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A B S T R A C T   

Researchers have been trying to measure the influence of humankind on our environment for several decades. 
Among the technical solutions for this goal, approaches for a rule-based fusion of different geospatial information 
layers have reached the greatest level of maturity, enabling the (semi-)automatic production of maps at reso
lutions of about 1 square kilometer. While those existing approaches aim at a global analysis of human influence, 
conservation efforts are usually implemented on a regional scale. To bridge the gap between a global, low- 
resolution analysis and a local, high-resolution analysis, with this paper, we propose the Naturalness Index 
(NI), which represents the naturalness of the Earth’s surface as a metric between 0 and 100 at a spatial resolution 
of 10 m per pixel. Our approach builds on the established Human Influence Index, but replaces different geo
spatial input layers with more recent, higher resolution counterparts. Using the cloud computing platform Google 
Earth Engine, regional maps at a resolution of 10 m × 10 m per pixel can be produced efficiently in a fully 
automatic manner. We demonstrate the functionality by creating maps for three different localities in Europe – 
Bavaria, Lapland, and Scotland. A comparison of the NI values achieved with our approach to official conser
vation areas as well as a correlation with existing similar maps indicate the validity of our approach.   

1. Introduction 

Under the impression of the so-called Corona crisis, the World Health 
Organization (WHO) published the “WHO Manifesto for a healthy re
covery from COVID-19” in May 2020 (WHO, 2020), which claimed that 
better global environmental protection can help to mitigate future risks 
for epidemic plagues. The reason for this is that many diseases have a 
zoonotic origin, and leaving wild animals alone in their natural habitats 
can prevent those diseases from being transferred to the human popu
lation. In order to protect natural habitats, the designation of conser
vation areas is in need. Besides that, researchers have also confirmed 
manifold ecological and even economic reasons for the conservation of 
nature (Potapov et al., 2017; Balmford et al., 2002). 

However, especially in densely populated countries, taking land 
away from exploitation by business, traffic, agriculture or forestry does 
not go without opposition from the regional communities, who do not 
want to lose their land use rights. Often, the argument is that there is no 
real nature left anyway, and that exempting land from civilization would 
be an unjustified expropriation. With that in mind, it seems reasonable 

to objectify the determination of whether an area is “natural” or under 
strong human influence (see, e.g., Brackhane et al., 2021). One option to 
do so is by means of modern geospatial data analysis, as frequently done 
in the context of “wilderness” mapping (Carver et al., 2013; Carver & 
Fritz, 2016; Fritz et al., 2000; Cao et al., 2019; Ma & Long, 2020). Almost 
20 years ago, Sanderson et al. (2002) proposed the human footprint, 
quantified by the human influence index (HII), to map how much human 
civilization has influenced the land surface. To calculate the HII, they 
relied on four types of geospatial input data:  

• population density, expressed by population density grids  
• land transformation, expressed by land use maps  
• accessibility, expressed by the proximity to traffic ways  
• electrical power infrastructure, expressed by nighttime lights 

By rescaling all the globally available input data to a resolution of 1 
km × 1 km and scaling each input source‘s contribution with a score 
between 0 (for the absence of human influence) and 10 (for high human 
influence), they created a map of the global human footprint. Some 
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years later, Venter et al. (2016) used this approach to investigate the 
change of human influence between 1993 and 2009. In their study, they 
found that during this period, the human footprint has increased by 9%, 
with 75% of the Earth’s land surface experiencing measurable human 
pressure. In a similar manner, Allan et al. (2017) published temporally 
intercomparable maps of terrestrial wildernesses. Since they defined 
wilderness areas as pressure-free lands with a contiguous area of more 
than 10,000 km2, they found Europe to be void of any truly wild areas. 
The most recent research output in that direction is the 1 km2-resolution 
Human Modification (HM) map published by Kennedy et al. (2019). This 
map provides a cumulative measure of human modification of terrestrial 
lands as a continuous measure ranging from 0 to 1. This score reflects the 
proportion of a landscape modified based on 13 anthropogenic stressors 
and their estimated impacts using spatially-explicit global datasets. The 
data is derived from the median year 2016. 

In the work described in this paper, we do not focus on the identi
fication of wilderness, nor a global analysis of changes in terms of large- 
scale wilderness areas. Instead, we intend to bridge the gap between a 
global, low-resolution analysis of human influence or modification on 
land masses and a regional, high-resolution mapping of its absence. For 
that purpose, we propose the naturalness index (NI) to quantify the 
amount of human influence/modification – or absence thereof – on the 
environment at a resolution of 10 m × 10 m. The basis of the NI is 
formed by an upscaling of the HII procedure to higher spatial resolutions 
with most recent data sources using automated, cloud-based computa
tion in Google Earth Engine (Gorelick et al., 2017) as processing envi
ronment. While the earlier approaches put a clear focus on global 
mapping for a global understanding of human influence and nature 
degradation, our intention is to provide more fine-grained regional in
formation to regional conservation stakeholders. With our results, the 
areas that can be considered most natural from a technical point of view 
in a state or country can be determined based on objective geospatial 
information. In summary, the contributions of this work are:  

• We propose the new Naturalness Index metric, which improves the 
HII by introducing updated land transformation scores and a more 
sophisticated accessibility function, and includes a different scaling 
and normalization.  

