
13th International Symposium on Particle Image Velocimetry – ISPIV 2019
Munich, Germany, July 22-24, 2019

Unscented Kalman filter (UKF) based nonlinear
parameter estimation for a turbulent boundary layer:

a data assimilation framework
Zhao Pan1,2∗, Yang Zhang1, Jonas P. R. Gustavsson1, Jean-Pierre Hickey2,

Louis N. Cattafesta III1∗

1 FAMU-FSU College of Engineering, Florida Center for Advanced Aero-Propulsion, Tallahassee, FL,
32310, USA

2 University of Waterloo, Department of Mechanical and Mechatronics Engineering, Waterloo, Ontario,
N2L 3G1, Canada

∗ panzhao0417@gmail.com, lcattafesta@fsu.edu

Abstract
A turbulent boundary layer is an essential flow case of fundamental and applied fluid mechanics. However,
accurate measurements of turbulent boundary layer parameters (e.g., friction velocity uτ and wall shear τw),
are challenging, especially for high speed flows (Smits et al., 2011). Many direct and/or indirect diagnostic
techniques have been developed to measure wall shear stress (Vinuesa et al., 2017). However, based on
different principles, these techniques usually give different results with different uncertainties. The current
study introduces a nonlinear data assimilation framework based on the Unscented Kalman Filter that can
fuse information from i) noisy and gappy measurements from Stereo Particle Image Velocimetry, a Preston
tube, and a MEMS shear stress sensor, as well as ii) the uncertainties of the measurements to estimate
the parameters of a turbulent boundary layer. A direct numerical simulation of a fully developed turbulent
boundary layer flow at Mach 0.3 is used first to validate the data assimilation algorithm. The algorithm is
then applied to experimental data of a flow at Mach 0.3, which are obtained in a blowdown wind tunnel
facility. The UKF-based data assimilation algorithm is robust to uncertain and gappy experimental data and
is able to provide accurate estimates of turbulent boundary layer parameters.

1 Introduction
Despite the advances of computational methods, the experimental determination of the parameters of a tur-
bulent boundary layer (TBL), such as friction velocity (uτ) and wall shear stress (τw), with low uncertainties
still remains challenging, especially for high-speed flows (Smits et al., 2011). Over the years, various di-
agnostic techniques have been developed and can be classified into four groups as shown in Fig. 1 (Winter,
1979; Haritonidis, 1989; Naughton and Sheplak, 2002). These techniques are based on different princi-
ples and are characterized by distinct advantages/disadvantages. For example, Particle Image Velocimetry
(PIV) is essentially non-intrusive but generally suffers from inadequate resolution near the wall, the Preston
tube experiment is intrusive but relatively inexpensive to carry out. While modern micromachined shear
stress sensors can potentially provide direct measurements of τw, their rigorous characterization is a topic of
current research (Mills et al., 2017).

Indeed, high fidelity measurements close to the wall are in general difficult for both intrusive and non-
intrusive techniques. Probes (e.g., hot-wires and Pitot tubes) perturb the flow and are sensitive to their
placement (Örlü et al., 2010). Optical based near-wall diagnostics (e.g., PIV and Particle Tracking Ve-
locimetry (PTV), Laser Doppler Velocimetry (LDV), etc.) are also difficult or even inaccessible due to
reflections, sparse particle seeding density, and high flow gradients (Kähler et al., 2012). To address these
problems, one approach is to fit or extrapolate the gappy (and often noisy) data from hot-wire anemometry
or PIV to an analytical description of the TBL profile, such as Musker’s or Spalding’s profile (Pujals et al.,
2010; Pabon et al., 2018) and the Clauser-Chart (Wei et al., 2005), or some modified versions of these classic
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Figure 1: Outline of parameter measurement techniques for turbulent boundary layers (adapted from Winter
(1979)). Techniques employed in the present research are highlighted in bold font.

