction

is then used as the reference, to which the RTTI being assessed is compared. Quality is in this

context interpreted as the level of similarity between the RTTI and the traffic state reconstruc-

tion. But before a method for assessing the quality of RTTI can be described, a methodology

for bringing RTTI into a reasonable and numerically treatable form is explained. Furthermore,

a detailed discussion about reasons leading to imperfect RTTI is provided.

6.2.1 Numerical Representation of Real-time Traffic Information
RTTI is assumed to be information about macroscopic driving speeds. In practice, a provider

of commercial RTTI updates this information regularly, i.e., the period between an provision

of information and the following update is constant. For the remainder of this work, this time

period is denoted with ∆tRTTI ∈ R>0. Nowadays, ∆tRTTI is often equal to one minute. Each

speed value that is part of the broadcasted RTTI is sent along with an identification key. This

key can be associated with road segments and thus allows assigning broadcasted speed values

to locations. As mentioned in section 2.3, the keys and the set of possible road segments are

defined by standardized digital maps, which are typically available for both the traffic content

provider and the receiver of the RTTI. In order to represent RTTI in a numerically treatable

form, let a single road corridor in one driving direction be considered. This road corridor is
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represented by an interval X = [X,X[⊂ R≥0. Here, X ∈ R≥0 denotes the start of the road

corridor and X ∈ R≥0 denotes its end48. Road corridor X is partitioned into the aforemen-

tioned RTTI induced road segments {SRTTIi }i=1,2,...,I , i.e.,:

X =
⋃

i=1,...,I

SRTTIi .

SRTTIi1 ∩ SRTTIi2 = ∅ ∀i1, i2 ∈ {1, 2, ..., I}.
(6.4)

It is assumed that these road segments are arranged along road corridor X , i.e., the first road

segment is SRTTI1 , the second SRTTI2 and so on. Furthermore, let this road corridor be con-

sidered during a time period T = [T , T [⊂ R≥0. T and T define the start and the end of

this time period. It is also assumed that this time period is partitioned into time intervals

{TRTTIj }j=1,2,...,J . At the beginning of each of these time intervals, the RTTI is updated.

Therefore, the length of these time intervals is equal to ∆tRTTI . Based on these notations, a

spatio-temporal speed function VRTTI is introduced with

VRTTI : X × T −→ R≥0. (6.5)

This function is not intended to represent traffic predictions, but solely to represent estimations

of current traffic states. It returns for any location x ∈ X and any time t ∈ T , the driving speed

which has been estimated most recently by the considered traffic content provider. Recall that

RTTI is updated at the beginning of each time interval TRTTIj . Given a time t ∈ T , the time

tB(t) ∈ T (”B“ for ”broadcasted“) denotes the latest point in time at which RTTI has been

provided:

tB(t) := max
j=1,...,J

{TRTTIj : TRTTIj ≤ t}. (6.6)

Time TRTTIj ∈ T denotes the start of interval TRTTIj . Due to the way RTTI is provided,

function VRTTI returns the same speed value for all points (x, t) which are part of the same

spatio-temporal cell SRTTIi × TRTTIj ⊆ X × T . This means that VRTTI is piecewise constant

on the spatio-temporal plane. The result is that VRTTI shows a grid structure as visualized

exemplarily in Figure 6.1 for the time period between 16:25 and 17:05 for the part of the road

network in Figure 2.3 which is marked by the dashed rectangle. The situation at 16:45 is dis-

played. The considered road corridor (driving from south to north) is separated into seven road

segments SRTTIi with i ∈ {1, 2, ..., 7} and an update rate ∆tRTTI of five minutes is assumed.

The grid resulting from road segments SRTTIi and time intervals TRTTIj is from here on de-

noted as RTTI induced grid.

48Any interval that is considered within this work does not contain its upper border. This ensures that any point
within the original interval can be assigned uniquely to one of the smaller intervals if an interval is partitioned
further.
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If traffic state estimations are considered together with traffic predictions, then the correspond-

ing spatio-temporal speed function is denoted with V tB
RTTI :

V tB
RTTI : X × [tB, T [−→ R≥0 (6.7)

The value V tB
RTTI(x, t) for some t ≥ tB describes the speed value which the traffic content

provider predicts at time tB for time t. In contrast to VRTTI (compare equation 6.6), there is

no direct relation between the time tB , at which the RTTI is broadcasted, and the time t, for

which the speed value is predicted. Hence, it is written V tB
RTTI(x, t) instead of VRTTI(x, t).

The relation between VRTTI and V tB
RTTI can be described as follows:

VRTTI(x, t) = V
tB(t)
RTTI(x, t) (6.8)

Note that there exists only one function VRTTI for time period T and this function cannot be

provided until the last time information is broadcasted during period T , i.e., until T −∆tRTTI .

On the contrary, there exists a separate function V tB
RTTI for each tB ∈ {TRTTIj }j=1,...,J . For
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Figure 6.1: Grid structure resulting from an ex post arrangement of real-time traffic state esti-
mations.
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simplicity, it is assumed in this research that function V tB
RTTI shows the same temporal dis-

cretization as function VRTTI , i.e., speed predictions remain the same during intervals TRTTIj :

V
tB(t)
RTTI(x, t) = V

tB(t)
RTTI(x, tB(t)) ∀ (x, t) ∈ X × T (6.9)

Correspondingly, V tB
RTTI is also piecewise constant within cells SRTTIi × TRTTIj .

6.2.2 Reasons for Imperfect Real-time Traffic Information
In practice, the lengths of single segments SRTTIi can be huge. For so-called traffic message

channel (TMC) messages, segment lengths of more than ten kilometers occur. TMC messages

are probably the most widely applied type of commercial RTTI. TMC is a standard (1) which

defines how traffic messages can be delivered via radio (or to be more precise: via the radio

data system). To broadcast a traffic message according to TMC, the location of a traffic related

incident, as well as the type of this incident have to be encoded in a specific way. The encoding

of the location is done according to the so-called TMC location code list, which is an example

of a standardized digital map49. It allows differentiating between 64000 different locations per

country. This number is typically too low to allow the representation of all parts of the road

network of a country. Figure 6.2 shows exemplarily the part of the road network around Mu-

nich that can be represented via TMC (upper part) and the network coverage which is achieved

by a digital map provided by TomTom (lower part). It can be observed that TMC is restricted

to freeways, federal roads, and urban arterials. The TomTom map, which is intended for usage

within navigation devices, offers much more details. Note that not only TMC messages refer to

the TMC location code list, but also other types of traffic information. However, the relevance

of TMC is diminishing. The TMC standard has been developed during the late eighties. Due to

the limited technical possibilities in terms of data transmission at that time, TMC was designed

in such a way that the amount of data that are necessary for encoding traffic related information

is kept as low as possible. To achieve this, limitations, such as the already mentioned limited

spatial coverage and resolution, were accepted. During the last years, more sophisticated loca-

tion referencing methods were developed. These methods do not assign spatial information to

spatial objects (road segments, spatial areas, etc.) which are parts of standardized digital maps.

Instead, an abstract description of the spatial extent of a traffic related incident (or any other

spatial information) based on GPS data and possibly also on further information is used to lo-

cate this incident on arbitrary digital maps. As a consequence, limited resolution or coverage

are no longer a problem. An example of such an advanced geo-coding approach is OpenLR

(75) (145).

49Recall from section 2.3 that the idea of such standardized maps is that both the provider of RTTI and the receiver
have the same map. Any kind of information is sent from the provider to the receiver along with a identification
key, which refers to a specific part of this map, such as a road segment or a spatial area. This makes it possible for
the receiver to locate the information.
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(a) TMC road network

(b) Routing-ready road network

Figure 6.2: Comparing the TMC-coverage of Munich with the coverage provided by TomTom
routing devices

Prior studies have indicated that commercial RTTI sometimes does not mirror the real traffic

situation adequately (19) (84). In these studies, primarily traffic state estimations have been

analyzed, i.e., potential prediction errors have not even been considered. However, even for

the – in comparison to predictions – simple case of traffic state estimations, there exist many

reasons which may lead to inaccuracies. The most important among them are

1. Provision limitations, for instance, a limited spatial resolution

2. Delays caused by detection, data preparation or transmission processes

3. Missing, insufficient, contradictory or misinterpreted data

4. System stability
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The problems resulting from provision limitations, especially a restricted spatial resolution,

have already been discussed. Another issue is that traffic content providers can solely broadcast

information about a change of prevailing traffic conditions if they know about it. If the traffic

content provider primarily uses probe data to estimate traffic states, then at least a few vehicles

from which the RTTI provider receives information need to have experienced such a change

before a corresponding information can be broadcasted. If the traffic content provider relies

primarily on stationary detector data, then changes are not detected unless they reach locations

which are covered by these detectors. Either way leads to detection delays. Unfortunately,

detection delays are not the only consequence of the limited availability of traffic data. Some

incidents may not even be detected at all or the available data may lead to misinterpretations.

This can be the case if vehicles show a non-representative driving behavior, for instance, if

data from vehicles searching for parking spots or data from trucks on freeways are received.

Besides gathering data, traffic content providers have to aggregate, process, and interpret data.

Afterwards, the resulting information is broadcasted and received by the customer of the RTTI

service, who possibly again needs some time to process the received RTTI and include it in

her/his own traffic related service. Most of these steps can reduce data accuracy (19) and

each of these steps consumes time. Analyses of different types of RTTI proved that delay

is still an issue in practice: In (113), empirical tests that were executed in 2011 in Germany

showed a maximal duration of three minutes between the time at which a TMC-message has

been broadcasted and the time of its visual provision by typical navigation devices. In the same

year, the whole process of gathering traffic data, generating a TMC-message and visualizing the

information on the display of a navigation device took, in Austria, on average 10 minutes (118).

Another study, in which RTTI provided by INRIX (a professional traffic content provider)

is analyzed, indicate that the average period between a change within the prevailing traffic

conditions and the time at which the corresponding information is received by customers was

equal to six minutes in 2014 (84).

A further issue is that RTTI has to be provided continuously, i.e., 24 hours a day, seven days a

week. Even if no or only sparse traffic data are available on certain parts of the road network,

traffic data providers are still supposed to broadcast RTTI. Historical traffic data are typically

applied in such cases as a supplement, but they limit the maximal possible information quality.

Furthermore, no system works perfectly. If the system is operating in real-time, such as RTTI

services do, detecting and correcting errors can lead to interruptions and breakdowns.

6.2.3 Traffic State Reconstruction
To be able to measure differences between RTTI and reality, a reference to which the RTTI can

be compared, is usually applied. This reference, which is typically denoted as the ground truth

(GT), has to represent the ”real“ traffic situation adequately and it must be in a form that can be

handled numerically. There exist different ideas for the construction of the ground truth. Basic

information concerning this topic was provided in section 2.3. For the remainder of this work,
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a spatio-temporal speed function showing average driving speeds in dependency of time and

location is used as reference. The corresponding speed functions are constructed according

to the method described in (146). Speed data gathered by inductive loop detectors form the

basis50. Due to the high costs for inductive loop detectors, often only small parts of the entire

(a) Isotropic Interpolation (b) Anisotropic Interpolation

Figure 6.3: Difference between isotropic and anisotropic interpolation

road network are equipped with them. Moreover, distances between successive detectors of

several kilometers occur frequently, at least in Germany. As a consequence, the detectors can-

not observe the real traffic situation continuously. To fill (spatial, but also temporal) detection

gaps and thus to portray the traffic situation for a road corridor during a certain time period

comprehensively, a spatio-temporal interpolation is carried out. There are different ways for

realizing this. The most intuitive approach is to do a simple isotropic interpolation, i.e., the

influence of measured speed values on the speed estimation for a point on the spatio-temporal

plane for which no measurement is available is inversely proportional to the distance (on the

spatio-temporal plane) between the point of measurement and the point for which the speeds

have to be estimated. The left part of Figure 6.3 visualizes such a traffic state reconstruction

resulting from an isotropic interpolation51. It shows a 16 kilometers long road corridor on the

German autobahn A99, between the interchange Munich north and the interchange Munich

east, on November 3rd, 2003 between 7:30 and 9:30, southbound. Fourteen inductive loop

detectors are located along the illustrated corridor. Red areas indicate spatio-temporal regions

at which only low driving speeds were realized, green areas indicate free-flow. Note that three
50The inductive loop detector data which are considered in this work provide information about traffic related

quantities at one-minute resolution. All detector data are gathered on freeways. The delivered data are only available
per direction, i.e., the data are averaged over all lanes. The averaging is done according to the procedure described
in (154).

51A detailed description of the isotropic interpolation approach that has been applied for the generation of this
picture can be found in (68).
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different jam waves can be identified. However, these waves seem to be interrupted, an ob-

servation that cannot be made in reality, where jam waves typically propagate steadily against

the driving direction. Such unrealistic observations can be the result when applying isotropic

interpolation schemes.

In order to avoid such behavior, in (146), an adaptive interpolation scheme is proposed. The

corresponding approach is usually denoted as adaptive smoothing method (ASM). The ASM

takes the typical propagation speeds of information in freeway traffic into account. These

speeds are assumed to be very similar all over the world: In congestion, information is trans-

mitted with roughly 18 kilometers per hour in upstream direction. In free-flowing traffic con-

ditions, it moves with about 80 kilometers per hour downstream. The result of applying the

ASM to inductive loop detector data is a spatio-temporal speed function, which is from here

on denoted by VGT 52. If detector data for a road corridor X during a time period T are avail-

able, then VGT returns for any location x ∈ X and any time t ∈ T the corresponding ”real“

macroscopic driving speed VGT (x, t). The right part of Figure 6.3 visualizes VGT for the same

situation as considered in the left part. Each of the aforementioned jam waves is now repre-

sented by a connected red area. The slope of the jam waves mirrors the presumed upstream

propagation speed of 18 kilometers per hour.

Note that the contour plot on the right side of Figure 6.3 was not generated by applying the

original version of the ASM from (146). Instead, a speed-up version of the ASM, as stated in

(132), was executed. This modified method makes use of fast Fourier transforms. Accelerations

in computation time up to a factor of 100 are achieved. At the same time, quality reductions

remain negligible. The parameters that were used for generating VGT in Figure 6.3 are oriented

towards those of (132). The corresponding list of values can be found in appendix C. There,

besides presumed propagation speeds, further parameters are listed. Among these parameters,

the most important for the following sections are ∆xGT = 40 meters and ∆tGT = 20 seconds.

They describe the spatial and the temporal resolution of VGT . The implementation of the ASM

which is applied throughout this work returns a set of triples. Each triple consists of a specific

location xi, a specific point in time ti, and the corresponding speed values VGT (xi, ti). The in

fact continuous function VGT is described by these triples. The set of points (xi, ti) form a grid

on the spatio-temporal plane. The spatial and the temporal distance between successive points

are denoted by ∆xGT and ∆tGT . From here on, VGT is interpreted as a piecewise constant

speed function, which returns for any (x, t) the speed value VGT (xi, ti) which is assigned to

the point (xi, ti) that lies closest to (x, t):

VGT (x, t) = VGT (xi, ti)

∀(x, t) ∈ [xi − 0.5 ·∆xGT , xi + 0.5 ·∆xGT [×[ti − 0.5 ·∆tGT , ti + 0.5 ·∆tGT [
(6.10)

52The relation between VGT and VReal will be explained later on.
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Figure 6.4: Construction of ASM-grid.

Similarlarly to the case of RTTI, the road segments and time intervals that are defined by this

grid are denoted by SGTk and TGTl , respectively. The interpretation as a piecewise constant

function will later on allow deriving a rather simple quantification of differences between VGT
and broadcasted driving speeds, which are, as already described, also interpreted as piecewise

constant speed functions. In Figure 6.4, the idea of interpreting the available set of triples

(xi, ti, VGT (xi, ti)) (left side) as a spatio-temporal speed function (right side) is illustrated.

It is worth mentioning that a traffic state reconstruction is already done by the traffic content

providers to generate the broadcasted RTTI. This raises the question why function VGT , which

is intended to be used to assess the quality of RTTI, should mirror reality more accurately than

the RTTI itself. Actually, there are several reasons for this: VGT is typically constructed ex

post, i.e., ”at the end of the day“. Hence, there is no time pressure. The problem of latencies

caused, for instance, by data transmission vanishes. Another aspect is that if during a specific

time period not enough or (for some reason) only data that seem to be unreliable are available

for the construction of VGT , then the possibility exists to ignore this time period during the

assessment process. An RTTI provider does not have this option as RTTI in most cases has to

be provided continuously (24 hours a day, 7 days a week). Moreover, if the traffic situation for

a specific time t is estimated and if this estimation is done ex post, then not only data gathered

before or at time t are available. Also ”future“ data, i.e., data that were collected after t, can
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be taken into account. There exists methods for traffic state reconstruction, for instance the

ASM, which make use of future data to achieve a more accurate traffic state reconstruction.

An online-traffic state estimation, which has to be carried out by traffic content providers, can

obviously not include such future data. Finally, traffic state reconstructions are in general not

bound to standards that limit the amount of detail that can be represented, which may be the

case for RTTI. Bringing all this together, it can be concluded that a posterior traffic state recon-

struction is much simpler and in general has the potential to be more accurate than an online

traffic state estimation. Note that even if the same data basis is used for both, it is very likely

that differences occur.

One final remark shall be given at this point: Besides VGT , which is a piecewise constant speed

function that is reconstructed ex post on the basis of inductive loop detector data, function VReal
has been introduced, too. VReal returns, depending on location and time, random variables

VReal(x, t). These random variables are solely relevant from a modeling point of view. In fact,

under the assumption that V̄Real describes the real average driving speeds, function VGT can

be interpreted as an approximation of V̄Real. Whenever an ex post analysis of RTTI quality is

carried out during the remainder of the described research, VGT is applied as reference.

6.2.4 Error Measurement
In the following, the differences between broadcasted RTTI and the constructed ground truth

are quantified for some road corridor X ⊂ R≥0 during a time period T ⊂ R≥0. Both func-

tions VGT and V tB
RTTI are constant in each cell of a grid on the spatio-temporal plane. For

VGT , the corresponding grid is described by a set of spatial segments {SGTk }k=1,...,K and a set

of time intervals {TGTl }l=1,...,L, with K and L ∈ N. Analogously, a set of spatial segments

{SRTTIi }i=1,...,I and a set of time intervals {TRTTIj }j=1,...,J , with I and J ∈ N, describe the

grid for V tB
RTTI (or VRTTI , respectively). Both sets of segments are supposed to be partition-

ings of X and both sets of time intervals to be partitionings of T , i.e., each point in X × T can

be assigned to exactly one cell in both grids.

The measurement of the differences is done in three steps: First, based on the two already

existing grids, a third grid, which is described by sets {SUm}m=1,...,M (”U“ for ”union“) and

{TUn }n=1,...,N with M and N ∈ N, is generated. It is essential that each cell SUm × TUn is

completely covered by a single cell SGTk × TGTl and by a single cell SRTTIi × TRTTIj . This

means that for allm ∈ {1, ....,M} and for all n ∈ {1, ...., N}, there exists exactly one index k∗

∈ {1, ...,K}, one index l∗ ∈ {1, ..., L}, one index i∗ ∈ {1, ..., I} and one index j∗ ∈ {1, ..., J},
such that the subsequent conditions holds

SUm × TUn ⊆ SGTk∗ × TGTl∗ (6.11)

SUm × TUn ⊆ SRTTIi∗ × TRTTIj∗ (6.12)
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This ensures that VGT and V tB
RTTI (and VRTTI ) are constant within each cell of the new, dense

grid. During the second step, the values both functions return are compared for each cell of the

new grid separately. For this purpose, let VGT (SUm, T
U
n ) denote the speed value that is returned

by VGT for any point (x, t) which is located in cell SUm×TUn . Value V tB
RTTI(S

U
m, T

U
n ) is defined

analogously. Furthermore, let a function d (for instance, this can be a metric) be considered

that measures the difference between two values. The rating for a cell SUm×TUn is thus denoted

by

d(VGT (SUm, T
U
n ), V tB

RTTI(S
U
m, T

U
n )). (6.13)

During the third step, the computed difference ratings for all cells are aggregated to one single

number by weighting them according to the spatio-temporal extent of the corresponding cell:

wm,n :=

∫
SUm

∫
TUn

1 dt dx = (S
U
m − SUm) · (TUn − TUn )

W :=

∫
X

∫
T

1 dt dx =
M∑
m=1

N∑
n=1

wm,n.

D(VGT , V
tB
RTTI , X × T, d) :=

1

W
·
M∑
m=1

N∑
n=1

wm,n · d(VGT (SUm, T
U
n ), V tB

RTTI(S
U
m, T

U
n ))

(6.14)

The spatio-temporal extent of each cell is denoted with wm,n and the size of the area X × T
with W . Dividing by W in equation 6.14 is necessary for normalization, i.e., to ensure that the

computed difference value D does not depend on the size of X × T .

Figure 6.5 is intended to illustrate the suggested approach for quantifying differences between

ground truth and RTTI. Three contour plots are shown, all of them for a 34 kilometers long

road corridor on the German autobahn A99 (southbound, starting about nine kilometers west

of the interchange Munich north and ending roughly eight kilometers south of the interchange

Munich east) for the time period between 16:30 and 20:00 on April 19th, 2012. The first one

describes the ground truth, which is generated by applying the ASM on inductive loop detector

data collected by 25 detectors along the road. Three jam waves between 17:45 and 18:45 can be

observed. The second contour plot is based on commercial RTTI (only traffic state estimations,

i.e., VRTTI ) received from a traffic content provider for the corresponding time and location.

Traffic state estimations were updated at one-minute resolution and the TMC location code list

is used for location referencing. This leads in total to 12 TMC road segments for the considered

road corridor. Note that the dashed horizontal black lines in Figure 6.5 mark the spatial extent

of the longest of these segments53, which has a length of almost 5.6 kilometers. Based on the

broadcasted RTTI, it is not possible to identify three separate jam waves. Solely a reduction

of speed is indicated at the corresponding area on the spatio-temporal plane. The last contour

53Just as a remark: The corresponding TMC location code is ”D01+12980“.
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(a) Ground truth VGT (b) Recorded RTTI VRTTI

(c) Error plot: Visualization of absolute percentage dif-
ferences between VGT and VRTTI

Figure 6.5: Visualization of ground truth, recorded RTTI, and the resulting relative errors for a
corridor on a German freeway.

plot visualizes the resulting error ratings for each cell of the grid (spatial resolution ∆xGT of

the ground truth grid is equal to 40 meters, temporal resolution ∆tGT is equal to 20 seconds).

The absolute percentage error (APE) was applied for their computation, i.e., a measure dAPE
is used with:

dAPE(a, b) :=
| b− a |

b
. (6.15)

The maximum of all occurring values dAPE(VGT (SUm, T
U
n ), VRTTI(S

U
m, T

U
n )) is equal to 0.746.

The resulting overall rating D(VGT , VRTTI , X × T, dAPE), where X describes the road cor-

ridor and T the time period between 16:30 and 20:00 on April 19th, 2012, is equal to 0.083.
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This means that the average54 relative deviation between VGT and VRTTI is at about eight

percent. It can be seen that errors occurred especially around congested areas. Unfortunately,

adequate RTTI is most valuable in congested situations. One potential reason for these er-

rors is the limited spatial resolution of the considered RTTI. For any TMC segment, the traffic

content provider can only broadcast one speed value to describe the traffic situation along the

whole segment. Particularly for the case of the TMC segment which is bordered by the dashed

lines in Figure 6.5, the traffic content provider would have been unable to broadcast detailed

information concerning the jam waves, even if the traffic content provider had been aware of

them. These considerations motivate the generation of an alternative traffic state reconstruc-

tion, which takes a limited spatial, but also a limited temporal resolution of RTTI into account.

This is considered in the following section.

6.2.5 Considering Restrictions of Resolution
For measuring the quality of RTTI, the applied reference is typically intended to approximate

the real traffic situation as closely as possible. This proceeding seems to be reasonable since

car drivers, who eventually use RTTI-based traffic services, compare the RTTI they receive to

the real traffic situation – or at least to their perception of the real traffic situation. The left part

of Figure 6.6 illustrates this idea. On the other hand, it has already been discussed that RTTI,
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Figure 6.6: Scheme describing the idea of considering technical restrictions during the quality
assessment process.

such as TMC-messages, often suffer from certain, primarily technical restrictions that limit the

54Due to the definition of D, ”average“ is interpreted here in a spatio-temporal sense.
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maximal possible quality that can be obtained. This aspect is especially important if compa-

nies, like car manufacturers, purchase commercial traffic data: The traffic content providers

take lots of money for the supplied information. Accordingly, their industrial customers want

certain quality standards to be fulfilled. If a costumer postulates that the spatial referencing

of the broadcasted (commercial) RTTI needs to be based on the TMC location code list, then

it seems unfair to make the provider responsible for inaccuracies caused by the technical lim-

itations of TMC. However, this is exactly what traditional quality measurement methods do,

since the best possible traffic state reconstructions are applied as reference, to which the RTTI

is compared. Here, an alternative reconstruction scheme, denoted as technical ground truth
(TGT), is suggested.

The central issue is that, even if a traffic content provider generated, based on the data that are

available, the same ground truth which is later on used during the assessment, she/he still would

not be able to broadcast it with all its details if the RTTI is bound to, for instance, the TMC

location code list. In order to be able to mirror the perspective of the traffic content provider,

the function VGT is discretized according to the spatio-temporal grid defined by the RTTI that

has to be assessed, i.e., according to road segments SRTTIi and time intervals TRTTIj . For this

purpose, a harmonic mean speed is computed for each cell SRTTIi × TRTTIj :

Ai,j :=

∫
TRTTIj

∫
SRTTIi

1dx dt

vharm(SRTTIi , TRTTIj ) := Ai,j ·

(∫
TRTTIj

∫
SRTTIi

1

VGT (x, t)
dx dt

)−1 (6.16)

In traffic, the harmonic mean is typically used to aggregate speed values. The arithmetic mean

would lead to systematic bias when computing trajectory-based travel times on the basis of

the corresponding spatio-temporal speed function. The harmonic mean avoids this effect (see

Figure 4.10 in (147)). The discretized ground truth speed function is then defined by:

VTGT : X × T → R≥0 (6.17)

VTGT (x, t) := vharm(SRTTIi , TRTTIj ) ∀(x, t) ∈ SRTTIi × TRTTIj . (6.18)

Obviously, VTGT is constant within each cell SRTTIi ×TRTTIj . Recalling that VGT is assumed

to represent the real traffic situation, then VTGT can be understood as the best possible ap-

proximation of the real traffic situation that can be achieved if one is bound to the grid that

is induced by the spatial and temporal resolution of the considered RTTI. Note that function

VTGT is introduced here, since it will be used later on in section 6.3.2 for the derivation of

auxiliary trajectories.
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(a) VTGT (b) Error plot: Visualization of absolute percentage dif-
ferences

Figure 6.7: Spatio-temporal visualization of differences between RTTI and the technical
ground truth. Measure dAPE is applied here.

Figure 6.7 continues the example from Figure 6.5. The contour plot on the left shows VTGT ,

the right contour plot the resulting differences to VRTTI . It can be observed that the differences

between VTGT and VRTTI are less significant than the differences between VGT and VRTTI .

The main reason for this is that the three jam waves also vanish for VTGT . Furthermore, the

right part of Figure 6.7 indicates that real quality problems occur especially between kilome-

ters 23 and 26. The considered RTTI overestimates average driving speeds there. In contrast,

the situation for TMC segment D01+12980 (between the two dashed horizontal lines) is repre-

sented rather well, at least under the restriction that only one speed value can be broadcasted for

the whole segment. Consequently, the quality deficiencies that can be observed in the error plot

of Figure 6.5 for TMC segment D01+12980 (between the dashed lines) seem to be primarily

caused by the limited spatial resolution of the considered RTTI55.

6.3 Trajectory Buffer for Error-prone Traffic Information
One of the three tasks that has to be carried out in chapter 6 is the provision of a concrete

formulation of the trajectory buffer function SOCt,NTmin in order to test it within the simulation

study in chapter 7. The motivation for this is that, otherwise, after excluding quantile-based en-

ergy buffers from further consideration, solely relative buffers could be tested. Relative buffers

show some advantageous properties, but the level of adaptivity which can be achieved by rel-

ative buffers is limited (see Table 5.1, where the three proposed energy buffer functions were

55Actually, these deviations between VGT and VRTTI could also be caused by the limited temporal resolution of
VRTTI . Here, this is not the case due to the RTTI’s high update rate of one minute.
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compared). This is because function SOCr,zmin only depends on the predicted energy consump-

tion costs. As long as these costs remain the same, also the size of the relative energy buffer

does not change – independently of how reliable the available RTTI or other relevant quantities

are expected to be. Trajectory buffers, on the contrary, may be able to ensure a high level of

adaptivity, but their ability to achieve this depends heavily on the applied method for generating

sets of auxiliary trajectories. Up to this point, it has not been explained how sets of reasonable

driving trajectories can be generated. Actually, this had been hardly possible due to the rather

abstract problem formulation stated in chapter 5, where energy and time edge costs were sim-

ply assumed to be given. In the following, under the presumption that RTTI can be used to

derive driving trajectories, a corresponding approach is described. Two goals are relevant in

this context: First, the computational effort for generating sets of auxiliary driving trajectories

has to be kept low in order to avoid any negative impact with regard to RO 1c. Second, a cer-

tain level of adaptivity shall be obtained, i.e., the resulting energy buffer function should take

varying reliability of RTTI into account.

The proceeding in section 6.3 is the following: In section 6.3.1, the description of a method for

generating sets of auxiliary trajectories is stated. The fundament of this method is a prediction

of lower and upper bounds for (macroscopic) average driving speeds. This means that instead

of one spatio-temporal speed function V tB
RTTI , which returns a single speed value in dependency

of location and time, two spatio-temporal speed functions are applied, which return lower and

upper speed bounds. These bounds have to be defined in such a way that it is very likelty that

the real future driving speeds lie between these bounds. An approach to derive such speed

bounds based on commercial RTTI is described in section 6.3.2. Finally, in section 6.3.3, some

issues resulting from deriving driving trajectories (which actually are a microscopic type of

data) from RTTI (which is typically interpreted as a macroscopic kind of data) are discussed.

6.3.1 Trajectory Buffer on the Basis of Speed Bounds
Figure 6.8 schematically illustrates the approach that is described subsequently. First, given a

time tB at which RTTI is broadcasted56, it is intended to compute two spatio-temporal speed

functions V tB
low and V tB

up , which represent lower and upper bounds for random variable VReal:

V tB
low(x, t) ≤ V̄Real(x, t) ≤ V tB

up (x, t) ∀x ∈ e, t ≥ tB. (6.19)

In literature, it is not uncommon for traffic prediction methods to return ranges instead of

specific values (80) (81). As VReal describes driving speeds, such bounds naturally exist. For

instance, a speed of zero can be applied as a lower bound and the considered vehicle’s maximal

driving speed as an upper bound. However, to keep these ranges tight and thus interesting for

56To reduce notational complexity, it is from here on assumed that the time t0, at which a charging strategy is
requested, is equal to the time tB , at which the RTTI is broadcasted. All approaches would work similarly if it was
differentiated between these times.
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applications, outliers are typically excluded from consideration by postulating bounds that hold

solely with a certain probability α ∈ [0, 1]:

P(V tB ,α
low (x, t) < VReal(x, t)) = α (6.20)

P(V tB ,α
up (x, t) > VReal(x, t)) = α (6.21)

In section 6.3.2, an approach for deriving such probabilistic speed bounds will be explained.

For the moment, spatio-temporal speed functions V tB ,α
low and V tB ,α

up , which fulfill the conditions

defined in equations 6.20 and 6.21, can simply be assumed to be given. Note that the proposed

definition of speed bounds provides a possibility to interpret reliability in the context of RTTI:

It can be said that reliable RTTI allows deriving speed bound functions V tB ,α
low and V tB ,α

up which

show small differences to each other even for high values of α. This means that that function

V tB
RTTI is ”reliable“ if the probability that big errors occur is low.

Time 
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Figure 6.8: Generation of a trajectory set on the basis of speed bound functions.
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In a second step, for some time tS ≥ tB
57 and a specific road segment e, where e denotes its

start and e denotes its end, speed functions V tB ,α
low and V tB ,α

up are applied to construct ”bound-

ary“ trajectories T (e, tS , V
tB ,α
low ) and T (e, tS , V

tB ,α
up ). To receive these trajectories, differential

equation 6.1 has to be solved after replacing its right-hand side either by function V tB ,α
low or by

function V tB ,α
up . These two trajectories form a shape on the spatio-temporal plane that looks

similar to a cone, where the vertex of the cone is given by (e, tS). This is illustrated by the

two gray trajectories which are placed in the contour plot under point three in Figure 6.8. If

α is set equal to 1.0, then any possible driving trajectory T (e, tS , V̄Real), independently of the

realization V̄Real, is located between these boundary trajectories due to inequalities 6.20 and

6.21. If α is set close to 1.0, then at least most possible driving trajectories can be assumed to

be located within the cone.

