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Abstract This paper presents a simulation tool for planetary landing operations 

near a plume source on the bottom of a tiger stripe canyon on the South Polar 

Terrain of Saturn’s moon Enceladus, reports on its development status, and gives 

some first results derived by it.  

Enceladus is a hot spot for astrobiology in the solar system. A spacecraft 

landing near one of the plume sources on the moons South Polar Terrain and 

deploying a melting probe to sample relatively shallow liquid water in the ice 

under that plume source would be able to look for signatures of life before they 

are degraded by exposure to the vacuum of space.  

The lander would have to land under very challenging landing accuracy and 

safety conditions on an exceptionally challenging terrain.  

To perform this challenging landing, a sophisticated landing Guidance, 

Navigation, and Control (GN&C) system would be necessary. To achieve the 

required accuracy, terrain relative navigation can use sensors such as optical and 

thermal cameras, LIDAR, etc. to navigate relative to detected terrain features. To 

ensure a safe landing the system must be able to assess if the originally planned 

landing site is safe, and if not to then autonomously command a retargeting to 

another safer spot. The guidance and control function must then calculate a viable 

trajectory and thrust arc to the newly chosen landing site.  

To validate that the landing satisfies the accuracy and reliability requirements 

we are developing a tool in Matlab/Simulink to simulate the operation of the 

autonomous landing GN&C system. In this paper we describe the complete tool 

with all its planned features and we present its development status. 
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1 Introduction 

1.1 Enceladus 

Enceladus is currently seen as one of the prime candidates for hosting microbi-

al life in the Solar system in the present day.  

Enceladus is a small icy moon orbiting Saturn at a radius of 4 Saturn radii. 

Having a diameter of ≈ 500km, it was once believed too small to be active, but it 

has been found to be one of the most geologically dynamic objects in the Solar 

System [1]. It is characterized by a wide range of terrains, including old and young 

surfaces. It’s most interesting area is at its south pole, where a geologically active 

province was identified by Cassini [2]. The most prominent feature at the South 

pole are four linear depressions, dubbed “tiger stripes” because of their appearance 

in the infrared. Multiple flybys of Cassini at Enceladus have shown that plumes of 

H2O, including simple organic compounds [3], emanate via cryovolcanism from 

those “warm” fractures at the tiger stripes. Analysis of the plume material strongly 

implies that it originates from a global ocean below its icy crust [4], and its unique 

chemistry has fuelled speculation that Enceladus may harbour life [5]. 

1.2 Topography and Environment of the South Polar Terrain 

(SPT) 

The South-Polar Terrain is host to the plume sources. The most prominent fea-

tures characterizing the interior of the SPT as mentioned above are the “Tiger 

Stripe” valleys, which include 101 identified distinct vapor and ice jets which 

form the plumes towering above Enceladus (Fig. 2) [6]. The term “Tiger Stripe” 

describes a “V” shaped valley enclosed by two, nearly parallel ridges. These 

ridges are about 100–150 m high, while the valley is about 200–250 m deep. The 

total width of the formation is about 2–5 km. The South-Polar Terrain features 4 

valleys (Damascus, Baghdad, Cairo and Alexandria Sulcus) separated from each 

other by 35 km wide plains. As one moves closer to a Tiger Stripe valley, the ter-

rain rises with a relatively gentle gradient to the summits of the ridges. The terrain 

texture also changes from highly fractured to a more undulating one, covered with 

numerous icy blocks. Once over the lateral ridges, the slope is initially steeper but 

changes to a more moderate gradient the deeper one descends, with unconsolidat-

ed material sliding from steeper down to flatter sections, where material tends to 

accumulate. The valley floor is expected to be very narrow, in the order of 50–100 

m [7], and interspersed with obstacles, such as narrow ridges and elongated 

domes. An indicative picture of the South-Polar Terrain at Enceladus can be seen 
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in Fig. 2. An elevation model of a characteristic canyon area on the SPT is shown 

in Fig. 3. 

Fig. 1. Schematic illustrating 

current knowledge of the 

small-scale physical and ther-

mal structure and processes 

relevant to Enceladus’ geyser-

ing activity [6] 

 

The spatial density of ice-block features in the SPT was estimated for blocks 

larger than 10 m in [8]. Block density was found to be up to 1500 ± 450 blocks per 

square km. No distinct block distribution pattern was found with respect to the 

tiger-stripe flanks or jet sources. 

An important aspect is the texture of the surface material in the South-Polar 

Terrain. It is mainly the fallout from the plumes that modifies the texture: ice par-

ticles tend to accumulate more near the plumes and less further away. Studies have 

shown that nearer the plumes, particle deposition rates can reach up to 1 mm/year 

or more in the large scale and possibly more in smaller scales, indicating a deposit 

layer thickness of tens of meters if we assume that the plumes have been active in 

the past million years [9]. Still, exposed icy crust can also be encountered, espe-

cially on slopes on which less consolidated material has slid downward.  

The mechanical behavior of the fallout is also crucial to the understanding of 

the surface texture. In a first approach the fallout can be approximately treated as 

super-fine snow, comprising grains of about 7.5 μm outside the SPT, 40 μm in the 

vicinity of the Tiger Stripes and 100 μm or larger inside the valleys, where larger 

particles tend to fall nearer to the plumes [9]. Grains are expected to have lost their 

crystalline shape due to collisions with the vent walls, and have a roughly round 

shape. These microscopic properties are translated to macroscopic properties of 

the surface material, namely: increased force transmission capacity due to the fine 
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grain size, non-consolidated layers of material and increased compressibility due 

to the low gravity. 

Fig. 2. Polar stereo-

graphic map of Encel-

adus' South-Polar Ter-

rain (SPT) showing the 

location of 100 plume 

sources. The circles 

are the 2σ uncertain-

ties [6] 

 

The density of H2O molecules in the vicinity of the plumes has been modelled 

in [10]. At the very mouth of the plume source the water vapor density is estimat-

ed in the order of 10
22

 molecules/m
3
, dropping by 3 orders of magnitude within a 

distance of 100 m. To put these numbers into perspective it’s instructive to com-

pare them to the Earth’s atmospheric density at sea level, ρEarth = 10
25

 mole-

cules/m
3
, or to that of Mars, ρMars = 10

23
 molecules/m

3
. 