TBL profile descriptions, which are applicable in the viscous sublayer and buffer layer region (Kendall and
Koochesfahani, 2008; Örlü et al., 2010; Rodrı́guez-López et al., 2015).

A nonlinear fitting or regression algorithm commonly looks for a set of parameters in the theoretical
expression that minimizes a norm (e.g., L1- or L2-norm) of the difference between a fitting function and
(noisy) data from experiments. However, it is difficult for such a regression algorithm to directly provide
uncertainties of the resulting parameters despite the fact that the experimental measurements typically have
quantified uncertainties. In addition, a regression method often encounters the following challenges: namely
the difficulty in i) overfitting to uncertain experimental data from multi-sensor diagnostic setups, where each
sensor may have different levels and characteristics of uncertainties; ii) assigning appropriate weights or
trust to different measurements (e.g., more trust in direct and/or high-fidelity measurements than that from
noisy and/or indirect measurements); iii) faithfully taking higher-order information of the measurements into
account (e.g., correlated uncertainty of velocity measurements from PIV); and iv) accounting for sensitivity
to inaccurate determination of the wall position (Örlü et al., 2010).

To address the above four challenges, we first develop a data assimilation algorithm based on the Un-
scented Kalman filter (UKF, briefly introduced in §2) to estimate the TBL parameters (e.g., uτ and τw). The
nonlinear UKF is designed to fuse three data sets: i) velocity profiles measured with Stereo-PIV (SPIV),
which leads to correlated uncertainties associated with a non-zero overlap of interrogation windows in the
data processing; ii) differential pressure (and its uncertainty) measured by a Preston tube attached to the wall
surface; and iii) a micromachined direct wall shear stress sensor and its uncertainty. The algorithm design is
described in §3.

Next, we validate the UKF-based data assimilation algorithm, in §4, using composite data obtained
from a high-fidelity numerical simulation of a flow at Mach 0.3, which is contaminated with artificial noise
(both correlated and uncorrelated). The results indicate that the UKF-based TBL parameter estimation is
robust and accurate. In addition, the approach naturally handles the aforementioned four challenges com-
pared to traditional nonlinear regression methods by minimizing the estimated uncertainty of the unknown
parameters in TBL profiles.

Last, the UKF-based data assimilation algorithm is applied to experimental data (§5) from a channel
flow at Mach 0.3 obtained in a blowdown wind tunnel facility at Florida State University. This application is
an example of a nonlinear Kalman filter based data assimilation framework, applied to fluid flow diagnostics
for parameter estimation, which is flexible and can be potentially adapted to other measurement techniques
and simulation results. Discussions and conclusions are provided in §6.

2 Unscented Kalman Filter
The UKF belongs to the family of Kalman filters, which is one of the most common tools for data assim-
ilation, multi-sensor information fusion, and state/parameter estimation, etc., depending on the context of
the field of application. A Kalman filter is commonly designed based on an analytical model of a dynamic
process/system XXX k+1 = F (XXX k, ppp), where XXX k is the unknown state vector of the dynamic process at time
step k, and the system dynamic model F (·) is parameterized by ppp. The model of the observable variables of
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Figure 2: Kalman filter framework for state and/or parameter estimation.

the dynamic system is YYY k = H (XXX k, ppp), where YYY k is the observation vector containing the variables that can
be measured by transducers. The mapping between XXX k and YYY k is modeled by H (·). The inaccuracy of F ,
which is considered via additive process noise, is modeled by a covariance matrix QQQ. Similarly, the observa-
tion noise covariance matrix RRR models the uncertainty properties of observations of the system. Initializing
the Kalman filter by an initial guess of the unknown state variables (X̂XX0) and feeding the observations mea-
sured from transducers (YYY k), the Kalman filter recursively outputs optimal estimation of the state variables
(X̂XX k) by minimizing the corresponding covariance, P̂PPk = cov(XXX k− X̂XX k). The diagonal elements of the P̂PPk can
be considered as an uncertainty estimate of X̂XX k. The framework of the Kalman filter is illustrated in Fig. 2,
and the detailed algorithm derivation and applications of classic Kalman filters are well documented (e.g.,
Bishop et al. (2001)). The classic Kalman filter is designed for linear and Gaussian processes or systems.
For a nonlinear system, the Extended Kalman filter (EKF) is a standard technique that embeds the first-order
linearization of the nonlinear system in the Kalman filter framework. Thus, the estimation can be erroneous,
especially when the noise is not Gaussian or the process is strongly nonlinear.