During the third step, a set of reasonable trajectories is generated which covers this cone com-

prehensively. This set is afterwards used to compute the size of the buffer according to the

methodology described in section 5.3.3 (see also the fourth step in Figure 6.8). The idea is

that at least one of the generated trajectories looks similar to the real, not yet known driving

trajectory T (e, tS , V̄Real). To generate auxiliary trajectories which cover the cone comprehen-

sively, the following procedure is executed: Construct for each index nt ∈ {0, 1, ..., NT} with

NT ∈ N>0 a spatio-temporal speed function V tB ,α
nt as described below (this could be done

analogously if V tB
low and V tB

up , and not V tB ,α
low and V tB ,α

up were considered):

V tB ,α
nt (x, t) :=

NT − nt
NT

· V tB ,α
low (x, t) +

nt

NT
· V tB ,α

up (x, t). (6.22)

It holds that V tB ,α
0 = V tB ,α

low . With increasing nt, these functions turn from V tB ,α
low to V tB ,α

up

with V tB ,α
NT = V tB ,α

up . For each of these functions, one auxiliary trajectory Tnt(e, tS) :=

T (e, tS , V
tB ,α
nt ) is computed. These trajectories cover the aforementioned cone equally (in a

spatio-temporal sense).

If the reliability of V tB
RTTI is low, then the range between V tB ,α

low and V tB ,α
up is comparably big

even for small values of α. Along with this, the cone which is defined by the two boundary tra-

jectories becomes wide. This leads to a set of trajectories {Tnt(e, tS)}nt=0,...,NT which show

more diversity, i.e., the differences between the auxiliary trajectories rise. It will turn out that

under realistic conditions, particularly those driving trajectories that show very low or very high

speeds cause high energy consumption. As a consequence, in most cases one of both border

trajectories leads to the highest energy consumption values. A further consequence is that the

size of the trajectory energy buffer tends to rise with the width of the cone, since wide cones

lead to very low and very high speeds at its borders. If V tB ,α
RTTI is expected to be reliable, it is

57Recall that tS denotes the planned start of the trip and that this is not necessarily the time at which the charging
strategy computation takes place.
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the other way around and the energy buffer’s size gets small. Consequently, the suggested tra-

jectory generation method should be able, up to some degree, to achieve that SOCt,NTmin returns

high values in situations in which RTTI tends to be less reliable, and low values in situations in

which RTTI is reliable. Note that the size of the trajectory energy buffer also tends to become

bigger if higher values of α are used, since the cone again becomes wider. Increasing the num-

ber of trajectories NT may also have some influence, but the proposed method for trajectory

generation makes it, as already mentioned, unlikely that the highest energy consumption values

result from non-border trajectories. Due to this, increasing the number of trajectories has only

little influence on the resulting energy buffer.

It is worth mentioning that the suggested approach for generating a set of trajectories is com-

putationally not too expensive. This allows including it into algorithms for computing optimal

charging strategies. On the other hand, there is no guarantee that the real driving trajectory

T (e, tS , V̄Real) (or T (e, tS , VGT ), respectively) looks similar to one of the constructed trajec-

tories. Furthermore, it is up to this point not clear how speed bounds V tB
low and V tB

up (or V tB ,α
low

and V tB ,α
up , respectively) can be derived. However, a corresponding approach will be described

during the next sections.

6.3.2 Prediction of Speed Bounds for Real-time Traffic Information

In this section, an approach to derive lower and upper speed bounds V tB ,α
low and V tB ,α

up is ex-

plained. For this purpose, it is assumed that commercial RTTI is received and represented by

a spatio-temporal speed function V tB
RTTI . The section can be separated into three parts. During

the first part, a random variable Y is introduced, which describes, depending on location and

time, deviations between the RTTI and a reconstructed ground truth. It is conjectured that a re-

lation exists between the distribution of Y and several, not yet identified explanatory variables58

E1, E2, ..., EQ with Q ∈ N. In the second part of this section, a set of potential explanatory

variables is proposed. Finally, in the third part, a training set {ym, em1 , em2 , ...., emQ}m=1,2,...,M ,

consisting ofM ∈ N realizations ym of random variable Y and the corresponding observations

emq of the explanatory variables, is used to derive probabilistic bounds for Y in dependency of

the observations belonging to the explanatory variables. The idea is that at time tB , at which

the charging strategy is requested and, due to this, at which the speed bounds have to be con-

structed, the realizations of the set of explanatory variables are already available. The realiza-

tions of Y , on the contrary, are unknown. The derived bounds for Y are afterwards applied

to generate functions V tB ,α
low and V tB ,α

up . It is worth mentioning that the proposed approach

can basically be used to generate speed bounds for any kind of spatio-temporal speed function

and not only for the case of a function representing commercial RTTI. Though, some of the

suggested explanatory variables explicitly refer to the case of commercial RTTI.

58Explanatory variables are often also denoted as predictors or independent variables.



6.3. TRAJECTORY BUFFER FOR ERROR-PRONE TRAFFIC INFORMATION 127

Definition of the Dependent Variable The dependent variable Y is defined depending on

location and time as the relative difference between ground truth driving speeds and the RTTI:

Y (SRTTIi × TRTTIj ) := D(VTGT , V
tB
RTTI , S

RTTI
i × TRTTIj , dPE). (6.23)

Function D is here defined as stated in equation 6.14 and the difference measure dPE denotes

the relative difference between the first and the second input (”PE“ for ”percentage error“):

dPE(v1, v2) :=
v1 − v2

v2
. (6.24)

Note that the technical ground truth VTGT is used as the reference59 to which V tB
RTTI is com-

pared in equation 6.23. This is because V tB
RTTI is constant in each cell SRTTIi × TRTTIj . Most

of the explanatory variables which will be considered later on are based on V tB
RTTI and hence

they are also constant in each cell SRTTIi × TRTTIj . Due to this, the suggested approach

hardly allows making distinctions between locations and points in time that are part of the

same cell. This suggests discretizing VGT to VTGT . Furthermore, the discretization simpli-

fies further notation, as solely one grid needs to be considered, and reduces computation times

since the resolution of the RTTI-based grid is lower than the resolution of the ground truth grid.

For generating the set {ym}m=1,2,...,M , it solely remains to specify road segments SRTTIim
, time

intervals TRTTIjm
, and times tmB at which the RTTI is requested60. The realizations ym of the

dependent variable Y are then defined as stated below:

ym := y(tmB , S
RTTI
im , TRTTIjm ) := D(VTGT , V

tmB
RTTI , S

RTTI
im × TRTTIjm , dPE) (6.25)

Due to the definition of D and the fact that VTGT and V tmB
RTTI are constant within each cell

SRTTIim
× TRTTIjm

, this can also be written as:

ym = y(tmB , S
RTTI
im , TRTTIjm ) =

VTGT (SRTTIim
, TRTTIjm

)− V tmB
RTTI(S

RTTI
im

, TRTTIjm
)

V
tmB
RTTI(S

RTTI
im

, TRTTIjm
)

. (6.26)

In equation 6.26, V tmB
RTTI(S

RTTI
im

, TRTTIjm
) denotes the speed value that V tmB

RTTI obtains in cell

SRTTIim
×TRTTIjm

. Analogously, VTGT (SRTTIim
, TRTTIjm

) denotes the corresponding speed value

for function VTGT . The realizations of the dependent variable Y describe the deviations be-

tween RTTI and ground truth for the corresponding location and time. Usually, it is written ym

instead of y(tmB , S
RTTI
im

, TRTTIjm
) to shorten notation.

59Usually, the denominator refers to the quantity which is used as the reference if percentage errors are computed.
Here, it is the other way around. This will be of relevance later on.

60Here, it is written SRTTIim and TRTTIjm instead of SRTTIi and TRTTIj to emphasize that possibly not all road
segments and time intervals are included into the generation of the training set. This means that im ∈ {1, ..., I}
and jm ∈ {1, ..., J} for all m ∈ {1, ...,M}.
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Identify Potential Explanatory Variables Now, a set of explanatory variables E1, ..., EQ

has to be identified which allows drawing conclusions on the distribution of the dependent

variable Y . The goal is to make predictions about the reliability of the considered commercial

RTTI. In this context, a critical aspect of working with commercial RTTI is that the receiver

typically does not know how much and which types of raw traffic data (data from detectors,

probe data, etc.) were used for the generation of the RTTI, nor does she/he know how the data

were processed. Moreover, for the case of traffic predictions, the applied prediction procedure

is usually unknown, too. Therefore, the set of potential explanatory variables is limited. In the

following, an exemplary selection of five potential explanatory variables is discussed: Predic-

tion horizon, historical relative speed averages, estimations of current relative driving speeds,

the time of day, and so-called confidence values that are broadcasted along with the RTTI. For

this purpose, it is assumed that, besides function V tB
RTTI , spatio-temporal speed functions VHist

and Vff are available. Function VHist describes historical driving speed averages depending

on location and time. For simplicity, it is assumed that VHist is also piecewise constant within

the cells SRTTIi ×TRTTIj of the spatio-temporal grid which is induced by the RTTI. It contains

no information about recent incidents and is solely based on historical traffic data. Function

Vff is independent of time. It assigns, probably also based on historical traffic data, estimated

free-flow driving speeds to road segments SRTTIi . Function Vff is used to compute relative

driving speeds. Relative speeds means here that speeds are given in percent of free-flow speed.

Furthermore, the availability of a function Cf tB (”Cf“ for ”confidence“) is expected. Nowa-

days, private traffic content providers typically deliver such confidence values to give their

customers an idea of how much recently collected probe data were available for generating the

broadcasted RTTI. Intuitively, it could be expected that with an increasing amount of available

and recently collected traffic data, also the reliability of the RTTI increases.

The first and maybe most intuitive potential explanatory variable for the quality of RTTI is the

prediction horizon, i.e., the time span between the time at which the information is received and

the time for which speeds are predicted. Mathematically, the realizations of the corresponding

predictor E1 can be defined as follows:

em1 := e1(tmB , S
RTTI
im , TRTTIjm ) := TRTTIjm − tmB ∀m ∈ {1, 2, ...,M}. (6.27)

In equation 6.27, the starting time of interval TRTTIjm
is denoted by TRTTIjm . The idea for analyz-

ing prediction horizons as potential predictors for RTTI quality is that the further one intends

to look into the future, the less reliable traffic predictions probably become (112).

Congestion and along with it changing traffic conditions usually do not appear unless a certain

level of road utilization is reached. If there are almost no cars on the road, then it is very un-

likely that a change from free-flow to congestion (or the other way around) occurs. Due to this,



6.3. TRAJECTORY BUFFER FOR ERROR-PRONE TRAFFIC INFORMATION 129

in situations in which road utilization can be expected to be extremely low, RTTI should be

quite reliable, simply because there is nothing to report or broadcast, respectively. In order to

determine road utilization, traffic volume needs to be known. Private traffic content providers,

since they rely primarily on probe data and usually collect traffic data from only a few percent

of all driving vehicles, probably cannot estimate traffic volume reliably. Stationary detectors,

which are usually capable of measuring flows, cover the road network only sparsely. Conse-

quently, it may be hard to achieve a comprehensive coverage of the entire road network with

real-time flow data. As an alternative, the utilization can be estimated indirectly based on rel-

ative driving speeds. This is what is done in the following. For this purpose, it is used that

low relative speeds indicate high utilization according to the fundamental diagram. Consider-

ing the available data, two types of speed information can be applied in order to achieve this,

namely historical speeds and RTTI. Based on them, the realizations of two potential predictors

are defined as subsequently described:

em2 := e2(tmB , S
RTTI
im , TRTTIjm ) :=

VHist(S
RTTI
im

, TRTTIjm
)

Vff (SRTTIim
)

∀m ∈ {1, 2, ...,M} (6.28)

em3 := e3(tmB , S
RTTI
im , TRTTIjm ) :=

V
tmB
RTTI(S

RTTI
im

, tmB )

Vff (SRTTIim
)

∀m ∈ {1, 2, ...,M} (6.29)

Here, E2 denotes historical relative speed averages and E3 denotes the estimation of current

relative driving speeds. VHist(SRTTIim
, TRTTIjm

) denotes the speed values which VHist returns

for any point (x, t) ∈ SRTTIim
×TRTTIjm

, Vff (SRTTIim
) denotes the speed value which Vff returns

for any location x ∈ SRTTIim
, and V tmB

RTTI(S
RTTI
im

, tmB ) denotes the speed value which V tmB
RTTI re-

turns for any point (x, tmB ) with x ∈ SRTTIim
.

The historical speed data provide historical speed averages depending on location and time.

If on a certain road segment during a certain time interval congestion occurs frequently, then

these average driving speeds also lie significantly below the corresponding free-flow speed.

Conversely, if historical speed profiles show no reduction of average driving speeds, then this

is interpreted as an indicator that congestion occurs only rarely. Under such typically stable

conditions, there is (in most cases) not much which can be predicted incorrectly. As a conse-

quence, it is concluded that RTTI quality is probably comparably high.

The same way as predictor E2 is intended to characterize typical traffic conditions, predictor

E3 is intended to characterize current traffic conditions. If low relative speeds are broadcasted

at time tB , then it is likely that the corresponding road segment is congested at time tB , which

again possibly makes predicting the future evolution of traffic for this location harder than for

the low-utilization case. Whether this suspicion is true or not depends on the prediction algo-

rithms that are applied by the traffic content provider.

Note that besides characterizing regular or current traffic conditions, considering E2 and E3

in parallel may also be interesting: Huge differences between the currently estimated relative
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driving speeds and the historical relative speed averages may indicate a very uncommon traffic

situation. Hence, traffic prediction may not be able to describe future traffic situations as accu-

rately as in other situations which show a more regular behavior.

The fourth of the suggested potential predictors is the time of day for which the traffic situation

is predicted:

em4 := e4(tmB , S
RTTI
im , TRTTIjm ) := TRTTIjm ∀m ∈ {1, 2, ...,M}. (6.30)

The idea for explanatory variable E4 is, similar to E2 and E3, that it is easy to predict traf-

fic if nothing is happening. During nights, traffic volume typically is very low. Along with

that, congestion occurs very rarely. Therefore, it can be expected that there is free-flow dur-

ing nights if the traffic content provider states free-flow. Admittedly, historical relative speed

averages should be able to represent the in most cases stable traffic situations during nights,

too. However, it could be imagined that congestion is in general less probable during nights

than during off-peak periods (which also exist during the day), where historical data may show

very high relative speed averages, too61. This could be an advantage of E4 in comparison to

E2. Another important aspect is that roads exist, on which congestion occurs regularly during

nights. This can be the case, for instance, if shift operations are typical for the local industry.

As a consequence, predictor E4 may not work well for all road segments.

Function Cf t
m
B forms the basis for the last of the suggested predictors:

em5 := e5(tmB , S
RTTI
im , TRTTIjm ) := Cf t

m
B (SRTTIim ) (6.31)

Whenever RTTI is broadcasted for a road segment, customers of traffic content providers usu-

ally receive a confidence value for this road segment, too. Confidence values are intended to

represent, as already mentioned, the amount of recently collected data which are used to gener-

ate the broadcasted RTTI. Intuitively, it could be expected that high confidence values go hand

in hand with better RTTI.

Derivation of Probabilistic Bounds Up to this point, it has been described how the train-

ing set {ym, em1 , ..., emQ}m=1,2,...,M is generated. Based on the training set, a regression equa-

tion is formed. The relation between the dependent variable Y and the explanatory variables

E1, ..., EQ is expressed by a function R : RQ → R and a noise term ε : RQ → R, which

61For clarification: Measuring average driving speeds during nights is sensitive to outliers due to the low traffic
flow. Data delivered by trucks, for instance, may decrease historical relative speed averages significantly - even if
always free-flow conditions prevail. This has influence on the explanatory power of E2.
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accounts for random scatter and the influence of unobserved explanatory variables:

Y = R(e1, ..., eQ) + ε(e1, ..., eQ). (6.32)

If RTTI perfectly mirrored real driving speeds, then it would hold that

R(e1, ..., eQ) ≡ ε(e1, ..., eQ) ≡ 0. (6.33)

An important difference to linear regression models, which is probably one of the most com-

mon approaches to derive relations between a dependent variable and a set of explanatory

variables, is that no homoscedasticity is expected (see page 90 in (8)), i.e., the variance of the

residuals ε is not expected to be constant. This is expressed by writing ε(e1, ..., eQ) instead

of ε in equation 6.32. Actually, since it is intended to derive probabilistic bounds for Y de-

pending on the realizations of E1, ..., E5, heteroscedasticity is implicitly conjectured. If Y was

homoscedastic, the bounds could be chosen independently of these realizations of E1, ..., EQ,

which would mean that the reliability of the considered RTTI depended not on E1, ..., EQ.

Another difference to typical regression approaches is that the goal is to estimate probabilistic

bounds for Y . Correspondingly, it is not the goal to find a good regression function R, but to

identify a quantile function Rα, which fulfills for α ∈]0, 1] the following property:

Rα(e1, ..., eQ) := inf {y∗ ∈ R | P(Y ≥ y∗) ≤ 1− α} (6.34)

Function Rα returns for a given vector of observations (e1, ..., eQ) the α-quantile of random

variable Y . Based on the definition of Rα, speed bounds V low,α
tB

and V up,α
tB

, which fulfill the

probabilistic boundary properties stated in inequalities 6.20 and 6.21, can be constructed as

described below (see the definition of ym in equation 6.26):

V low,α
tB

(x, t) := (1 +R1−α(e1, ..., eQ)) · V tmB
RTTI(x, t) (6.35)

V up,α
tB

(x, t) := (1 +Rα(e1, ..., eQ)) · V tmB
RTTI(x, t) (6.36)

It is worth mentioning that the probability that VTGT is located between V low,α
tB

and V up,α
tB

is

only equal to 1− 2 · α, since both boundaries are violated with a probability of α.

To construct a quantile function Rα on the basis of a training set {ym, em1 , ..., emQ}m=1,2,...,M ,

the realizations {em1 , ..., emQ}m=1,2,...,M are separated into categories. Then, for each of these

categories, the α-quantile over all corresponding realizations ym is computed.

In a first step, the lowest and the biggest of all occurring realizations for each explanatory
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variable Eq are calculated:

Eminq := min
{
emq | m ∈ {1, 2, ...,M}

}
∀q ∈ {1, ..., Q} (6.37)

Emaxq := max
{
emq + δ | m ∈ {1, 2, ...,M}

}
∀q ∈ {1, ..., Q}. (6.38)

A small positive value δ ∈ R>0 is used to ensure that all realizations of explanatory variable

Eq lie within the interval [Eminq , Emaxq [. In a second step, each interval [Eminq , Emaxq [ is sep-

𝑬𝟏 

𝑬𝟐 

𝜹 

𝜹 

𝒃𝟏
𝟏 = 𝑬𝟏

𝒎𝒊𝒏 𝒃𝟏
𝟐 𝒃𝟏

𝟑 𝒃𝟏
𝟒 𝒃𝟏

𝟓 = 𝑬𝟏
𝒎𝒂𝒙 

𝒃𝟐
𝟏 = 𝑬𝟐

𝒎𝒊𝒏 

𝒃𝟐
𝟐 

𝒃𝟐
𝟑 

𝒃𝟐
𝟒 = 𝑬𝟐

𝒎𝒂𝒙 

2nd category for 

explanatory variable 𝑬𝟏 

𝐌(𝟐, 𝟑) 

Figure 6.9: Illustration of notation which is relevant for the categorization of the training dataset
according to realizations of the explanatory variables.

arated into a set of Bq ∈ N categories [biq, b
i+1
q [ with i ∈ {1, 2, ..., Bq}. The borders biq of

these categories have to be chosen in such a way that they fulfill the subsequently described

conditions:

Eminq = b1q < b2q < ... < b
Bq
q < b

Bq+1
q = Emaxq . (6.39)

These categories can be used to partition the set of indices {1, 2, ...,M} into sets M(i1, ..., iQ)

(with i1 ∈ {1, ..., B1}, i2 ∈ {1, ..., B2}, and so on) with:

M(i1, ..., iQ) := {m∗ ∈ {1, 2, ...,M} | em∗
q ∈ [b

iq
q , b

iq+1
q [ ∀q ∈ {1, ..., Q}} (6.40)

The result are B1 · B2 · ... · BQ different index sets M(i1, ..., iQ) ⊆ {1, 2, ...,M}. Most of

the introduced variables are exemparily illustrated for the case of two explanatory variables in

Figure 6.9. The black points represent an artificially generated set {em1 , em2 }m. In a third step,
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for each of these index sets, the α-quantile over all corresponding realizations ym is computed:

rα(i1, ..., iQ) := α-quantile of {ym | m ∈M(i1, ..., iQ)} (6.41)

Finally, these quantiles rα are applied in order to define the value which function Rα assigns

to a vector (e1, e2, ..., eQ):

Rα(e1, e2, ..., eQ) := rα(i1, ..., iQ), where indices i1, ..., iQ are defined as follows: (6.42)

iq := {i ∈ 1, 2, ..., Bq | eq ∈ [biq, b
i+1
q [ } ∀q ∈ {1, 2, ..., Q} (6.43)

For the case of one explanatory variable, an idea of the shape of such quantile functions is pro-
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Figure 6.10: Illustration of the shape of quantile functions for .

vided by Figure 6.10. There, the black points represent an artificially generated set {ym, em1 }m,

i.e., only one explanatory variable is considered. Note that functions Rα are constant within

each of the defined categories. Furthermore, it can be seen that whenever the scatter of the

points within one cell is small, the difference between the two displayed quantile functions is

small, too.

In the following, in order to reduce the computational effort for constructing functions Rα,

typically not all explanatory variables E1, ..., EQ are taken into account simultaneously. To ac-

count for this, it is, for instance, written Rα(e1, e3) instead of Rα(e1, ..., eQ) if solely the first

(prediction horizon) and the third (current relative speed estimations) explanatory variables are

considered.

The suggested construction of Rα is intended to fulfill the idea of equation 6.34, i.e., that Rα
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is intended to return for any realization (e1, ..., eQ) the α-quantile of random variable Y . Cer-

tainly, this is a purely statistical and not an analytical approach. If the amount of available data

is high and if a relation as described by equation 6.32 exists, then it can be expected that V tB ,α
low

and V tB ,α
up fulfill the probabilistic boundary properties of inequalities 6.20 and 6.21 rather well.

Note that also other, more sophisticated approaches for generating functions Rα could be ap-

plied, such as machine learning techniques. Typical regression approaches, on the other hand,

are less suited. It will turn out that the relation between Y and the proposed explanatory

variables E1, ..., E5 is neither linear, nor monotone. This, alongside the aforementioned het-

eroscedasticity of Y , makes them hardly applicable.

6.3.3 Individuality and Macroscopic Traffic Information
Function V tB

RTTI provides information on a macroscopic scale. As a consequence, trajectory

T (e, tS , V
tB
RTTI) has to be understood as a ”macroscopic driving trajectory“. According to the

author’s experience, such trajectories do typically not have the same properties as microscopi-

cally recorded62 trajectories. Due to data aggregation during the generation of V tB
RTTI or due to

a limited spatial resolution of V tB
RTTI , macroscopic trajectories tend to show less oscillation of

speeds than microscopic trajectories do. Figure 6.11 illustrates this statement exemplarily for

a recorded test drive on the German freeway A9, between the interchange Munich north and

the exit ramp Pfaffenhofen. The recording started at 17:37 on November 6th, 2014. Location

can be found on the x-axis and speed on the y-axis. The blue line describes microscopically

recorded driving speeds63. The gray line describes speeds which result when deriving a corre-

sponding macroscopic driving trajectory from RTTI64 which has been broadcasted by a private

traffic content provider for the corresponding time period and road corridor. The starting time

and starting location of the microscopically recorded test drive is also used for the generation

of the macroscopic trajectory on the basis of differential equation 6.1. The broadcasted RTTI is

updated at one-minute resolution. The vertical red lines indicate the spatial resolution accord-

ing to which the traffic content provider broadcasts speed information. Here, the TMC location

code list defines the spatial resolution. The most important observation is that the blue line,

even though the course of both lines is quite similar along the considered road corridor, shows

much more fluctuations than the gray line. These fluctuations cannot solely be explained by

noise caused by the recording process. Instead, it can be concluded that the microscopically

recorded data provide more details. The critical aspect is that microscopic energy consumption

models are intended to estimate energy consumption for single drives and usually need precise

information about instantaneous accelerations (86) (148). The microscopically recorded speed

profile indicates that accelerations which are derived from macroscopic trajectories cannot be

62

”Microscopically recorded“ means in this context that a mobile device, which is put into the vehicle, is used
for recording the vehicle’s driving trajectories (for instance via GPS).

63For the described example, speeds were measured via the GPS signal of a cell phone
64The displayed macroscopic driving trajectory results from traffic state estimations of a traffic content provider,

which the author recorded, i.e., VRTTI is considered here.
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Figure 6.11: Tracked vehicle trajectory compared to RTTI-based macroscopic driving trajec-
tory.

expected to be realistic. Thus, applying traditional microscopic energy consumption models to

such macroscopically generated trajectories probably leads to unrealistic energy consumption

values. These considerations suggest that c̀E should not be based on a traditional microscopic

energy consumption model. More about this topic will be provided later on in section 7.1.5.

Figure 6.11 shows another potential problem, which can be caused when considering solely

macroscopic traffic information in the context of CSO: During the first seven kilometers, an

average difference of about 25 kilometers per hour can be observed when comparing the gray

line to the blue one. Intuitively, it could be assumed that the broadcasted driving speeds did

not mirror the real traffic situation correctly, but this was not the case. The driver simply drove

slower than most of the other drivers. The possibilities of macroscopic traffic information to

represent such a level of individuality are limited. Typically, macroscopic traffic information

is intended to represent an ”average driver“. In the context of CSO, this leads especially in

free-flow conditions to some issues. If traffic volume is low, it is up to the driver to decide how

fast she/he drives. CSO is primarily intended for long distance trips. For such trips, typically

freeways are used. Particularly on German freeways, where no general speed limit exists, driv-

ing speeds vary drastically under free-flow conditions. The energy consumption of BEVs, on

the other hand, rises quickly if high driving speeds are increased further (this will be confirmed

later on in section 7.1.5). The reason for this is that at high speeds, most energy consumption
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results from overcoming air resistance, which grows quadratically with speed. Consequently,

the energy consumption which is necessary to pass a certain road corridor significantly depends

on the driver’s preferred driving speed. If her/his preferences are unknown, then it is hardly

possible to provide an adequate charging strategy. Due to this, it is from here on presumed

that the driver’s preferred driving speed vp ∈ R>0 is known whenever a charging strategy is

requested. Besides, it is assumed that the vehicle never reaches speeds above vp – even if

the macroscopic traffic state allowed this. Moreover, it is assumed that the driver is able to

drive with her/his preferred driving speed whenever free-flow traffic conditions prevail. For

any location x and any time t, the corresponding macroscopic traffic situations are interpreted

as free-flow traffic condition if the real macroscopic driving speeds V̄Real(x, t) are at least as

high as the corresponding free-flow speeds Vff (x), i.e., if the following condition holds:

V̄Real(x, t) ≥ Vff (x). (6.44)

Note that similar assumptions concerning the definition of free-flow traffic conditions and the

behavior of drivers in free-flow traffic conditions are suggested by Kerner (compare page 13

in (79)). Given the real macroscopic driving speeds V̄Real, the presumed free-flow speeds Vff ,

and a preferred driving speed vp, these considerations lead to a trajectory T (e, tS , V̄Real, vp) as

stated below:

V̄
vp
Real(x, t) :=

vp if V̄Real(x, t) ≥ min{vp, Vff (x)}

V̄Real(x, t) else
(6.45)

T (e, tS , V̄Real, vp) := T (e, tS , V̄
vp
Real) (6.46)

Other spatio-temporal speed functions, such as V tB
RTTI , can be modified analogously. It is

worth mentioning that the proposed method for considering individuality of drivers within

CSO is rather intuitive, but also a clear simplification of reality. Drivers cannot be expected

to strictly drive with the same speed in free-flow traffic conditions. Moreover, the driver’s

preferred driving speed probably varies during a trip. Also the assumption of time independent

free-flow speeds seems to be unrealistic, since reduced speed limits during nights with the

purpose of limiting noise emissions represent a counterexample. Note that uncertainty due

to individual driving style is still not considered – even though the proposed approach for

modeling driving behavior under free-flow traffic conditions is able to represent individuality

up to some degree. Hence, imperfect traffic information or RTTI, respectively, remains the

only source of uncertainty.

6.4 Summary
Chapter 6 can be divided into three parts according to the three tasks mentioned at the start of

it: In the first part, in section 6.1, the formulation of the problem of finding optimal charging
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strategies as a deterministic SPP was concretized. It was assumed that RTTI is available for the

computation of charging strategies and that RTTI is applied to derive driving trajectories, which

are again used to compute travel times and energy consumption values necessary for passing

road segments. The most important aspects that were mentioned in this context are that RTTI

was assumed to be error-prone, i.e., RTTI does not mirror the real traffic situation perfectly,

and that RTTI represents the only source of uncertainty. This means that all other data which

are relevant for CSO are expected to represent the real situation correctly. The proposed con-

cretizations are essential for the simulation study in chapter 7 for two reasons: First, they allow

bringing uncertainty into the simulation. Second, they form the basis for a realistic modeling

of edge costs. In the second part, in section 6.2, a framework for assessing the quality of RTTI

was developed. It was shown how RTTI can be brought into a numerically treatable form and

reasons for the imperfection of RTTI in practice were discussed. Next, an approach to gen-

erate adequate representations of real traffic situations was described. These representations

were intended to be applied as the references to which the available RTTI is compared. It was

proposed to interpret the quality of the considered RTTI as the level of similarity between the

RTTI and the corresponding traffic state reconstruction. The described framework for measur-

ing the quality of RTTI is important to analyze the impact of imperfect input data on charging

strategy quality. This is done in chapter 7. Finally, in section 6.3, the yet abstract concept

of trajectory buffers was concretized by describing a method for generating sets of reasonable

driving trajectories. A requirement for this method is the availability of two spatio-temporal

speed functions. The first of these speed functions represents lower bounds for average driving

speeds, the second one represents upper bounds. These boundary speeds are applied to esti-

mate boundary trajectories, which are able to describe a region on the spatio-temporal plane,

in which any reasonable driving trajectory is assumed to reside. It was suggested to generate a

set of reasonable driving trajectories by covering this region equally with trajectories. Besides

the method for generating sets of reasonable driving trajectories, also an approach to derive

lower and upper speed bounds on the basis of (commercial) RTTI was proposed. Section 6.3

ended with a discussion about the consequences of deriving driving trajectories from macro-

scopic traffic state estimations. The main issues addressed in this discussion were the probably

unnatural smoothness of such driving trajectories and the challenge to adequately model the

behavior of drivers under free-flow traffic conditions.



Chapter 7

Simulation

In chapter 7, a simulation study is described and the results of the simulation runs are ana-

lyzed. The aspects which were described in chapter 6 form the fundament for this study, in

which trips of BEVs under various conditions are simulated. The charging strategies that are

provided to the BEVs are based on different types of artificially generated error-prone RTTI.

The central motivation for the simulation study is, as already mentioned, to test the concept of

energy buffers under the existence of uncertainties and to evaluate whether the resulting charg-

ing strategies show a quality that can be said to be practicable.

Chapter 7 is structured as follows: First, in section 7.1, the simulation environment itself is

described. This description contains information about the simulated test site, the scheme for

constructing different types of artificial RTTI is explained, the considered energy consump-

tion model is introduced, and also information about the optimization framework, i.e., about

the parameters concerning the problem formulation and the applied optimization algorithm, is

provided. The main part of chapter 7, i.e., the analysis of the simulation results, is stated in

sections 7.2 and 7.3. In section 7.2, the influence of the quality of different types of RTTI on

the quality of the resulting charging strategies is analyzed in detail. The focus is set on relative

energy buffers. The motivation for this analysis is to achieve a comprehensive understanding

of the effects of applying error-prone RTTI for charging strategy computation. Furthermore,

the analysis allows gaining an impression of the charging strategy qualities that can already

be achieved by using a comparably simple type of energy buffer function. In section 7.3, two

versions of trajectory buffers are considered in addition to relative buffers. The first of these

trajectory buffer functions is based on the ideas of chapter 6, the second one represents a sim-

pler alternative. The comparison of the results that can be achieved by either of the three energy

buffer functions provides an idea of the charging strategy quality that can be achieved on the

basis of the proposed optimization framework. This is finally used in section 7.4 to assess

whether or not the developed framework is able to handle uncertainties in such a way that

practicable charging strategy qualities can be ensured.