The fresh, clean ice that dominates the surface of Enceladus gives it the most 

reflective surface of any body in the Solar System (albedo of 0.99). Because of the 

high albedo characteristic to Enceladus, much sunlight is reflected off of its sur-

face, resulting in a mean surface temperature at noon only reaches 75 K, some-

what colder than other Saturnian satellites [11]. It is estimated that the “tiger 

stripe” fractures, radiate heat at temperatures up to at least 167 K on the large 

scale [12]. Small scale (tens of meters) hot spots surrounding the plumes, can 

reach temperatures of up to 200K [6,13]. 
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Fig. 3. Stereo-derived 

elevation model of 

characteristic canyon 

area on the SPT, on 

Baghdad Sulcus (76°S 

/ 323°E) [7] 

 

1.3 The Enceladus Explorer (EnEx) project and the Enceladus 

lander (EL) mission concept  

Between 2012 and 2015 the joint research collaboration “Enceladus Explorer” 

(EnEx) funded by the German Space Administration (DLR), investigated the nec-

essary technologies for a future exploration of the Saturnian moon Enceladus. The 

goal was the development of a terrestrial navigation system for a subglacial re-

search probe. The EnEx consortium was led by FH Aachen University of Applied 

Sciences and consisted of eight German Universities. 

The developed navigation solution was integrated into a research melting 

probe of the IceMole type, a melting probe concept which has been developed at 

FH Aachen University of Applied Sciences since 2008. The IceMole probe was 

validated and tested during field tests conducted as part of an ongoing collabora-

tion between EnEx and MIDGE, a NSF funded Antarctic exploration initiative 

[14]. 

In the context of the EnEx project, the Institute of Space Technology & Space 

Applications (ISTA) of the Bundeswehr University Munich was responsible for 

the overall mission and system concept for a mission to land near a plume 

at Enceladus and deploy the IceMole there. The mission scenario for the extrater-

restrial application of such a probe was studied, in order to determine the condi-

tions for the complete design and extraterrestrial operation of the navigation sys-
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tem in detail. The detailed Enceladus Lander (EL) mission concept created during 

the project is given in [15].  

The EL mission concept has the aim to deploy a future version of the IceMole 

melting probe near one of the plumes of Enceladus. The EL mission comprises of 

three elements: an Orbiter, a Lander, and the IceMole. This Combined Spacecraft 

will transfer to Enceladus and communicate with Earth, with the Orbiter serving 

as the propulsion module. For the transfer to Enceladus, a nuclear reactor on the 

Lander provides power to the electric propulsion system. After orbital capture 

around Enceladus, the Orbiter will perform remote sensing of potential landing 

sites during the landing site reconnaissance phase. Once landing site reconnais-

sance is completed by the Orbiter, the Lander will separate and land precisely and 

safely near one of the plume sources on the bottom of a tiger stripe canyon. After 

Lander separation, the main function of the Orbiter will be to relay data between 

lander and Earth. Once landed, the IceMole will be deployed. The thermal melting 

head of the IceMole will be powered by the nuclear reactor. Once the IceMole 

reaches a depth of 100 m or more close to the wall of water-filled fracture, it will 

sample liquid water within the fracture for biosignatures.  

1.3 Landing near a plume source  

1.3.1 Landing Requirements 

The drivers for landing accuracy are the width of the canyon floor, at around 

100 m, and the desire to minimize the length of the tether connecting the IceMole 

to the Lander for power and communications purposes. Landing too close to the 

plume source should also be avoided to minimize planetary protection related 

concerns (see [16]). Taking these considerations into account, the target landing 

area shall be circle with a radius smaller than 50 m. Such a landing accuracy is 

categorized as pinpoint landing (see e.g. [17]). 

As seen in Sec. 1.2, the landing area is also expected to be strewn with hazards 

such as ice blocks, cracks, domes, unconsolidated materials, etc. that are too small 

to be identified from orbit. Due to the uncertainty of the terrain, real-time hazard 

detection is necessary, as well as logic for the avoidance of landing hazards. 

1.3.2 Landing Guidance, Navigation, and Control (GN&C) System and 

Operations 

To give context to the following, the GN&C system used during descent and 

landing operations will be briefly described here. 
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Although a spacecraft may be equipped with a diverse set of sensors, there is 

typically no need for sophisticated hazard avoidance because the selected landing 

sites are mostly benign [18]. However in our case an autonomous safe and accu-

rate landing must be performed on an extremely challenging terrain. Therefore the 

added robustness offered by multiple sensors is expected to be essential. We use 

therefore an optical camera and a Lidar. 

Thermal cameras could be beneficial for landing on the SPT because of the 

need to land in total darkness and possibly effect of water vapor on Lidar. Accord-

ing to our calculations the vapor is too thin to cause such issues. Even if this is the 

case, a thermal camera could compensate for the weaknesses of Lidar when it 

comes to sensing non-opaque materials, such as e.g. ice. It can also take advantage 

of the high thermal contrast between the warm localized jet sources, and the sur-

rounding colder ice and snow material. 

Fig. 4 gives the top-level architecture of the GN&C system for landing. Ter-

rain relative navigation instruments in conjunction with conventional navigation 

instruments help accurately navigate the lander during landing. During the final 

landing phases, data from terrain relative instruments is also used to detect and 

avoid landing hazards. Control of the calculated trajectory and attitude is then per-

formed using the Lander’s propulsion system. 

 

Fig. 4. Illustration 

of a top-level 

GN&C system ar-

chitecture 
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Fig. 5. Operations concept for landing phase (see text for explanation). Feature Matching refers 

to matching detected features to a feature database. Feature Tracking refers to tracking features 

from consecutive images 

Fig. 5 illustrates the Descent and Landing sequence. The landing operational 

sequence was based on that of the ESA Lunar Lander mission [19][20][21]. The 

landing sequences of other icy moon landing missions with similar accuracy re-

quirements were taken into account [22] [17]. 

The reference landing scenario is divided into separate phases: 

 Lander separation: The reference scenario starts in the 200 km Enceladus Re-

connaissance orbit, after separation between the Lander and the Orbiter has 

been successfully performed. 

 Coasting phase: The Descent Orbit Insertion (DOI) marks the start of the de-

scent phase. This is short burn by the main engines of the lander to go on a 

Hohmann transfer orbit and periapsis of 5 km. During the coasting phase up to 

periapsis, feature matching TRN is performed to increase precision of state es-

timation. 