The unscented Kalman filter (UKF) is an extension to the Kalman filter, which uses a set of carefully
chosen sample points around the state variables to statistically represent the dynamics of nonlinear system.
These sample points are called sigma points, which are chosen to have the same mean and covariance as
the corresponding state variable. Implementation details of the UKF can be found in, for example, Wan and
Van Der Merwe (2000). These sigma points propagate through the nonlinear dynamic system and precisely
carry the statistical information of variables (i.e., expected value and covariance). Compared to the EKF, the
UKF is superior since it does not assume additive Gaussian noise in the observation and does not need to
linearize the process model. For non-Gaussian observations, the UKF is accurate to at least the second-order
moments (i.e., variance). In addition, the UKF is less expensive than typical particle methods (e.g., Monte
Carlo methods), and it follows the same setup as a Kalman filter for state/parameter estimation (shown in
Fig. 2). In the present research, we use the UKF to design a state-parameter estimation algorithm to fuse
diagnostics from multiple sensors to determine the turbulent boundary layer parameters, such as wall shear
stress and friction velocity.

3 Data assimilation algorithm based on the UKF
An UKF was designed to fuse the measurements from three different diagnostic techniques (Stereo-PIV,
Preston tube, and shear stress sensor) to estimate the TBL parameters.

Velocimetry techniques, such as PIV, are commonly used to measure the mean velocity profile in a TBL.
The mean velocity profile in a TBL can be explicitly described by Musker’s profile, u+ = f (y+), where
u+ = u/uτ, y+ = yuτ/ν, y is the coordinate perpendicular to the wall, ν is the kinematic viscosity of the
fluid, and uτ is the friction velocity. In physical units, the velocity profile can be expressed as

u(y) = f1(y,uτ,δ,Π,ν) 0≤ y < δ, (1)

which is parameterized by friction velocity uτ, boundary layer thickness δ, and wake factor Π. Equation (1)
is a representation of the velocity profile similarity near the wall, which is fairly long and omitted here for
brevity. Its form, parameters, and derivation can be found in Musker (1979).

Another popular technique to measure skin friction is a Preston tube. A Preston probe is a pitot probe
attached to the wall with a diameter small enough to capture the dynamic pressure in the inner part of the



boundary layer. The wall shear stress and friction velocity can be derived based on the measured dynamic
pressure (Head and Rechenberg, 1962):
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where ρ is the density of the fluid, D is the outer diameter of the Preston tube, and ∆P is the measured dy-
namic pressure at the Preston tube. K1 = 0.889 and K2 = 1.400 are constants when 3.7 < log10

(
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<

5.3 is satisfied (Ferriss, 1965). The nonlinear function (2) maps the relationship between the unknown TBL
parameter τw and the experimental observation (∆P) through wall similarity of flow over an obstacle (Winter,
1979). Rearranging (2) leads to

∆P = f2(τw,ν,D,ρ). (3)

The wall shear stress can also be directly measured by a miniature floating-element shear stress sensor
flush mounted in the wall and can be written as a function of friction velocity:

τw = f3(uτ) = ρu2
τ . (4)

The mean flow profile of a TBL must satisfy the no-slip boundary condition at the wall (u|y=0 = 0),
which can be rearranged as