138
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7.1 Simulation Environment
The simulation environment is implemented in Matlab. It allows simulating BEVs along a 362

kilometers long road corridor while facing traffic situations described by an artificial ground

truth VGT . These BEVs are guided during their trips by charging strategies. ”During“ the

trip means that the recommended strategies are regularly updated, i.e., the charging strategies

are provided as an on-trip information. Moreover, the computation of the charging strategies is

based on different types of artificially generated RTTI. Each of them shows, up to some degree,

similarities to the ground truth, but typically does not mirror VGT perfectly. Due to this, the

simulated BEVs face traffic situations which differ from the traffic predictions on which the

charging strategies are based. Different types of energy buffer functions can be applied to

compensate for the resulting uncertainties.

The simulation study itself is structured as follows: It is differentiated between two types of

parameters: Setting parameters and scenario parameters. Setting parameters describe the

quantities which are actually of importance. For the described research, these parameters are

1. the method according to which the simulated RTTI is generated,

2. the function that is applied for quantifying the size of the energy buffer,

3. and the corresponding reliability parameter65.

The scenario parameters, on the other hand, are intended to vary the conditions under which

the setting parameters are tested. The motivation for this is to derive robust and generally valid

conclusions. This means that one specific setting, i.e., one specific combination of values for

the setting parameters, is tested for many different combinations of scenario parameters. For

the described research, the setting parameters are

1. the starting time of the virtual trip,

2. the BEV’s state of charge at the beginning of the trip,

3. parameters describing the charging infrastructure that is available along the route,

4. parameters describing the properties of the considered virtual BEV,

5. and the presumed outdoor temperature.

Detailed explanations concerning either type of parameter will be given later on.

Section 7.1 is structured as follows: First, in section 7.1.1, the general structure of the simu-

lation study is described in detail. In section 7.1.2, an overview of the available traffic data is

provided. These data form the basis for the construction of the simulated reality VGT , which
65See Table 5.1 for an overview of the reliability parameters belonging to the different energy buffer functions.
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is described in section 7.1.3, and for the generation of different types of artificial RTTI. These

types of RTTI are introduced, alongside all other setting parameters, in section 7.1.4. The set

of scenario parameters is described in section 7.1.5. In section 7.1.6, some remarks concerning

further parameters that are relevant for the simulation study are given. Section 7.1 ends, in sec-

tion 7.1.7, with a discussion about the different types of failures that can occur when providing

charging strategies as an on-trip information.

7.1.1 Test Site and Structure of the Simulation
A schematic picture of the test site is displayed in the left side of Figure 7.1. Several charg-

ing stations can be found along a road corridor that starts at a charging station (denoted with

charging station 1) and ends at a destination. No alternative routes are possible and the only

available road corridor is from here on denoted as the ”main road“. The location of charging

stations and their number varies among the scenarios, but there is always a charging station at

the start. The black arrows in Figure 7.1 mark decision stages and ”target“ stages along the

main road. The notion of target stages is relevant for describing the simulation environment in

the following. More details will be given later on. Decision stages are locations at which the

BEV’s driver has to make decisions66. Correspondingly, new charging strategies are computed

whenever the simulated BEV passes one of the decision stages. The decision stages can be

found at the start, at the destination, and shortly before off-ramps allow leaving the main road

in order to get to a charging station.

The flowchart on the right side of Figure 7.1 illustrates the structure of the simulation. A

setting is defined by specifying the aforementioned setting parameters (type of energy buffer

function, reliability parameter, type of RTTI). For each tested setting, it is iterated over a set

of 1440 different scenarios. The proceeding in each simulation run is as follows: First, a sce-

nario is selected. Then, an initial charging strategy computation is carried out, which takes

scenario and setting parameters into account. The ground truth VGT is typically assumed to be

unknown. If this computation does not lead to a charging strategy, i.e., if no reliable charging

strategy for the whole road corridor can be computed based on the given setting and scenario

parameters, then the next scenario is considered. Otherwise, it is assumed that the BEV fol-

lows the recommended charging strategy. If charging is suggested at charging station 1, then

the BEV’s state of charge is increased correspondingly. Moreover, the time at which the BEV

leaves charging station 1 is also adjusted. Next, a virtual driving trajectory leading to the first

target stage is computed on the basis of VGT . An energy consumption model, which is specified

by the scenario parameters, is applied to this trajectory. Travel time and energy consumption

are computed. If the simulated energy consumption which is based on VGT exceeds at any time

the energy which is available, then the BEV runs out of energy within the simulation. This is

the worst-case scenario. Otherwise, the BEV successfully reaches the first target stage and

66According to chapter 3, decision stages are points in time and not locations. This was stated due to notational
reasons. Here, instead the more intuitive idea of interpreting decision stages as locations is considered.
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Figure 7.1: Structure of simulation.

a new charging strategy based on the BEV’s current position, its current state of charge, the

current time, and updated RTTI is computed. From here on, the proceeding remains the same.

If a reliable strategy is found, the BEV’s further trip is simulated on the basis of VGT until it

either reaches the destination, runs out of energy along the route or a reliable charging strategy

can no longer be provided. Afterwards, the next scenario is considered until all 1440 scenarios

have been simulated.

Note that the number of scenarios which are tested for each setting is rather high. This is im-

portant for two reasons: First, it ensures (up to some degree) robustness of the findings, i.e.,

the corresponding results are probably valid for a broad variety of situations a BEV might face.

Second, it is extremely important for tools that provide charging strategies to achieve a high
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level of reliability. Ensuring an arrival probability of 95 percent, which is a number that is of-

ten used in the context of robust travel time predictions, is not enough in this context. It would

mean that the BEV does not reach its destination in one of 20 cases. To be able to analyze and

compare the aforementioned settings at reliability levels close to 100 percent, a high number

of tested scenarios is inevitable.

Testing many scenarios, on the other hand, makes it necessary to keep computation times rea-

sonably low. For this purpose, algorithm B is used within the simulation. A detailed compari-

son between algorithms A and B with regard to computational effort and solution quality can

be found in (69). The results show that algorithm B in almost all cases finds an optimal solution

and, at the same time, can be computed much faster than algorithm A. Furthermore, allowing

no route choices leads to a small graph ~G∆
D and consequently further reduces the computational

effort.

7.1.2 Available Traffic Data
Traffic related data from four different corridors on German freeways are relevant for the sim-

ulation runs: The first of these corridors is a stretch on the autobahn A9 at its southern end,

near Munich, southbound (i.e., leading to Munich). To be more precise, a 26 kilometers long

corridor between exit ramp Allershausen and interchange Munich north. The second road cor-

ridor is a part of the A9 between the interchange Munich north and exit ramp Geisenhausen,

northbound (i.e., leading to Nürnberg). The third on is a part of the autobahn A99 leading to

Salzburg, between exit ramp Ludwigsburg and exit ramp Hohenbrunn. Finally, the last of the

relevant road corridors is a stretch of the A99 leading to Stuttgart, between exit ramp Ottobrunn

and the freeway junction Munich – Feldmoching. Further information about these sites is given

in Table 7.1, such as their lengths or the number of lanes. Note that the number of lanes varies

for all of these freeways and thus the maximal and minimal number of lanes are stated in Table

7.1.

Table 7.1: Information on test sites.

corridor length of
corridor [km]

number
of lanes

number
detectors

number of
TMC segments

number of
datasets

A9 Nürnberg 39 3–4 27 12 31 (27 + 4)
A9 Munich 26 3–4 22 10 24 (18 + 6)
A99 Salzburg 33 2–5 26 13 26 (22 + 4)
A99 Stuttgart 35 2–5 29 14 27 (19 + 8)

Three types of traffic related data are available for each of these freeway corridors for a two

and a half months period between April 11th and June 30th, 2015: Inductive loop detector

data supplied by the South Bavarian Autobahn Authority, recorded commercial RTTI, and
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historical average driving speeds. The recorded RTTI was broadcasted by a well-known private

traffic content provider. The historical average driving speeds were generated by the same

provider and are primarily used for long-term traffic predictions. The detector data form the

basis for computing traffic state reconstructions. A more detailed description of the data can be

found below. Before that, however, it is important to mention that some of the data that were

gathered during the aforementioned period will not be considered. On some days, significant

loop detector failures occurred. On others, either the RTTI recording procedure partly failed

or RTTI was not provided continuously due to, for example, maintenance works on the data

provider’s servers. Only those days for which RTTI and detector data are comprehensively

available (i.e., throughout the whole day) are taken into account within the following analyzes.

The total number of analyzed days for each road corridor can be found in the last column of

Table 7.1 outside the brackets. The meaning of the numbers in brackets will be explained later

on.

Inductive Loop Detector Data The inductive loop detector data are given at one-minute res-

olution. They contain several types of traffic information, but for the following investigations,

only recorded driving speeds are used. The available data are aggregated over all lanes and

thus show no lane specific information. The number of detectors for each considered freeway

corridor can be found in Table 7.1. The distances between two consecutive detectors range

between a few hundred meters and more than three kilometers. Traffic state reconstructions are

carried out based on these data as it has been described in section 6.2.

Historical Average Driving Speeds The available historical speed data were delivered by

a professional traffic content provider. Unfortunately, no details concerning their generation

process are available. These data represent historical average driving speeds in dependency of

time (time of day and day of week) and location. A spatio-temporal speed function VHist is

derived from these data. Function VHist shows a temporal resolution of one minute and uses

the TMC location code list for spatial referencing.

Recorded Real-time Traffic Information The considered RTTI was broadcasted with an

update rate of one minute (i.e., ∆tRTTI = 1 minute) by the same traffic content provider from

whom also the historical speed averages were received. The RTTI refers spatially to the TMC

location code list67. Hence, the spatial resolution is not very high. The numbers of TMC seg-

ments that (partly or completely) cover the four considered road corridors can be found in Table

7.1. Some of these segments span lengths of almost six kilometers. For each TMC segment

67It is worth mentioning that the originally provided historical speed data did not refer to the TMC location
code list. These original data were aggregated according to the methodology that was described in section 6.2.5
to transform function VGT to function VTGT . This was done to avoid that, besides the spatio-temporal grids that
are induced by VGT and by the recorded commercial RTTI, a third grid has to be considered during the simulation
runs.



144 CHAPTER 7. SIMULATION

(a) Ground truth VGT (b) Traffic state estimations vEst

(c) Technical ground truth VTGT (d) Error plot: Visualization of absolute percentage errors

Figure 7.2: Visualization of technical ground truth, recorded RTTI and the resulting relative
errors on the freeway corridor A99, leading to Stuttgart, for April, 28th 2015.

and each minute, four different speed values were broadcasted: The first one is the estimated

current driving speed vEst(SRTTIi , tB). Variable tB denotes the time at which the information

is broadcasted. For simplicity, it is still assumed that tB is equal to the time t0, at which the

optimization is computed. The other three speed values, here denoted with vsho(SRTTIi , tB),

vmid(S
RTTI
i , tB) and vlon(SRTTIi , tB), are intended to predict the future evolution of driving

speeds for different prediction horizons. More information concerning the procedure for traffic

state prediction on the basis of the recorded RTTI will be given later on.

The recorded RTTI shows some special properties: The traffic content provider defines for each

TMC segment SRTTIi , a free-flow driving speed Vff (SRTTIi ). This free-flow speed is constant
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over time. The broadcasted speed values are never higher than Vff , independently of the raw

traffic data the content provider receives. Furthermore, a speed reduction is solely broadcasted

if at most 80 percent of the corresponding free-flow speeds are obtained. Thus, minor speed

reductions are not represented by the RTTI. These properties can be seen in Figure 7.2. There,

for April 10th, 2015, four contour plots for the aforementioned freeway corridor on the freeway

A99, leading to Stuttgart, are displayed: Figure 7.2(a) shows VGT based on inductive loop de-

tector data, Figure 7.2(b) refers to vEst (which is in fact function VRTTI , i.e., the function that

shows solely traffic state estimations), Figure 7.2(c) to VTGT , and the last contour plot illus-

trates absolute percentage errors that result when comparing vEst to VTGT . Figures 7.2(b) to

7.2(d) show the expected low spatial resolution. Furthermore, when looking at vEst in Figure

7.2(b), broadcasted speeds remain the same over large parts of the day. This is a consequence

of ignoring minor speed reductions.

Besides speed values, the already mentioned confidence values Cf tB (SRTTIi ) are also avail-

able. They are intended to rate the trustworthiness of the provided RTTI. The idea is that the

more data are collected, the more reliable the corresponding traffic state estimation is. The

confidence values range between 50 and 99, where 50 indicates a low confidence rating.

7.1.3 Construction of an Artificial Ground Truth
CSO is primarily intended for BEVs on long-distance trips. Hence, it seems expedient to con-

sider a long road corridor within the simulation. ”Long“ means here that a BEV needs to charge

at least once to be able to pass the whole corridor. In order to simulate virtual BEVs and the

influence traffic has on their trips, a ground truth VGT representing the real traffic situation has

to be provided for the considered road corridor. One of the best possibilities to ensure that

VGT shows realistic properties is to apply a traffic state reconstruction method to stationary

detector data which are gathered on a real road corridor. Considering the traffic data which

are available for the simulation (compare section 7.1.2), the corresponding road corridors are

by far not long enough to reasonably test CSO. As a consequence, an artificial spatio-temporal

speed function VGT is constructed on the basis of the available inductive loop detector data.

These data are separated into two parts. One dataset is intended later on for generating speed

bounds as described in section 6.3.2, and the other one for testing, i.e., for the construction of

VGT . The test set consists of four days of data for the previously described road corridor on

the autobahn A9 leading to Nürnberg, six days of data for the A9 leading to Munich, four days

of data for the A99 leading to Salzburg, and eight days of data for the A99 leading to Stuttgart

(see also the second of the two numbers in brackets in the last column of Table 7.1). These

days are selected randomly from the set of all days for which traffic data are comprehensively

available. Traffic state reconstructions are carried out by applying the ASM on each of these 22

datasets separately. As a result, one receives 22 spatio-temporal speed functions, each of them

describing the traffic situation for one day and one of the four road corridors for which traffic
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(a) Arrangement of datasets leading to VGT .

Day 1 Day 2 Day 3 = Day 1 

(b) Function VGT which is used in simulation.

Figure 7.3: Construction of the ground truth which is used for the simulation runs.

data are available. These 22 speed functions are arranged as shown in Figure 7.3(a). There,

the positions of these 22 datasets on the spatio-temporal plane can be seen. This arrangement
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leads to an artificial ground truth VGT for a three day period for a 362 kilometers long road

corridor (see Figure 7.3(b)). The ground truth construction is carried out with ∆tGT equal

to one minute and hence, as the RTTI is assumed to be updated every minute, it holds that

∆tRTTI = ∆tGT = 1 minute. Note that the first day is copied and used additionally as the

third day. Generating a third is necessary, since the starting times of the simulated BEVs are

distributed between the start of the first and the end of the second day68. Without the extension

from two to three days, simulated BEVs that start their trip at the end of the second day would

leave the spatio-temporal area for which macroscopic speed averages are available. The 362

kilometers long road corridor is denoted with X , the two days time period with T2d ⊆ R≥0,

and the three day time period with T ⊆ R≥0. Note that the available RTTI and historical aver-

age driving speeds are also arranged as shown in Figure 7.3(a).

The suggested arrangement of traffic state reconstructions has one significant drawback: Even

though each of the applied spatio-temporal speed functions represents realistic traffic situations,

the resulting arrangement of all speed functions cannot achieve that. Discontinuities occur at

the spatial borders between these functions69. Such phenomena cannot be observed in reality.

Consequently, computed driving trajectories show unrealistic speed drops and increases, since

any simulated trajectory is in fact only a concatenation of realistic trajectories. This would be

critical if the applied primary energy consumption models depended on accelerations which

are derived from these trajectories. However, the consumption models, which will be proposed

later on, solely depends on driving speeds. This allows interpreting the energy consumption

which results from passing a section of the simulated road corridor that contains such a dis-

continuity as the sum of the energy consumption which results for passing the first part of this

section, i.e., until the first discontinuity is reached, and the energy consumption that results for

passing the remaining part of the section.

7.1.4 Setting Parameters
Recall that three types of setting parameters exist: The available RTTI, the applied energy

buffer function, and the corresponding reliability parameter.

Types of imperfect traffic information For the computation of charging strategies, function

VGT , which is assumed to represent the real traffic situation within the simulation, is not known.

Solely RTTI, which is assumed to approximate VGT up to some degree, is available. Travel time

and energy consumption predictions are based on driving trajectories that are derived from the

68Unfortunately, it was not possible to include further data into the testing dataset, since tests showed that the
method for computing speed bounds, which was proposed in section 6.3.2, needs a lot of data in order to achieve
reasonably good results.

69There are also discontinuities at the temporal borders. However, these discontinuities are very weak, since
free-flow traffic conditions typically can be found on both sides of these borders, where speed values describing
traffic situations at 00:00 am and at 12:00 pm meet.
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available RTTI. The level of uncertainty that is caused by considering error-prone RTTI when

computing optimal charging strategies depends on the similarity between VGT and RTTI, i.e.,

it depends on the quality of the RTTI. In order to obtain a comprehensive understanding of the

relation between RTTI quality and charging strategy quality, six different types of RTTI are

considered during the simulation runs:

1. The real traffic situation (assumption of perfect information)

2. Free-flow driving speeds (assumption of no information)

3. Historical average driving speeds

4. Instantaneous travel times

5. Information based on recorded commercial RTTI which was broadcasted by a profes-

sional traffic content provider

6. An artificially generated spatio-temporal speed function which shows phantom jams

The first type of RTTI results when computing charging strategies on the basis of function VGT .

This means that perfect knowledge about current traffic states and the future development of

traffic is presumed. Since incorrect RTTI represents the only source of uncertainty within

the simulation, no energy buffer is necessary in this situation. The resulting charging strategies

ensure minimal travel times – except for cases where algorithm B returns a suboptimal solution.

Thus, the setting, where VGT is available for CSO and where the size of energy buffers is

constantly set equal to zero, is from here on considered as reference setting. All other types

of RTTI are compared to this setting. In order to be able to differentiate formally between

the function describing the ground truth and the function representing perfect RTTI, a function

V tB
Perf is introduced to denote the latter:

V tB
Perf (x, t) := VGT (x, t) (7.1)

Note that tB is the time at which the charging strategy is computed and it is the time at which

the RTTI, which is used for the charging strategy computation, is requested.

The second type of RTTI results by presuming free-flow speeds for all locations and times. This

can be understood as a situation in which no information about the real traffic situation is avail-

able. Thus, it forms the counterpart to settings in which V tB
Perf is available. The spatio-temporal

speed function which represents this type of RTTI is defined as subsequently described:

V tB
ff (x, t) := Vff (SRTTIi ) ∀x ∈ SRTTIi (7.2)
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Recall that, based on the considerations of section 6.3.3, a driver is assumed to be able to drive

constantly with her/his preferred driving speed vp in free-flow. Hence, it can also be written:

V tB
ff (x, t) := vp (7.3)

The third idea is to generate RTTI solely on the basis of historical speed averages:

V tB
Hist(x, t) := VHist(S

RTTI
i , t) ∀x ∈ SRTTIi (7.4)

Note that VHist and V tB
ff do not contain any recent traffic information, i.e., in fact, they are

no ”real-time“ traffic information. Though, both functions will allow analyzing the benefits of

RTTI in comparison to such types of information.

Instantaneous traffic predictions represent the fourth method for generating RTTI which is

considered in the following. The fundamental idea is to assume that the current traffic situation

is known and that it won’t change in the future:

V tB
Inst(x, t) := VGT (x, tB) for t ≥ tB. (7.5)

This approach is often applied in literature in order to artificially generate RTTI which behaves

realistically (43) (58) (97). Note that also many navigation applications base their route com-

putations on instantaneous travel times.

In (53), it is stated that former studies, which intended to analyze the influence that imperfect

RTTI has on traffic related services, typically had to simulate the RTTI, i.e., to generate it

artificially. This is in most cases, as already mentioned, done by using instantaneous travel

times (43) (58) (97) or by adding random noise to the (reconstructed or simulated) real traffic

situation (94) (162). Furthermore, it is emphasized in (53) that artificially generated RTTI

lacks up to some degree realism. Some of the properties of real RTTI, such as a limited spatial

resolution, are often not represented. Another important aspect that has to be considered in this

context is that traffic content providers start going beyond simply using instantaneous travel

times for traffic prediction purposes70. Correspondingly, a significant benefit compared to

former studies is that in the following not only the impact of artificially constructed RTTI is

analyzed, but also real commercial RTTI is considered. As mentioned before, the recorded

RTTI contains four types of speed values vEst, vsho, vmid and vlon. These four values are used

70The recorded RTTI which is described within in this chapter is an example of RTTI including predictions.
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Figure 7.4: Generating a real-time traffic state prediction based on RTTI and historical speed
profiles.

for traffic prediction purposes as stated below:

V tB
Com(x, t) =



vEst(S
RTTI
i , tB) if x ∈ SRTTIi and tB ≤ t ≤ tB + 10min

vsho(S
RTTI
i , tB) if x ∈ SRTTIi and tB + 10min < t ≤ tB + 25min

vmid(S
RTTI
i , tB) if x ∈ SRTTIi and tB + 25min ≤ t < tB + 40min

vlon(SRTTIi , tB) if x ∈ SRTTIi and tB + 40min ≤ t < tB + 55min

VHist(S
RTTI
i , t) else

(7.6)

Value vEst is used for short-term prediction for the first ten minutes, vsho for the period be-

tween minute ten and minute 25, vmid for the period between minute 25 and 40, and vlon for

the period between minute 40 and 55. From minute 55 onward, historical traffic data are used

to predict driving speeds. Figure 7.4 illustrates the construction of V tB
Com (”Com“ stands for

”commercial“). On the left side, the broadcasted RTTI can be found. As already mentioned,
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four speed values are broadcasted for each road segment and each minute. These speed values

are applied to predict driving speeds for the next 55 minutes. The result is that V tB
Com forms

again a grid on the spatio-temporal plane, but this grid shows a very low temporal resolution.

This changes as soon as prediction horizons of more than 55 minutes are considered. There,

historical average driving speeds are applied as a supplement to the real-time information.

The sixth and last considered type of traffic information is generated as follows:

V tB
Pha(x, t) :=

min{VGT (x, t), VGT (x, t+ 1 day)} if t is part of first or second day

min{VGT (x, t), VGT (x, t− 1 day)} if t is part of third day
(7.7)

Recall that, in the simulation, VGT represents a three day period, where the speeds belonging

to first day are copied and also used for the third day. Function V tB
Pha returns for any point

(x, t) either the real driving speed VGT (x, t), or, if it is lower, the driving speed that is returned

by VGT on one of the neighbouring days for the corresponding location and time of day. Due

to this, function V tB
Pha is either equal to the simulated reality or underestimates driving speeds.

The motivation for the construction of V tB
Pha is that traffic congestion is reported in situations in

which no congestion can be found in reality and that this traffic congestion shows a reasonable

spatio-temporal extent71. Function V tB
Pha represents in some sense also a counterpart to Vff ,

which reports no congestion, even if congestion can be found in reality for the corresponding

time and location.

Three remarks concerning the way the different types of RTTI are included into the simula-

tion have to be made: First, during the simulation, predicted driving trajectories are based on

RTTI, ”real“ driving trajectories are based on the ground truth VGT . In either case, the applied

speed function is adjusted with regard to the driver’s presumed preferred driving speed vp.

This means that all generated trajectories show a speed of vp whenever the considered spatio-

temporal speed function exceeds the free-flow speed defined by Vff or the preferred driving

speed vp. The formal description of this adjustment was provided in equation 6.45. Second,

all considered speed functions refer to grids. The set of cells for which functions V tB
Hist, V

tB
ff

and V tB
Com are piecewise constant is denoted by {SRTTIi ×TRTTIj }i,j , the set of cells for which

functions VGT , V tB
Perf , V tB

Inst and V tB
Pha are piecewise constant is denoted by {SGTi × TGTj }i,j .

Due to this, the RTTI induced grid and the ground truth grid are the same if functions V tB
Perf ,

V tB
Inst and V tB

Pha are used as RTTI. Third, if it is written V tB
RTTI , then not a specific type of RTTI

function is considered. Instead, V tB
RTTI can be interpreted as a placeholder, i.e., V tB

RTTI may

71

”Pha“ stands for ”phantom“. The idea behind this notation is that V tBPha shows ”phantom traffic jams“, i.e.,
traffic jams that cannot be found in reality.
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represent any of the described RTTI functions:

V tB
RTTI ∈

{
V tB
Perf , V

tB
Inst, V

tB
Pha, V

tB
Hist, V

tB
ff , V

tB
Com

}
(7.8)

Energy buffer function and reliability parameter Three different approaches for quantify-

ing the size of the energy buffer are considered. Relative energy buffer function SOCr,zmin are

used during the analysis of the dependency of the quality of recommended charging strategies

on the quality of the available RTTI. Afterwards, in section 7.3, relative buffers are compared

to two different types of trajectory buffers. The sets of auxiliary trajectories are derived as

described in section 6.3.1 for both trajectory buffer functions. They solely differ with regard

to the method according to which lower and upper speed bounds are generated. More details

about this will be given later on in section 7.3.

7.1.5 Scenario Parameters
Each scenario is described as a 6-tuple consisting of the starting time of the trip tS , the state

of charge at the start SOCS , the infrastructure setting, vehicle related parameters such as the

consumption model describing the BEV’s energy consumption, the driver’s preferred driving

speed vp, and the outdoor temperature Tp. The sequence of scenarios which are tested in each

simulation run remains the same – independently of the setting parameters. Starting times are

chosen in steps of two minutes, starting at 00:00 in the morning of the first day and ending at

23:58 at the end of the second day for which VGT is constructed. This leads in total to 1440

scenarios. For each starting time, SOCS and Tp are chosen randomly between zero and 100

percent, and −10◦C and +35◦C, respectively. A uniform distribution is applied in both cases

for the generation of the random numbers. Moreover, four different infrastructure scenarios are

considered. The first infrastructure scenario is assigned to the first scenario (assuming that the

scenarios are ordered according to their starting times), the second infrastructure scenario to the

second scenario and so forth. When reaching the fifth scenario, the first infrastructure scenario

is used again. Afterwards, one proceeds analogously (i.e., second infrastructure scenario is

assigned to the sixth scenario, ...) until all scenarios have received an infrastructure scenario.

The same procedure is applied to assign one of three possible vehicle models and one of five

possible preferred driving speeds to each scenario (see Table 7.2 for illustration).

Infrastructure Scenarios The infrastructure scenarios differ particularly in terms of the

number of charging stations: The first scenario provides seven, the second one nine, the third

one eleven, and the last one thirteen charging stations. Considering the current situation along

most German freeways (compare for instance the freeway A9 between Munich and Leipzig,

which will be considered in chapter 8 for real world test drives), an average distance between

two successive fast-charging stations of 40 kilometers and more can be found. Thus, the first

and second infrastructure scenarios can be understood as examples representing the current
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Table 7.2: Description of scenarios
Scenario
Number tS SOCS Tp Infrastructure vp

BEV
Model

1 00:00
day 1

87.1 % 4.2◦C
scenario 1
(7 stations)

90 km/h standard

2 00:02
day 1

17.3 % 22.6◦C
scenario 2
(9 stations)

100 km/h city

3 00:04
day 1

17.2 % 8.7◦C
scenario 3

(11 stations)
110 km/h high-range

4 00:06
day 1

37.2 % -4.5◦C
scenario 4

(13 stations)
120 km/h standard

...

1440 23:58
day 2

91.1 % 22.0◦C
scneario 4

(13 stations)
130 km/h high-range

situation. The third and the fourth scenarios can be understood as a vision of a future situation,

for which a higher density of charging infrastructure is probable. In each of the four scenar-

ios, one charging station can be found at the starting location. The other charging stations are

distributed randomly along the main road. To be more precise, one random vector is gener-

ated for each of the four infrastructure scenarios. A uniform distribution between zero and

362 kilometers is applied. The entries of the vector are used to mark the locations of the exit

ramps which lead to the charging stations. To ensure that a reliable charging strategy exists, at

least for most of the considered scenarios, new random vectors are generated until the maximal

distance between two successive charging stations and the distance between the last charging

station and the destination are, at most, equal to 80 kilometers. Moreover, new random vectors

are also generated until the smallest of the occurring distances between two successive charging

stations and between the last charging station and the destination is bigger than three kilome-

ters72. The second condition is intended to achieve a realistic distribution of exit ramps, as a

situation where several exit ramps are located at almost the same position cannot be observed

very often in reality (at least not in Germany).

Preferred Driving Speeds Five different possible preferred driving speeds vp are assumed:

90, 100, 110, 120 and 130 kilometers per hour. These speeds seem to be chosen rather low

considering that there is no general speed limit on German freeways. On the other hand, initial

simulation runs showed that (for the presumed BEV models) the lowest total travel times can

be achieved for speeds slightly above 100 kilometers per hour. The main reason for this is that

energy consumption becomes extremely high for high driving speeds. Moreover, high preferred

driving speeds lead frequently to situations in which no reliable charging strategy exists, even

72The method of generating random vectors until they fulfill a set of additional constraints is often denoted as

”rejection sampling“.
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if perfect knowledge of the future development of traffic is presumed. In order to avoid such

special situations and, along with this, to guarantee that for each scenario a charging strategy

exists which allows reaching the destination, the maximal possible preferred driving speed is

kept low.

Vehicle Parameters There are three different features of BEVs which are varied among the

scenarios: The energy consumption model, the capacity of the battery, and the charging dura-

tions. It is started with describing the different energy consumption models.

Time 
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Figure 7.5: Computing energy consumption based on macroscopic driving trajectories.

Energy consumption of BEVs consists of two components, namely the primary energy con-

sumption c̀Prim and the secondary energy consumption c̀Sec. The primary energy consumption

results from driving itself, i.e., from acceleration, deceleration, overcoming air resistance, re-

cuperating energy and so on. The secondary energy consumption refers to energy consumption
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which does not result directly from driving, such as energy consumption caused by the automo-

tive electronics or air-conditioning. Figure 7.5 illustrates the methodology according to which

primary and secondary energy consumption are derived from virtual (macroscopic) driving

trajectories within the simulation study. Based on given traffic information V tB
RTTI , a virtual

driving trajectory T (e, t, V tB
RTTI) is derived for some road segment e and some time t. This

driving trajectory is defined as a sequence of points {(tk, xk)}k=1,2,...,K on the spatio-temporal

plane:

T (e, t, V tB
RTTI) =

[
(t1 = tS , x

1 = e), (t2, x2), ..., (tK , xK = e)
]
. (7.9)

Variable e marks the start of edge e. A small excerpt of an exemplary contour plot showing a

piecewise constant speed function and a resulting driving trajectory can be found in the upper

left part of Figure 7.5. From such a trajectory, a piecewise constant speed profile SP is derived,

which describes driving speeds along the road corridor. This speed profile can be understood

as a function of space:

SP
(
x, T (e, t, V tB

RTTI)
)

:= V tB
RTTI(x

k, tk) ∀x ∈ [xk, xk+1[ (7.10)

A corresponding illustration can be found in the right upper part of Figure 7.5. Speed profiles

are used to estimate primary consumption and travel times tK − t1 to estimate secondary con-

sumption.

To get from speed profiles to energy consumption, a function ECPrim (”EC“ for ”energy con-

sumption“) will be derived later on. This function returns, given a macroscopic driving speed

v, an average energy consumption per distance traveled. This value can be measured, for exam-

ple, in joules per meter. The primary energy consumption resulting from a whole speed profile

is then computed by multiplying traveled distances with the corresponding speed dependent

energy consumption per distance:

c̀Prim(e, t, T (e, t, V tB
RTTI)) := c̀Prim(e, t, V tB

RTTI) =

=

K−1∑
k=1

(xk+1 − xk) · ECPrim
(
SP

(
xk, T (e, t, V tB

RTTI)
))

.