 Braking phase: At periapsis the Powered Descent Initiation (PDI) meaning 

that the main engine is turned on for the main braking phase most of the orbital 

velocity is eliminated, from orbital speeds to about 100 m/s. During or shortly 

after the main braking, the landing site will come into the field of view of the 

camera. This marks High Gate (HG). 
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 Approach phase: Once the Lander has achieved a sufficiently reduced velocity 

the engines begin to throttle down and the approach phase begins, starting tar-

geted descent towards the selected landing spot. During this phase the Hazard 

Detection and Avoidance (HDA) function is active. If the designated landing 

spot proves unsuitable, retargeting can take place and a new landing spot within 

the Lander’s reach selected. The spacecraft will perform feature tracking TRN, 

complemented with IMU measurements during this phase. 

 Touch down: Once the Lander is above the landing site with no horizontal ve-

locity and a vertical attitude at an altitude of 10-20 m (Terminal Gate, TG), it 

shuts it engines and slowly free-falls to a soft Touchdown (TD) on the surface. 

In this work, we have identified the approach phase as the most critical, since it 

is the phase where critical hazard detection and avoidance takes place. Therefore, 

in the following we will focus only on this phase. 

2 Landing Simulation Tool 

To confirm the feasibility of landing on Enceladus with the set requirements, 

we are developing a tool in Matlab/Simulink to simulate the operation of the au-

tonomous landing GN&C system. As mentioned above, the tool focuses on the 

approach phase, as the most critical. The four functions of the tool are described in 

detail in this chapter. In Ch. 3 we give a non-strictly formulated algorithm that we 

implemented in Matlab to create the tool. We also report on the development sta-

tus of the tool. 

The four blocks of the tool are meant to interact with each other in a closed 

loop: Terrain simulation generates a simulated terrain and produces simulated 

TRN sensor output. This output is in turn fed to the Terrain relative navigation 

block, which uses it to assess the navigational state of the lander with the required 

accuracy. The sensor output is also fed to the Hazard detection and avoidance 

block, so that it can calculate the landing safety of all candidate landing sites, and 

if necessary, command a retargeting to a landing site other than the nominal one. 

Finally, the Guidance and control block calculates feasible trajectories from the 

landers current state, to the chosen landing site. The blocks run in a loop for every 

timestep of the simulation that is completed when the lander touches down on the 

chosen landing site, or when it has failed to do so. 

The tool is under development and not all its intended features are currently 

present. The development status of each individual block, as well as of the tool as 

a whole is given in Ch. 3. 
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2.1 Terrain Simulation Block 

The target area for the EL lander is one of the plume sources on the bottom of 

a tiger stripe canyon on the south pole of Enceladus. As described in Sec. 1.2, this 

is a very challenging terrain to land on. The purpose of this tool block is to gener-

ate adequately realistic simulated terrains that can be used for the purpose of simu-

lating sensor input to the TRN and HDA functions. These two functions are dis-

cussed later in this paper. 

Although existing tools, such as Terragen2, Grome3 or Houdini4 to name just a 

few, provide the required functionality; they also come with a vast amount of fea-

tures that are not required in this context. Besides impeding performance, this typ-

ically also leads to a considerable amount of effort to be put into making these 

tools work with the already existing parts of the simulation.  

PANGU5 is a set of tools for modelling the surfaces of planetary bodies and 

can simulate TRN sensor measurements. These measurements can then be used 

for off-line and closed-loop simulations of planetary landing. This tool would be 

potentially beneficial to our work, it is however not freely available. 

We have decided therefore to design a streamlined application specifically de-

veloped for and tailored to the existing tools and processes as a more viable choice 

in the current state of this work.  

2.1.1 Terrain generation 

A common approach to generate realistic terrains are fractal terrain generation 

algorithms, such as the Diamond-Square-Algorithm or the Square-Square-

Algorithm as described in [23]. The implementation used in this project generates 

an equidistant grid of points in the x-z plane and successively calculates the eleva-

tion for each point in this grid using the average value of its surrounding and ran-

domly generated offsets. 

Despite being of roughly realistic shape, the generated terrains are typically ra-

ther edged, resembling harsh rocky areas. As Enceladus’ surface is covered with 

snow and ice the generated terrain has to be smoothed out to some extent. This is 

achieved by using an iterative erosion algorithm as suggested by [24]. Depending 

on the number of iterations performed by the erosion algorithm, the terrain either 

remains edgy or becomes smooth, resembling a snow covered area. 

                                                           
2 http://planetside.co.uk/ 
3http://www.quadsoftware.com/index.php?m=section&sec=product&subsec=ed

itor 
4 https://www.sidefx.com/products/houdini/ 
5 https://www.star-dundee.com/products/pangu-planet-and-asteroid-natural-

scene-generation-utility 
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In addition to generating the terrain itself, the tool is also capable of creating 

and spreading obstacles, e.g. boulders or stones of various sizes, onto the surface. 

A major shortcoming of this approach is that it is nearly impossible to control 

which kind of terrain is to be generated. In order to gain some control, the gener-

ated terrain is not used as is, but instead, an existing DEM of an area on Encela-

dus, or, as data on Enceladus is rather sparse, a DEM of a canyon like terrain on 

Earth is combined with the randomly generated terrain. By doing so, the basic 

shape of the Earth DEM will be retained while the resolution of the generated ter-

rain improves the overall resolution and level of detail. Furthermore, additional in-

formation, or “terrain meta-data”, e.g. temperature or composition of the surface 

can be added to the DEM. 

2.1.2 Terrain Visualization 

To achieve a convenient visualization of the generated terrain, the widely used 

graphics API OpenGL6 is utilized. The visible surface is created by drawing a se-

ries of triangles with the points indicated by the generated grid as corners of these 

triangles. Using OpenGL’s lighting and shading mechanics, the surface is illumi-

nated according to its geometry and the lighting characteristics on Enceladus. 

Depending on the slope of each triangle, the visualization uses a different tex-

ture. For areas with a low slope, the simulation uses a snowy texture, while higher 

slope areas are displayed using a texture resembling solid ice. Thus the accumula-

tion of fallout on relatively flat surfaces is simulated. Also, the reflective behavior 

of the surface is tuned to match the texture. Snow covered areas feature a more 

diffuse way of reflecting light, while icy areas show a sharper, specular reflection 

behavior. 

Further, more elaborate possibilities of OpenGL, such as the utilization of 

bump maps to provide the surface with higher resolution structure and shadowing 

make the visualization complete, providing a light and adequately accurate simu-

lation of terrain similar to that of a canyon on the SPT of Enceladus. 

2.1.3 Terrain Relative Sensor Output Simulation 

The sensor simulation part of the tool is meant to create sensor data based on 

the DEM created during terrain generation and visualization. The sensor simula-

tion is capable of emulating three kinds of sensors: 

 Optical camera: Using OpenGL, a greyscale image of the scenery based on the 

lander’s position and orientation is rendered and provided to the user. 