0 = u(0); (5)

and the condition at the edge of the boundary layer, u(y = δ0.99)≈ 0.99U∞, or

δ0.99 ≈ f4(U∞), (6)

where U∞ and its location can be directly determined from velocity profile measurements by PIV.
Based on (1), (3) – (6), we could setup the observation function of the UKF as

YYY k = H (XXX k, ppp) =


f1 (y,uτ,δ,Π,ν)
f2(uτ,ν,D,ρ)

f3(uτ,ρ)
0

f4(U∞)

 , (7)

where YYY k = [u(y),∆P,τw,0,δ0.99]
T is the observation vector that is made up by the left hand side of (1),

(3) – (6). XXX k = [τw,uτ,δ,Π]T are the (unknown) variables to be estimated, and ppp = [ν,ρ,D] are the known
parameters of the fluid and measurement setup. It is worth noting that τw in YYY k is the known shear stress
measurement from the transducer, which is contaminated by unknown noise, while τw in XXX k is the unknown
true value of the wall shear stress to be estimated.

In the context of parameter-state estimation on the basis of a Kalman filter, the unknown parameters
are typically treated as pseudo-states. Since the pseudo-states in XXX are TBL parameters and are considered
time-invariant constants, the difference equation of the state vector is formulated as

XXX k+1 = F (XXX k) =

(
ρu2

τk

diag(0,1,1,1)XXX k

)
, (8)

where diag(·) denotes a diagonal matrix, and the elements, from left to right, are listed in the parentheses.
The covariance of process noise of corresponding TBL parameters is set to be a diagonal matrix QQQ =

diag(σ2
τw
,σ2

uτ
,σ2

δ
,σ2

Π
). The specific value of QQQ is determined by the order of magnitude and significant digits

of XXX . Specific examples can be found in §5.
The observation noise covariance is a block diagonal matrix:

RRR =


σσσ2

PIV
σ2

PT
σ2

SSS
σ2

0
σ2

∞

 , (9)



where σσσ2
PIV is the covariance matrix of the velocity data measured using PIV, σ2

PT is the variance of pres-
sure measured from Preston tube, and σ2

SSS is the variance of the shear stress sensor reading, respectively.
PIV processing commonly employs overlapped interrogation windows; thus it leads to correlated uncer-
tainty and/or noise in the results. Thus, σσσ2

PIV is typically a banded matrix (e.g., tridiagonal or pentadiagonal,
etc., matrix depending on the overlap ratio of the interrogation windows). The principal diagonal elements
(σ2

PIVi,i
) of σσσ2

PIV represent uncertainties of PIV measurements at each vector, which can be evaluated by var-
ious methods (Sciacchitano et al., 2015), and the off-diagonal elements are not necessarily zero. Namely,
the upper and lower diagonal elements (σPIVi,i± j , j = 1,2, ...) of σσσPIV are nonzero due to the overlapped inter-
rogation windows of PIV measurements, which is one of the signature characteristics of PIV compared to
other velocimetry techniques. However, this higher-order uncertainty information of PIV is rarely evaluated
and applied when PIV is used (Wieneke, 2017). Finally, σ2

0 and σ2
∞ provide uncertainties in the boundary

conditions, which are set to be small values, and further explanations are provided in §4.
Equipped with the above setup, the standard routine of the UKF as an state/parameter estimator is im-

plemented (see Wan and Van Der Merwe (2000) and Fig. 2). The UKF gives robust and accurate estimation
of the TBL parameters and the corresponding uncertainties based on the measurements from multiple diag-
nostic techniques.

4 Algorithm validation
To validate the UKF-based data assimilation algorithm, we constructed synthetic noisy and gappy data sets
to mimic the measurements of SPIV, Preston tube, and a wall shear stress sensor based on a high fidelity
direct numerical simulation (DNS) of a channel flow at Mach 0.3, which is used as the ground truth.