(7.11)

Note that c̀Prim(e, t, T (e, t, V tB
RTTI)) is replaced by c̀Prim(e, t, V tB

RTTI) in equation 7.11, since

the driving trajectory is a direct result of e, t and V tB
RTTI . To compute secondary energy con-

sumption, a function ECSec is applied which returns, depending on outdoor temperature Tp,

an average energy consumption per time. This value can be measured, for example, in joules

per second. The secondary energy consumption resulting from a trajectory T (e, t, V tB
RTTI) is

then derived as subsequently described:

c̀Sec(e, t, T (e, t, V tB
RTTI), Tp) := c̀Sec(e, t, V

tB
RTTI , Tp) := (tK − t1) · ECSec(Tp). (7.12)
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The focus is set on the dependency of secondary consumption on Tp, since energy necessary

for air conditioning contributes most to secondary consumption for BEVs (66). The amount

of energy which is typically necessary for air conditioning again depends significantly on the

outdoor temperature. Finally, energy consumption costs are defined as the sum of primary and

secondary consumption:

c̀E(e, t, V tB
RTTI , Tp) := c̀Prim(e, t, V tB

RTTI) + c̀Sec(e, t, V
tB
RTTI , Tp). (7.13)

To achieve reasonable results in the context of CSO, it is important to derive realistic energy

consumption models ECPrim and ECSec. For this purpose, a primary energy consumption

model is derived which is based on a dataset containing information about almost eleven thou-

sand trips of altogether 23 BEVs73. The 23 vehicles, each of them was a BMW i3 (without

range extender), were either privately owned or part of company fleets. The vehicles were

equipped with sensors for measuring quantities, such as driving speeds and (instantaneous)

primary energy consumption. The data were recorded with a frequency of ten hertz. Informa-

tion on location or road steepness was not gathered.

Since the derivation of vehicle trajectories during the simulation is based on macroscopic traffic

state estimations and predictions, respectively, it cannot be expected that corresponding accel-

erations are realistic. This has already been discussed in section 6.3.3. This fact, together with

the missing possibility to locate the equipped vehicles’ driving paths74 prevents constructing

a precise physical energy consumption model as it is done, for instance, in (148). Still, the

available energy consumption data are applied to derive a realistic relation ECPrim between

macroscopic driving speeds and energy consumption. A detailed description of the derivation

of this model can be found in the appendix, in chapter D.2.

Due to a nondisclosure agreement with BMW, the author is not allowed to provide specific in-

formation on the derived relation between energy consumption per distance and driving speed.

However, an idea of the shape of ECPrim is sketched in the lower right part of Figure 7.5. It

can be stated that ECPrim is a convex function which shows lowest consumption values for

speeds between 40 and 50 kilometers per hour. Significant increases of consumption can be

observed for low and high speeds. Function ECPrim is steeper for low speeds than for high

speeds (i.e., the derivative of ECPrim is very negative for low speeds and, in comparison, less

positive for high speeds).

73The recording of the data took place in the project ”PREMIUM“ and was funded by the (German) Federal
Ministry for the Environment, Nature Conservation, Building and Nuclear Safety.

74The absence of information on location makes it hardly possible to gain information about road steepness or
road classes. Moreover, it is also hardly possible to reliably decide whether the recorded data refer to urban or
non-urban traffic.
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The function which is applied within the simulation to describe secondary energy consumption

ECSec depending on temperature Tp is provided by BMW75. Again, no details can be shown,

but the shape of this function shows no surprises (see lower left part in Figure 7.5): Low tem-

peratures lead to the highest possible energy consumption, but secondary consumption is also

significantly increased at high temperatures. Note that primary consumption is typically the

dominating factor, i.e., driving contributes more to the total energy consumption than the sec-

ondary consumers do (ECPrim > ECSec).

Concerning the charging behavior, a time period of 60 minutes is used as the maximal charging

duration dmax. The function S, which describes the charging behavior of a BEV (compare

equation 4.23), is defined as follows:

S(d) :=


d

30 minutes · 80% if d ≤ 30 minutes

80% + d−30 minutes
30 · 20% if 30 minutes < d ≤ dmax

100% else

(7.14)

Function S returns for a given duration d ∈ R≥0 the state of charge which is reached when

recharging a completely empty battery during this duration. This means that a recharging pro-

cess from zero to 80 percent takes 30 minutes, recharging the remaining 20 percent consumes

the same amount of time. Function S is based on the charging behavior of a BMW i3 (17).

Also the battery capacity of a BMW i3 of 67,680,000 joules is used within the simulation (18).

The described energy consumption model c̀E (see equation 7.13) is from here on denoted as

the ”standard“ model. As already mentioned, two further consumption models are introduced:

The ”city“ model and the ”high-range“ model. The idea of the city model is to suit the needs

of urban traffic. Therefore, its primary energy consumption is, in comparison to the standard

model, reduced for low speeds and increased for high speeds. This could be the case for

vehicles which are equipped with a very efficient system for recuperation and which show

a comparably high air resistance. Furthermore, the battery capacity of the city model and,

along with this, the durations for charging are reduced by ten percent. This leads to a capacity

of 60,912,000 joules and to a maximal charging duration of 54 minutes, whereby recharging

from zero to 80 percent is done in 27 minutes. Secondary consumption is assumed to be

slightly smaller than for the standard model. The high-range model is understood as a premium

version of a BEV. Its battery capacity is increased by 40 percent. Charging durations are

correspondingly increased by 40 percent. Also primary and secondary energy consumption are

higher than for the standard model. Especially for low driving speeds, a significant increase of

primary consumption is presumed.

75The provision of this function took place in the project ”DC-Ladestation am Olympiapark“, which was funded
by the (German) Federal Ministry of Transport and Digital Infrastructure.
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7.1.6 Further Parameters
Time and energy costs for driving along the main road are based on driving trajectories, which

are derived from spatio-temporal speed functions. For leaving the main road and getting to a

charging station, a reduction of the state of charge of two percent is assumed, independently of

the leaving time or the applied energy consumption model. The time costs for leaving the main

road and approaching one of the charging stations are set equal to three minutes. Acceleration

or deceleration processes are not considered. Since it is assumed that the BEV starts at charging

station 1, no additional time or energy costs result for approaching this station. The costs for

returning from station 1 to the main road, however, are defined analogously to other stations.

Note that any energy which is necessary for leaving or returning to the main road is not taken

into account by any of the applied energy buffer functions. This means that trajectories for

the trajectory buffer are solely computed for the main road and relative energy buffers do not

take the aforementioned costs of two percent into account. This simplification allows avoiding

the need to find a reasonable approach to generate border trajectories for the way from and to

the charging stations. Relative buffers ignore the energy costs to conserve consistency of all

applied energy buffer functions. Concerning waiting times, it is assumed that no waiting times

occur at charging stations, i.e., waiting time cWT is set equal to zero. Time costs cAT are set equal

to three minutes (see section 4.1.2 for the interpretation of cAT ). The charging step length ∆ is

set equal to five percent.

7.1.7 Types of Failures
As mentioned before, different settings are tested by simulating virtual BEVs facing various

scenarios. The quality of charging strategies is measured with regard to realized travel times,

i.e., the average time needed by a BEV within the simulation to reach the destination, and fail-

ure probabilities. Different settings can be compared with each other on the basis of computed

average travel times and failure probabilities. Concerning the latter, a BEV following a naviga-

tion system which provides charging strategies as an on-trip information (i.e. regular updates

during the trip based on recent information), as it is assumed for the described simulation, can

basically experience four different situations:

1. The BEV reaches the destination.

2. The navigation system is at the beginning of the trip not able to provide a charging

strategy which fulfills the energy security condition.

3. A decision stage is reached during the trip and the navigation system is not able to pro-

vide for the remaining part of the route a charging strategy which fulfills the energy

security condition.

4. The BEV runs out of energy during the trip while following the instructions of the navi-

gation system.
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Scenarios that lead to the first situation are counted as a success, scenarios leading to the last

situation are counted as failures. For the second situation, it is not that simple. As already men-

tioned, the setting where perfect traffic information V tB
Perf is available and the energy buffer is

set constantly equal to zero, is considered as the reference setting to which all other settings

are compared. However, even though perfect information is presumed for the reference setting,

it is still possible that scenarios exist for which no charging strategy recommendation can be

made. This means that there exists no strategy which would allow reaching the destination.

This could be the case, for instance, if a very long distance between two successive charging

stations occurs. It would not be counted as a failure if a setting leads for such a scenario to the

second situation. In fact, the best a navigation system can do in this case is to tell the driver

that she/he cannot reach the destination reliably. On the other hand, if under perfect informa-

tion a charging strategy can be provided, but the currently considered setting does not lead to

a recommendation, then it is indeed counted as a failure. Since this failure occurs before the

driver starts her/his trip, it is from here on denoted as pre-trip failure. Note that for all of

the 1440 considered scenarios, the destination can be reached if perfect traffic information is

available. The third situation is counted as a failure, too. Compared to the second situation,

the third situation is less desirable as the driver has already started the trip at the time when the

navigation system informs her/him that an arrival at the destination cannot be ensured anymore.

Nevertheless, some options remain under such circumstances. For instance, the navigation sys-

tem could suggest to the driver to reduce her/his driving speed below her/his preferred driving

speed to reduce future energy consumption. Another possibility is to adjust the reliability pa-

rameter in such a way that more risky strategies are still considered to be reliable enough. Both

approaches could also be combined. Unfortunately, both approaches either change scenario or

setting parameters and are thus not considered within the simulation. All failures which occur

during the trip are denoted as on-trip failures.

7.2 The Impact of Real-time Traffic Information Quality
The structure of the simulation study has been explained in detail in section 7.1. Based on these

explanations, analyses concerning the dependency of charging strategy quality on the quality

of the applied RTTI are conducted in the following. Recall that the central motivation for the

simulation study is to achieve RO 2, i.e., to test the suggested problem formulation (i.e., the

formulation of the problem of finding optimal charging strategies as a deterministic SPP in

combination with the idea of using energy buffers to compensate for uncertainty) under the

existence of uncertainties and to assess its ability to handle these uncertainties in such a way

that charging strategies of practicable quality can be obtained. This means that particularly a

high level of reliability of the resulting charging strategies has to be ensured.

In section 7.2, the quality of charging strategies resulting from applying relative energy buffers

to compensate for the uncertainty caused by various types of RTTI is analyzed. This makes
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it possible to understand the dependecy of charging strategy quality on the magnitude of the

existing uncertainties. Furthermore, it is possible to gain an idea of the charging strategy qual-

ities that can already be achieved by relying on a comparably simple method for energy buffer

quantification. This knowledge will be particularly relevant when discussing up to which de-

gree RO 2 can be fulfilled on the basis of the developed framework.

Section 7.2 is structured as follows: At the beginning, in section 7.2.1, the qualities which

different types of RTTI achieve are analyzed in detailed. In section 7.2.2, a list of the simu-

lated settings is provided and the resulting charging strategy qualities are illustrated. Based on

this, several conclusions concerning the relation between charging strategy quality and RTTI

quality are drawn. Finally, in section 7.2.3, additional simulation runs are considered in order

to explicitly test the impact of two of the scenario parameters on the relation between RTTI

quality and charging strategy quality.

7.2.1 Analysis of Real-time Traffic Information Quality

RTTI quality is again understood as the level of similarity between the RTTI and the ground

truth, which is constructed according to section 7.1.3. The quality of the following functions

is analyzed: V tB
Perf (knowledge of ground truth), V tB

ff (free-flow assumption), V tB
Hist (historical

average driving speeds), V tB
Inst (instantaneous travel times), V tB

Com (recorded commercial RTTI),

and V tB
Pha (phantom traffic jams). The level of similarity is, in principle, measured according

to the ideas of section 6.2. However, to achieve a detailed understanding of the quality of the

considered types of RTTI, the measurement is done in dependency of the prediction horizon.

The prediction horizon th ∈ R≥0 is defined as the temporal difference between the time tB , at

which the prediction is made, and the time t, for which the prediction is made:

th := t− tB. (7.15)

In order to measure RTTI quality in dependency of the prediction horizon, the real driving

speeds VGT (x, t) are compared to the driving speeds V tB
RTTI(x, t) with t = tB + th. For this

purpose, let the following function be introduced:

T th2d := [T 2d + th, T 2d + th[

VRTTI,th : T th2d −→ R≥0

VRTTI,th(x, t+ th) := V t
RTTI(x, t+ th) ∀(x, t) ∈ X × T2d

(7.16)

This function returns for a time t+ th the speed value which has been predicted th minutes ear-

lier. Due to its construction, function VRTTI,th is defined for the two day period T th2d , which is

the same as the two day period T2d, but shifted by th. The construction idea for this function is
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Figure 7.6: Ex post construction of function VRTTI,th for th = 2 minutes.

illustrated in Figure 7.6 for an exemplary prediction horizon of th = 2 minutes. For the follow-

ing analyses, the average differenceD(th)∈ R≥0 between ground truth driving speeds and pre-

dicted driving speeds is computed for each prediction horizon th ∈ {0 min,1 min,..., 180 min}
according to the following rule:

D(th) := D(VGT , VRTTI,th , X × T
th
2d , d) (7.17)

The absolute percentage error dAPE is applied as the distance measure and errors are solely

measured for the two day period T th2d , since otherwise some errors would be counted twice76.

A plot showing the average prediction errorsD(th) in dependency of prediction horizon th can

be found in Figure 7.7. The gray line refers to V tB
ff , the yellow line to V tB

Hist, the green line to

V tB
Inst, the red line to V tB

Com and the blue line to V tB
Pha. The orange line will be of relevance later

on and refers to VTGT , i.e., to the technical ground truth resulting from adjusting function VGT
to the RTTI induced grid. Note that there is no line displayed which refers to V tB

Perf . Trivially,

such a line would run horizontally through zero, since under the assumption of perfect infor-

mation, independently of the prediction horizon, no deviations occur.

76Recall that the third day of the considered three day period T , for which VGT provides information, is just a
copy of the first day.
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It can be observed that V tB
ff leads, with an average absolute percentage error of about 0.15, to

the worst results. This is not surprising, since always assuming free-flow traffic conditions is

a significant simplification, especially as the underlying traffic data refer to two of the most

congested freeways in Germany. However, it is remarkable that the similarity between V tB
ff

and VGT does not depend on the prediction horizon. This is a result of the definition of V tB
ff

in equation 7.2: Values V tB
ff (x, t) do not dependent on the broadcasting time tB and are also

independent of time t. Due to this, these values are independent of the prediction horizon

t− tB . Functions V tB
Hist, V

tB
Pha, and VTGT also show no dependency on the prediction horizon.

They are, in contrast to V tB
ff , time-dependent, but they do not depend on the broadcasting time

tB . This means, for instance, that function V tB
Hist for some time t always returns the same speed

value – independently of the time of prediction tB:

V
t1B
Hist(x, t) = V

t2B
Hist(x, t) ∀(x, t) and ∀t1B 6= t2B (7.18)

The similarity between VGT and instantaneous traffic predictions V tB
Inst, on the other hand, de-

pends significantly on the prediction horizon. This can be observed clearly in Figure 7.7. At

Figure 7.7: Quality of traffic prediction approaches in dependency of prediction horizon.

the beginning, i.e., for a prediction horizon of zero minutes, instantaneous traffic predictions

which are based on ground truth data show no deviations from the ground truth. With increas-

ing prediction horizon, the deviations between V tB
Inst and VGT rise. Particularly during the first

few minutes, this happens quickly. Despite this growth of dissimilarity, a prediction horizon of

almost three hours is necessary until V tB
Inst leads to worse results than V tB

Hist. This is surpris-

ing, since historical speed averages are often applied for prediction horizons of less than three

hours. A discussion concerning this observation will be provided later on.

The most irregular behavior can be observed for the red curve, which belongs to V tB
Com. As de-

scribed in section 7.1.4, V tB
Com is constructed from four different values which are broadcasted
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in real-time, and from historical traffic data. Each of these types of speed values is applied for a

certain range of prediction horizons. These ranges are from zero to ten minutes, from ten to 25

minutes, from 25 to 40 minutes, from 40 minutes to 55, and historical traffic data are applied

for any further prediction horizon. Hence, the red curve vanishes behind the yellow line in

Figure 7.7 for all prediction horizons above 55 minutes. The construction scheme of function

V tB
Com leads to discontinuities of the red curve in Figure 7.7 whenever the border between two

such ranges is reached77. Remarkable is the fact that V tB
Com leads to rather bad results. Concern-

ing traffic state estimations, i.e., for a prediction horizon equal to zero minutes, this does not

mirror the author’s experiences. Throughout any preparatory analysis, the recorded commer-

cial RTTI seemed to represent the real traffic situation rather accurately (compare also Figures

7.2(a) and 7.2(b)). A closer look at the underlying reasons appears to be necessary at this point.

Considering the properties of the recorded commercial RTTI, two reasons which probably lead

to differences between VGT and V tB
Com can be found: The commercial RTTI’s limited spatial

resolution and the fact that only speed reductions of more than 20 percent with regard to the

presumed free-flow speeds are broadcasted78.

The orange curve in Figure 7.7 shows the quality which results when comparing VGT to the

technical ground truth VTGT by using the measure described in equation 7.17. From all spatio-

temporal speed functions that are restricted to the RTTI induced grid, function V tB
RTTI can be

understood as the speed function which achieves the highest possible similarity to VGT . Since

the orange curve in Figure 7.7 indicates very small error values, it can be concluded that large

parts of the differences between VGT and V tB
Com are not a result of the limited spatial resolution

of V tB
Com.

As a result, it may be conjectured that V tB
Com basically describes significant speed drops quite

well, but significantly differs from VGT at higher speed levels. In order to confirm this con-

jecture, a preferred driving speed vp of 90 kilometers per hour is presumed in the following.

The ground truth is adjusted according to equation 6.45, which means that for any (x, t) with a

ground truth speed higher than Vff or vp, a speed of 90 kilometers per hour is considered:

V
vp
GT (x, t) :=

vp if VGT (x, t) ≥ min{vp, Vff (x)}

VGT (x, t) else
(7.19)

77The discontinuity at a prediction horizon of 40 minutes is not as big as for minutes 10, 25 or 55, since the
recorded values vtBmid and vtBlon were often identical.

78Note that it holds: V tBCom(x, t) /∈ [0.8 · V tBff (x, t), 1.0 · V tBff (x, t)[. This is a consquence of the missing ability
to represent minor speed reductions.
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All types of RTTI are adjusted analogously:

V
tB ,vp
RTTI(x, t) :=

vp if V tB
RTTI(x, t) ≥ min{vp, Vff (x)}

V tB
RTTI(x, t) else

(7.20)

Based on these adjustments of the relevant spatio-temporal speed functions, again error values

depending on prediction horizon are computed. The resulting plot can be found in Figure 7.8.

For a person intending to drive with a speed of 90 kilometers per hour whenever possible, the

displayed curves describe the ”relevant“ quality of the different types of RTTI. The idea is that

for such drivers, it does not really matter whether the applied RTTI is unable to mirror VGT at

speed levels which lie above 90 kilometers per hour. It can be observed that, in comparison to

Figure 7.7, all curves show smaller difference values. This is simply a consequence of the fact

that for all spatio-temporal regions for which ground truth speeds and RTTI speeds lie above

vp, difference values of zero are computed. Furthermore, it can be seen that V tB
Hist reaches

Figure 7.8: Relevant RTTI quality in dependency of prediction horizon with an presumed
preferred driving speed of 90 kilometers per hour.

the same level of similarity as function V tB
Inst already for prediction horizons of about 80 min-

utes. This indicates that V tB
Hist differs from VGT for higher speed levels more than V tB

Inst does.

Moreover, it can be observed that V tB
Com is now able to provide significant benefits regarding

short-term predictions in comparison to V tB
Hist. This was not the case in Figure 7.7. Hence, it

is very likely that the aforementioned 80 percent rule has a significant negative impact on the

similarity between VGT and V tB
Com. Note that, even though V tB

Com also improved in comparison

to V tB
Inst, the traffic state predictions which are based on the recorded commercial RTTI are

hardly able to reach the same quality level as instantaneous travel time predictions do. The

latter represents a quite simple approach for predicting traffic. This indicates that the ability of
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the recorded commercial RTTI to predict traffic is limited. However, the orange curve in Fig-

ure 7.8 shows that this is again partly caused by the limited spatial resolution of function V tB
Com.

Within the simulation study, the prediction of driving trajectories and the simulation of real

driving trajectories depend on the presumed preferred driving speed vp. The presumed pre-

ferred driving speed varies, since it is a scenario parameter. This has to be taken into account

when analyzing the influence of RTTI quality on charging strategy quality. Therefore, it is

important to consider Figure 7.7, as well as Figure 7.8.

7.2.2 Relation between Real-Time Traffic Information Quality and Charging
Strategy Quality

In order to analyze the relation between RTTI quality and charging strategy quality, all in-

troduced RTTI functions are tested within the simulation study. For each of these functions,

the relative energy buffer function SOCr,zmin with z ∈ {0.0, 0.025, 0.05, 0.1, 0.2} is applied to

compensate for uncertainties. The resulting charging strategy qualities are one of the most

central outcomes of the simulation study. Thus, it will be explained it detail, how the relation

between reliability parameter, traffic prediction method, and the quality of the resulting charg-

ing strategies is illustrated. This explanation is based on Figure 7.9. Two graphs are displayed

and several comments marked with numbers ranging from ”1“ to ”5“ are shown. Let the upper

graph be considered at first. It shows the results for RTTI function V tB
Perf . Average total travel

times can be found on the x-axis and the number of failures on the y-axis. Each triangle79 in

Figure 7.9 marks the average travel time and the number of failures for one specific setting,

i.e., each triangle results from 1440 simulated trips. The numbers written near the triangles de-

note the value (in percent) of the reliability parameter z belonging to the corresponding setting

and the color for the curve indicates the traffic prediction methods. Comment 1 in Figure 7.9

exemplarily describes the interpretation of the triangle that can be found next to ”30“: This tri-

angle results when using perfect RTTI V tB
Perf and while applying a relative energy buffer with a

reliability parameter of 30 percent. During the 1440 simulation runs, 47 failures occurred and

the remaining 1393 scenarios led to an average total travel time of about 394 minutes. Note

that scenarios leading to failures are not included into the computation of average travel times.

Let in the following, the tested reliability parameters be considered in detail, starting with

z = 0 (see also comment 2 in Figure 7.9): If z is equal to zero, this actually means that no

energy buffer has been applied. Hence, any charging strategy is interpreted as reliable if it

fulfills the feasibility condition. If an error-prone type of RTTI was considered, then this would

be critical, since no buffer to compensate for unexpectedly high energy consumption was avail-

able. However, function V tB
Perf is used here and, along with this, no uncertainty exists at all in

79Triangles indicate that relative buffers are used for generating the corresponding point, other symbols will later
on indicate alternative buffer functions.
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Figure 7.9: Explanation of graphs describing relation between reliability parameter, traffic
prediction method, and the quality of the resulting charging strategies.

the analyzed setting. In a situation in which no uncertainty exists, energy buffers would cause

that charging strategies are considered to be unreliable that actually are sufficient to get to the

destination. Particularly very efficient charging strategies, which suggest comparably few and

short rechargings and where the state of charge may often get close to zero, would be excluded,

though it is not necessary to be able to react to unexpectedly high energy consumption. Note

that this setting, where no uncertainties exist and no buffer is applied, necessarily leads to the

best charging qualities. The reason for this is that with increasing z, the number of charging

strategies that are able to fulfill the corresponding energy security condition becomes lower and

lower. Hence, the set of possible solutions is reduced, which again reduces optimization poten-

tial and, along with this, average total travel times are increased. At some point, the number of

energy secure charging strategies is reduced down to zero for some of the simulated scenarios.

This is when pre-trip failures start occurring, i.e., no charging strategy can be recommended

at the beginning of the trip (see also comment 3 in Figure 7.9). This can be interpreted as
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over-cautious behavior. Note that pre-trip failures not only occur for function V tB
Perf , but, as

can be seen in the lower graph in Figure 7.9, also for error-prone types of RTTI: The green

curve belonging to function V tB
Inst shows higher failures rates for high reliability parameters.

Important is that, as soon as an error-prone type of RTTI is considered, failures also occur if

the reliability parameter is chosen too low. Comment 4 in Figure 7.9 emphasizes this fact. It

can be seen that that the simulated BEV experiences almost 120 failures if no energy buffer is

applied and charging strategies are computed during the simulation runs on the basis of V tB
Inst.

These failures are on-trip failures and primarily indicate that the simulated BEV ran out of en-

ergy. The combination of on-trip failures for small buffers and pre-trip failures for big buffers

lead to the fact that all curves belonging to error-prone types of RTTI (i.e., all curves except

for the black one80) show a shape similar to a parabola (see comment 5). Considering that

low average travel times and low failure numbers are desirable, it can be concluded that all

settings belonging to the right branch of one of these parabola are dominated by the vertex of

the parabola. Consequently, choosing big buffers, where ”big“ means that the corresponding

setting can be found on the right branch of a parabola, has to be avoided. Clearly, this conclu-

sion is only true as long as on- and pre-trip failures are treated equally. Alternatively, failures

could be weighted according to their severeness, i.e., pre-trip failures could be weighted less

than on-trip failures. Chapter D.1 in the appendix illustrates the effects of such inhomogeneous

weightings exemplarily for the curve belonging to function V tB
Hist.

In the following, the relation between RTTI quality and the quality of the corresponding charg-

ing strategies will be analyzed in more detail. For this purpose, let Figure 7.10(a) be considered.

It shows for all six types of RTTI functions the relation between reliability parameter z and the

resulting charging strategy qualities. Figures 7.10(b) and 7.10(c) are generated similarly, but

the number of on-trip and pre-trip failures, respectively, is visualized and not the total number

of failures. Based on these figures, the different types of RTTI are sorted according to the

quality of the resulting charging strategies. A possible approach to conduct this sorting is to set

the focus on on-trip failures and state that an RTTI function A performs better than an RTTI

function B if the curve belonging to A is located left and below the curve belonging to function

B in Figure 7.10(b)81. Based on this rule, it can be concluded that the availability of perfect

RTTI (black curve) leads to the best results, followed by functions V tB
Inst (green curve), V tB

Com

(red curve), V tB
ff (gray curve), V tB

Pha (blue curve), and finally VHist(tB) (yellow curve).

Similar to the way the different types of RTTI are sorted according to the quality of the resulting

charging strategies, it is also attempted to sort them according to their level of similarity to the

80The availability of perfect RTTI makes on-trip failures impossible, since the real energy consumption is always
equal to the the predicted energy consumption.

81Such a sorting could hardly be conducted if both on- and pre-trip failures would be taken into account. The
reason for this is that the corresponding curves (see Figure 7.10(b)) show a parabolic shape. Thus, most possible
pairs of curves show intersections and hence, no clear order can be derived. The focus is here set on on-trip failures
and not on pre-trip failures, since on-trip failures are assumed to be more critical for drivers.
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(a) All failures included.

(b) Solely on-trip failures included. (c) Solely pre-trip failures included.

Figure 7.10: Dependency of average travel times and the number of failures on the applied
traffic prediction method and reliability parameter z.

ground truth. This is not trivial. Depending on whether Figure 7.7 or Figure 7.8 is considered,

a different order is the result. The dependency of the similarity between RTTI and ground truth

on the prediction horizon additionally complicates making clear statements. Nevertheless, two

statements, which will be of relevance for the following considerations, can be made: First,

V tB
Perf trivially leads to the highest similarity. Second, historical speed averages achieve better

results than simply presuming free-flow driving conditions.

The relations between RTTI quality and the quality of the corresponding charging strategies

turns out to be complex, but still some generally valid conclusions can be drawn:

• High RTTI quality ensures high charging strategy qualities

• When comparing two types of RTTI, then higher RTTI qualities not necessarily lead to

improved charging strategies
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• If differences between RTTI and ground truth lead to a systematic over- or underestima-

tion of energy consumption values, then the corresponding charging strategy qualities

are comparable to those which result if bigger or smaller, respectively, energy buffers are

applied

• Travel times are not affected much when applying different types of RTTI

Details concerning these conclusions are provided in the following.

High RTTI Qualities As mentioned, V tB
Perf leads to the best charging strategies of all tested

types of RTTI. This is not surprising. Current and future traffic situations are known perfectly.

Thus, travel time and energy consumption prediction errors are not possible. Along with this,

no on-trip failures can occur82 and no unnecessary charging stops are conducted. Note that it is

very likely that for all types of RTTI which show only minor differences to VGT the achievable

charging strategy qualities do not drop significantly in comparison to those which are achieved

when using V tB
Perf . See appendix D.3 for an example that supports this conjecture. Conse-

quently, it is concluded that good RTTI (and not only perfect RTTI) leads to good charging

strategies.

No Simple Dependency Another observation that can be made when comparing the results

achieved by functions V tB
Hist and V tB

ff is that a higher RTTI quality not necessarily leads to bet-

ter charging strategies: In Figure 7.7 as well as in Figure 7.8, RTTI based on historical speed

averages achieves a higher level of similarity to the ground truth than RTTI which constantly

states free-flow. At the same time, the former leads to significantly worse charging strategy

qualities, at least as long as the focus is set on on-trip failures (compare Figure 7.10(b)). Based

on these considerations, it can be concluded that a higher RTTI quality not necessarily leads to

better charging strategies.

This surprising observation can be explained as follows: The quality of charging strategies

depends on the quality of energy consumption predictions. RTTI solely describe driving

speeds. The relation between driving speeds and energy consumption is neither linear nor

monotone. Function ECPrim, which describes the dependency of primary83 energy consump-

tion on macroscopic driving speeds, shows a parabolic shape (see Figure 7.5). Due to this, it is

possible that significantly different macroscopic driving speeds lead to almost the same energy

consumption. The consequence is that incorrect RTTI does not necessarily cause inaccurate

energy consumption predictions.

82Pre-trip failures, on the other hand, may still occur. Though, this happens only if energy buffers, which are
in fact not necessary if perfect knowledge is available, become extremely big, such that the sum of the energy
consumption that is predicted to be necessary to reach the next charging station and the energy that is part of the
buffer surpasses the maximal energy that can be stored by the battery.

83Secondary energy consumption has some influence on the total energy consumption of BEVs, too. However,
primary energy consumption is, in most situations, much bigger and thus the dominating factor.
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It is worth mentioning that the stated similarities between the different types of RTTI and the

ground truth depend on the measure that is used for quantifying differences to the ground truth.

If, instead of dAPE , another distance measure had been applied to generate Figures 7.7 and

7.8, then the magnitude of the differences between V tB
Hist to V tB

ff could have been different.

However, for this specific pair of spatio-temporal speed functions, it seems very likely that

traffic state estimations and traffic predictions which are based on historical speed averages

achieve higher similarities to the ground truth than RTTI which simply states free-flow speeds.

This should be the case for most possible distance measures.

Systematic Over- and Underestimation of Energy Consumption All curves in Figure

7.10, except for the black curve, are parabolas. It is remarkable that the sizes of the left

branches of these parabolas differ drastically. For functions V tB
Com and V tB

ff , the left branch

is tiny. Even if no energy buffer is used, only about 20 failures occur as long as one of these

two speed functions is applied. For function V tB
Pha, in contrast, the left branch is huge (see Fig-

ure D.2 for an illustration of the whole left branch of the curve belonging to V tB
Pha). Relative

buffers of 20 percent are necessary to keep the number of failures at least below 40.

The reason for these enormous differences is that functions V tB
Com and V tB

ff lead to a systematic

overestimation of energy consumption values, whereas function V tB
Pha frequently causes un-

derestimations of energy consumption values (reasons for these observations will be provided

later on). A systematic overestimation of energy consumption results, similarly to the situation

when applying big energy buffers, in a low number of on-trip failures. Hence, the left branch

of the corresponding parabola looks like it is cut off near the vertex. A systematic underesti-

mation of energy consumption values leads analogously to the opposite effects: Big buffers are

necessary to keep failure rate reasonably low, whereas low buffer sizes lead to extremely high

failure rates. Therefore, the left branch of the parabola belonging to such a speed functions

becomes big.

The systematic overestimation of energy consumption values that results when applying the

recorded commercial RTTI V tB
Com can be explained as follows: Function V tB

Com shows some

very specific properties. Particularly the restriction that no minor speed reductions are broad-

casted becomes interesting in the context of energy consumption predictions. This restriction

often causes an overestimation of driving speeds when prevailing traffic conditions show com-

parably high driving speeds (i.e., speed near free-flow). Recall that the ground truth function

VGT , which is considered during the simulation study, returns high driving speeds for large

parts of the spatio-temporal plane X × T (compare Figure 7.3(b)). The result is that such

overestimations of driving speeds occur quite frequently during the charging strategy compu-

tations. If the speed level is high, then also primary energy consumption increases along with

driving speeds due to the parabolic shape of function ECPrim (primary energy consumption).

Thus, the overestimation of high driving speeds induces an overestimation of future energy
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consumption. Note that further analyses revealed that function V tB
Com tends to underestimate

speeds in situations where low driving speeds are expected, i.e., the predicted development of

traffic congestion is often worse than it is in reality (no details are shown here). Primary energy

consumption increases if a BEV, which drives with a low speed, further reduces its driving

speed. The result is that the underestimation of low driving speeds induces again an overesti-

mation of energy consumption.

The systematic overestimation of energy consumption values that result when applying func-

tion V tB
ff can be explained similarly: Always presuming free-flow leads to an overestimation of

driving speeds and, along with this, to an overestimation of energy consumption at high speed

levels. For low speeds, energy consumption is often also overestimated when applying V tB
ff .