                                                           
6 https://www.opengl.org/ 
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 Lidar: Based on the underlying DEM, this sensor provides the user with an ele-

vation map of the targeted area. This is done by generating simulated point 

clouds by ray-tracing each of the Lidar beams to the point where they intersect 

the DEM surface, and then by introducing some appropriate level of random-

ness to the location of each intersection point, to simulate measurement noise. 

 Thermal camera: If the DEM contains thermal information, this sensor can 

provide an image of the thermal conditions on the surface, again by using 

OpenGL according to the underlying physical laws [25]. 

Upon startup, the sensor emulation tool creates a TCP/IP socket for each of the 

sensors. By connecting to one of these sockets, the user can request that sensor’s 

data by providing the lander’s position and the direction in which the sensor points 

at that time.  

2.2 Terrain Relative Navigation (TRN) Block 

Traditional landing approaches based on inertial sensing do not have the navi-

gational precision to meet the high accuracy requirements described above. The 

purpose of TRN is to augment inertial navigation by providing position or bearing 

measurements relative to detected and then tracked landmarks [26]. In order to be 

able to land under any illumination conditions and benefit from the increased per-

formance of multiple sensors, we will investigate here both an optical camera and 

a Lidar for TRN. For landing near a plume source on the SPT, we also plan to in-

vestigate any benefits to TRN that can be gained by using a thermal camera in or-

der to take advantage of the particular thermal environment of the Tiger Stripe 

canyons and of individual plume sources. In this tool we will therefore use a mul-

ti-sensor Simultaneous Localization And Mapping (SLAM) approach for TRN. 

Simultaneous localization and mapping (SLAM) is the problem of concurrently 

estimating in real time the structure of the surrounding world (the map), perceived 

by moving one or more “exteroceptive” (e.g. camera) as well as “proprioceptive” 

(e.g. IMU) sensors, while simultaneously getting localized in it [27]. 

Here we will follow the SLAM implementation as described in [28] and im-

plemented in Joan Sola’s open source SLAM Toolbox7.  

 

In EKF-SLAM, the map consists of a random state vector containing the robot 

pose and the currently mapped landmark positions: 

 

R
X

M

 
  
 

 

( 1 ) 

                                                           
7 http://www.iri.upc.edu/people/jsola/JoanSola/eng/toolbox.html 
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with 

 

R
 

  
 

x

q
 

M

 
 


 
  

1

n

p

p

 

where R is the robot state containing position and orientation and M is the set 

of landmark positions, all expressed in the same global reference frame. In the 

EKF framework, the a posteriori density is approximated by a Gaussian density 

with mean and covariances matrix defined by 

ˆ
ˆ

ˆ

R
X

M

 
  
  

 
 

  
 

RR RM

MR MM

P P
P

P P

 

( 2 ) 

 

The objective of the SLAM system is to keep this pdf up-to-date when any 

of the following situations occurs: 

1. The robot moves; 

2. The robot perceives a landmark already existing in the map; and 

3. The robot perceives a new landmark and decides to incorporate in the map. 

These operations are described in the following paragraphs. In the following 

we use the common EKF formulation. 

Robot motion: the prediction step 

The evolution of the robot pose during one time step is described by the func-

tion 

( , )R R  f u  
( 3 ) 

where ˆ{ ; }u N u U  is a vector of controls assumed to be Gaussian with mean 

û and covariances matrix U. From the EKF formulation we get the prediction step 

ˆ ˆ ˆ( , )R R  f u  
( 4 ) 

 +
RRP

T T

R RR R u uF P F F UF  
( 5 ) 

+

RM R RM
P F P  

( 6 ) 

+

MM MMP P  
( 7 ) 

where the Jacobian matrices are defined by 
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ˆ ˆ,

R T

R u

F
R





f
 

ˆ ˆ,

u T

R u

F





f

u
 

( 8 ) 

Observations of existing landmarks: the correction step 

The measure of a landmark i is described by the function 

( , )iR  iy h p  ( 9 ) 

where {0; }N R  is a white Gaussian noise with covariances matrix R. The 

correction step at observation of landmark i is then 

ˆ ˆ( , )i i iR z y h p  
( 10 ) 

T

i i 
i

Z H PH R  ( 11 ) 

1T

i i i

 K PH Z  ( 12 ) 

ˆ ˆX X   
i i

K z  
( 13 ) 

   T

i i i
P P K Z K  ( 14 ) 

where the Jacobian matrix is defined by  

ˆ

( , )i
i T

X

R

X






h p
H  

Landmark initialization 

Initialization consists of stacking the new landmark position p into the map as 

X
X   

  
 p

 

( 15 ) 

and defining the pdf of this new state (the resulting map) conditioned to obser-

vation y. This task is easily performed from the first observation given by y = h(R, 

p) + υ as all the components of p are observed. The classic method performs the 

variable change 

( , )Rw h p  ( 16 ) 

so the measurement is now y = w + υ. Then it defines the function g, inverse of 

h, in order to obtain an explicit expression of p 

( , )Rp g w  ( 17 ) 

Assuming that PRR and R are small enough we can approximate this expression 

with the Taylor series truncated at the linear terms 

ˆ ˆ( , ) ( ) ( )R WR R R    p g y G G w y  
( 18 ) 

with the Jacobian matrices defined by 
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ˆ ,

R T

R yR





g
G  

ˆ ,

w T

R y





g
G

w
 

( 19 ) 

Then p can be considered approximately Gaussian with mean and covariances 

matrices defined by 

ˆˆ ( , )Rp g y  
( 20 ) 

pX R RXP G P  ( 21 ) 

T T

W W 
pp R RR R

P G P G G RG  
 

where [ ]RX RR RMP P P . The augmented map is finally specified by 

ˆ
ˆ

ˆ

X
X 

 
  
 p

 

T

pX

pX pp


 

  
  

P P
P

P P
 

( 22 ) 

Its relatively high algorithmic complexity limits the usage of EKF-SLAM to 

moderately small maps. This has triggered an impressive amount of research on 

the filtering side of SLAM [27]. There are techniques alternative and closely relat-

ed to SLAM, such as Visual Motion Estimation (VME) and Structure From Mo-

tion (SFM) [27]. Due to the relatively small size of the maps used, EKF-SLAM 

should be adequate for our application. However, when SLAM will have to be 

implemented on a real-time platform, one of the above may have to be used in-

stead. 