The DNS database of turbulent channel flow was generated to assess the data assimilation framework.
The near wall velocity from these channel flow simulations represents a numerical analogue to the exper-
imental boundary layer data. The scale-resolving simulations were computed using Hybrid, a high-order
LES/DNS code developed by Larsson et al. (2013) and Bermejo-Moreno et al. (2013). A sixth-order cen-
tral differencing scheme with high-order artificial dissipation is used to compute the spatial derivatives; the
equations are advanced in time using a fourth-order, explicit Runge-Kutta scheme. The Reynolds number
based on the friction velocity and channel half height is approximately 750 and the bulk Mach number is
0.3. Doubly periodic boundary conditions were applied to the stream- and span-wise directions; no-slip was
imposed at the walls. The domain size is 2π× 2× π and selected to allow an adequate representation of
the mean flow characteristics (Lozano-Durán and Jiménez, 2014). The grid resolution was 512×512×340
with a hyperbolic tangent stretching of the grid in the wall-normal direction; this resolution results in wall
unit grid spacing of dx+ = 9.24, dy+ = (0.1 – 7.5), and dz+ = 6.96. The flow at the wall was resolved
to y+ = 0.1. The dimensional friction velocity of this DNS data was uτ = 4.695 m/s, and the boundary
thickness δ0.99 is approximately 2.4 mm.

The mean DNS velocity profile near the wall was cropped to simulate the gappy SPIV measurements
that have difficulties to resolve the buffer layer of a flow at Mach number 0.3. The synthetic PIV data were
down-sampled to have similar spatial resolution as in the experiments (i.e., 36 vectors in the 55≤ y+ ≤ 600
range which spans over 1.8 mm in physical units). In practice, our PIV measurements close to the wall tend
to have higher uncertainty due to finite reflections (e.g., see z ≈ −10 mm near the wall in Fig. 6(B)) and
low seeding density (e.g., z≈−10 mm in Fig. 6(D)). We model these uncertainties by calculating the root-
mean-square of N = 500 instantaneous uncertainty profiles (σPIVinst ) directly exported from DaVis software
(LaVision, Germany) of the SPIV data set of a flow at Mach 0.3 (see Fig. 6, and more details can be found
in §5). Thus, the values of the principal diagonal of σσσ2

PIV were calculated as σ2
PIVi,i

= ∑
N
i=1 σ2

PIVinst
/N2. For

example, σPIV |y+=55 = σPIV1,1 = 0.210 m/s, is higher than the measurements near the edge of the boundary
layer σPIV |y+=600 = σPIV36,36 = 0.126 m/s. With a 75% overlap of the interrogation window being used
in the PIV cross-correlation calculation and an triangle-like correlation profile of the correlation (σPIVi,i± j =
(1− j/4)σPIVi,i , 0≤ j≤ 4, Wieneke (2017); Howell (2018)), a Cholesky decomposition was used to generate
Gaussian noise for the velocity profile (εuPIVi

) whose (up to 6 closest) neighboring noise are correlated, where
each measurement has an assigned variance (i.e., εuPIVi

∼ N (0,σσσ2
PIV )). Adding this synthetic noise to the

mean flow profile from the DNS, we emulate the noisy and gappy synthetic TBL profile measurement from
the SPIV data (Fig. 3(C)).

Synthetic pressure measurement of the Preston tube was generated by measuring dynamic pressure of the
DNS data at the center line (y+ = 46, indicated by the purple arrow in Fig. 3(C)) of a virtual Preston tube with
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Figure 3: DNS data and DNS-based synthetic data. (A) A slice of the instantaneous velocity field snapshot
from the DNS. (B) Mean flow profile (u+) from the DNS data. The logarithmic law employs constants
κ = 0.41 and B = 5.0 as reference. (C) Synthetic (gappy and noisy) SPIV data of mean flow profile. A
zoomed-in view is shown in (D). Blue dots indicate the noisy and gappy mean flow profile, and the error
bars indicate the corresponding uncertainties. The purple arrow indicates the location of the center line of
the Preston tube.

an outer diameter D = 0.30 mm. The added noise was Gaussian (εPT ∼N (0,σ2
PT ), where σPT = 0.01∆P is

set to match the real Preston probe uncertainty described in §5). It is worth noting that this synthetic Preston
tube measurement is ∼7% lower than the nominal value according to τw from DNS based on (2).