The reason for this is that driving speeds need to be extremely low (less than ten kilometers per

hour) to lead to energy consumption values that are as high as or higher than those which result

at high84 driving speeds. The frequently underestimated driving speeds that occur for func-

tion V tB
Pha are a direct result of its construction85. Underestimations of energy consumption

values at high speed levels are the consequence. A already mentioned, large parts of the traf-

fic state reconstruction VGT show high speed levels. Thus, energy consumption is frequently

underestimated when applying function V tB
Pha.

Travel Time Robustness When comparing the parabolas belonging to the different types of

RTTI functions in Figure 7.10, then it can be stated that the influence of different RTTI quali-

ties on average travel times is minor. If, for example, the leftmost triangles (settings where no

energy buffer is considered) of the parabolas in Figure 7.10 are compared to each other, then

differences of average travel times of less than ten minutes can be observed. The same holds

if the average travel times belonging to the vertices of the parabolas are compared. These are

negligible deviations considering that the average total travel time lies above six hours.

Note that average travel times also increase only moderately with increasing buffer sizes (i.e.,

with an increasing value of z). The x-axis distances between triangles representing a buffer

size of zero and the triangles which mark the vertex of the corresponding parabola lie for all of

the considered types of RTTI below 15 minutes. For a driver, it is probably not too important

whether travel times of 370 or 385 minutes are experienced. The moderate increase of travel

times suggests using big energy buffers rather than small energy buffer.

Note that the identified relations between charging strategy quality and the differences between

the applied types of RTTI to the ground truth function VGT will be of relevance in section 7.4,

where it is discussed up to which degree the idea of energy buffers allows achieving RO 2.

84If it is spoken of ”high“ driving speeds, then it can be thought of speeds of more than 100 kilometers per hour.
85Actually, generating a function that causes underestimations of driving speeds is the motivation for the con-

struction of function V tBPha. Due to this, V tBPha can be understood as a counterpart to function V tBff , which ensures
that driving speeds are systematically overestimated.
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7.2.3 The Influence of Charging Infrastructure and Vehicle Range

In the previous section, it has been shown that the dependencies of charging strategy quality

on the quality of the available RTTI is complex. The fact that the energy consumption models,

which are applied within the simulation, do not grow or fall monotonically with driving speeds

has been identified as one of the main reasons for this observation. If these consumption mod-

els had been different, then also the results of the executed simulation runs would have been

different. However, it can be expected that BEVs in general need a comparably high amount

of energy when driving with very low or very high speeds. For other aspects of the simulation

model, on the contrary, alternative parameter, which differ significantly from the applied ones,

are reasonable, too. Some of these aspects have influence on the dependency of charging strat-

egy quality on RTTI quality. This implies that even if a specific type of RTTI is considered,

it may not be possible to make a general statement about whether the quality of this type of

RTTI leads to good charging strategies. In order to clarify this statement, the results of exem-

plary simulation runs are investigated in the following. Within these simulation runs, charging

station density and battery capacity are varied. It is shown how these modifications affect the

dependency of charging strategy quality on RTTI quality.

For the announced computations, most parts of the simulation environment remain the same.

Though, the considered infrastructure scenarios are changed. Again, four different infrastruc-

ture scenarios are applied. The difference between them is the number of charging stations that

are placed between the start and the destination. Eight charging stations are available in the

reference scenario (plus one charging station at the start). The other scenarios show six (i.e.,

75 percent of the charging stations of the reference scenario), twelve (150 percent) and sixteen

(200 percent) charging stations. In contrast to all former simulation runs, charging stations are

equally spaced along the main route for any of these new infrastructure scenarios. This ensures

a certain level of regularity and makes the interpretation of the resulting charging strategy qual-

ities clearer.

Besides adjusted infrastructure conditions, also battery capacities are varied. The original pa-

rameterization is here applied as the reference scenario. This means that three different vehicle

types are considered with capacities of 67,680,000 (standard model), 60,912,000 (city model)

and 94,752,000 (high-range model) joules. Besides the reference scenario, three further capac-

ity scenarios are tested, where the battery capacity of each of the three BEV models is changed

to 75, 150 and 200 percent of its original value. Furthermore, it is assumed that the amount

of absolute energy86 which can be charged per second remains the same, independently of the

capacity scenario. Thus, charging durations decrease/increase proportionally with the battery

capacity.

It is important to mention that for each simulation run, i.e., for each analyzed setting, the

86The absolute amount of energy is measured in joule and not in percent of the battery capacity.
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Figure 7.11: The impact of infrastructure and energy capacity on charging strategy quality
when applying historical speed averages.

considered infrastructure and battery capacity scenarios remain the same for all 1440 simu-

lated vehicles. Thus, it seems more reasonable to speak of infrastructure and battery capacity

”settings“ in this section and not of ”scenarios“. Solely the starting times, vehicle models, tem-

peratures, and the preferred driving speed change during a setting. Also the battery’s state of

charge at the beginning of the trip does no longer vary. It is always set equal to zero percent.

This guarantees that the absolute amount of energy that is available at the start does not de-

pend on the considered capacity setting. Otherwise, a simulated vehicle starting with a state

of charge of 50 percent would cover more distance before it needs to be recharged for the first

time in a high capacity setting than in a low capacity setting. Therefore, due to the additional

starting energy, the total amount of energy that needs to be recharged during the whole trip

would probably be slightly smaller, which again would reduce travel times. Consequently, a

direct comparison between low and high capacity settings would be biased if starting states of

charge unequal to zero are considered.

Figure 7.11 shows exemplarily for function V tB
Hist how the described infrastructure and capac-

ity settings influence achievable charging strategy qualities. The yellow curve corresponds to

the reference setting, i.e., to the situation with 100 percent infrastructure and 100 percent ca-

pacity. The blue curves refer to different infrastructure settings, the red and orange curves to

different capacity settings. Relative energy buffers with z ∈ {0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4}
are considered. It can be seen that charging strategy quality, i.e., travel times and failure rates,

improves with increasing charging station numbers and battery capacities. For the blue curves,

reduced travel times are primarily a result of an enlarged set of possible charging strategies.

This bares additional optimization potential. Moreover, it is clear that more charging stations
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also provide more possibilities to adjust charging strategies during a trip. Consequently, it can

be reacted more often and more promptly to prediction errors, which again reduces the proba-

bility of on-trip failures. For the read and orange curves, having the ability to store more energy

reduces the number of necessary charging processes. Thus, less travel time is the consequence,

since the main route is left less frequently. The improvements in terms of failure rates, on the

other hand, are primarily the consequence of the way the energy buffer is defined here: Along

with battery capacity, also the absolute amount of energy that is consumed between two con-

secutive charging processes increases on average. Thus, the absolute amount of energy which

is used as an energy buffer increases, too. The reason for this is that relative energy buffers

reserve a certain percentage of the energy which is expected to be consumed until the next

charging stop is conducted. If it is expected that a lot of energy is consumed until the next

charging stop, then also a lot of energy is used for buffering. Due to this, underestimations of

future energy consumption can be compensated more easily if more energy can be stored. An

interesting observation is that the impact of changing battery capacities is significantly higher

than the impact of changing the number of charging stations, at least if the quality of the 75

percent infrastructure setting is compared to the 75 percent capacity setting (or if the 150 and

200 percent settings are compared).

It is also worth mentioning that no pre-trip failures can be observed in Figure 7.11. This is a

result of spacing the charging infrastructure equally along the main route. Hence, the maximal

distance which occurs between two consecutive charging stations is much smaller than it is for

the original infrastructure scenarios. There, the locations of charging stations are randomly dis-

tributed along the main route. This leads to a maximal distance between consecutive charging

stations of 70 kilometers for the infrastructure scenario with seven charging stations (61/49/61

kilometers for the nine-/eleven-/thirteen-station infrastructure scenario). Even for the infras-

tructure setting with only six equally spaced charging stations, the maximal distance (which

actually is also equal to the minimal distance) is only 51.7 kilometers. This number results

when dividing the total route length of 362 kilometers by seven. Covering a distance of about

50 kilometers with a fully recharged battery is, in contrast to covering 70 kilometers, no prob-

lem for any of the considered BEVs or any of the applied reliability parameters. Consequently,

pre-trip failures are, for the described settings, no longer an issue.

So far, it can be concluded that the reliability of charging strategies does not solely depend on

the quality of the applied type of RTTI, even though the latter represents the only source of

uncertainty. The conducted changes to the available infrastructure already lead to the disap-

pearance of pre-trip failures. Moreover, the number of on-trip failures and the average travel

times also change drastically if battery capacities or the density of the available charging in-

frastructure are varied. It can be observed in Figure 7.11 that, for example, a relative energy

buffer of only five percent is already enough to keep the number of occurring failures only
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Figure 7.12: Differences between historical and instantaneous travel time prediction for the
case of two different capacity settings.

slightly above zero if battery capacity is increased to 200 percent (recall that equally distributed

charging stations are presumed). Due to this, function V tB
Hist, i.e., a type of RTTI that causes

comparably bad charging strategy qualities (recall Figure 7.10(a)), leads to reasonably good

results according to Figure 7.11. Also the usefulness of applying better or worse types of RTTI

depends on the ”overall-setting“. This is illustrated in Figure 7.12. There, for the case of the 75

and 200 percent capacity setting, the quality of charging strategies that results when applying

V tB
Hist is compared to the quality that is achieved when applying V tB

Inst. In contrast to V tB
Hist,

function V tB
Inst achieves a rather high level of similarity to the ground truth. For the 75 percent

setting, similar to the findings of Figure 7.10(a), significant differences can be observed, par-

ticularly for small energy buffers (i.e., low values of z). For the 200 percent capacity setting,

the resulting differences between using V tB
Hist and V tB

Inst vanish almost completely.

7.3 Comparison of Energy Buffer Approaches
Section 7.2.2 showed that, if parameter z is chosen appropriately, relative energy buffers lead,

for most of the introduced types of RTTI, to failure rates equal or close to zero. This means

that, despite applying a comparably simple energy buffer method, reasonable charging strategy

qualities are achieved. Still, this is not possible for all of the tested RTTI functions. Particularly

V tB
Hist causes high failure rates for all tested values of z. In this context it has to be considered

that relative energy buffers represent only one possible way to quantify the size of energy

buffers. In order to get a better idea of the best possible charging strategy qualities that can be

achieved on the basis of the concept of energy buffers, further approaches have to be tested.

For this purpose, three different energy buffer functions are compared within this section. It is

investigated which of them leads to the best charging strategies. The first of the tested energy
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buffer functions is again SOCr,zmin (relative energy buffer). Moreover, two different trajectory

buffer functions are considered. Both use speed bounds to generate a set of auxiliary driving

trajectories, but the way these speed bounds are derived is different. For the first type of speed

bounds, speed function V tB
RTTI is simply multiplied by a fixed positive number. If this number

is bigger than one, then the resulting spatio-temporal speed function is used as an upper bound,

otherwise as a lower bound. The corresponding speed bounds are denoted by V tB ,f
low and V tB ,f

up

for some f ∈ [0, 1]. Their construction is done as subsequently shown:

V tB ,f
low (x, t) := (1− f) · V tB

RTTI (7.21)

V tB ,f
up (x, t) := (1 + f) · V tB

RTTI (7.22)

The second type of speed bounds is computed according to the ideas of section 6.3.2. The

corresponding speed bounds are denoted by V tB ,α
low and V tB ,α

up for some α ∈ [0, 1]. Their gen-

eration and some intermediate results are described in section 7.3.1. To be able to differentiate

between the energy buffer function resulting from either type of speed bounds, the energy

buffer function that results from speed bounds V tB ,f
low and V tB ,f

up is from here on be denoted

with SOCcon,fmin (”con“ for ”constant“). The other trajectory buffer function is denoted with

SOCad,αmin (”ad“ for ”adaptive“). These two types of speed bounds are also denoted as ”adap-

tive“ and ”constant“ speed bounds, respectively. The number of generated auxiliary trajectories

can no longer be found within the formulas, since it is set equal to two for the remainder of this

work, i.e., NT = 1.

7.3.1 Generation of Adaptive Speed Bounds
The generation of speed bounds V tB ,α

low and V tB ,α
up is discussed in this section. For the con-

struction of V tB ,α
low and V tB ,α

up , it is necessary to define a set of explanatory variables E1, ..., EQ

and a training set {ym, em1 , ..., em5 }m=1,2,...,M . As explanatory variables, those which have al-

ready been introduced in section 6.3.2 are considered: Variable E1 denoting the prediction

horizon, E2 denoting relative historical speed averages, E3 denoting the estimation of current

relative driving speeds, E4 describing the time of day, and E5 representing the broadcasted

confidence values. In order to generate the training set, the days for which traffic related data

are available are separated into two sets. This was already mentioned in section 7.1.2. There,

inductive loop detector data from the first set of days were used to generate the ground truth

VGT . Data from these days are now also applied to derive a test set {yn, en1 , ..., en5}n=1,2,...,N .

The data that has been recorded during one of the other days form the basis for the training set

{ym, em1 , ..., em5 }m=1,2,...,M .

Training Data: First, a set of triples {(tmB , SRTTIim
, TRTTIjm

)}m=1,2,...,M is generated with M

∈ R>0. The set of road segments {SRTTIim
}m consists of the TMC road segments, according

to which the recorded commercial RTTI was broadcasted. The set of considered broadcasting
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times {tmB}m consists of all times at which the commercial RTTI were broadcasted during one

of the days that are assigned to the training set. Since the commercial RTTI is updated every

minute, this leads to 1440 different broadcasting times tmB for each day which belongs to the

training set. Note that the number of minutes within one day is equal to 24 ·60 = 1440. Finally,
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Figure 7.13: Generation and usage of adaptive speed bounds.

the set of prediction intervals {TRTTIjm
}m consists of the RTTI induced set of time intervals. In

order to avoid that the size of the training set becomes too big, only prediction horizons of at

most 91 minutes are considered here, i.e., TRTTIjm − tmB ≤ 91 minutes for all m ∈ {1, ...,M}.
For the road corridor A9 leading to Nürnberg, the described proceeding leads to more than 42

million triples (tmB , S
RTTI
im

, TRTTIjm
) (see Table 7.1 for an overview of the relevant data):

12 segments · 27 days · 1440 broadcasting times · 91 prediction intervals ≈ 42.5 mio. (7.23)

For all four freeway corridors, about 138 million triples (tmB , S
RTTI
im

, TRTTIjm
) are generated,

i.e., M ≈ 138 million.

The set {(tmB , SRTTIim
, TRTTIjm

)}m=1,2,...,M is applied to compute realizations ym (deviations

between RTTI speeds and ground truth speeds) according to equation 6.25 and to compute
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observations em1 , ..., e
m
5 according to equations 6.27 to 6.31. This leads to the training set

{ym, em1 , ..., em5 }m=1,2,...,M . The data belonging to days which are not part of the training set

are analogously used to generate a test set {yn, en1 , ..., en5}n=1,2,...,N . The training and the test

set form the basis for all further steps until functions V tB ,α
low and V tB ,α

up are constructed. Figure

7.13 provides an overview of these steps, which are described in the following.

The values ym show the relative deviation between broadcasted driving speeds and ground truth

driving speeds. Consequently, these values depend on the applied RTTI function. The distri-

bution of set {ym}m resulting for function V tB
Com can be found in Figure 7.14. It is slightly

asymmetric with increased probabilities for negative values, leading to an arithmetic average

over all ym of -0.0263, i.e., values VTGT (SRTTIim
× TRTTIjm

) are on average slightly higher

than V tmB
Com(SRTTIim

× TRTTIjm
). This is surprising, since the recorded commercial RTTI reports

Figure 7.14: Analysis of the distribution of error values ym.

free-flow unless significant speed drops are detected. Consequently, speeds should be over-

estimated. On the other hand, the recorded RTTI never reports speeds which are higher than

the free-flow speeds Vff . Especially during nights, the available inductive loop detector data

frequently show speeds which lie significantly above the corresponding free-flow speeds. The

consequence is that speeds are often significantly underestimated during nights. This explains

the observed distribution. Note that for the simulation runs, extremely high values of VGT have

no influence, since all speed functions are adjusted according to the preferred driving speed vp.

Consequently, the adjusted ground truth function V vp
GT returns vp in such situations.

It is worth mentioning that not all of the occurring values of ym are illusrtated in 7.14. Actu-

ally, the realizations of the dependent variable range from minus one to more than plus thirteen.

This behavior indicates that it is probably not reasonable to apply speed bounds that hold with

a probability of 100 percent, since the range between lower bounds V tB ,α
low and upper bounds
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V tB ,α
up would become extremely big and, along with that, useless. Instead, such outliers need

to be excluded from consideration.

Derivation of Quantile Functions: For the five proposed explanatory variables, Table 7.3

contains information about the minimum Eminq of all occurring realizations emq and the maxi-

mum Emaxq . Furthermore, the numbers of categories Bq, which are applied to construct func-

tions Rα, are shown. The partitioning of the intervals [Eminq , Emaxq [ is simply done by con-

Table 7.3: Parameters applied for the generation of functions Rα.
E1 E2 E3 E4 E5

Meaning
prediction

horizon

historical

rel. speeds

currently estimated

rel. speeds

time of

day

confidence

value

Eminq 0 min 0.525 0.0 0 min 50

Emaxq 90 min 1.0 1.0 1440 min 99

Bq 13 20 20 20 20

structing Bq equidistant categories. The only exception is E1, where the boundaries between

the categories are defined as follows:

bi1 :=


(i− 1) · 5 min for i ∈ {1, 2, ..., 12}

70 min for i = 13

90 min for i = 14

(7.24)

Based on the parameters described in Table 7.3 and based on the training dataset, quantile

functionsRα(eq1), Rα(eq1 , eq2) andRα(eq1 , eq2 , eq3) are generated for any combination of ex-

planatory variables, i.e., for any combination of indices q1, q2 and q3 that fulfills the following

properties:
q1, q2, q3 ∈ {1, 2, 3, 4, 5}

q1 6= q2, q1 6= q3, q2 6= q3

(7.25)

This means that at most three explanatory variables are considered in parallel. The reason for

this restriction is that including four or all five explanatory variables would have led to unac-

ceptably high computation times when generating functions Rα.

Note that not all five of the introduced explanatory variables are available or relevant for all

types of RTTI. Confidence values, for example, do only exist for function V tB
Com. Moreover,

taking the prediction horizon into account makes no sense if the available RTTI does not depend

on the prediction horizon. This is the case for V tB
Perf , V tB

Hist, V
tB
ff , and V tB

Pha. In the following,

the analyzed combinations of indices q1, q2 and q3 are reduced according to these considera-

tions. For each relevant combination of explanatory variables, functions Rα are generated for
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each α in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99}. If α is bigger than 0.5, then

functionRα is used for the derivation of upper bounds. If α is smaller than 0.5, thenRα is used

to construct lower speed bounds. The motivation for computingR0.5 will be explained later on.

Figure 7.15 shows exemplarily functions R0.02(e2), R0.5(e2) and R0.98(e2) for the case of ap-

plying recorded commercial RTTI (i.e., function V tB
Com is used to estimate and predict traffic

states). Recall that considering a function Rα(e2), which takes exactly one explanatory vari-

able as input, implies that solely the dependency between Y and E2 is investigated, i.e., solely

the dependency of relative deviations between RTTI-speeds and VTGT -speeds on historical rel-

ative speed averages is taken into account. As already mentioned, functions Rα are constant

Figure 7.15: Plot of quantile function Rα(e2) for different values of α for traffic prediction
scheme V tB

Com.

within each category. Moreover, it can be seen in Figure 7.15 that for very high relative speeds

(the rightmost categories), the range between functions R0.02 and R0.98 is rather small. This

indicates that the reliability of V tB
Com is high in situations where high historical relative speed

averages occur. Let this statement be explained for the last category, i.e., for situations in which

the average historical relative speed lies between 0.97525 and 1.0 (i.e., between b20
2 and b21

2 ).

For this category, functionR0.98 obtains a value of 0.28. According to the definition ofRα, this

means that for 98 percent of all observed situations which show a historical relative average

speed em2 that lies between 97.525 and 100 percent, the value returned by function V tB
Com does

not exceed the value returned by function VTGT for more than 28 percent. Hence, small values

of Rα for an α-value above 0.5 show that upper speed bounds can be kept tight. Analogously,

it can be concluded that high values of functionRα for values of α below 0.5 lead to tight lower

speed bounds. Due to this, small differences betweenR0.02 andR0.98 indicate a high reliability

of function V tB
Com. However, the most important observation is that functions R0.02 and R0.98
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are not constant. Instead, they significantly depend on the observations of E2. This confirms

that the reliability of V tB
Com, at least for the considered data, indeed depends on historical rel-

ative speed averages. Similar statements can be made for the case of applying V tB
Com for all

five suggested explanatory variables. See appendix D.4 for the corresponding plots of Rα(e1),

Rα(e3), Rα(e4) and Rα(e5). Also other types of RTTI show comparable dependencies on the

proposed explanatory variables.

Similarly to the case of considering one explanatory variable, also two explanatory variables

Figure 7.16: Plot of step function R0.98(e1, e3).

can be taken into account simultaneously. Figure 7.16 shows exemplarily functionR0.98(e1, e3)

for the case of using recorded commercial RTTI (i.e., function V tB
Com). The coloring indicates

for each existing two-dimensional category the corresponding value of R0.98(e1, e3), i.e., the

0.98-quantile that results from the training dataset. Red indicates high values and thus bad

upper bounds. Blue indicates low values and, correspondingly, tight upper bounds. Let, for

instance, the deep blue area at the top left of Figure 7.16 be considered. It refers to situations

in which the currently broadcasted relative speeds are below five percent of the free-flow speed

and the prediction horizon lies above 55 minutes87. The blue color shows that it happens very

rarely in such a situation that reported driving speeds lie significantly above the corresponding

VTGT -speeds. Correspondingly, very low/tight upper bounds can be chosen. An explanation

for this observation is that if speeds are very low at the moment, then it often takes more than

55 minutes for traffic to recover. This means that real speeds remain below historical speed

averages. In contrast to predictions which are based on historical data, it can be seen in Figure

7.16 that high upper bounds are necessary if the prediction horizon is below 55 minutes and

the currently estimated relative speeds are low.

87Recall that function V tBCom is up to a prediction horizon of 55 minutes based on RTTI, afterwards it is based on
historical speed averages.
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Note that there is a white region for currently broadcasted relative speeds above 80, but below

100 percent. White is here used to indicate that, for the corresponding situations, no or only

very few data points (less than 100) can be found in the training dataset. In such situations, it

is hardly possible to make robust statements about probabilities or quantiles. The white area in

Figure 7.16 is reasoned by the fact that the recorded commercial RTTI reports free-flow speeds

unless the estimated (or predicted, respectively) relative drivings speeds fall below 80 percent

of the presumed free-flow driving speeds Vff .

The most important observation in Figure 7.16 is that the values which are returned by function

R0.98(e1, e3) seem to change almost continuously in dependency of the current relative driving

speeds and the prediction horizon. Significant discontinuities can only be found in those re-

gions of the figure where the speed values that are used for the construction of function V tB
Com

change from vEst to vsho (at a prediction horizon of ten minutes), from vsho to vmid (at a pre-

diction horizon of 25 minutes), and from vlon to VHist (at a prediction horizon of 55 minutes).

The smooth change of function R0.98(e1, e3) along the x- and the y-axis indicates that similar

situations lead to a similar reliability of V tB
Com. Therefore, it can be expected that the values

which function R0.98(e1, e3) returns do not depend too much on the applied categorization pa-

rameters. A comparably ”continuous“ behavior can be observed for most other combinations

of explanatory variables, too. This is also the case if not V tB
Com, but other types of RTTI are

analyzed.

Evaluation of Speed Bounds: A lot of effort is necessary for the construction of adaptive

speed bounds V tB ,α
low and V tB ,α

up , especially in comparison to simple static bounds V tB ,f
low and

V tB ,f
up . Due to this, their generation is only reasonable if significant quality improvements are

achieved. Here, the quality of speed bounds is measured according to the ideas that are de-

scribed in (80): Speed bounds are good if they hold with a high probability and, at the same

time, are tight, i.e., the distance between both bounds has to be small.

In the following, the quality of speed bounds V tB ,α
low and V tB ,α

up is compared to the quality

of speed bounds V tB ,f
low and V tB ,f

up . For this purpose, let two functions V tB ,α
low and V tB ,α

up be

considered which are computed on the basis of the already described quantile functions Rα,

which again are derived from the training set {ym, em1 , ..., em5 }m=1,...,M . These bounds are

then applied to the test set {yn, en1 , ..., en5}. Figure 7.17 shows resulting average relative ranges

and success rates exemplarily for the case that functionsRα(e3),Rα(e3, e4) andRα(e3, e4, e5)

are used to generate speed bounds V tB ,α
low and V tB ,α

up for function V tB
Com

88. In this context, the

average relative range is defined as the average over all differences between V tB ,α
up and V tB ,α

low

88The abbreviation ”cur“ in Figure 7.17 represents ”estimation of current relative speeds“, ”time“ represents

”time of day“, and ”conf“ represents ”confidence value“.
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divided through the reported speed:

1

N
·
N∑
n=1

V
tnB ,α
up (SRTTIin

× TRTTIjn
)− V tnB ,α

low (SRTTIin
× TRTTIjn

)

V
tnB
Com(SRTTIin

× TRTTIjn
)

(7.26)

The success rate is computed as the probability with which the speed bounds hold89:

1

N
· |

{
n ∈ {1, ..., N} :

V
tnB ,α

low (SRTTIin
× TRTTIjn

) ≤ VTGT (SRTTIin
× TRTTIjn

),

VTGT (SRTTIin
× TRTTIjn

) ≤ V tnB ,α
up (SRTTIin

× TRTTIjn
)

}
| (7.27)

In Figure 7.17, the qualities for a selection of adaptive speed bounds and also the qualities of

static speed bounds V tB ,f
low and V tB ,f

up for different values of f can be seen. Each curve belongs

to exactly one pair of speed bounds. The different dots along a curve result from different pa-

rameters α and f , respectively. The colored numbers describe the values of these parameters

for the corresponding dots. It can be seen, for instance, that speed bounds V tB ,α
low and V tB ,α

up ,

which are based on functions R1−0.9(e3, e4, e5) and R0.9(e3, e4, e5) (the blue curve), lead for

α = 0.9 to a relative range of 0.3 and a success rate of about 83 percent.

Figure 7.17: Success rates and ranges that are achieved for different speed bounds for the RTTI
function V tB

Com

When comparing the qualities of the illustrated speed bounds, then it can be observed that

the adaptive bounds in most cases lead to better results than the static bounds (grey curve).

Furthermore, it can be stated that the quality of adaptive speed bounds improves if the number

of explanatory variables, which are taken into account, increases. This is not only for the

displayed combinations of explanatory variables the case (see also Figure D.4 in appendix
89| {set A} | describes the cardinality of set A, i.e., the number of elements of which set A consists.
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D.5). Admittedly, the differences between the illustrated curves are rather small. Significant

deviations can only be found for high success rates. For instance, achieving a success rate of

at least 98 percent causes static speed bounds to show a relative range of about 0.9 (consider

the grey dot at the edge of the right upper corner of Figure 7.17). The blue curve shows that

adaptive speed bounds can do the same already for a relative range of about 0.7 (the rightmost

blue dot).

In conclusion, it can be stated that adaptive speed bounds lead in comparison to constant speed

bounds to improvements (at least for function V tB
Com), but these improvements are not very

significant. Since no clear statements can be derived from these first observations, it appears to

be reasonable to test within the simulation study trajectory buffer functions which are based on

both types of speed bounds (constant and adaptive).

Extension: Compensate for Systematic Prediction Errors An interesting observation in

Figure 7.15 is that function R0.5, which describes the median of set {ym}m=1,...,M in depen-

dency of E2, drops significantly for low historical relative speed averages. This indicates that

in such situations, function V tB
Com tends to lie above VTGT . Such systematic RTTI errors can be

seen for other explanatory variables and combinations of explanatory variables and for other

types of RTTI, too (see, for example, Figure D.3(d) in the appendix D.4). To compensate for

these errors, the RTTI itself is no longer applied to predict driving trajectories. Instead, the

speed values which are returned by the applied RTTI function V tB
RTTI are adjusted as described

below:

V tB ,med
RTTI (x, t) := (1 +R0.5 (e1(x, t, tB), ..., eQ(x, t, tB))) · V tB

RTTI(x, t). (7.28)

In equation 7.28, eq(x, t, tB) describes the observation of Eq for location x and times t and tB .

For function V tB
Com, for instance, this means that e5(x, t, tB) is equal to the confidence value that

has been broadcasted at time tB for the TMC segment which covers location x, and e3(x, t, tB)

is equal to the relative driving speed that is estimated at time tB for the TMC segment which

covers location x. Function V tB ,med
RTTI (”med“ for ”median“) shifts the reported RTTI in such

a way that, if realizations ym had been computed on the basis of V tB ,med
RTTI and not on the

basis of V tB
RTTI , the corresponding function R0.5 would have been constantly equal to zero,

independently of the observations ofE1, ..., EQ. Figure 7.18 shows how the similarity between

ground truth and reported speeds is increased if V tB ,med
Com is applied instead of V tB

Com. Again,

training set {ym, em1 , ..., emQ}m=1,...,M is used to derive a set of quantile functions R0.5. Each

of these quantile functions takes a different selection of explanatory variables into account.

These quantile functions are afterwards used to compute V tB ,med
Com according to equation 7.28.

The circles in Figure 7.18 mark for any possible combination of at most three explanatory

variables, the average absolute percentage error that results when comparing V tB ,med
Com to VTGT
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based on the testing data, i.e., the following values are illustrated by the circles:

1

W
·
N∑
n=1

win,jn · dAPE
(
VTGT (SRTTIin , TRTTIjn ), V

tnB ,med
RTTI (SRTTIin , TRTTIjn )

)
, (7.29)

with
win,jn :=

∫
SRTTIin

∫
TRTTIjn

1 dt dx

W :=
N∑
n=1

win,jn

dAPE(a, b) :=
| b− a |

b
.

(7.30)

Similar to the definition of difference value D(VGT , V
tB
RTTI , X × T, d) in equation 6.14, vari-

able win,jn describes the spatio-temporal extent of cell SRTTIin
× TRTTIjn

and W the sum of

the spatial extents of all cells belonging to the test set. The combination of explanatory vari-

ables which is taken into account for the computation of V tB ,med
RTTI can be found along the x-axis

in Figure 7.18. The notation is the same as in the legend of Figure 7.17 (i.e., ”conf“ stands

for ”confidence value“, and so on). Moreover, abbreviation ”hor“ stands for ”prediction hori-

zon“ and ”hist“ for ”historical relative speed averages“. The black cross shows the average

error which results when comparing V tB
Com to VTGT and not V tB ,med

Com to VTGT . It can be ob-

served that the proposed modification significantly reduces deviations between RTTI speeds

and ground truth speeds. The improvements tend to grow with the number of explanatory

variables which are taken into account by functions Rα. The highest improvement results if

the prediction horizon, the time of day and the broadcasted confidence value are considered to

generate function V tB ,med
Com . The original average percentage deviation is reduced from 0.128

to 0.1. This is a relative reduction of the prediction error of about 20 percent.

Besides circles, plus-signs can also be found in Figure 7.18. They result if the expected value

of the training set {ym}m=1,...,M is applied in equation 7.28 to construct function V tB ,med
RTTI in-

stead of the median. Even though this procedure still leads to improvements in comparison to

using the original function V tB
RTTI , it can be noticed that these improvements are less significant

for all considered cases. Thus, systematic error correction is done according to equation 7.28.

Function V tB ,med
RTTI is used to generate macroscopic driving trajectories, which are again used

to predict energy consumption and travel times. Whether function V tB ,med
RTTI or function V tB

RTTI

is applied has no influence on the computation of speed bounds, nor does it have influence

on the resulting set of auxiliary trajectories. Note that for the described research, function

V tB ,med
RTTI is considered if and only if SOCad,αmin is used to quantify energy buffers. This means

that energy consumption values and travel times still are based on function V tB
RTTI (and not on

function V tB ,med
RTTI ) if relative buffers or constant trajectory buffers are used. The reason for this
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Figure 7.18: Average absolute percentage errors resulting from RTTI function V tB
Com and ad-

justed speed function V tB ,med
Com .

is that it would be a lot of additional effort to compute V tB ,med
RTTI for these cases, since it would

be necessary to generate a training set {ym, em1 , ..., emQ}m=1,...,M and quantile functions R0.5.

When applying buffer function SOCad,αmin , on the other hand, quantile functions Rα need to be

generated anyway. Computing these functions for one additional value of α, namely α = 0.5,

is not much additional effort, since the training dataset is already prepared. Note also that a

further advantage of replacing V tB
RTTI by V tB ,med

RTTI is that it can be guaranteed that V tB ,med
RTTI lies

between the adaptive speed bounds (as long as α ∈ [0.5, 1.0]), i.e.:

V tB ,α
low (x, t) ≤ V tB ,med

RTTI (x, t) ≤ V tB ,α
up (x, t) ∀ x, t, tB. (7.31)

This statement not necessarily holds when applying function V tB
RTTI for traffic state estimation

and traffic prediction.