In the following, we discuss how features can be extracted from raw sensor da-

ta, for use in SLAM. 

2.2.1 Feature extraction 

A central role in SLAM is played by features (also known as landmarks or 

keypoints) detected by extroceptive sensors. But how are landmarks extracted 

from raw sensor data? 

Various feature detection methods in 2D images exist. The general function of 

such methods is to extract distinctive features from 2D images and assign appro-

priate descriptors to those features, so that they can be matched between consecu-

tive images. 

The search for discrete image correspondences can be divided into three main 

steps. First, ‘interest points’ are detected at distinctive locations in the image, such 

as corners, blobs, and T-junctions. The most valuable property of an interest point 

detector is its repeatability, i.e. whether it reliably finds the same interest points 

under different viewing conditions. Next, the neighborhood of every interest point 

is described by a feature vector. This descriptor has to be distinctive and, at the 
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same time robust to noise, detection errors, and geometric and photometric defor-

mations. Finally, the descriptor vectors are matched between different images 

[29]. 

Several feature detection algorithms for 2D images have been developed. 

Those of most interest for our application are briefly described in the following. 

The interested reader can investigate the mathematical details in the respective 

references. 

SIFT (Scale-Invariant Feature Transform) is a rotation- and scale-invariant de-

tection algorithm by Lowe [30]. The image features detected by SIFT have many 

properties that make them suitable for matching differing images of a terrain. The 

features are invariant to image scaling and rotation, and partially invariant to 

change in illumination and 3D camera viewpoint. In addition, the features are 

highly distinctive, which allows a single feature to be correctly matched with high 

probability against a large database of features, providing a basis for object and 

scene recognition. SIFT has a high recognition rate, and is also relatively fast. For 

real-time applications however, each one of the three steps (detection, description, 

matching) should be faster still [29]. 

The SURF (Speeded-Up Robust Features) algorithm is based on the same prin-

ciples and steps as SIFT, but taking steps to reduce calculation time, as well as ro-

bustness [29]. 

Another promising feature matching algorithm is ORB (Oriented FAST and 

Rotated BRIEF). It builds on the FAST keypoint detector and the BRIEF de-

scriptor; hence its name. ORB is two orders of magnitude faster than SIFT, while 

performing as well in many situations [31]. ORB has been used in planetary land-

ing simulation, and its high performance for that application has been confirmed 

[32]. 

As we see from the above, as long as extroceptive sensor data can be represent-

ed as 2D images, they can be used with one of the above feature detection meth-

ods. Some considerations on each extroceptive sensor included in the EL system, 

as well as possible alternative approaches to feature detection, are given below 

2.2.1.1 Optical Camera 

Optical camera images are the most commonly used for feature detection and 

the above methods are most mature for optical image data. SURF appears to com-

bine the best between speed and performance [29], something we have verified by 

our own implementation of the method. 

2.2.1.2 Thermal Camera 

The nature of thermal-infrared images makes them highly robust to changing 

lighting conditions and other environmental effects such as the presence of fog, 
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smoke and dust. Vision-systems which operate in this wavelength can therefore 

work effectively in difficult settings, or even in total darkness. Thermal-infrared 

SLAM could be used to help guide and localize robots and other vehicles when 

conditions cause other sensors to fail, or perform poorly. However, working in the 

thermal spectrum brings with it a range of challenges such as limited resolution, 

low SNR (Signal-Noise Ratio), data interruptions, and so on [33]. 

Approaches to detect features in thermal images have been proposed in [34] 

[35], and reviewed and compared in [33]. [33] concludes that SURF outperforms 

other descriptors for thermal images. 

Not many SLAM implementations operating in the thermal-infrared can be 

found in the literature. [33] present a monocular SLAM system designed and test-

ed for use in the thermal-infrared. 

2.2.1.3 Lidar 

As we have seen above, feature extraction is reasonably well developed in im-

ages. However, due to issues inherent to Lidar (noise, occlusion, etc.) such meth-

ods are less developed for Lidar [36]. Such methods are given for example in 

[37,38].  

An application of Lidar TRN for planetary landing is presented in [39]. In it a 

process is described, where digital elevation maps generate by Lidar measure-

ments are matched with a pre-existing elevation map of the relevant landing area, 

thus estimating the navigation state of the lander (absolute navigation as discussed 

above). Such a process can be adapted for a relative navigation approach, compar-

ing and matching features between consecutive measurements of the Lidar. In that 

work however, no details are given on the exact methods and algorithms for fea-

ture detection, description, and matching in Lidar point clouds. 

Another Lidar feature matching TRN approach that could be adapted for fea-

ture tracking TRN is given in [40]. In this work, Lidar point clouds are trans-

formed to a 2D Lidar contour DEM. This contour DEM is then matched to a refer-

ence DEM using a floating-point correlation algorithm [41]. 

A simple approach we are currently using for our tool however is to represent 

elevation data as a grayscale 2D image, with higher pixel intensities representing 

higher altitudes. The SURF method can then be readily applied to those images. 

2.3 Hazard Detection and Avoidance (HDA) Block 

In order to achieve landing with an adequate reliability on the challenging ter-

rain near the bottom of a tiger stripe canyon, a capable HDA function must be im-

plemented. HDA can be broken down to three sub-functions (Fig. 6) [18]:  
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• Hazard detection: the sensors continuously capture data from which 

terrain features are extracted 

• Safety reasoning: the extracted features are evaluated based on safety 

requirements 

• Landing reasoning: if the original landing site is found to be hazardous, 

the most suitable landing site is determined. 

In this work, we have adapted the Fuzzy rule based HDA method described in 

[42–44], where the detection step is performed by multiple heterogeneous sensors, 

and the safety and landing reasoning steps are performed using a fuzzy logic algo-

rithm. A promising approach would also be to apply a hybrid system of multiple 

decision engines as proposed in [18]. Such work however is left for the future. 

Fig. 6. 

Three-

stage safe 

landing 

site de-

termina-

tion pro-

cess 

 

2.3.1 Hazard Detection 

Research for hazard avoidance technologies for unmanned space exploration 

has typically focused on a single sensor. For instance, a lidar model (incorporating 

parameters such as beam divergence and detector noise) and an algorithm to de-

termine slope and roughness have been developed. Visible image algorithms have 

also been developed to determine slope and roughness from multiple images (us-

ing feature tracking and homography estimation), as well as hazard (rock and 

crater) detection based on image segmentation and shadow detection. The 

significance of the proposed approach lies in the use of multiple sensors to provide 

tolerance to single-sensor failure, as well as to utilize diverse sources of infor-

mation for hazard assessment [18]. 