Similarly, the shear stress sensor measurement was modeled by adding artificial noise to the exact value
of τw calculated from the DNS data. We assumed that the shear stress sensor had high uncertainty with non-
Gaussian distribution to challenge the data assimilation algorithm: εSSS ∼U(0,σ2

SSS), where σSSS = τw/
√

3,
meaning that the sensor reading could be anywhere from 0 to 2τw, uniformly distributed. With εPIV , εPT , and
εSSS added to the synthetic PIV measurements, Preston tube reading, and shear stress sensor measurements
from the DNS data, respectively, we have the synthetic noisy experimental data as observation YYY to be input
to the UKF.

In addition, it should be noted that Musker’s profile does not strictly satisfy the no-slip condition (i.e.,
u = f1(y = 0) is small but not zero), and the reading of δ0.99 is very sensitive to the measurements of U∞.
We therefore set small but non-zero values of the uncertainty of the boundary conditions at the wall and at
the edge of the boundary layer: σ0 = 1×10−3uτ, and σ∞ = 10−1δ0.99, respectively. This means that the data
assimilation algorithm ‘softly’ enforces the boundary conditions. With the covariance (σσσ2

PIV ) and variances
(σ2

PT and σ2
SSS) evaluated, the observation covariance matrix RRR is set up according to (9).

In practice, we do not know the exact value of the TBL parameters such as τw, uτ, and Π a priori.
However, a rough estimation, or even the order of magnitude, of the TBL parameters with a nonlinear
fit method (e.g., Örlü et al. (2010)) is enough to set the last two parameters of the UKF, which are the
process noise covariance (QQQ) and the initial guess of the pseudo-states (X̂XX0), respectively. For example
uτ ∼ O(100) m/s for a flow at Mach 0.3, and we only keep four significant digits. Thus, σuτ

≈ 10−3 m/s is a
reasonable estimation of the process noise to ‘model’ the inaccuracy of the constant parameter uτ. Similarly,
let PPP = diag(101,10−3,10−6,10−3), and choose an arbitrary initial guess of XXX0 such as XXX0 = (10,1,10−3,1)
to run the UKF to give an optimal estimate of the TBL parameters 1.

A typical data assimilation result is shown in Fig. 4. After several iterations, the UKF converges to
optimal estimates of the TBL parameters. The wall shear stress (τw) and friction velocity (uτ) are accurately
estimated (red dashed line) with less than 0.5% and 0.1% relative error, respectively. The darker and lighter
shades of red patches indicate the 1σ and 3σ uncertainty bands of the estimation. Despite that δ̂ has a bias
error compared to the true value, the estimation of τw and uτ, which are of more practical interests, are
not significantly affected. This UKF-based data assimilation algorithm is robust to the wall offset (∆y) of
PIV measurements. As shown in Fig. 5(A), ûτ and τ̂w are mostly less than 1% and 3%, respectively, over
a wide range of wall offset (−10 ≤ ∆y/δν ≤ 10, where δν is the viscous length scale) for the simulated
data of a flow at Mach 0.3. In this synthetic flow, 10δν = 32.3 µm in physical unit. As a reference, a

1Values of QQQ and RRR are in the units of [Pa, m/s, m, -].