7.3.2 Evaluating Different Types of Energy Buffers

In the following, the charging strategy qualities resulting from applying trajectory buffers that

are based on constant and adaptive speed bounds are compared to charging strategy qualities

that are achieved when applying simple relative energy buffers. Different values for the corre-

sponding reliability parameters are used. An overview of these values can be found in Table

7.4. The number of auxiliary trajectories which are considered for the computation of trajectory

buffers is set equal to two, i.e., NT = 1. This is done since preparatory analyses showed that

increasing NT any further has almost no influence on the size of the resulting energy buffers

and, along with this, it has almost no influence on the resulting charging strategy qualities. This

observation can be explained by the fact that energy consumption is particularly high for very
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Table 7.4: Overview of the tested energy buffer functions and the tested parameter values.
buffer method buffer function set of values

relative buffers SOCr,zmin z ∈ {0%, 2.5%, 5%, 10%, 20%, 30%, 40%}
trajectory buffer

(constant bounds)
SOCcon,fmin

f ∈ {0.05, 0.1, 0.2, 0.3, 0.7}
NT = 1 (two auxiliary trajectories)

trajectory buffer

(adaptive bounds)
SOCad,αmin

α ∈ {0.8, 0.9, 0.95, 0.98, 0.99}
NT = 1 (two auxiliary trajectories)

low and for high speeds. Thus, typically one of the two border trajectories, as already men-

tioned in section 6.3.1, leads to the highest energy consumption of all auxiliary trajectories Tnt

(with nt ∈ {0, ..., NT}). For the comparison of the three described energy buffer functions,

the following types of RTTI are considered: V tB
Perf , V tB

Hist, V
tB
Inst, and V tB

Com.

Figure 7.19 shows the charging strategy qualities resulting from different combinations of RTTI

functions and energy buffer functions. There is one graphic for each of the four considered

types of RTTI. Again, triangles mark curves that result when applying relative energy buffers

(each triangle belongs to one value of z), stars represent settings where trajectory buffers that

are based on constant speed bounds are applied (each star belongs to one value of f ), and circles

belong to settings where trajectory buffers that are based on adaptive speed bounds are used

(each circle belongs to one value of α). Note that the colored numbers which are displayed in

Figure 7.19 show, for a selection of the tested settings, which value of the corresponding reli-

ability parameter leads to this specific triangle/star/circle. In order to simplify differentiation,

the values belonging to parameter z are stated in percent, the values belonging to parameters

f and α are stated as numbers between 0.01 and 1.0. For the case of RTTI based on histor-

ical speed averages, the adaptive speed bounds that are applied for generating Figure 7.19(b)

result from taking explanatory variables E2 (historical relative speed averages) and E4 (time

of day) into account. For instantaneous traffic predictions, adaptive speed bounds are based on

E1 (prediction horizon), E2 and E3 (current relative speed estimations). For the case of V tB
Com,

adaptive speed bounds are computed by considering E3, E4 and E5 (confidence values). If

function V tB
Perf is applied, then it is not important which combination of explanatory variables

is taken into account. Function V tB
Perf is equal to the ground truth. Consequently, no RTTI

errors occur at all. Along with this, function Rα is constantly equal to zero – independently of

the realizations of any explanatory variable. Due to this, the lower and upper bounds V tB ,α
low and

V tB ,α
up are equal to VGT and, therefore, all auxiliary trajectories are equal to the ground truth

trajectory. This again ensures that SOCad,αmin is equal to zero – independently of the explanatory

variables that are taken into account for the generation of the adaptive speed bounds on which

SOCad,αmin is based. Note that also for other types of RTTI functions, the influence of taking
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(a) Assumption of perfect traffic prediction. (b) Applying historical speed averages.

(c) Applying instantaneous travel time predictions. (d) Using recorded RTTI.

Figure 7.19: Comparison of different energy buffer methods for four traffic prediction schemes.

different combinations of explanatory variables into account is limited. See appendix D.6 for

some examples supporting this statement.

In Figure 7.19(a), no curve belonging to SOCad,αmin can be seen. Since SOCad,αmin leads for the

described setting to energy buffers of size zero, average travel times and failure numbers are

the same as for the reference setting, where a buffer size of zero and the availability of perfect

RTTI are presumed. The consequence is that all circles in Figure 7.19(a) are located at the

same position as the reference setting (the leftmost point in Figure 7.19(a); its position is at

(369, 0)). Relative energy buffers and trajectory buffers which are based on constant speed

bounds, by contrast, do not include information about the quality of the applied RTTI. Thus,

with increasing reliability parameters z and f , the size of the energy buffers and, due to this,

average travel times and pre-trip failures rise in Figure 7.19(a).

When considering RTTI based on historical speed averages, then it can be seen in Figure

7.19(b) that the differences that result from using adaptive or constant speed bounds for the

generation of trajectory buffers are rather small, but both trajectory buffer functions achieve
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significantly better results than relative energy buffers. The minimal occurring number of fail-

ures, for instance, can be reduced from 37 (relative buffers) down to 6 (constant speed bounds)

and 17 (adaptive speed bounds), respectively.

Though, such clear improvements cannot be seen for all of the analyzed types of RTTI func-

tions. In Figures 7.19(c) and 7.19(d), trajectory buffers are unable to outperform relative

buffers90. In Figure 7.19(c), for example, the curve belonging to the energy buffer functions

SOCad,αmin is located left and below the curve belonging to function SOCr,zmin. Thus, it could be

argued that SOCad,αmin leads to better results than SOCr,zmin. On the other hand, relative energy

buffers allow achieving a failure rate of zero for z equal to ten percent. Unfortunately, it cannot

be stated on the basis of the illustrated results, whether the number of failures can be reduced

down to zero on the basis of the trajectory buffer approaches. A similar observation can be

made in Figure 7.19(d) for trajectory buffers that are based on constant speed bounds and a

z-value of five percent.

The results that are illustrated in Figure 7.19 show that none of the three tested energy buffer

functions is in general better than the other two. Particularly the two trajectory buffer ap-

proaches seem to behave in most cases quite similarly91. However, it can also be observed

that different types of energy buffer functions lead to different charging strategy qualities and

it can be stated that these differences depend on the considered type of RTTI. Additionally to

an analysis of the charging strategy qualities which can be achieved when applying the three

proposed energy buffer functions, the conducted simulation runs allow drawing further con-

clusions: First of all, applying trajectory buffers increases the computation time for solving

the corresponding optimization problem in comparison to applying relative energy buffers by

about 60 percent during the conducted simulation runs. The main reason for this increase is

the additional effort necessary for generating auxiliary trajectories. Note that an increase of 60

percent cannot be expected to hold in general. Depending on the implementation, the number

of auxiliary trajectories and the analyzed setting, this value may vary.

Besides worse computation times, the conducted analyses revealed that trajectory buffers suf-

fer from another drawback in comparison to relative energy buffers: During the simulation,

trajectory buffer functions frequently lead to extremely small energy buffers, independently of

the applied reliability parameter (the reason for this will be explained later on). The low fail-

ure rates achieved by trajectory buffers (see Figure 7.19) show that these small energy buffers

are not critical during the simulation. However, presuming that the proposed framework is in-

tended to be applied in practice, it can hardly be expected that the driver of a BEV constantly

drives exactly according to an a priori stated preferred driving speed whenever this is possible.

90It has to be considered that the scale of the axes is different for each of the four graphics in Figure 7.19.
91To be able to apply energy buffer functions SOCad,αmin , a lot of preparatory steps are necessary. Since functions

SOCcon,fmin achieve for most of the tested RTTI functions results that are comparable to those which are achieved
when applying SOCad,αmin , it can be concluded that it is more reasonable to rely on functions SOCcon,fmin to compen-
sate for uncertainties than applying functions SOCad,αmin .
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Even under the assumption that no RTTI errors occur, a driver sometimes may increase her/his

driving speed, for example, to overtake another vehicle. Therefore, the real energy consump-

tion may surpass the predicted energy consumption. This is very dangerous if no energy buffer

or a very small energy buffer is reserved. Consequently, from a practical point of view, relative

energy buffers may ensure more reliable charging strategies than trajectory buffers do.

The low energy buffer sizes that result when applying one of the two suggested trajectory

buffer functions can be explained as follows: The presumed ground truth function VGT returns

for large parts of the considered spatio-temporal plane X × T rather high drivings speeds,

which often lie close to or even above the presumed free-flow speeds Vff (see Figure 7.3(b),

which shows the ground truth function VGT that is used within the simulation). The same holds

for upper speed bounds V tB ,f
up and V tB ,α

up , irrespective of the actual values of f and α. Recall

in this context that if a speed function returns for some point (x, t) ∈ X × T a speed value

that is higher than the minimum of the preferred driving speed vp and the presumed free-flow

speed Vff , then this function is assumed to return instead the value vp (see equation 7.20). The

corresponding functions are here denoted with V vp
GT , V tB ,f,vp

up and V tB ,α,vp
up . As a consequence,

after the ground truth and the upper speed bounds are adjusted according to this rule, they often

return the same speed value, i.e.:

V
vp
GT (x, t) = V

tB ,f,vp
up (x, t) = V

tB ,α,vp
up (x, t) = vp. (7.32)

If this happens for many points (x, t), then the ground truth driving trajectory and the upper

border trajectory become very similar and, along with that, also the corresponding energy con-

sumption values. The result is that if in such situations the upper border trajectory causes the

highest energy consumption of all auxiliary trajectories, and this is typically the case for high

driving speeds92, then the size of the trajectory buffer is close to or, in many cases, even equal

to zero. Increasing reliability parameters f or α solely increases the values which functions

V tB ,f
up or V tB ,α

up , respectively, return. The issue remains the same, since these speed values are

again reduced to vp.

7.4 Evaluation of Simulation Results with Regard to Research Ob-
jectives

The findings from section 7.2 (analysis of the dependency of charging strategy quality on RTTI

quality) and section 7.3 (comparison of the different types of energy buffer functions) form

the basis for the following considerations. The question that has to be answered on the basis

of these simulation results is up to which degree RO 1c (practicable computation times) and

92It has already been mentioned that, due to the properties of the applied primary energy consumption models,
trajectories which are based on upper speed bounds usually cause in near free-flow situations the highest energy
consumption values.
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particularly RO 2 are achieved.

RO 1c: Even though the focus of the analyses which were conducted in chapter 7 was set

up to this point on RO 2, the computation times which were experienced during the simulation

runs allow drawing conclusions on RO 1c, too. When applying a computer which is equipped

with 16 GB RAM and an Intel Xeon processor X3450 (dual core, 2.67 GHz, 8M Cache), then

the average computation time for providing an initial charging strategy (i.e., a charging strategy

leading from the start to the destination) was equal to 1.11 seconds if relative energy buffers

were applied. The average computation time increased to 1.78 seconds if trajectory buffers

(two auxiliary trajectories) were applied.

The computer on which the tests were conducted probably provides more computational power

than typically navigation devices or navigation systems do. Nevertheless, the stated numbers

indicate that reasonable computation times are possible if only a single route, and not a whole

road network, is considered.

RO 2: In order to achieve RO 2, the developed framework has to be tested under the exis-

tence of uncertainties and it has to be evaluated whether it allows handling these uncertainties

in such a way that charging strategies of practicable quality can be ensured. The testing itself

was done by conducting the described simulation runs. This can be interpreted as a first proof

of concept and hence, RO 2 is already partly fulfilled93. It remains to be analyzed whether the

computed charging strategy qualities can be said to be practicable. For this purpose, it is firstly

necessary to explain how the term ”practicable“ is interpreted in this context.

Charging strategy quality is measured with regard to failure rates (reliability) and travel times

(efficiency). Clearly, if charging strategies are intended to be applied in practice, then on-trip

failures should not occur. Since the conducted simulation runs represent solely an exemplary

selection of scenarios, it appears to be reasonable to postulate that charging strategy qualities

are only interpreted as ”practicable“ if no or almost no on-trip failures occur. This suggests

applying big energy buffers. At the same time, the number of pre-trip failures should be kept

low. Otherwise, if many situations exist in which no charging strategy can be recommended,

i.e., if charging strategies can only be recommended for comparably simple scenarios in which

also drivers probably have no problem to find a reasonable charging strategy, then the useful-

ness of the whole approach becomes questionable. Due to this, energy buffers are not allowed

to become too big. Note that travel times can be assumed to be not relevant in this context.

Considering the results displayed in Figure 7.10 (illustration of charging strategy qualities for

93Proofing the concept will be primarily considered in chapter 8, where experiences gained during real world test
drives are described
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different types of RTTI), it can be concluded that increasing buffer sizes lead to an unaccept-

able number of pre-trip failures far before it causes a critical rise of travel times.

According to the described considerations, charging strategies can be denoted as practicable

if no on-trip failures occur and only a few pre-trip failures. However, providing specific val-

ues for the maximum number of on- and pre-trip failures that can be accepted is not trivial.

Fortunately, this question does not need to be answered for most of the tested types of RTTI.

According to Figure 7.10, relative energy buffers are able to completely avoid failures for func-

tions V tB
Perf , V tB

Inst, V
tB
Com and V tB

ff . As a consequence, it can be stated that for most of the tested

types of RTTI, relative energy buffers are – according to the conducted simulation study – able

to lead to practicable charging strategy qualities. For function V tB
Pha, it is at least possible to

achieve a number of on-trip failures of three, and a number of pre-trip failures of eight (by set-

ting reliability parameter z equal to 30 percent). These values appear to be still reasonable and

testing further values for z may even allow reducing the number of on-trip failures down to zero

without increasing the number of pre-trip failures too much. Furthermore, it has to be taken

into account that, due to its artificial construction, function V tB
Pha probably shows properties

that cannot be found when applying RTTI provided by professional traffic content providers.

Unfortunately, the charging strategy qualities that are achieved for function V tB
Hist are signifi-

cantly worse. Either 37 on-trip (for z = 10 percent) or 38 pre-trip failures (for z = 20 percent)

have to be accepted for the tested values of z. At this point, it can be questioned whether or not

a 2.6 percent (= 38/1440) probability for pre-trip failures prohibits a practicable implemen-

tation. On the other hand, there may exist other reasonable types of RTTI94 that cause even

worse results. Consequently, it can be concluded that relative energy buffers ensure practicable

charging strategy qualities for many different types of error-prone RTTI, but probably not for

all.

Note that the findings of section 7.2 show that the quality of the applied RTTI not necessarily

allows deciding whether or not relative energy buffers are able to ensure high charging strat-

egy qualities. Due to this, it needs to be tested (for instance, via simulation) which charging

strategy qualities can be achieved on the basis of relative energy buffers. If these tests indicate

that relative energy buffers are unable to lead for a given RTTI function to sufficiently good

results, then two alternatives can be considered. First, another type of energy buffer could be

applied. The tests which were described in section 7.3 show that the proposed trajectory buffer

approaches are partly able to achieve significant improvements in comparison to the applica-

tion of relative energy buffers. Though, this does not hold for all of the tested types of RTTI.

The second alternative is to ignore the available RTTI and, instead, use function V tB
ff . The idea

94In contrast to function V tBPha, applying historical average drivings speed is indeed a common approach to predict
driving speeds. Due to this, from a practical point of view, the developed framework has to be able to handle the
corresponding uncertainties.
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behind this is that function V tB
ff can be obtained quite easily, since it is just necessary to obtain

a reasonable free-flow speed value for each relevant road segment. At the same time, the results

from section 7.2 indicate that presuming always free-flow allows achieving sufficiently good

charging strategy qualities95. This is a very strong statement. It means that it may be beneficial

to ignore existing information – even though this information describes, in most cases, the real

situation rather accurately.

Conclusions: In conclusion, the results of the simulation study indicate that applying rela-

tive energy buffers or one of the two alternatives allows achieving practicable charging strategy

qualities for most possible RTTI functions96. However, it can solely be stated that the devel-

oped framework allows deriving practicable charging strategies for the tested scenarios (and

probably for most possible RTTI functions). Thus, under different conditions, the suggested

framework may no longer be able to achieve the same. The results of section 7.2.3, where dif-

ferent infrastructure and capacity settings were analyzed, support this conjecture. There, failure

numbers of zero could be achieved even if function V tB
Hist was used for traffic prediction. It was

argued that this is a result of the fact that the maximal distances, which occurred between two

successive charging stations, were rather small. Therefore, thinking the other way around, in-

creasing the distances between successive charging stations at some point makes it impossible

to compute charging strategies of practicable quality. This conclusion is trivial, but it implies

that the ability to compute sufficiently good charging strategies does not only depend on the

method that is applied to handle uncertainties. It is also a question of the considered scenarios

or settings, respectively. Due to this, the question stated in RO 2 cannot be answered in general,

i.e., it cannot be decided in general whether the developed framework allows handling uncer-

tainties in such a way that charging strategies of practicable quality can be ensured. Instead, the

question should be reformulated to ”Under which conditions is a developed framework able to

lead to practicable charging strategy qualities?“ Nevertheless, the conducted simulation study

shows that for a set of rather realistic scenarios, the formulation of the problem of finding op-

timal charging strategies as a deterministic SPP, along with the concept of energy buffers, is

able to handle uncertainties in a way, which let a future implementation in practice appear to

be reasonable.

95The whole simulation study refers to freeways. Presuming free-flow speeds may not work well if other road
categories are taken into account. On the other hand, it can be expected that the fast-charging infrastructure, which
is in fact necessary to conduct charging processes during trips, can primarily be found along freeways. Hence, this
approach probably works for most of the situations which are relevant in practice.

96It is very likely that a set of scenarios and settings, respectively, can be constructed for which none of the
suggested approaches works well, but this represents probably not the regular case.
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7.5 Summary
In chapter 7, a simulation study was described that allows analyzing the relations between

different types of error-prone RTTI functions, three types of energy buffer functions which

are applied to compensate for uncertainties, and the resulting charging strategy qualities. The

chapter started in section 7.1 with a detailed description of the simulation environment itself.

In section 7.2, the influence that different types of RTTI have on charging strategy quality was

investigated. It turned out that the quality of charging strategies significantly depends on the

applied RTTI. Further investigations showed that this dependency cannot be described easily.

Better RTTI not necessarily leads to better charging strategies. On the other hand, it can be

expected that good RTTI ensures a high quality of the corresponding charging strategies. Fur-

thermore, even though RTTI errors were the only source of uncertainty within the simulation

runs, it was observed that the quality of charging strategies also depends on other aspects of

the simulation environment, such as the available charging infrastructure or the driving ranges

of the simulated BEVs.

In contrast to section 7.2, where always relative energy buffers were applied to compensate for

uncertainty, the impact of three different types of energy buffer functions on charging strat-

egy quality was analyzed in section 7.3. The computational results indicate that the two pro-

posed trajectory buffer functions, even though significantly more complex than relative energy

buffers, are unable to generally achieve better charging strategy qualities than relative energy

buffers. Moreover, both trajectory buffer functions caused increased computation times and it

could be observed that, due to the way preferred driving speeds are taken into account within

the simulation, trajectory buffers often led to extremely low energy buffer sizes. It was argued

that the last point may be critical from a practical point of view.

Chapter 7 ends with an evaluation of the simulation results with regard to the stated research ob-

jectives, particularly with regard to RO 2. It was concluded that the simulation results indicate

that the developed framework (i.e., the formulation of the problem of finding optimal charging

strategies as a deterministic SPP plus the idea to handle uncertainties via energy buffers) is in-

deed able to ensure charging strategies of practicable quality. However, it was also pointed out

that it is not clear whether this statement can be made in general or only for the set of scenarios

tested within the simulation study.



Chapter 8

Test Drives

In chapter 3, a very flexible, but numerically hardly treatable formulation of the problem of

finding optimal charging strategies as an MDP was proposed. This formulation was adjusted in

chapters 4 and 5 to a deterministic SPP, which allows applying rather efficient numerical opti-

mization algorithms in order to compute solutions. Then, in chapters 6 and 7, the deterministic

SPP was concretized and a simulation study was executed. Considering the sequence of topics

covered in chapters 3 to 7, it can be observed that the focus of the described research shifted

more and more from purely theoretical considerations to practice relevant aspects. Hence, it

appears to be reasonable to continue this development by testing the proposed framework in

reality. For this purpose, field tests, where a PHEV with an official electric driving range of 170

kilometers (18) was used to cover (purely electrical) a distance of more than 400 kilometers,

were conducted. During these field tests, the test drivers were supported through a prototypic

software tool which allows receiving charging strategies during the test drives. These charging

strategies were based on the developed models and algorithms. This switch of perspective –

from theoretical and computational analyses to practical experiences – leads back to the orig-

inal motivation of this thesis, which is to provide a first basis for a later inclusion of CSO

functionalities into real world navigation systems.

The execution of the field tests is described in chapter 8. It is structured as follows: First,

in section 8.1, information about the test site, the test vehicle and the applied prototypic im-

plementation of a tool for CSO are provided. Next, in section 8.2, data gathered during the

field tests are evaluated and further observations, which were made during the test drives, are

stated. Finally, in section 8.3, the consequences which the experiences that were gained dur-

ing the field tests have on assessing the developed framework’s ability to achieve the ROs are

discussed.

195
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8.1 Setting
During the field tests, a PHEV was used to get from a specific starting location to a specific

destination. Start and destination location remained the same for all executed test drives. The

distance between them was significantly higher than the applied PHEV’s maximal electrical

driving range. In order to support the test drivers, charging strategies were provided to them.

These charging strategies were computed on the basis of the framework which was developed

in previous sections. The drivers followed these charging strategies. Details are described

subsequently:

The Vehicle The PHEV which was used for the test drives was a BMW i3 which was

equipped with a possibility for fast-charging and a so-called range extender. The latter means

that, besides an electric battery and an electric motor, a fuel tank and a petrol engine were

additionally available. This allows recharging the battery by electricity that is generated by the

petrol engine97 whenever the state of charge falls below 6.5 percent. This happens during the

trips, i.e., while the vehicle is driving. The nine liter tank extends the official driving range

from 170 (purely electrical, battery capacity of 18,8 kWh presumed) to a ”customer oriented“

(18) driving range of about 250 kilometers (130)98.

Test Site The test drives were conducted on a 412 kilometer long road corridor (primarily

freeways) starting in Munich and ending near Leipzig (Germany). This implies that charging

strategies were again not computed on the basis of a whole road network, but solely for a

predetermined road corridor. Altogether nine fast-charging stations, which are located along

this route, were taken into account during the test drives: One is located in Munich at the

southern end of the route, one at its northern end, near Leipzig, and seven additional charging

stations are located in between. The distances between successive exit ramps, which lead to

fast-charging stations, vary between 12 and 91 kilometers. The whole situation is illustrated in

Figure 8.1. Note that the set of considered charging stations depends on the driving direction.

The reason for this is that when driving from north to south, the charging station near Ingolstadt

which is used when driving from south to north cannot be accessed. Due to this, another

charging station, which is located significantly further away from the test route, has to be added

to the set of charging possibilities. Note that there existed alternative fast-charging stations in

Munich, in Ingolstadt, and near Lauf. Hence, different or further charging stations could have

been taken into account. However, there existed no alternative fast-charging stations for the

remaining parts of the test route.

97A BMW i3 that is equipped with a range extender is actually a serial PHEV (recall the differentiation between
different types of HEVs from section 2.1.1).

98

”Customer oriented“ means that the corresponding value is intended to describe the ranges that can be obtained
in reality more accurately than the official driving range typically does.
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Figure 8.1: Test site and positions of fast-charging stations along the test route.

Available Traffic Information Historical speed averages were available for the whole road

corridor. Moreover, commercial RTTI was additionally available for the most southern 42

kilometers of the road corridor, but only when driving from south to north, i.e., only for one

direction. Both types of traffic information were generated analogously to the way functions

V tB
Hist and V tB

Com were generated for the simulation study. This means that the same traffic

content provider supplied the traffic data and the processing of the data was done the same way

as described in sections 7.1.2 and 7.1.4. Note that also graph G∆
D was constructed on the basis

of a digital map which was received from the same traffic content provider.

Energy Consumption Model For the computation of charging strategies for the test drives,

energy consumption was predicted similarly as it was done for the simulation study in chap-

ter 7. The same secondary consumption function ESec, which returns energy consumption

per time in dependency of outdoor temperature, was applied. Estimations of current outdoor

temperature and predictions of future outdoor temperature were received automatically from a
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web-service providing weather data (135).

The primary energy consumption function ECPrim, on the other hand, was slightly modified

in comparison to the primary energy consumption function from chapter 7. A BMW i3 which

was equipped with a range extender was used for the test drives. For the simulation study, by

contrast, data gathered by people driving a BMW i3 without range extender formed the basis

for ECPrim. To take this into account, a new primary energy consumption function ECPrim
was constructed on the basis of energy consumption data that were gathered by people driving

a BMW i3 with range extender. The data were gathered by 17 different vehicles during about

10,000 trips. The data were processed the same way as described in section 7.1.5, i.e., anal-

ogously to the data for the BMW i3 without range extender99. The resulting speed-dependent

energy consumption values were slightly higher than those belonging to the BMW i3 without

range extender. This increase can be explained by the fact that the range extender raises the

vehicle’s mass by about 120 kilograms.

Besides considering a different type of vehicle, another difference to the primary energy con-

sumption model from chapter 7 was that also elevation data were taken into account. These

data were also received from a web-service (70). A graph showing the elevation above sea level

Figure 8.2: Elevation above sea level along test route from Munich to Leipzig.

along the test route can be found in Figure 8.2. In order to take elevation into account when

predicting energy consumption, a second type of primary energy consumption function EelevPrim

(”elev“ for ”elevation“), similar to the one which is described in (74), was applied. Function

99The recording of the data took again place in the project ”PREMIUM“, which is funded by the (German)
Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety.
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EelevPrim is defined for any edge e ∈ ~E∆
D as follows:

EPot(e,mV eh) := mV eh · g · (elev(e)− elev(e)) (change in potential energy) (8.1)

EelevPrim(e) :=


EPot(e,mV eh)

ηmot
if elev(e) ≥ elev(e)

ηrec · EPot(e,mV eh) else
(8.2)

Function elev assigns the elevation above sea level in meters to starts and ends of edges, mV eh

denotes the mass of a BMW i3 with range extender100, g denotes the acceleration due to grav-

ity, EPot the vehicle’s change of the potential energy, ηmot ∈ [0, 1] the electric drive overall

efficiency, and ηrec ∈ [0, 1] the recuperation efficiency. Function EelevPrim returns the battery

energy that is necessary to lift the vehicle by elev(e) − elev(e) meters if the elevation above

sea level is at the end of edge e higher than it is at its start. Otherwise, it returns the amount

of energy that is recuperated. Note that the values which were assigned to parameters ηmot
and ηrec were provided by BMW and again cannot be stated due to a nondisclosure agreement.

Note that presuming that these parameters do not depend on driving speeds or accelerations

represents a significant simplification.

Optimization Algorithm Basically, energy buffer function SOCad,0.99
min was applied for the

computation of charging strategies during the test drives. However, function SOCad,0.99
min was

modified by increasing the size of the energy buffer by 6.5 percent of the battery capacity. This

was done to avoid that the range extender activates and, along with this, to ensure that the trips

are conducted purely electrically. As a consequence, a test drive was counted as an on-trip

failure whenever the state of charge reached 6.5 percent. The range extender was only intended

as a fallback, but not for usage during the conducted drives.

The preferred driving speed was set equal to 110 kilometers per hour. For higher preferred

driving speeds, preliminary tests showed that it often happened that no adequate charging strat-

egy could be provided (i.e., pre-trip failures occurred or not reliable charging strategy existed

at all). For significantly lower preferred driving speeds, predicted total travel times rose101.

Furthermore, it was assumed that no waiting times occur at charging stations, parameter cAT
was set equal to three minutes, and ∆ equal to five percent. Charging durations were assumed

to be the same as for the BMW i3 without range extender.

Provision of Charging Strategies Charging strategies were provided during the test drives as

an on-trip information. To achieve this, a prototypic version of algorithm B-2 was implemented

in matlab. This implementation allowed computing charging strategies for both directions

100For the prediction of energy consumption values, a mass of 1,550 kilograms was presumed. This number results
when adding the estimated weight of two test drivers of 160 kilograms to the vehicle’s mass of 1390 kilograms.

101Interestingly, if a charging strategy was returned for a preferred driving speed of, for example, 120 kilometers
per hour, then the predicted total travel times typically were higher than for 110 kilometer per hour.
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of the described test route under the assumption that a BMW i3 which is equipped with a

range extender is used for driving. A simple user interface was added and the corresponding

software was installed on a computer at the University of the Federal Armed Forces Munich.

Furthermore, a software that enabled controlling this computed remotely via a smart phone

was installed, too. Whenever the BMW i3 was recharged during one of the test drives, a smart

phone was used to get access to the computer at the university. The preferred driving speed, the

current state of charge, the driving direction (either to Munich or to Leipzig), and the current

position were entered via the user interface. Based on these inputs, a charging strategy for the

remaining part of the route was returned.

8.2 Observations made during the Test Drives
Test drives were conducted on three days (28th of April, 6th of May, and the 12th of May,

2016). The drivers started in the morning from Munich to Leipzig and returned in the evening.

This leads in total to six test drives. The first two of them, i.e., the first drive from Munich

to Leipzig and the first drive from Leipzig to Munich, are not considered in the following.

They were intended as preparatory drives to explore differences between model assumptions

and reality. The preparatory drives showed that, as already mentioned, the originally selected

charging stations near Ingolstadt could not be accessed when driving from Leipzig to Munich.

Additionally, a short part of the autobahn A9 was blocked due to road works. This caused

detours of several kilometers when trying to get from Hermsdorf to Leipzig and the other way

around (compare Figure 8.1). The findings of the first two explorative test drives were included

into the software tool.

During the actual test drives (on the 6th of May, and the 12th of May, 2016), a protocol was

written. It contained information about the vehicle’s state of charge at the start, at the visited

charging stations, and at the destination. Furthermore, it contained the corresponding arrival

times, the durations of the conducted charging processes, and the states of charge after charg-

ing. Besides information about the course of the real test drives, recommended charging strate-

gies were also recorded, i.e., the protocol contained information about predicted arrival times,

predicted states of charge, and about the charging strategy itself. A new charging strategy was

requested whenever the vehicle was charged.

Analyzing Observed Travel Times Figure 8.3 illustrates for the test drive from Leipzig to

Munich, which was executed on 6th of May, the times at which charging stations were reached

and the experienced charging durations. Similar figures for the three other test drives can be

found in chapter E of the appendix. The x-axis shows time, the y-axis shows the position of

the charging stations along the route. The bold black line illustrates the position of the BMW

i3 in dependency of time. This curve allows reconstructing at which time the charging stations

were reached, whether a charging process was conducted and, if this was the case, how long

the corresponding charging process lasted. It can be seen, for example, that the trip on the 6th
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Figure 8.3: Development of arrival times for the test drive from Leipzig to Munich (south-
bound) on 6th of May, 2016.

of May from Leipzig to Munich was started at 13:22, the first charging station (in Hermsdorf)

was reached at 14:15, and the destination in Munich was reached at 20:13. Note that whenever

a line runs horizontally, then it shows that the vehicle remained at the corresponding position.

This indicates a charging process.

The dotted lines represent provided charging strategies, i.e., these lines represent the movement

of the BMW i3 that would have resulted if any prediction concerning travel times or energy

consumption had been absolutely correct (always presuming that the driver followed the rec-

ommended charging strategy). Since a new charging strategy was computed whenever the

vehicle was charged, a new dotted line starts at each location at which the vehicle was charged.

The colored circles mark at which time and location the corresponding charging strategy was

computed.

Comparing the dotted lines with the bold black line, it can be concluded that the real trip

significantly differed from the predictions which formed the basis for the charging strategy

recommendations. For the case of the trip which is illustrated in Figure 8.3, there exist two

main reasons for this: Let the first road segment be considered, i.e., the road corridor from

Leipzig to Hermsdorf. The single dotted line on the left of the bold black line indicates that the

travel time that was predicted to be necessary to get from the starting location in Leipzig to the

first charging station in Hermsdorf was significantly lower than the realized travel time. Since

this prediction was made at 13:22, i.e., at the time the vehicle was located at the first charg-

ing station near Leipzig, the corresponding dotted line is denoted with ”prediction at Leipzig“

within the legend of Figure 8.3. The huge difference between predicted and realized travel

times was the result of a traffic jam caused by road works near Hermsdorf. Since travel time
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predictions concerning this road segment were solely based on historical speed averages, the

traffic jam was not detected and the resulting travel time prediction was too optimistic.