For hazard mapping, on-board sensors sense the terrain to detect hazards. Mul-

tiple sensors are used (lidar, optical camera) for robustness. A combination of ter-

rain features derived directly from the sensor measurements (slope, roughness) are 

used together with terrain features obtained by landmark detection algorithms (ice 

blocks, ice cracks). A hazard map can thus be created from each instrument. A list 

of extracted features by each sensor is given in Table 1.  
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Table 1. Terrain features that can be detected by each TRN sensor 

Optical Camera Rocks/Ice blocks, Roughness, Craters8, Ice 

cracks 

Lidar Slope, Roughness 

Thermal Camera Rocks/Ice blocks, Roughness 

 

Each sensor produces independent measurements of the terrain. Terrain fea-

tures are extracted from the sensor measurements and used to assess the safety of 

the terrain. Slope and roughness features are extracted from range data using a 

plane fitting technique. Least median of squares (LMedSq) regression is used to 

estimate the local plane parameters a, b, and c at location (x, y) of the range data. 

Given these parameters, the slope is obtained by 

1

2 2
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a b
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( 23 ) 

The roughness feature is simply the residual of the range data and the fitted 

plane at location (x, y). 

( , ) ( , ) ( )L

ef x y d x y ax by c     
( 24 ) 

where d(x, y) is the range data from the lidar. 

A measure of terrain roughness as observed by the camera is obtained by com-

puting the local intensity variance at each pixel [43]: 
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( 25 ) 

where  W  is  a  sub-region  of  the  camera  intensity  image c(x,y), |W| is the 

cardinality or number of pixels in W, and Cw is the mean intensity in sub-region 

W. 

Hazard detection algorithms are applied to camera imagery to detect rocks. For 

the camera rocks are easily detectable due to high intensity changes within a given 

image. However, good lightning conditions are required to produce high intensity 

changes. At the current state of the work, the implementation of rock detection is 

left for the future. The algorithm we intent to apply is described in [45]. 

Obstacle and roughness features are expected to be extracted from thermal im-

ages using the same methods as in optical images. It remains to be investigated 

however whether the contrast of such features in thermal images will be enough to 

allow detection. 

2.3.2 Safety reasoning 

                                                           
8 The target landing area on the SPT of Enceladus is geologically very young and is expected to 

contain no craters. Equivalent algorithms can however be conceivably used to identify other character-

istic terrain features relevant to the SPT such as cracks in the ice, etc. 
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Safety reasoning will perform the decision process to assess the landing safety 

of the investigated area. Principles of reasoning under uncertainty are used to as-

sess landing safety based on terrain features observed by the sensors. [42] consid-

ers three methods: fuzzy set theory, Bayesian probability theory, and Dempster-

Shafer belief theory. Here we consider only fuzzy set theory.  

Fuzzy sets and conditional statements allow the system to manage heuristic 

rule-based knowledge, imprecise information from sensors, and the uncertainties 

in the knowledge about the environment. Also, fuzzy rule statements model the 

human expert’s domain knowledge. Fuzzy logic rule evaluation involves only 

simple arithmetic calculations that can be performed very rapidly. Therefore, the 

computational time required to create a hazard map is quite manageable for a real-

time decision system, making it feasible for landing operations [43]. 

For our tool we use the fuzzy reasoning approach put forth in [18]. Data uncer-

tainty is handled through the level of membership to predefined datasets. The safe-

ty score s is represented with four linguistic labels {P, L, M, H}, which stand for 

poor, low, moderate, and high, respectively. The membership functions of the four 

terrain safety grades are shown in the top panel of Fig. 7. The parameters of these 

trapezoids are specified by a human expert. 

The information flow in the fuzzy logic system for terrain safety assessment 

follows three basic stages. The terrain features first go through the fuzzification 

stage where their membership levels to predefined fuzzy sets are found. This in-

formation is then passed to the inferencing stage that consists of a set of linguistic 

rules for reasoning about the terrain safety based on the terrain features. These 

rules model the human expert’s domain knowledge for terrain safety assessment 

expressed in plain English. Finally, the numeric (crisp) value of the terrain safety 

score is obtained in the defuzzification stage. 

Safety scores are derived for each sensor separately. Camera, and lidar safety, 

sC and sL, respectively, are obtained by applying an FR set that maps terrain fea-

tures to terrain safety. The linguistic labels for slope fθ are {VF, F, I, VI}, which 

stand for very flat, flat, inclined, and very inclined, respectively. The linguistic la-

bels for roughness fe are {VS, S, R, VR}, which stand for very smooth, smooth, 

rough, and very rough, respectively. The linguistic labels for rock density (i.e. 

roughness) fr are {VE, E, C, VC}, which stand for very empty, empty, crowded, 

and very crowded respectively. The terrain safety rules for each sensor are shown 

in the bottom center and bottom right panels of Fig. 7. 

All rules in Fig. 7 are connected via the AND operator. For example, the first 

rule for the lidar is IF (
Lf   is VI) AND (

L

ef is VR), THEN (s is P). 
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Fig. 7. Top: Fuzzy membership 

classes for terrain safety. Bottom: 

fuzzy rules for landing quality (left), 

and site terrain fuzzy safety rules 

for camera (center), and lidar (right) 

[18] [42]. For explanation see text 
 

   

2.3.3 Landing reasoning 

The goal of landing reasoning is to command a retargeting to a new landing 

site, if it is found by safety reasoning that the currently selected landing site is not 

suitable. To perform this decision, two additional factors apart from safety must be 

taken into account: the scientific interest of a new landing site, and its reachability 

according to the lander’s descent trajectory, velocity and available fuel.  

Landing site selection for a space exploration mission is generally a compro-

mise between terrain safety and scientific return. When safety cannot be guaran-

teed, a potential site must be discarded regardless of its potential scientific impact. 

It is foreseen here to integrate several landing sites preferred by mission scientists 

before landing initialization, in order to influence the on-board site selection. 

These potential sites can then be used in conjunction with the on-board terrain 

safety assessment in order to select the best site during descent [42]. For the fuzzy 

rule determining scientific interest, four levels (or classes) of scientific return are 

considered: {N, L, M, H}, which stand for none, low, medium, and high, respec-

tively. Before mission launch one of the regions is selected as the nominal landing 

site. 

To assess reachability of a landing site, [42] suggest using ballistic analysis. 