typical 16× 16 pixel interrogation window physical length in a real experiment (e.g., described in §5) is
0.208 mm, and 75% interrogation window overlap ratio leads to 52.0 µm grid spacing between neighboring
PIV vectors. This algorithm is also robust to PIV (or potentially other velocimetry measurements) with
low spatial resolution. Fig. 5(B) shows the relative error of ûτ and τ̂w when spatial resolution of PIV is
changed (from 80 vectors/mm, which is the original DNS data resolution in the range of 55 < y+ < 600, to
20 vectors/mm, which is similar to the experiments shown in §6, and to much coarser PIV data such as 5 or
2 vectors/mm). Even 3 vectors (corresponding to 2 vectors/mm in Fig. 5) from PIV measurements can lead
to accurate ûτ and τ̂w estimation with approximately 1% and 2% expected relative error, respectively. While
spatial resolution higher than 20 vectors/mm may be difficult to achieve, it is still interesting to explore the
influence of high spatial resolution. The results implies that, in practice, this data assimilation algorithm can
be applied to velocimetry techniques having lower spatial resolutions than PIV.

Figure 4: UKF estimation of TBL parameters. The black solid lines indicate the true values from DNS data.
The red dashed lines are the estimation output from the UKF. The darker and lighter shades of red indicate
the 1σ and 3σ uncertainty bands, respectively. The corresponding zoomed-in views are shown in the right
column.

(A) (B)

Figure 5: Relative error in the UKF-estimated wall shear stress and friction velocity, when (A) the synthetic
PIV measurements are shifted by ∆y in y-direction, and (B) the resolution of PIV measurements are varied.
Each box in the grouped box plot in (B) contains 5000 independent runs of the UKF-based data assimilation
algorithm. The blue and red boxes indicate the error in ûτ and τ̂w, respectively. The horizontal bar in the
middle indicate the median, the upper and lower edge of the boxes are the 25% and 75% percentile, and the
upper and lower whiskers indicate the ±3σ bounds, respectively.
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Figure 6: Averaged z-direction velocity profile (A) and uncertainty (B) from N = 500 snapshots of stereo-
PIV (U∞ is the free stream velocity). The black dashed line indicates where the data (shown in (C)) is
sampled and used as input of the UKF algorithm and/or least square fit. Velocity profile u(y) and the
corresponding uncertainty (σPIVi,i) are shown in (C) and (D), respectively. Only 1 out of 4 data points are
shown for visualization. The blue dashed line indicates the edge of boundary layer (δ0.99).

5 Experiments and verification
In this section, we apply the UKF-based data assimilation algorithm to the experimental data sets. SPIV
was used to measure the TBL profile in a channel flow at Mach 0.3. An optical system consisting of an
Evergreen Nd:YAG laser (EVG00400), plano-convex lens and plano-concave cylindrical lens was used to
produce a laser sheet with a thickness of approximately 2 mm at 10 Hz into the flow. Sub-micron (nominally
0.3 µm) diameter seeding particles were generated using Rosco fog fluid in a customized Wright nebulizer
seeder and injected upstream of the stagnation chamber. Two Imager sCMOS cameras (2560× 2160 pixels,
LaVision) were used to acquire the image pairs. Each camera was equipped with a Nikon Micro-Nikkor
105 mm 1:2.8 lens, a Scheimpflug, and a 532 nm band-pass filter. All the PIV data and corresponding
uncertainty quantification were acquired and processed using DaVis 8.4. A multi-pass interrogation window
scheme from 48×48 pixels to 16×16 pixels was applied in the processing. This resulted in a resolution of
19 vectors/mm. The mean flow profile was calculated by averaging N = 500 instantaneous snapshots. The
mean flow profile and the uncertainty profile are shown in Fig. 6(A) and (B), respectively. The PIV data
used by the data assimilation algorithm is shown in Fig. 6(C).

Preston probe measurements were used to provide an independent measurement of friction velocity.
Based on the range of validity of the correlation of Ferriss (1965) and data in Head and Rechenberg (1962),
a probe with the outer diameter of 0.30 mm was chosen. This hypodermic tubing was attached in the
streamwise direction with the tip at the streamwise location of an upstream static pressure tap in the test
section. This static tap and the Preston probe were connected to a 5 psid (35 kPa) differential pressure
transducer, PX26-005DV, and the measured differential pressure, ∆P, was used to calculate the local shear
stress using Ferriss correlation based on the data by Head and Rechenberg (1962).