Another reason for the differences between predictions and the real trip, which holds for all

conducted test drives, can be found in Figure 8.4. Each of the illustrated points (xi, yi) belongs

Figure 8.4: Comparison of realized and predicted charging durations.

to one charging process which was conducted during one of the four evaluated test drives. The

x-coordinates xi of the displayed points refer to the recorded durations of the corresponding

charging process, i.e., these coordinates represent the real charging durations. To explain the

meaning of the y-coordinates yi, let for each displayed xi the state of charge at the beginning

of the corresponding charging process be denoted by SOCSi , and the state of charge at the

end of the corresponding charging process by SOCEi . Furthermore, let the function which is

used to model the charging behavior of a BMW i3 with range extender be denoted by S. The

y-coordinates result if function S is used to estimate the charging duration which is necessary

to recharge the battery from SOCSi to SOCEi (recall equation 4.26):

yi = S−1(SOCEi )− S−1(SOCSi ) (8.3)

The black line in Figure 8.4 represents the set of points that could result if the observed (real)

charging durations had mirrored the applied model S perfectly, i.e., if xi = yi. It can be

observed that almost all points (xi, yi) lie above this line. This means that the real charging du-

rations were typically shorter than the durations which would have been necessary according to
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the model S. Hence, the applied model leads to a systematic overestimation of charging dura-

tions102. When returning to Figure 8.3, this observation explains why the predicted total travel

times (dotted lines) are higher than the real total travel time (bold black line). An adjustment

of function S seems to be necessary to avoid such systematic errors in the future.

Analyzing Observed States of Charge Analogously to the way Figure 8.3 shows the rela-

tion between vehicle position and time for the test drive from Leipzig to Munich on the 6th of

May, Figure 8.5 illustrates the development of the state of charge along the test route. The bold

black line again refers to the real situation and the dashed lines to the development of the states

of charge which would have resulted if energy consumption and travel time predictions had

been absolutely correct. Differences between the predictions and reality can be seen, but these
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Figure 8.5: Development of states of charge for the test drive from Leipzig to Munich (south-
bound) on the 6th of May, 2016

differences are less significant than those which can be observed in Figure 8.3. An explanation

for both the existence of differences and their minor magnitude can be found in Figure 8.6.

The x-coordinates of the displayed points represent the energy (in percent of the battery ca-

pacity) which was necessary to get from one charging process to the next103 during one of the

four analyzed test drives, i.e., the x-coordinates represent the real energy consumption which

occurred between two successive charging processes. The y-coordinates of the points which

are displayed in Figure 8.6 refer to the amount of energy which was predicted to be necessary

to get to the next charging process. In this context, the latest prediction is considered, i.e., the
102The outlier in Figure 8.4 (the only point below the black line) and the significant scatter the other points

show indicate that charging durations probably cannot be predicted precisely. Instead, charging durations may be
interpreted as random variables.

103Here, it is written ”charging processes“ instead of ”charging stations“, since the PHEV was not charged at each
charging station during the test drives.
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energy consumption prediction which was made at the end of the first of the two considered

successive charging processes. The bold black line again represents all locations indicating an

absolutely correct prediction.

First of all, it can be observed that the applied energy consumption prediction model did not

work perfectly. An absolute percentage deviation of 12.7 percent can be computed. This devia-

tion is significant, but it is much smaller than the absolute percentage deviation of 32.3 percent

that results when comparing predicted and realized charging process durations (recall Figure

8.4). Due to this, the differences between the bold black curve and the dotted curves are less

Figure 8.6: Comparison of realized and predicted energy consumption values between two
charging stops.

significant in Figure 8.5 than they are in Figure 8.3. On the other hand, the applied model

again systematically overestimates the observed values. The reason for the overestimation is

probably that the test drivers drove rather steadily with a speed of 110 kilometers per hour. It

is very likely that such a driving behavior differs from the ”average“ driving behavior. Less

accelerations and decelerations, and thus less energy consumption are the consequence. The

applied energy consumption model ECPrim, however, is the result of averaging recorded en-

ergy consumption values of trips which probably showed a less constant speed profile.

Further Observations Besides comparing observed and predicted travel times and states of

charge, two remarkable observations were made during the test drives: First, it never happened

that a test driver had to wait due to an occupied charging station. Considering that in total, i.e.,

when including the test drives of all three days (28th of April, 6th of May, and the 12th of May,

2016), more than 30 charging processes were conducted, this observation at least indicates that



8.3. EVALUATION OF TEST DRIVES 205

large parts of the existing fast-charging infrastructure along German freeways were not utilized

much at that time.

Second, it happened twice during the test drives that a recommended charging process could

not be executed due to (temporarily) broken fast-charging stations. On the 6th of May, this

was the case for the charging station in Lauf when driving from Munich to Leipzig (see Figure

E.2), and on the 12th of May, the charging station in Ingolstadt did not work on the way back

from Leipzig (see Figure E.3). To still be able to finish the corresponding test drives, the range

extender was activated to get to the next charging station. As soon as the next station was

reached, the range extender was again deactivated. Note that road segments which were passed

by using the range extender, i.e., which were not passed purely electrically, are marked by a

dashed black line instead of a solid black line. Moreover, there was a technical problem with

the charging station in Schweitenkirchen when driving on the 12th of May back to Munich.

It was not possible to release the cable at the time the recommended amount of energy was

charged. The technical support of the charging station had to be called and it was necessary to

restart the charging station. As a consequence, the BMW i3 was charged longer than originally

intended (this can be seen in Figure E.1). These incidents indicate that the available charging

infrastructure was prone to failures at the time the test drives were conducted. Since three

different charging stations, which were operated by two different companies, were affected by

these problems, it is very likely that similar issues still occur.

8.3 Evaluation of Test Drives
The observations which were described in section 8.2 lead to the following conclusions: The

applied model for predicting charging durations has to be significantly adjusted. Moreover,

weighting times at charging stations currently seem to occur only rarely (at least at fast-

charging stations along German freeways) and thus it may not be too important at the moment

to take them into account. Furthermore, the applied model for predicting energy consump-

tion probably can be improved. Note that no information exists that would allow analyzing

which part of the prediction errors was caused by incorrectly predicted primary consumption,

by incorrectly predicted secondary consumption, or by the way the impact of elevation data on

energy consumption was taken into account. Still, even though no detailed analysis is possi-

ble, it appears to be most probable that the frequent overestimation of energy consumption is

a result of the already mentioned extraordinarily steady driving behavior of the test drivers. If

this conjecture is true, then the frequent overestimation of energy consumption indicates that

individual driving behavior can have a significant influence on energy consumption. Hence,

individual driving style can be expected to lead to a significant amount of uncertainty and thus

may be considered explicitly by future energy buffer functions – similar to the way traffic

prediction uncertainties are considered by the adaptive trajectory buffer function. Finally, the

gained experiences also allow drawing conclusions on RO 2:
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RO 2: The test drives indicate that charging station failures occur quite often in practice. If a

BEV without range extender had been used, then particularly the failure that was experienced

on the 6th of May would have been a problem, since no other fast-charging station (neither the

next along the test route, which was more than 70 kilometers away, nor any other fast-charging

station in this area) could have been reached with the remaining energy. Thus, it would have

been necessary to get to a nearby ”slow“-charging station104. This would have increased total

travel time drastically.

Considering that the recommended charging strategies would have led for two of the four eval-

uated test drives to an empty battery, it appears to be reasonable to conclude that the proposed

framework for CSO is unable to provide charging strategies of practicable quality. However,

three aspects have to be considered in this context: First, the failures occurred due to broken

charging infrastructure. If the charging stations had worked correctly, the gathered data indi-

cates that the trips would have been finished successfully. Second, for the considered test route

and the used test vehicle, it was not possible to make the energy buffers big enough to be able to

compensate for the breakdown of the charging station in Lauf. If this charging station does not

work, an electrical vehicle has to pass a 160 kilometers long road corridor (between Ingolstadt

and Himmelkron) without charging to reach the destination. With a speed of 110 kilometers

per hour, the BMW i3 possibly can achieve 120 or 130 kilometers under realistic conditions –

without taking any uncertainties due to, for instance, imperfect traffic predictions into account.

This means that, irrespective of the method for computing charging strategies, no charging

strategy recommendation could have been made as long as the driver is not willing to ignore

the risk that this charging station may not be working. Note that the charging station in Lauf

represents the most evident example, as the distances to its neighbour stations are rather high

(about 75 and 85 kilometers). Failures of other charging stations along the test route would

lead to similar, but less crucial issues.

Third, up to this point the author did not take the possibility of failing charging stations into

account. Thus, the developed framework is not intended to handle such incidents. Since it is

not unlikely that new technologies do not work very reliably at the beginning, it is probably

reasonable to assume that, after a short period in which experiences are gathered by those who

operate charging stations, charging station failures will occur only rarely. Alternatively, the

problem formulation could be modified in such a way that the possible existence of charging

station failures is explicitly taken into account. A potential idea for such a modification is

sketched in chapter 9. Note that the fact that the developed framework is unable to represent

and handle the possibility of charging station failures could also be considered in the context

of RO 1a.

104It can be seen in Figure E.2(b) that the charging station in Lauf did work for several minutes before failing and,
consequently, some energy was recharged. The failure occurred at a state of charge of about 50 percent. This state
of charge would not have been sufficient to reach the next fast-charging station along the route, but it would have
been enough to get to one of a few nearby conventional charging stations.
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Conclusions: The number of conducted test drives is very low. Consequently, it is not possi-

ble to make credible statements on the ability of the developed framework to handle uncertain-

ties in such a way that charging strategies of practicable quality can be ensured. On the other

hand, running out of energy in 50 percent of the conducted test drives appears to be a clear

indicator that the proposed optimization problem, even though it achieves reasonably good re-

sults in theory, still faces some issues in reality it cannot handle. The author supposes that the

reliability of charging stations will rise quickly. If this assumption is true, the results of the test

drives can be interpreted differently, since the recommended charging strategies have worked

well whenever the charging infrastructure was working. Nevertheless, further field tests are in-

evitable to be able to guarantee that recommended charging strategies ensure a reliable arrival.

8.4 Summary
In chapter 8, field tests conducted on the freeway A9 between Munich and Leipzig were de-

scribed. A BMW i3, with an experienced electrical driving range of about 120 kilometers,

was used to cover this more than 400 kilometer long road corridor. In order to support the test

drivers, regularly updated charging strategies were provided to them during the trips. In section

8.1, the test route, the test vehicle, and the assumptions on which the charging strategy com-

putation was based, were explained in detail. In section 8.2, the test drives themselves were

described by illustrating arrival times, charging durations, and the development of the state of

charge for the four considered test drives. Furthermore, deviations between the observed travel

times and energy consumption values, and the corresponding predictions, on which the charg-

ing strategy computations were based, were analyzed. However, the most important aspect

discussed in section 8.2 was that it happened two times during the test drives that a charging

process could not be conducted due to a charging station failure. This topic also dominated

the discussion in section 8.3, in which the gathered data were analyzed with the purpose to

draw conclusions on the ROs. Based on this discussion, it was stated that the mathematical

framework, which was developed in chapters 3 to 5, is hardly able to handle charging station

failures.



Chapter 9

Summary, Conclusions and Outlook

9.1 Summary

In this work, a framework was developed, which allows computing (near-)optimal charging

strategies by solving a deterministic SPP. The focus was set on two aspects: First, different

possibilities to model the problem of finding optimal charging strategies were discussed and

compared. Second, the quality of charging strategies which are computed under uncertainty

was intensively analyzed. The findings indicate that it is likely that the suggested approach is,

in contrast to prior approaches, able to provide charging strategies of practicable quality even

under the existence of uncertainties.

At the beginning of this work, in chapter 1, it is stated that advanced navigation applications

for BEVs have the potential to reduce or even eliminate range anxiety. This conjecture mo-

tivates the development of a framework which makes the computation of charging strategies

possible. The goal is to form the basis for a later implementation of CSO functionalities into

real world navigation systems. Charging strategies are intended to guide drivers of BEVs in

such a way that, on the one hand, unnecessary charging stops are avoided and, on the other

hand, it is ensured that the BEV does not run out of energy during the trip. A literature review,

which was conducted in chapter 2, revealed that the main drawback of existing approaches

for the computation of charging strategies is that they provide no or only limited possibilities

to handle uncertainties. Hence, since (particularly under realistic conditions) it cannot be ex-

pected that energy consumption predictions are absolutely correct, the corresponding charging

strategies were assumed to be unable to ensure a reliable arrival at the destination. Moreover,

it was observed that prior approaches include further simplifications, such as the assumption

that the energy consumption for passing road segments is independent of time. These simplifi-

cations are primarily intended to keep computation times low. However, they are partly also an

inevitable consequence of limitations from which those types of optimization problems suffer

which are used in prior works to model the problem of finding optimal charging strategies.

208
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To overcome the mentioned flaws, the problem of finding optimal charging strategies was

modeled as an MDP in chapter 3. This problem formulation differs significantly from prior

formulations, as the structure of MDPs allows avoiding almost any simplification other types

of optimization problems are unable to avoid in the context of CSO. Unfortunately, it was con-

cluded that the proposed MDP can hardly be treated numerically. Consequently, an alternative

formulation of the problem of finding optimal charging strategies as a deterministic SPP was

developed in chapters 4 and 5. The formulation as a deterministic SPP was intended to make

an efficient numerical computation of charging strategies possible. However, along with the

formulation as an SPP, several simplifications and restrictions had to be accepted. It was, for

example, necessary to discretize the set of possible charging actions. In contrast to prior ap-

proaches, the final version of the suggested formulation as a deterministic SPP (see chapter 5)

provides the possibility to compensate for prediction uncertainties. This is achieved by reserv-

ing parts of the battery capacity as an energy buffer. The more energy is reserved, the lower the

probability of running out of energy becomes. On the other hand, it was stated that big energy

buffers lead to conservative charging strategies and, thus, reduce the optimization potential. In

order to keep the size of the energy buffers as small as possible, but, simultaneously, as big as

necessary, different methods for quantifying the size of the energy buffer dynamically during

the trip were proposed and compared. Another difference to prior attempts to compute charg-

ing strategies via solving SPPs is that a detailed analysis of the properties of the suggested

formulation as a deterministic SPP was conducted. This analysis proved that modeling energy

consumption costs as a time-dependent quantity leads to a situation in which Bellman’s opti-

mality principle does no longer hold. Based on this result, two modifications of the algorithm

of Dijkstra were discussed. The first modification allows computing optimal solutions, despite

the absence of Bellman’s optimality principle. The second modification ignores the fact that

this principle does not hold. This leads to improved computation times, but the resulting charg-

ing strategies may be suboptimal.

The development of an adequate formulation of the problem of finding optimal charging strate-

gies represented the first part of the described research. In the second part, the ability of the

developed framework to handle uncertainties was tested. In chapters 6 and 7, the testing was

done via a simulation study. In this study, BEVs driving along a several hundred kilometers

long route were simulated. Various scenarios, differing in terms of, for example, the avail-

able charging infrastructure or the driving range of the BEVs, were considered. The simulated

BEVs followed charging strategies which were based on error-prone RTTI. Thus, the BEVs

encountered traffic situations which differed from the traffic information on which the charg-

ing strategies were based. Chapter 6 was intended to prepare the simulation study, which was

afterwards described in chapter 7. In chapter 6, concrete models for deriving travel times and
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energy consumption values on the basis of macroscopic traffic information, such as RTTI, were

proposed. Furthermore, a framework to measure the quality of RTTI was introduced.

In chapter 7, at first the simulation environment was explained in detail. Then, the influence of

different types of RTTI, which showed different levels of quality, on charging strategy quality

was analyzed. It was found out that this influence is significant. However, the relations be-

tween RTTI quality and charging strategy quality turned out to be complex. When comparing

two types of RTTI, then the one which shows a higher quality not necessarily leads to bet-

ter charging strategies than the other type. On the other hand, it can at least be stated that a

sufficiently high quality of the available RTTI ensures a high quality of the resulting charging

strategies. Furthermore, it could be shown that the quality of charging strategies not only de-

pends on the available RTTI, even though RTTI represented the only source of uncertainty. If,

for instance, the density of the existing charging infrastructure is very high, then already poor

RTTI can be sufficient to ensure a high quality of the resulting charging strategies. Another

interesting observation, which was made on the basis of the conducted simulation study, is that

total travel times do not depend much on the available RTTI or on the way the size of energy

buffer is quantified. Unfortunately, this does not mean that extremely big energy buffers can be

used to achieve charging strategies of high quality, since big energy buffers lead to pre-trip fail-

ures. Probably the most important result of the simulation study is that the concept of energy

buffers was able to keep the risk of running out of energy very low for all of the tested types

of RTTI. Admittedly, not always the same method for quantifying the size of the energy buffer

was applied. Instead, it depended on the considered type of RTTI, which method achieved the

best results.

Finally, in chapter 8, the execution of a few field tests was described. The findings of the field

tests were intended as a supplement to the results of the simulation study. A test BEV was used

to cover a distance of more than 400 kilometers. The test drivers received charging strategies,

which were computed on the basis of the developed framework, as an on-trip information.

The gathered data and gained experiences revealed some minor issues concerning the applied

models for predicting energy consumption and charging durations. Despite these issues, the

developed framework appeared to be applicable in practice. The only significant problems

occurred whenever charging stations failures made it impossible to conduct a recommended

recharging process. In these situations, it may happen that even big energy buffers are unable

to ensure a reliable arrival.

9.2 Conclusions and Outlook
At the beginning of this work, in section 1.2, several ROs were defined. In the following, it is

assessed up to which degree these ROs can be achieved on the basis of the developed formula-

tion of the problem of finding optimal charging strategies as a deterministic SPP. Furthermore,

it is also discussed how some of the remaining issues may be solved in the future.
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RO 1a: The suggested problem formulation has to be able to realistically represent those

aspects which are relevant for a practical application of CSO.

The proposed deterministic SPP is formulated in a generic way. Hence, this formulation pro-

vides lots of flexibility, which again should allow taking most relevant aspects into account.

Nevertheless, this formulation also leads to restrictions which are in fact not necessary to model

the problem of finding optimal charging strategies. One of these restrictions is that the space

of possible target states of charge is discretized. This is a consequence of the fact that SPPs

are based on graphs, which are discrete objects. Second, the way graph ~G∆
D is defined makes it

impossible to represent arbitrary decision policies via paths. Instead, only charging strategies

can be represented. Third, the concept of energy buffers does not allow taking uncertainties of

travel time predictions explicitly into account. However, it was argued in sections 4.4 and 5.4

that particularly the first two of these restrictions can be assumed to be not critical. Moreover,

based on the promising results of the simulation study, in which incorrect travel time predic-

tions were caused by the imperfection of the applied types of RTTI, it can be concluded that

also the third of the mentioned restrictions can be handled rather well by the developed frame-

work. Unfortunately, the concept of energy buffers, the way it was introduced in this work,

is probably unable to handle potential charging station failures effectively. From all identified

limitations of the developed framework, this is the most critical one. To handle such incidents

algorithmically, the author supposes that the decision graph ~G∆
D has to be extended in such a

way that charging policies can be represented by paths. If this was possible, then an additional

constraint has to be included into the problem formulation, which ensures that computed charg-

ing policies are able to react to charging station failures. In this context, many new questions

arise concerning computational effort and the existence of solutions. Alternatively, instead of

extending the developed framework, it seems also reasonable to expect that the reliability of the

available charging infrastructure will be improved soon. If this was the case, charging station

failures would be no longer an issue.

RO 1b: The suggested problem formulation has to ensure that charging strategies are opti-

mized with regard to both efficiency and reliability.

It can be stated that this RO is completely fulfilled. The optimization is done with regard to total

travel times. Reliability of the resulting charging strategies is ensured by the energy security

condition (recall equation 5.6) and, along with this, by the ability of the proposed framework

to handle uncertainties.

RO 1c: The suggested problem formulation has to make a practical computation of solutions

possible.
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RO 1c was frequently discussed and the attempts to achieve RO 1c had a major influence on

the final formulation of the problem formulation as a deterministic SPP. Still, whether it can

be stated that RO 1c can be fulfilled on the basis of the proposed formulation of the problem

of finding optimal charging strategies is not clear. The average computation times (between

one and two seconds for the computation of a single charging strategy) that were observed

during the simulation study are promising. Admittedly, these computation times resulted for

a situation in which no route choices were possible. The suggested optimization algorithms

are probably not able to achieve reasonable computation times for graphs representing road

networks of whole countries. Prior works on CSO improve computation times by computing

and storing time and energy consumption costs of paths a priori, i.e., before the first request for

a charging strategy is processed (10) (87) (137). Unfortunately, since the proposed edge cost

functions are not static, i.e., since energy consumption and time costs dependent, for instance,

on arrival times, preprocessing approaches become expensive and less efficient. An alternative

idea, which has been proposed in (87) as a supplement to the a priori computation of path costs,

is to conduct the computation of charging strategies in two steps. During the first step, which

is based on a given graph, a given set of charging stations, a starting node and a destination,

the original graph, which can be huge, is reduced to a small subgraph. Such an approach is

schematically illustrated in Figure 9.1. The idea could be to compute at first a certain number of

candidate routes. These routes have to fulfill a list of properties concerning, for instance, their

lengths, the charging infrastructure density along them, and their similarity to each other. It can

be thought of formulations such as: ”Any candidate route is allowed to be at most w percent

longer than the shortest route between starting node and destination. Furthermore, there needs

to be a charging station every x kilometers along any candidate route. This charging station is

not allowed to be more than y kilometers away from the candidate route. Furthermore, at most

z percent of the edges belonging to a new candidate route are allowed to be part of an already

computed candidate route“. Variables w, x, y and z are real-valued numbers. An approach to

iteratively compute a set of candidate routes which fulfill certain properties can be found, for

example, in (78). Based on these routes, a new graph could be constructed (see also the third

part of Figure 9.1), on which finally the CSO itself takes place.

Certainly, the computational effort that is necessary to conduct the computation of a charging

strategy on this graph depends on the number of considered candidate routes. To gain an

idea of this effort, let n ∈ N describe the number of paths leading from the starting node to

the destination on the reduced graph105. Then, the average time for computing a charging

strategy on the reduced graph should be at most n times the average computation time which is

necessary to compute a charging strategy for one of the n paths. The idea behind this statement

is that the simplest approach for computing an optimal charging strategy for the whole graph

is to compute an optimal charging strategy for each path separately and, after this is done for

105The number of paths n may be higher than the number of candidate routes. This can happen whenever a
candidate route crosses another one.
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Figure 9.1: Concept for CSO on a network level.

all n paths, recommend the best of all computed charging strategies106. Considering that the

computation of a single charging strategy for an about 360 kilometers long route took between

one and two seconds during the simulation studies, it is very likely that reasonable computation

times can be achieved by the described two step approach if the number of considered candidate

routes is kept low. Consequently, an application on whole road networks seems to be possible.

However, it has to be considered that the reduction of the graph leads to a reduction of the

optimization potential. The less candidate route are used to construct the reduced graph on

which the computations take place, the more significant this reduction becomes.

RO 2: Test the suggested problem formulation under the existence of uncertainties and eval-

uate its ability to ensure charging strategies of practicable quality.

106If the first parts of two or more candidate routes are the same, i.e., if several candidate routes start with the
same sequence of edges, then optimization algorithms, such as algorithms A and B, can be expected to need even
less computation time to compute an optimal charging strategy for the reduced graph. The reason for this is that the
labels belonging to these starting edges are generated only once and not for each existing path separately.
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It was stated that charging strategies can be said to show a ”practicable“ quality if the probabil-

ity of on-trip failures is close to zero and if pre-trip failures occur only rarely. Total travel times

appeared to be less important. The ability of the developed framework to handle uncertainties

was tested on the basis of a simulation study and by conducting a few field tests. The results of

these tests were analyzed to decide whether or not the computed charging strategies can be said

to show a practicable quality. The findings of the simulation study are promising. For all of the

tested RTTI functions, there existed at least one combination of an energy buffer function and a

reliability parameter which made it possible to keep the number of on-trip and pre-trip failures

close to zero. The results of the field tests, however, are less positive. The test drives showed

that the developed framework is unable to handle charging station failures. As long as such

failures occur (more or less) regularly, the concept of energy buffers, the way it is described in

this work, is probably not able to ensure reliable charging strategies. However, as it appears

to be reasonable to expect that the number of charging station failures will fall during the next

few years, this issue may loose its relevance.

In conclusion, it can be stated that the developed formulation of the problem of finding opti-

mal charging strategies as a deterministic SPP allows achieving the introduced ROs to a great

extent. Hence, a navigation system which provides charging strategy recommendations on

the basis of the developed framework represents a promising tool to effectively fight range-

anxiety. Nevertheless, the described research revealed many aspects which may be improved

further: The ability of the concept of energy buffers to handle uncertainties resulting from,

for instance, individual driving style or charging station failures could be addressed by future

research. Moreover, other types of energy buffer functions could be developed or the existing

approaches could be enhanced by, for instance, applying more sophisticated methods for the

generation of speed bounds. The proposed optimization algorithms could be combined with

speed-up techniques to enable an application of CSO on a network level. Several other topics,

which may be interesting for future research, were mentioned. However, before putting a lot

of effort into research, it has to be considered which of these potential research topics will be

of relevance in five, ten or twenty years. More and more publicly accessible charging stations

are built and the driving ranges of BEVs improve quickly. Thus, ensuring a reliable arrival will

loose importance and, at some point, it will no longer be an issue. Instead, an efficient organi-

zation of trips and a reliable estimation of arrival times will become more relevant for drivers

of future BEVs. Hence, future research probably should focus on topics which particularly

improve the efficiency of charging strategies, such as approaches that take the coordination of

charging processes of BEVs into account.
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Nov. 2016 from https://www.kia.com/de/dialog/broschuere-download/download/

download/?ebrochure={2171F2EC-5503-4EE7-BB13-781BD5D6BB4B}&model=

{BEF84C08-F692-40CB-B4BC-2915B6C951B5}.

[55] MMD Automobile GmbH. Plug-in Hybrid Outlander, 2016. Retrieved 01

Nov. 2016 from http://www.mitsubishi-motors.de/workarea/downloadasset.aspx?id=

23622332115.

[56] Now GmbH. Kompendium für den interoperablen und bedarfsgerechten Auf-

bau von Infrastruktur für Elektrofahrzeuge, 2014. Retrieved 30 Oct. 2016 from

http://sax-mobility.de/wp-content/uploads/2014/03/OEffentliche Ladeinfrastruktur

fuer Staedte Kommunen und Versorger.pdf.

[57] Stefan Grubwinkler, Maria Kugler, and Markus Lienkamp. A system for cloud-based

deviation prediction of propulsion energy consumption for EVs. In Proceedings of

https://www.kia.com/de/dialog/broschuere-download/download/download/?ebrochure={2171F2EC-5503-4EE7-BB13-781BD5D6BB4B}&model={BEF84C08-F692-40CB-B4BC-2915B6C951B5}
https://www.kia.com/de/dialog/broschuere-download/download/download/?ebrochure={2171F2EC-5503-4EE7-BB13-781BD5D6BB4B}&model={BEF84C08-F692-40CB-B4BC-2915B6C951B5}
https://www.kia.com/de/dialog/broschuere-download/download/download/?ebrochure={2171F2EC-5503-4EE7-BB13-781BD5D6BB4B}&model={BEF84C08-F692-40CB-B4BC-2915B6C951B5}
http://www.mitsubishi-motors.de/workarea/downloadasset.aspx?id=23622332115
http://www.mitsubishi-motors.de/workarea/downloadasset.aspx?id=23622332115
http://sax-mobility.de/wp-content/uploads/2014/03/OEffentliche_Ladeinfrastruktur_fuer_Staedte__Kommunen_und_Versorger.pdf
http://sax-mobility.de/wp-content/uploads/2014/03/OEffentliche_Ladeinfrastruktur_fuer_Staedte__Kommunen_und_Versorger.pdf


220 BIBLIOGRAPHY

2013 IEEE International Conference on Vehicular Electronics and Safety, pages 99–

104. IEEE, 2013.

[58] Randolph W. Hall. Route choice and advanced traveler information systems on a capac-

itated and dynamic network. Transportation Research Part C: Emerging Technologies,

4(5):289–306, 1996.

[59] Horst W. Hamacher, Stefan Ruzika, and Stevanus A. Tjandra. Algorithms for time-

dependent bicriteria shortest path problems: Elsevier. Discrete Optimization, 3(3):238–

254, 2006.

[60] Cliff Hannel, Ben Hannel, Jord Hannel, and Tess Hannel. EV Trip Planner, 2013. Re-

trieved 18 Sep. 2015 from https://evtripplanner.com/.

[61] Pierre Hansen. Bicriterion Path Problems. In M. Beckmann, H. P. Künzi, Günter Fandel,

and Tomas Gal, editors, Multiple Criteria Decision Making Theory and Application,

volume 177 of Lecture Notes in Economics and Mathematical Systems, pages 109–127.

Springer Berlin Heidelberg, 1980.

[62] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Deter-

mination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cyber-

netics, 4(2):100–107, 1968.

[63] Peter Hart, Nils Nilsson, and Bertram Raphael. Correction to A Formal Basis for the

Heuristic Determination of Minimum Cost Paths. ACM SIGART Bulletin, 37:28–29,

1972.

[64] Nina Heitmann. Modellierung von Investitionsentscheidungen und Kraftwerkseinsatz-

planung unter Unsicherheit mittels Stochastischer Optimierung und Multi-Agenten-

Ansatz am Beispiel des deutschen Strommarktes. PhD thesis, Mathematisch-

Naturwissenschafliche Fakultät der Universität Augsburg, 2012.

[65] Juan C. Herrera, Daniel B. Work, Ryan Herring, Xuegang Ban, Quinn Jacobson, and

Alexandre M. Bayen. Evaluation of traffic data obtained via GPS-enabled mobile

phones: The Mobile Century field experiment. Transportation Research Part C: Emerg-

ing Technologies, 18(4):568–583, 2010.

[66] Benjamin Hesse. Einfluss verschiedener Nebenverbraucher auf Elektrofahrzeuge. In

Zukünftige Entwicklungen in der Mobilität : betriebswirtschaftliche und technische As-

pekte, pages 91–104. Springer Gabler, 2012.

[67] Gerhard Huber. Landmark-based Preprocessing Methods for Solving Multicriteria

Shortest Path Problems: Master’s Thesis. Technical University of Munich, 2012.

https://evtripplanner.com/


BIBLIOGRAPHY 221

[68] Gerhard Huber and Klaus Bogenberger. A Quality Evaluation Model for Real-Time-

Traffic-Information. ITSC 2013, pages 2126–2131, 2013.

[69] Gerhard Huber and Klaus Bogenberger. Long-Trip Optimization of Charging Strategies

for Battery Electric Vehicles. Transportation Research Record: Journal of the Trans-

portation Research Board, 2497:45–53, 2015.

[70] Google Inc. Google maps elevation api, 2016. Die Zeit, Retrieved 27 Nov. 2016 from

https://developers.google.com/maps/documentation/elevation/intro?hl=de.

[71] INRIX. Connected Driver Network: Version 4, 2014. Retrieved 18 Aug. 2015 from

http://inrix.com/wp-content/uploads/2014/10/Connected-Driver-Network 4.png.

[72] Donald B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks: New

York, NY, USA. Journal of the ACM, 24(1):1–13, 1977.

[73] Jaeyoung Jung, Joseph Y.J Chow, R. Jayakrishnan, and Ji Young Park. Stochastic dy-

namic itinerary interception refueling location problem with queue delay for electric taxi

charging stations. Transportation Research Part C: Emerging Technologies, 40:123–

142, 2014.

[74] Tomas Jurik, Arben CELA, Rehda Hamouche, Abdellatif Reama, Rene Natowicz,

Silviu-Iulian Niculescu, Christophe Villedieu, and Denis Pachetau. Energy Optimal

Real-Time Navigation System: Application to a Hybrid Electrical Vehicle: The Hague,

Netherlands. ITSC 2013, pages 1947–1952, 2013.

[75] Theo Kamalski. OpenLR - Introduction: Version 19-10-2009, 2009. Retrieved 08 Oct.

2014 from http://www.openlr.org/data/docs/OpenLR-Introduction.pdf.

[76] Namwoo Kang, Fred M. Feinberg, and Panos Y. Papalambros. Autonomous Electric

Vehicle Sharing System Design. In Volume 2A: 41st Design Automation Conference,

page V02AT03A034. ASME, 2015.

[77] Ioannis Kaparias. Reliable Dynamic In-vehicle Navigation. PhD thesis, University of

London, 2008.

[78] Ioannis Kaparias, Michael Bell, Klaus Bogenberger, and Yanyan Chen. Approach to

Time Dependence and Reliability in Dynamic Route Guidance. Transportation Re-

search Record: Journal of the Transportation Research Board, 2039:32–41, 2007.