This analysis gives an analytical equation of an elliptical landing footprint within 

which all points would be reachable by the lander in its current state. After simula-

tions however we found that points which are designated as reachable by ballistic 

analysis are not always so when we tried to calculate a feasible trajectory using the 

guidance function (Ch. 2.4). We therefore updated the analytical equation for the 

landing ellipse, the new ellipse being significantly smaller than the one from [42]. 
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For the respective fuzzy rule, three classes are considered: {U, M, R}, which 

stand for unreachable, marginally-reachable, and reachable: Points outside the 

original boundary are automatically unreachable. Points well within the landing 

ellipse are reachable. Points that lie close to the landing ellipse edge are marked as 

marginally-reachable. 

2.3.4 Landing site “goodness” and retargeting 

The three key factors for landing success (terrain safety, fuel consumption, and 

scientific return) can in turn be linked to a landing quality factor, or “goodness”, 

using a new fuzzy rule set. To construct goodness map, the fuzzy safety and land-

ing reasoning results are combined to a new fuzzy rule set, resulting in 144 rules 

that bring all maps into an interconnected relationship. 

For defuzzification the terrain’s linguistic values are again linked to specific 

numbers from 0 (very safe) to 8 (unsafe) that correspond to pre-defined landing 

site safety values. 

If the initially chosen site is found to be unsafe a new landing site is selected 

and a retargeting commanded to the guidance function. Currently we simply retar-

get to the reachable spot with the highest goodness value. In the future we plan to 

apply the method used in [46], where the size of the largest convex cluster of good 

landing sites around a point is taken into account, i.e. the centers of larger convex 

areas of good landing sites are preferred. 

2.4 Guidance and Control (G&C) Block 

The general guidance problem can be formulated as a Two Point Boundary 

Value Problem (TPBVP), starting at the initial lander state and ending at the final 

lander state over the chosen landing site, within a specified time of flight and 

while respecting certain constraints. The aim of the guidance algorithm is then to 

solve for an acceleration profile that will take the vehicle from its initial state to 

the target state. 

The vision-based navigation and hazard detection and avoidance technologies 

likely to fly on next-generation planetary landers strongly impact the guidance 

system. The most important emerging requirement is the need for path constraints 

to ensure robustness [21]. 

In [21] in total 24 guidance algorithms are listed and their suitability for precise 

and safe landing is extensively assessed. They looked into various categories of 

guidance algorithms including open loop, explicit/analytical, and numerical meth-

ods. They concluded that two guidance algorithms held the most promise: the 

primary choice was a guidance law based on convex optimization theory (Convex 

guidance). The secondary choice was an explicit guidance law called E-Guidance. 
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These results were verified by work in our institute [47]. [21] recommended a pre-

screening of the selected algorithms, where a few candidates are implemented and 

compared for the particular test case under study. Following this logic we first im-

plemented the easier to implement E-guidance. This algorithm however proved to 

be insufficient in various ways: it lacks an efficient way to implement descent an-

gle constraints, it sometimes produces unfeasible trajectories, and the feasible di-

vert distance is limited, particularly cross-range [48]. Identifying the above inade-

quacies, we implemented the more difficult to implement convex guidance as 

discussed below. 

2.4.1 Convex guidance 

Convex guidance was introduced in [49]. The particular implementation we are 

investigating here is called G-FOLD (Guidance for Fuel Optimal Large Divert) 

and is presented in [50] [51].  

G-FOLD is an algorithm that is developed to compute, onboard in real-time, 

fuel optimal trajectories for large divert maneuvers necessary for planetary pin-

point or precision landing. The algorithm incorporates all relevant mission con-

straints and computes the global optimal trajectory. It is based on a mathematical 

result known as “lossless convexification” of the associated optimal control prob-

lem, which allows for the formulation of the problem as a convex optimization 

problem and guarantees obtaining the global optimal solution when a feasible so-

lution exists [50]. 

The goal of the planetary soft landing problem (depicted in Fig. 8) is to mini-

mize fuel consumption (or equivalently maximize the remaining fuel at landing) 

(eq. ( 26 )), subjected to the dynamics (eq.( 27 )) and state constraints (eq. ( 29 )), 

while finding thrust inputs that take the spacecraft from an initial state to the target 

state, that are constrained in their minimum and maximum magnitude, as well as 

to their pointing (eq.( 30 )). The problem is to be solved based on given boundary 

conditions (eqs. ( 31 ) - ( 33 )).  

 

Problem 1 Non-Convex Minimum Fuel Landing Problem 
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In the above problem X defines the state constraints and it is given by 
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max,{( , ) : tan ( ) ( ) , , 2,3}hR V V i      T T T T

1 2 3 i
X r r e r e r e r r e r  

( 34 ) 

where Vmax is maximum allowed velocity, Vh is the maximum allowable hori-

zontal velocity, e1 is the unit vector along the x-axis (vertical axis), e2 and e3 are 

unit vectors in y and z directions. 

Fig. 8. Glideslope con-

straint in minimum 

landing error powered 

descent guidance prob-

lem. The glide slope 

constraint requires the 

spacecraft to remain in 

a cone defined by the 

minimum slope angle 

γ. In the minimum 

landing error case, the 

apex of the cone coin-

cides with the landed 

position of the space-

craft, rather than the 

original target [50] 

 

The control constraints in eq. ( 26 ) are non-convex. In order to convert the op-

timal control problem into an equivalent problem with convex control constraints, 

the “lossless convexification” method is to be applied. 

The first step is to have convex relaxed control constraints. 

 

Problem 2 Convex Relaxed Minimum Fuel Landing Problem 
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In the relaxed problem a slack variable is introduced to lift the control space to 

a higher dimension (with one additional dimension) and relax the non-convex set 

of controls to a convex set. In summary, it can be shown that, since the relaxed 

control set includes the original one, and all the optimal solutions of Problem 2 

satisfy the constraints of Problem 1, the optimal solutions of the relaxed problem 

are also optimal for the original one. 

[52] presents a case study for the use of G-FOLD for landing inside of lunar 

pits. In this landing scenario that is similar to the one of EL, and even more de-

manding, the G-FOLD algorithm demonstrates impressive robustness.  

3 Landing sim tool algorithm and tool development 

The following table describes the algorithm we implemented for our landing 

simulation tool. The reader can refer to the respective chapters above to investi-

gate the functions in the algorithm in more detail.  