The direct shear stress measurements were carried out using a flush-mounted, micromachined floating-
element sensor from IC2, Type CS-A05, 300 Pa range. This model has a sensing element of 1×0.2 mm and
a bandwidth of dc-5 kHz. In fact, the shear stress sensor measured significantly lower shear stresses than
derived from other methods (Table 1). The bias was well beyond the nominal uncertainty and its origin is
unknown. Thus, we model this bias by noise with uniform distribution, and the expected amplitude of the
noise is the same to the scale of the shear stress sensor reading.

With the experimental data and the corresponding uncertainty from the SPIV, Preston tube, and the
shear stress sensor, the UKF-based data assimilation algorithm gives optimal estimates of the uτ and τw
(Table 1). To verify these estimates, besides comparing (directly) measured values from shear stress sensor
and Preston tube, we also estimated uτ via a least-squares fit of the SPIV data to the logarithmic law (u+ =

1
0.41 logy++5.0, which holds when 30 < y+ and y < 0.2δ (Bradshaw and Huang, 1995)). The values of uτ

and τw are only slightly dependent on the range of the data used in the fit (Table 1).
An alternative method considers the flow in a rectangular control volume that is bounded by the wall

and half wind tunnel height in y-direction, and the location of current SPIV plane and the location of another
SPIV plane ∆x apart along the stream. Applying the mass conservation and x-momentum equation, one can



Table 1: Cross verification of the measured and estimated turbulent boundary layer parameters.

shear stress sensor Preston tube log-law fit from PIV 1 UKF control volume

uτ [m/s] 3.20 4.34 4.12 – 4.14 4.155 ±0.005 4.35 ±0.17
τw [Pa] 11.71 21.55 19.42 – 19.61 19.752 ±0.082 21.68 ±1.51

1Values vary depending on range of data used in fitting.

calculate skin friction drag coefficient, and consecutively τw and uτ (Cantwell, 2018). This analysis falls
in the momentum balance category shown in Fig. 1 and Winter (1979). This is an averaged τw evaluation
over ∆z that is not dependent on any similarities, and is expected to be slightly different than the results
from local measurements such as PIV and Preston tube. Monte Carlo simulations were then performed to
estimate the corresponding uncertainty (Table 1). More details about the control volume method can be
found in Gustavsson et al. (2019). We find that most of the measurement techniques give similar estimates
or measurement of uτ and τw, except the wall shear stress sensor.

6 Discussion and conclusions
The UKF-based data assimilation is a useful framework that can fuse multi-sensor diagnostics and output
robust optimal estimates of TBL parameters. In contrast to a nonlinear regression method, which seeks
parameters that minimize a chosen error norm, the UKF-based data assimilation method minimizes the co-
variance of the estimates. The data assimilation algorithm thus directly leverages uncertainty information
of available experimental measurements. It is worth noting that the uncertainty or noise properties of the
UKF are evaluated via covariance matrices, which naturally take higher order statistical information of mea-
surements (e.g., PIV uncertainties are correlated) into account. By incorporating uncertainties of different
diagnostic techniques, the UKF can systematically and objectively tolerate inaccurate measurements (e.g.,
shear stress sensor in the validation example in §4) and leverage measurements with lower uncertainty (e.g.,
SPIV in the validation example in §4).

The UKF-based data assimilation algorithm is also flexible. In the present studies, measurements and
corresponding uncertainties of only PIV, Preston tube, and shear stress sensor were used. This is one exam-
ple application of the UKF-based data assimilation framework. In fact, combination of other diagnostics,
such as oil film, particle tracing velocimetry, boundary layer fence, etc., are also possible to be used to
design new data assimilation algorithms for TBL parameter estimation. We leave these options for future
work.
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