[79] Boris S. Kerner. Introduction to Modern Traffic Flow Theory and Control: The Long

Road to Three-Phase Traffic Theory. Springer, Heidelberg and Dordrecht and London

and New York, 2009.

https://developers.google.com/maps/documentation/elevation/intro?hl=de
http://inrix.com/wp-content/uploads/2014/10/Connected-Driver-Network_4.png
http://www.openlr.org/data/docs/OpenLR-Introduction.pdf


222 BIBLIOGRAPHY

[80] A. Khosravi, E. Mazloumi, S. Nahavandi, D. Creighton, and J.W.C van Lint. Prediction

Intervals to Account for Uncertainties in Travel Time Prediction. Ieee Transactions on

Intelligent Transportation Systems, 12(2):537–547, 2011.

[81] Abbas Khosravi, Ehsan Mazloumi, Saeid Nahavandi, Doug Creighton, and J.W.C van

Lint. A genetic algorithm-based method for improving quality of travel time prediction

intervals. Transportation Research Part C: Emerging Technologies, 19(6):1364–1376,

2011.

[82] Samir Khuller, Azarakhsh Malekian, and Julián Mestre. To fill or not to fill. ACM

Transactions on Algorithms, 7(3):1–16, 2011.

[83] Kristina Kielblock. Tesla - Reichweite: Das sind die Reichweiten & Ladestationen

der S-Modelle, 2015. Retrieved 01 Nov. 2016 from http://www.giga.de/extra/ratgeber/

specials/tesla-reichweite-das-sind-die-reichweiten-ladestationen-der-s-modelle/.

[84] Seoungbum Kim and Benjamin Coifman. Comparing INRIX speed data against con-

current loop detector stations over several months. Transportation Research Part C:

Emerging Technologies, 49:59–72, 2014.

[85] Maximilian Kloess. Potentials of hybrid and electric cars to reduce energy consumption

and greenhouse gas emissions in passenger car transport – Techno-economic assess-

ment and model-based scenarios. PhD thesis, Technische Universität Wien, 2011.

[86] S. Kluge, C. Santa, S. Dangl, S. Wild, M. Brokate, K. Reif, and F. Busch. On the com-

putation of the energy-optimal route dependent on the traffic load in Ingolstadt: Oxford,

United Kingdom, Elsevier. Transportation Research Part C: Emerging Technologies,

36(0):97–115, 2013.

[87] Yuichi Kobayashi, Noboru Kiyama, Hirokazu Aoshima, and Masamori Kashiyama. A

route search method for electric vehicles in consideration of range and locations of

charging stations. In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 920–925.

IEEE, 2011.

[88] Michael M. Kostreva and Malgorzata M. Wiecek. Time Dependency in Multiple Objec-

tive Dynamic Programming: Elsevier. Journal of Mathematical Analysis and Applica-

tions, 173(1):289–307, 1993.

[89] Panos Kouvelis and Gang Yu. Robust discrete optimization and its applications, vol-

ume 14 of Nonconvex optimization and its applications. Kluwer Academic Publishers,

Dordrecht and Boston, c©1997.

[90] Karin Kraschl-Hirschmann. Energieorientierte Straßennetzbewertung für Routen-

suchverfahren. Straßenverkehrstechnik, 12:803–810, 2014.

http://www.giga.de/extra/ratgeber/specials/tesla-reichweite-das-sind-die-reichweiten-ladestationen-der-s-modelle/
http://www.giga.de/extra/ratgeber/specials/tesla-reichweite-das-sind-die-reichweiten-ladestationen-der-s-modelle/


BIBLIOGRAPHY 223

[91] Terence C. Lam and Kenneth A. Small. The value of time and reliability: measure-

ment from a value pricing experiment. Transportation Research Part E: Logistics and

Transportation Review, 37(2-3):231–251, 2001.

[92] Michael W. Levin, Melissa Duell, and Travis S. Waller. The Effect of Road Elevation

on Network Wide Vehicle Energy Consumption and Eco-Routing. 93rd annual meeting

of the transportation research board, 2014.

[93] Shieu-Hong Lin, Nate Gertsch, and Jennifer R. Russell. A linear-time algorithm for

finding optimal vehicle refueling policies. Operations Research Letters, 35(3):290–296,

2007.

[94] Hong K. Lo and W.Y Szeto. Modeling advanced traveler information services:

static versus dynamic paradigms. Transportation Research Part B: Methodological,

38(6):495–515, 2004.

[95] C. Lux. QBench – Evaluation of Traffic Flow Quality. In Christine Lotz and Malte

Luks, editors, Qualität von on-trip Verkehrsinformationen im Straßenverkehr, volume 82

of Berichte der Bundesanstalt für Strassenwesen : F, Fahrzeugtechnik, pages 56–63.

Wirtschaftsverl. NW, Verl. für Neue Wiss., 2011.

[96] G. Maggetto. Electric and electric hybrid vehicle technology: a survey. In IEE Seminar

on Electric, Hybrid and Fuel Cell Vehicles. IEE, 2000.

[97] Hani S. Mahmassani and R. Jayakrishnan. System performance and user response under

real-time information in a congested traffic corridor. Transportation Research Part A:

General, 25(5):293–307, 1991.

[98] Gonzalo Garcia Martı́nez. Is the range of the second generation of electric vehicles

enough, 2016. EnergyNews, Retrieved 09 June 2016 from http://www.energynews.es/

english/is-the-range-of-the-second-generation-of-electric-vehicles-enough/.

[99] Ernesto Queirós Vieira Martins. On a multicriteria shortest path problem: Elsevier.

European Journal of Operational Research, 16(2):236–245, 1984.
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Appendix A

Proving the Optimality of Algorithm A

In the following, a proof for Theorem 1 will be given. To reduce the length of this proof, it will

only be shown that any solution computed by algorithm A is feasible and time optimal. For this

purpose, it is presupposed that algorithm A terminates with finding an s-d-path. Certainly, this

is a direct consequence of the finiteness of ~G, the existence of at least one feasible s-d-path,

the non-negativity of cT , and the absence of a zero-time cycle.

Theorem 1. Let a finite and directed graph ~G = (V, ~E), a starting node s, a destination node

d, cost functions cT and cE (as described in section 4.1.2), and a starting state of charge SOCS
be given. Furthermore, let there be no cycle on ~G that leads to time costs of zero and let at least

one path from s to d on ~G exist which is feasible under the given conditions. Then, algorithm

A terminates with finding a label that encodes a time optimal and feasible s-d-path.

Proof. Theorem 1 is proved via contradiction. For this purpose, let L̄ be the label which

is returned by algorithm A, i.e., L̄ is the only label belonging to node d that was added by

algorithm A to the set Lperm until termination. Furthermore, let P̄ := [s = v̄1, v̄2, ..., v̄J = d]

with J ∈ N>0 be the path which is encoded by L̄ and let L̄j denote the label that encodes

sub-path P̄1:j (for any j ∈ {1, ..., J}). Note that due to the feasibility condition in line 13 of

algorithm A, P̄ necessarily is feasible. To prove time optimality, a parameter c∗T ∈ R≥0 is

defined that is equal to the minimal time costs caused by an optimal solution:

c∗T := min{cT (P ∗, tS , SOCS) | P ∗ ∈ P(~G, s, d) and P ∗ feasible}. (A.1)

Such a value c∗T exists due to the assumption that at least one feasible s-d-path exists (without

this assumption, the set on the right-hand side of the above definition could be empty) and due

to the non-negativity of cT (otherwise, c∗T could be equal to minus infinity). Now, let it be

assumed that P̄ is not time optimal, i.e.,

cT (P̄ , tS , SOCS) > c∗T . (A.2)
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Based on this assumption, the remainder of the proof is separated into two parts: In part A,

it is proved that any label belonging to a time optimal path or a subpath of a time optimal

path is lexicographically smaller than label L̄. In part B, the statement of part A is used to

demonstrate via mathematical induction that any label, which either encodes a time optimal

and feasible path or a subpaths of a time optimal and feasible path, is added to the set Lperm
before L̄. As a consequence, a label which encodes an optimal s-d-path and thus belongs to

the destination node d would have been added to Lperm before L̄. Hence, algorithm A would

have left the while-loop before L̄ could have been added to Lperm. This is a contradiction to

the statement that algorithm A returns L̄.

Part A: According to the non-negativity of cT and according to condition A.2, for any

time optimal path P ∗ := [v∗1, v
∗
2, ..., v

∗
M ] the time costs of any of its subpaths P ∗

1:m with m

∈ {1, 2, ...,M} are not higher than the time costs of P̄ :

cT (P̄ , SOCS , tS)
(A.2)
> c∗T = cT (P ∗, tS , SOCS) = (A.3)

= cT (P ∗
1:m, tS , SOCS) + cT (P ∗

m:M , tS , SOCS) ≥ (A.4)

≥ cT (P ∗
1:m, tS , SOCS) (A.5)

This implies that all labels L∗
m which encode a subpath P ∗

1:m of a time optimal path P ∗ are

lexicographically smaller than label L̄:(
cT (L̄), cE(L̄)

)
=
(
cT (P̄ , tS , SOCS), cE(P̄ , tS , SOCS)

)
≥lex (A.6)

≥lex
(
cT (P ∗

1:m, tS , SOCS), cE(P ∗
1:m, tS , SOCS)

)
(A.7)

=
(
cT (L∗

m), cE(L∗
m)
)
. (A.8)

Here, cT (L) denotes the accumulated time costs of the path which is encoded by label L and

cE(L) correspondingly denotes the accumulated energy consumption costs.

Part B: Let P ∗ = [v1, v2, ..., vM ] be a time optimal and feasible s-d-path on ~G and let L∗
j

denote the label that encodes subpath P ∗
1:j for some j ∈ {1, 2, ...,M}. The goal of the fol-

lowing mathematical induction is to prove that any label, which either encodes a time optimal

and feasible path or a subpaths of a time optimal and feasible path, is added to the set Lperm
before L̄. For this purpose, it is iterated over all labels which are added to the set Lperm until

algorithm A terminates and it is shown that each of these labels is lexicographically smaller

than label L̄.
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Start of Induction: The first label which is added to the set Lperm is the initial label:

Linit := (0, 0%, ∅, 0, s, 1). (A.9)

This label is added to Lperm during the first iteration of the while-loop in algorithm A and

consequently it is added to Lperm before L̄. It can be interpreted as a label which encodes a

subpath of P ∗, i.e., L∗
1 = Linit.

Inductive Step: Let for some K < M all labels L∗
m with m ≤ K be already added to Lperm

and let L̄ /∈ Lperm (induction hypothesis). As P ∗ is a path on ~G, it holds that (v∗m, v
∗
m+1) ∈ ~E.

Due to this, at the time at which L∗
K was added to Lperm, the label L∗

K+1 was created in line

12 of algorithm A. Since P ∗ is feasible, trivially also all its subpaths are feasible and thus also

P1:K+1 needs to be feasible. Correspondingly, the label L∗
K+1 fulfills the feasibility condition

in line 13 and is added to Ltemp in the same iteration of the while-loop in which L∗
K is added to

Lperm. Hence, L̄ cannot be in Lperm before L∗
K+1 is added to Ltemp. It can be concluded, as

L∗
K+1 is lexicographically smaller than L̄ according to the terms in A.6 - A.8, that label L∗

K+1

is added earlier to Lperm than L̄.



Appendix B

Stochastic Edge Costs and
Computational Effort

Let the graph at the top of Figure B.1 be considered. It consists of four nodes and three edges.

The task is to compute E[FM ] for path P := [a, b, c, d]. It is assumed that the state of charge

at the beginning is equal to 29 percent. Moreover, cost distributions are the same for all edges

and solely three different scenarios can occur:

(
CT (e, t, SOC), C̀E(e, t)

)
=


(8, 0.05) with a probability of 60%

(6, 0.10) with a probability of 30%

(4, 0.15) with a probability of 10%

(B.1)

It is assumed that no correlations between any edge costs exist. Furthermore, all edge cost

distributions are independent of arrival times or the state of charge. Below the graph in Figure

B.1, a so-called scenario tree (34) is placed. It shows the development of time costs and of

the states of charge along path P in dependency of the scenarios that were experienced. The

root of the tree is associated with starting node a, the first level of the tree with node b and so

on. Due to the aforementioned stochastic independence, the displayed probabilities remain the

same throughout the tree (either 60, 30 or ten percent). On the right side of Figure B.1, the

overall probabilities for all possibly occuring travel times and final states of charge that result

after passing path P can be found.

The value of the objective function for subpath [a, b] results directly from the edge cost defini-

tion in equation B.1:

E [FM ([a, b], tS , SOCS)] = 60% · 8 + 30% · 6 + 10% · 4 = 7.

Two additions and three multiplications are necessary for the computation. To compute the
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Figure B.1: Scenario tree for a single path consisting of three edges: Development of perfor-
mance measure and state of charge.

costs of subpath [a, b, c], conditional probabilities have to be computed. The value of the ob-

jective function can be derived as shown in the following equation:

E [FM ([a, b, c], tS , SOCS)] =60% · (60% · 16 + 30% · 14 + 10% · 12) +

30% · (60% · 14 + 30% · 12 + 10% · 10) +

10% · (60% · 12 + 30% · 10 + 10% ·M) =

=13.92 + 0.01 ·M
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Eight additions and 12 multiplications are necessary. Note that the probability for not reaching

node c can explicitly be determined and is here equal to 1%. Finally, the rating for the whole

path can be done as subsequently stated:

E [FM (P, tS , SOCS)] =60% · 60% · (60% · 24 + 30% · 22 + 10% · 20) +

60% · 30% · (60% · 22 + 30% · 20 + 10% ·M) +

60% · 10% · (60% · 20 + 30% ·M + 10% ·M) +

30% · 60% · (60% · 22 + 30% · 20 + 10% ·M) +

30% · 30% · (60% · 20 + 30% ·M + 10% ·M) +

30% · 10% · (60% ·M + 30% ·M + 10% ·M) +

10% · 60% · (60% · 20 + 30% ·M + 10% ·M) +

10% · 30% · (60% ·M + 30% ·M + 10% ·M) +

10% · 10% · (60% ·M + 30% ·M + 10% ·M)

=17.712 + 0.19 ·M

26 additions and 45 multiplications are necessary. It can be observed that for the case of path

[a, b, c, d], the number of arithmetic operations could be reduced. This is reasoned by the

scenario which is represented by the lowest branch of the tree in Figure B.1, where even node c

cannot be reached. Computations for edge (c, d) are thus not necessary. Certainly, such savings

do not always occur when computing the value of E[FM (P, tS , SOCS)].

Let from here on the number of possible scenarios per edge, which is assumed to be constant

independently of the considered edge, be denoted by S ∈ N and the number of nodes of the

considered path with N ∈ N (i.e., S = 3 and N = 4 in the example). In general, the following

upper bounds for the number of arithmetic operations, which are necessary to rate a path with

N nodes, can be derived:

number of additions ≤ SN−1 − 1 (B.2)

number of multiplications ≤ SN−1 + SN−2 · (N − 2) (B.3)

A proof is not given here. It can be observed that the computational effort can grow exponen-

tially with the length of the path. For instance, if five different scenarios per edge and a path

length of ten nodes were assumed (i.e., S = 5 and N = 10), then the number of arithmetic

operations for simply rating such a path exceeds five million.

It is worth mentioning that the example in Figure B.1 represents a comparably simple setting:

The probability space is discretized, no correlations exist and the edge cost distributions are

static, i.e., they to not depend on, for instance, arrival times. Still, again recursively defined
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integrals need to be solved to assess path P 107. At first glance, this may be surprising, since,

due to the missing cost dependency and the absence of correlations, no dependencies between

cost distributions of different edges seem to exist. On the other hand, the feasibility condition

causes time cost distributions to depend on former realizations of energy consumption costs.

In the scenario tree, this can be observed when comparing the time cost distributions for (c, d)

for different branches of the displayed tree: For the topmost branch, time costs are distributed

according to definition B.1, i.e., 60 percent probability for costs of eight, 30 percent probability

for costs of six, and ten percent probability for costs of four. For the lowest branch (the lowest

branch in which edge (c, d) is still reached is meant here), time costs are always equal to M .

On the other hand, if the feasibility condition were not considered within the objective func-

tion, i.e., if E[FM (P, tS , SOCS)] were replaced by E[CT (P, tS , SOCS)], then the expected

time costs of all edges of P could just be added up. Consequently, rating paths would not lead

to a significant computational effort.

107No integrals can be seen in the listed calculations, since the probability space is discretized and hence all
integrals are reduced to sums.



Appendix C

Parameters for Adaptive Smoothing
Method

Here, the parametrization which is used in this work whenever the ASM is applied can be

found. The columns of Table C.1 and the naming of the parameters are oriented towards Table

1 in (132).

Table C.1: Overview on applied ASM parameters

Parameter Value Description

∆xGT 40 m spatial resolution of results

∆tGT 20 sec temporal resolution of results

cc −18 km/h convested wave speed

cf 80 km/h free-flow wave speed

∆V 10 km/h length of transition region

Vcrit 70 km/h critical speed

σ 1100 m spatial kernel length

ζ 50 sec temporal kernel length
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Appendix D

Simulation Study: Further Aspects

D.1 Weighting of Pre-trip Failures
Figure D.1 shows the influence of weighting pre-trip errors less than on-trip errors exemplarily

for the case of function V tB
Hist. There, three different curves based on V tB

Hist can be found, where

pre-trip errors are weighted with a factor of 1.0 (full weighting), 0.5, and 0.0 (no weighting).

The black curve, showing the qualities that are achieved when presuming perfect RTTI, is just

added to simplify comparison to the curves which are illustrated in Figure 7.10. The lower

the weighting of pre-trip failures becomes, the more the steepness of the right branch of the

parabola is reduced and, along with this, the more the vertex of the parabola is shifted to right.

For a full weighting, a z-value of ten percent belongs to the setting which is represented by

the vertex of the parabola of the yellow curve. If pre-trip error receive a weighting of 0.5,

then a z-value of 20 percent leads to the lowest failure rate, and if pre-trip errors are not con-

sidered at all, then a relative buffer size of 30 percent leads to the lowest failure rate. Along

Figure D.1: Influence of assign reduced weightings to pre-trip failures for the example of traffic
predictions based on historical data.
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with the movement of the vertex, more and more triangles can be found on the left branches

of the parabolas. Consequently, from an optimizer’s point of view, higher buffer sizes become

competitive. If the relation between on-trip weightings and pre-trip weightings is able to rep-

resent the preferences of the considered driver, then the described proceeding allows deriving

for a given type of RTTI and a given energy buffer function a set of Pareto optimal reliability

parameters. These parameters are exactly those which lead to settings which are represented

by the vertex or by triangles belonging to the left branch of the corresponding parabola.
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D.2 Derivation of the Primary Energy Consumption Model
Here, it will be explained how the recorded primary energy consumption data is used to derive

a primary energy consumption model ECPrim, which assigns realistic energy consumption

values per distance traveled to given macroscopic driving speeds. For this purpose, let the set

of all recorded (instantaneous) driving speeds (given in kilometers per hour) be denoted by

{vi}i=1,...,Z and the corresponding set of instantaneous energy consumption values be denoted

by {eci}i=1,...,Z (given in watt) withZ ∈ N. Based on these sets, average instantaneous primary

energy consumption values ECinstPrim(v∗) (”inst“ for ”instantaneous“) depending on speed v∗

with v∗ ∈ {1km/h, 2km/h, ..., 150km/h} are computed according to the following rule:

Id[a,b[(vi) :=

1, if a ≤ vi < b

0, else
(D.1)

ECinstPrim(v∗) :=

∑Z
i=1 Id[v∗−0.5 km

h
,v∗+0.5 km

h [(vi) · eci∑Z
i=1 Id[v∗−0.5 km

h
,v∗+0.5 km

h [(vi)
(D.2)

The energy consumption that is necessary to cover one meter while experiencing a macroscopic

driving speed v ∈ [0km/h, 150km/h] is afterwards approximated by assigning v to the closest

of the values v∗ ∈ {1km/h, 2km/h, ..., 150km/h} and multiplying the corresponding average

instantaneous consumption ECinstPrim(v∗) with the time tm(v∗) (in seconds) that is necessary to

cover one meter when driving with a speed of v∗108:

tm(v∗) := 1m/ v∗

3.6
km
h /ms

[seconds] (D.3)

ECPrim(v∗) := tm(v∗) · ECinstPrim(v∗) [seconds · watt = joule] (D.4)

ECPrim(v) :=

0 Joule, if v < 0.5kmh

ECPrim(v∗), if v∗ − 0.5kmh ≤ v < v∗ + 0.5kmh

(D.5)

108Speed v is given in kilometers per hour. The corresponding speed in meters per second is received if v is
divided by 3.6.
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D.3 The Impact of Near-perfect Real-time Traffic Information
The conjecture that RTTI which shows only minor differences to the ground truth leads to

a high quality of the resulting charging strategies motivates Figure D.2. This figure illustrates

charging strategy qualities resulting from different modifications of function V tB
Pha. These mod-

ifications are the result of linear combinations of functions V tB
Pha and VGT :

V tB ,λ
Pha (x, t) := λ · V tB

Pha(x, t) + (1− λ) · VGT (x, t) (D.6)

This means that for λ = 1, function V tB ,λ
Pha is equal to V tB

Pha. For λ = 0, it is equal to V tB
Perf . In

Figure D.2, the quality of charging strategies resulting from functions V tB ,λ
Pha for five different

values of λ are visualized (λ ∈ {0, 0.1, 0.25, 0.8, 1.0}). It can be observed that with increasing

Figure D.2: Charging strategy qualities resulting from function V tB ,λ
Pha for different values of λ.

similarity between the applied RTTI and the ground truth, charging strategy qualities tend to

improve until the same results are achieved as for function V tB
Perf .
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D.4 Real-time Traffic Information Errors and Explanatory Vari-
ables

(a) Plots of step functions Rα(e1). (b) Plots of step functions Rα(e2).

(c) Plots of step functions Rα(e3). (d) Plots of step functions Rα(e4).

(e) Plots of step functions Rα(e5).

Figure D.3: Relation of quantile functions on the suggested predictors for the case of commer-
cial RTTI.
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D.5 Speed Bounds Quality Depending on Selected Predictors
The following figures show the quality of adaptive speed bounds resulting from all possible

combinations of considering one, two and three explanatory variables. The curves from Figure

7.17 are additionally displayed in each of these figures to give some orientation and to simplify

comparison. It can be observed are that adaptive bounds perform in generally better than

static bounds if high success rates have to be achieved (see right upper corners of the figures).

Furthermore, it can be seen that including three explanatory variables leads to the best results,

even though the differences between the curves are rather small.
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(a) Considering only one predictor.

(b) Considering two predictors.

(c) Considering three predictors.

Figure D.4: Relation between considered predictors and the quality of the resulting adaptive
speed bounds for the case of traffic information V t0

Com.
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D.6 Comparing Combinations of Explanatory Variables

Figure D.5: Charging strategy qualities resulting from applying function V tB
Com and adaptive

trajectory buffers, which are based on different combinations of explanatory variables.

The curves in Figure 7.19 which belong to energy buffer functions SOCad,αmin (the circles) can

solely be understood as examples. Different combinations of explanatory variables could be

taken into account for the generation of speed bounds V tB ,α
low and V tB ,α

up . However, further tests

indicate that this has only a minor influence on the resulting charging strategy qualities. Fig-

ure D.5 supports this statement for the case of using function V tB
Com as basis for the charging

strategy computation. The charging strategy qualities resulting from applying three different

combinations of explanatory variables for the generation of energy buffer function SOCad,αmin

can be found. When comparing different circles belonging to the same value of α, then it can

be observed that only very little differences occur.
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Overview of Conducted Test Drives
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(a) Overview of arrival times at charging stations and charging durations.
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(b) Overview of the states of charge at charging stations.

Figure E.1: Development of arrival times and states of charge for the test drive from Leipzig to
Munich (southbound) on the 12th of May, 2016.
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(a) Overview of arrival times at charging stations and charging durations.
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(b) Overview of the states of charge at charging stations.

Figure E.2: Development of arrival times and states of charge for the test drive from Munich
to Leipzig (northbound) on the 6th of May, 2016.
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(a) Overview of arrival times at charging stations and charging durations.
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(b) Overview of the states of charge at charging stations.

Figure E.3: Development of arrival times and states of charge for the test drive from Munich
to Leipzig (northbound) on the 12th of May, 2016.



Notation

The main abbreviations and the most important symbols that are used in this thesis can be

found below:

Abbreviations:

BEV battery electric vehicle
ICEV internal combustion engine vehicle
SOC state of charge
CSO charging strategy optimization
HEV hybrid electric vehicle
PHEV plug-in hybrid electric vehicle
CHAdeMO charge de move
CCS combined charging system
NEDC new European driving cycle
RTTI real-time traffic information
SPP shortest path problem
GPS global positioning system
MDP multistage decision problem
FIFO first-in first-out
ASM adaptive smoothing method
GT ground truth
TGT technical ground truth
APE absolute percentage error
PE percentage error
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Symbols in the context of graphs:

~G = (V, ~E) a graph consisting of nodes V and edges ~E
P a path on a graph
[v1, v2, ..., vQ] a path described by the sequence of nodes v1 to vQ
Pi:j a subpath of a path P , starting with the i-th node and

ending with j-th node of P
P(~G, v1, v2) the set of all paths on graph ~G which lead from node

v1 to node v2

Symbols in the context of decision problems:

tk decision stage k (with k ∈ {1, 2, ...,K})
Uk decision space at decision stage k
uk one single decision in Uk
ξk random variables representing the considered sys-

tem’s development until decision stage tk
f performance measure
π = (π1, ..., πK) a decision policy consisting of decision rules πk
F space of possible decision rules
~GD = (VD, ~ED) decision graph
V cs
D the set of all nodes of the decision graph that repre-

sent locations of charging possibilities
tAk random variable describing the arrival time at node

k
SOC random variable describing the state of charge when

arriving at node k
ξ≤K+1 vector consisting of all random variables ξk, where

tk denotes a decision stage that is visited until desti-
nation node vK+1 is reached

cT random variable assigning travel times to edges
Ut modified decision space



Symbols in the context of deterministic SPP:

∆ step length for target states of charge
U∆
k decision space at node vk resulting from parameter

∆
~G∆
D = (V ∆

D ,
~E∆
D) graph which is used for defining the suggested SPP

~E∆
cs set of all edges in ~E∆

D which represent parts of a
charging process

ωT abstract object containing all kinds of information
which may be used to estimate travel times

ωE abstract object containing all kinds of information
which may be used to estimate the energy consump-
tion of BEVs

c̀E(e, t) deterministic energy costs for traversing at time t an
edge e which represents a road segment

cT (e, t) deterministic time costs for traversing at time t an
edge e which represents a road segment

cE(e, t, SOC) deterministic energy costs for passing an edge e,
which represents a road segment, when arriving at
time t with a state of charge SOC; adjusted version
of c̀E which ensures reasonable states of charge



Symbols in the context of SPPs under uncertainty:

cWT waiting time due to occupied charging stations
cAT additional time consumption during charging pro-

cesses
cCT (e, SOC) time for charging
S function describing the charging behavior of a BEV
cCE(e, SOC) negative energy costs due to charging
cT (e, t, SOC) deterministic time costs for passing an edge e ∈ ~E∆

cs

when arriving at time t with a state of charge SOC
Ltemp set of temporary labels
Lperm set of permanent labels
gT (e, t, ωT ) probability density function of the travel time that is

necessary for passing edge e at time t while facing
conditions described by ωT

g̀E(e, t, ωE) probability density function of the energy consump-
tion that is necessary for passing edge e at time t
while facing conditions described by ωE

C̀E(e, t) random variable describing the energy consumption
that is necessary for passing edge e at time t

CT (e, t, SOC) random variable describing the travel time that is
necessary for passing edge e at time t

CE(e, t, SOC) random variable describing the energy consumption
that is necessary for passing edge e at time t; ad-
justed version of C̀E(e, t) which ensures reasonable
states of charge

SOCmin(ω) energy buffer function; returns minimal energy
buffers depending on parameter set ω

SOCr,zmin(ω) energy buffer function for relative energy buffers
SOCq,αmin(ω) energy buffer function for quantile-based energy

buffers
SOCt,NTmin (ω) energy buffer function for trajectory based energy

buffers
T (e, t) driving trajectory for passing edge e at time t
Tnt(e, t) auxiliary trajectory for passing edge e at time t; used

for computing trajectory buffers



Symbols in context of error-prone traffic information:

V tB
RTTI spatio-temporal speed function representing RTTI

(traffic state estimations and traffic predictions); the
function is provided at time tB

T (e, tS , V ) driving trajectory for passing edge e at time tS ; the
spatio-temporal speed function V describes the pre-
vailing traffic conditions

VReal(x, t) random variable describing macroscopic average
driving speeds for location x and time t

VRTTI spatio-temporal speed function representing RTTI
(traffic state estimations only)

X,X start/end of interval X
SRTTIi road segment describing the spatial resolution of the

considered RTTI
TRTTIj time interval describing the temporal resolution of

the considered RTTI
tB(t) the last time before (or until) time t, at which RTTI

has been broadcasted
V tB ,α
low spatio-temporal speed function describing lower

speed bounds; these bounds are supposed to be
lower than real future driving speeds with a prob-
ability of α

V tB ,α
up the same as V tB ,α

low , but now for upper bounds
VGT spatio-temporal speed function resulting from a traf-

fic state reconstruction; this function is used as rep-
resentation of the real traffic situation

VTGT resulting from VGT , but here the spatial and the tem-
poral resolution is artificially reduced to represent
provision limitations of RTTI

d a distance measure
D(V1, V2, X × T, d) Value describing the differences between spatio-

temporal speed functions V1 and V2 on X × T ac-
cording to distance measure d

SGTi road segment describing the spatial resolution of the
numerical representation of the ground truth

TGTj time interval describing the temporal resolution of
the numerical representation of the ground truth



Symbols in context of error-probe traffic information:

SUi road segment describing the spatial resolution of the
grid that results when combining the RTTI grid and
the ground truth grid

TUj time interval describing the temporal resolution of
the grid that results when combining the RTTI grid
and the ground truth grid

Y dependent variable describing the deviation between
ground truth and RTTI

Eq independent/explanatory variable or predictor, re-
spectively

ym realization of the dependent variable Y
emq realization of explanatory variable Eq
eq(tB, S

RTTI
i , TRTTIj ) function assigning realization of explanatory vari-

able Eq to triple (tB, S
RTTI
i , TRTTIj )

Cf tB function (broadcasted at time tB) returning so-called
confidence values in dependency of location

Vff (SRTTIi ) speed function returning free-flow driving speeds
depending on location

VHist(S
RTTI
i , TRTTIj ) spatio-temporal speed function returning average

historical driving speeds
R function describing the relation between explanatory

variables and the dependent variable
Rα function returning the α-quantile of the dependent

variable in dependency of the realizations of the
available explanatory variables

vp the preferred driving speed



Symbols used for the description of the executed simulation:

vEst estimated current driving speed (applied for predict-
ing minutes 0 to 10); part of the recorded commer-
cial RTTI

vsho short-term speed prediction (future period from min-
utes 11 to 25); part of the recorded commercial RTTI

vmid mid-term speed prediction (future period from min-
utes 26 to 40); part of the recorded commercial RTTI

vlon long-term speed prediction (future period from min-
utes 41 to 55); part of the recorded commercial RTTI

Tp outdoor temperature
c̃Prim primary energy consumption
c̃Sec secondary energy consumption
SP speed profile; function assigning speeds to locations

given a driving trajectory
ECinstPrim average instantaneous primary energy consumption
ECinstSec average instantaneous secondary energy consump-

tion
V tB
Perf spatio-temporal speed function representing perfect

RTTI
V tB
ff spatio-temporal speed function representing RTTI

which presumes free-flow traffic conditions
V tB
Hist spatio-temporal speed function representing RTTI

that are based on historical average driving speeds
V tB
Inst spatio-temporal speed function representing RTTI

that results from making use of instantaneous travel
time predictions

V tB
Com spatio-temporal speed function based on recorded

commercial RTTI
V tB
Pha spatio-temporal speed function representing RTTI

which frequently reports non existing congestion
th prediction horizon
VRTTI,th function representing RTTI based on traffic predic-

tions for a prediction horizon of th
V tB ,f
low , V tB ,f

up lower and upper speed bounds resulting from multi-
plying RTTI with a constant factor

V tB ,α
low , V tB ,α

up adaptive lower and upper speed bounds
SOCcon,fmin trajectory energy buffer function using constant

speed bounds for auxiliary trajectory generation
SOCad,αmin trajectory energy buffer function using adaptive

speed bounds for auxiliary trajectory generation
V tB ,m
RTTI function representing RTTI where systematic pre-

diction errors are compensated
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