 

Algorithm 1 Landing sim tool algorithm 

Initialize parameters 

lander properties  

Initial position and velocity (incl. uncertainties, not yet implemented) 

Dry and propellant mass 

Engine thrust and Isp 

environmental parameters 

Enceladus surface gravity 

desired landing point 

other function block parameters  

SLAM (including SLAM update frequency) 

guidance (including number of points for generated guidance trajecto

 ry. More points means more accurate trajectory, but longer calcula

 tion times) 

HDA (including HDA frequency) 

lander trajectory propagation options (including propagation 

 step) 

Pre-main loop operations 

make map 

load DEM (raw data) 

simulate optical cam. input: apply shadows and texture to 

 DEM, save DEM as (realistic looking) 3D terrain map 
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simulate thermal cam. input: give “hotter” values to pixels near 

 given plume sources,  “colder” further away. Overlay  resulting grey

 scale image on DEM 

simulate Lidar input: save DEM as greyscale 2D image.  

calculate trajectory from initial lander state to nominal landing site 

 (Convex guidance. Ch. 2.4.1) 

trajectory is discretized according to parameter chosen during initiali

 zation 

run HDA for first time (in theory this step can be done off-line, from data obtained 

 from orbit. HDA ran in the loop will then simply update these results) 

apply camera hazard mapping to pseudo optical image of terrain (eq. 

 ( 25 ) (to entire image, camera FOV to be implemented) 

apply slope and roughness detection to DEM (eq. ( 23 )) 

calculate reachable ellipse (ballistic and guidance, Ch. 2.3.3) (ballistic 

 might be useful in the future, as a constraint to the guidance prob

 lem, where the lander should not crash in non-nominal situations 

calculate scientific goodness of all map points, based on distance from 

 pre-selected points of interest (plume sources) 

fuse all above generated maps to single landing site goodness map 

run retargeting function: if landing site un-safe, retarget to next best 

 site (Ch. 2.3.4 (convex areas)) 

output of HDA: new landing target site if retargeting commanded, and 

 first hazard maps to be updated in the loop 

Main loop (while altitude > 0, do) 

perform Control function 

propagate lander trajectory according to thrust commanded in current 

 guidance trajectory step 

perform Navigation function (Ch. 2.2) 

Optical camera navigation 

take screenshot of realistic looking 3D terrain map from real 

 lander position and pose 

extract SURF features from image 

do SLAM 

match features in current loop iteration with fea

 tures in previous iteration 

correct lander and landmark position 

initialize new and delete old landmarks 

output: lander state estimation, and landmark po-

sition estimation 

Lidar navigation 

take screenshot of DEM elevation grayscale from real 

 lander position and pose 

extract SURF features from image 

do SLAM (as in optical case) 
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    output: lander state estimation, and LIDAR landmark posi

    tion estimation 

Thermal camera navigation 

take screenshot of DEM overlaid with thermal image from 

 real lander position and pose 

extract SURF features from image 

do SLAM (as in optical case) 

    output: lander state estimation, and thermal landmark posi

   tion estimation 

Inertial navigation 

Simulated IMU measurements 

State estimation fusion: EKF (not yet implemented) 

fuse optical, LIDAR, thermal cam., and conventional nav. 

 estimates to single lander state estimate, using EKF 

perform HDA function (with frequency selected in input) 

same function as run before loop 

perform retargeting 

If HDA commands, run Guidance function again to new landing site 

Process, plot and save relevant output 

 

Development of the tool is not yet complete. We have managed to implement 

the algorithm described above, albeit with the used functions in varying levels of 

maturity: 

We have developed a first version of the Terrain simulation block as dis-

cussed in Ch. 2.1, and we are currently working on completing the described list 

of features. The implementation of rules for assigning terrain metadata (texture, 

temperature, others) are currently being investigated. Specularity properties of the 

terrain according to terrain type remain to be assigned, as well as realistic distribu-

tions of obstacles on the terrain. The implementation of shadows during terrain 

visualization is another important aspect we are currently working on. On sensor 

output simulation, the optical camera is already simulated. The Lidar simulation is 

currently under development. For the simulation of the thermal camera output, we 

are currently investigating the underlying physics to be simulated. 

For the TRN block, we have adapted Joan Sola’s open source SLAM Toolbox9 

written in Matlab [53]. Significant development of the TRN block is still needed 

to gain confidence in its results. A thermal camera or Lidar TRN algorithm also 

remains to be added in our tool. We plan to further investigate existing algorithms 

for fitness for our application, and implement the most promising. 

A first version of the hazard detection and avoidance block has also been de-

veloped. Camera hazard, Lidar slope and roughness hazard maps have been im-

plemented. These sensor hazard maps are then fused to an overall safety map, us-

ing fuzzy rulesets, as described in Ch. 2.3.2. This was done using Matlab’s Fuzzy 

                                                           
9 http://www.iri.upc.edu/people/jsola/JoanSola/eng/toolbox.html 
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Logic Toolbox10. A modified reachability ellipse as discussed in Ch. 2.3.3 can also 

be generated to result in the final fused hazard map. Since the shadowing and Li-

dar output simulation tools are currently missing from the terrain generation block, 

rock/ice block hazard detection by the optical camera could not be implemented 

here. This is a point we are currently working on, in parallel with the development 

of the aforementioned terrain generation block features. Similarly, thermal camera 

hazard detection has also not been yet implemented. We are currently investigat-

ing ways to take the scientific interest factor into account, in order to create the fi-

nal landing quality map. We are also considering implementing multiple decision 

engines and fusing their output to get an improved hazard detection function, as 

proposed in [18]. 

For the Guidance block we implemented verified the G-FOLD algorithm in 

Matlab as described in [50][52] . To solve the SOCP problem we used the freely 

available FALCON tool11, developed by TU Munich. To validate the implemented 

guidance algorithm and to demonstrate its capabilities, we recreated the results of 

[51]. The landing scenario presented there is especially challenging. Still our re-

sults agreed with those of [51]. The guidance algorithm performs satisfactorily, 

and we consider its development finalized for the purposes of our tool. 

4 Outlook and future work   

We have presented our autonomous planetary landing simulation tool, as will 

be applied to simulate a landing near a plume source in a tiger stripe canyon on the 

South Polar Terrain of Saturn’s moon Enceladus. Development of the tool is on-

going: significant work has been done on each of the blocks constituting the tool 

(Terrain simulation, Terrain relative navigation, Hazard detection and avoidance, 

and Guidance and Control). 

We aim to use this tool to simulate a landing on Enceladus with adequate fi-

delity, in order to demonstrate its feasibility and validate that the accuracy and 

safety requirements for this exceptionally challenging terrain are met. We also 

plan to use the tool to investigate novel approaches and propose improvements in 

all aspects of the landing process.  
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