• We update the geodata sources used to calculate the HII in earlier 
literature by more recent sources equipped with more advanced 
methods and sensors with higher spatial resolution. While doing so, 
we make sure that those sources are available on an international 
scale to ensure reproducibility.  

• We improve the measurement of land accessibility by combining 
distance from the nearest trafficway with topographic information 
using a geographical function. 

• We implement the workflow in Google Earth Engine for fast, repro
ducible large-scale mapping.  

• We produce naturalness maps for three different European regions: 
the German state of Bavaria as an example for a densely populated 
region (about 180 people per km2) with only few and small desig
nated conservation areas; Scotland as a region with medium popu
lation density (about 70 people per km2) and a larger share of remote 
areas; and the Lapland region of Finland for a sparsely populated 
landscape (about 2 people per km2) with an abundance of protected 
areas.  

• We validate the NI by comparing the produced naturalness map with 
existing conservation areas. 

The remainder of the paper is structured as follows: In Section 2, we 
describe our approach to create a Naturalness Index at a resolution of 10 
m per pixel on a regional scale. In Section 3, we show results for three 
study areas, namely: Bavaria, Lapland, and Scotland. We argue that the 
study areas adopted in this study are characterized by different degrees 
of population density and human influence and thus provide a coherent 
test bed to demonstrate the global applicability of the developed 

approach. In the same section, we further provide a qualitative and 
quantitative analysis study of regional naturalness index maps including 
a comparison with similar indices. Section 4 contains a discussion of the 
results found in our study. 

2. Calculation of the naturalness index 

2.1. Overview of the approach 

Fig. 1 shows a flowchart of the developed approach that extends the 
previous work of Sanderson et al. (2002) by further taking land cover 
penalty terms and accessibility measures into account to shape a more 
precise measure. Apart from these newly-introduced extensions, scale 
and inversion operations are applied to the recent geospatial data 
sources with higher resolutions to form a more informative NI. With this 
NI, we intend to measure the naturalness of the Earth’s land surface from 
the perspective of absent human influence. 

The approach presented in this work exploits four different geo
spatial data sources as proxies for naturalness: population density, land 
cover, accessibility, and electrical power infrastructure. Although these 
data sources are provided at high spatial resolution, provide global 
coverage, and are openly available, their ability to characterize natu
ralness individually is limited owing to their ambiguous nature. Thus, a 
rule-based geospatial data fusion has to be applied to construct an in
clusive naturalness measure. 

In order to do so, the four different data sources are first pre- 
processed and then re-classified or weighted, before they are added up 
to calculate an upscaled, modernized variant of the HII in a manner 
similar to the approach described by Sanderson et al. (2002). Then, the 
numbers are inversely scaled to the range [0;100]. While the original HII 
went from 0 (complete absence of human influence) to 72 (the theo
retical maximum, strongest human influence), our Naturalness Index 
theoretically ranges from 0 (least natural state, strongest human influ
ence) to 100 (most natural state, weakest human influence). Even 
though the theoretical range is [0;100], in practice (e.g. for visualization 
purposes) the range [0;80] is used. This is motivated by the observation 
that the NI values mostly reside far from the upper limit, given the lack 
of completely natural (“wilderness”) areas in our developed world. 

The different data sources used to form the NI are described in the 
following subsections, including the pre-processing and scaling applied 
to them. 

2.2. Recent high-resolution geodata input 

As in the initial work on the HII, four geospatial variables are needed 
as proxies for human influence, or – inversely – naturalness: population 
density, land transformation, accessibility, and electrical power infra
structure. We use sources that are as recent and as highly resolved as 
possible, while still being available freely on a global scale. The different 
sources are summarized and compared to the original sources in Table 1. 

2.2.1. Population density 
The density of the human population is considered as a main factor of 

destruction in the environment (Cincotta et al., 2000), thus forming an 
adequate measure for the absence of naturalness. In addition, the pop
ulation density can be considered as a sign of need of resources which 
inherently degregates the surrounding environment. 

Unfortunately, the only source for international geodata on popula
tion distribution is the Gridded Population of the world. However, this 
product provided by CIESIN is regularly updated and comes with a 
projection for the year 2020 in version 4.11. Although only available at a 
resolution of 30 arc seconds (approx. 926 m at the equator and 654 m at 
a latitude of 45◦), population density is of course a crucial input to a 
mapping of human influence on land surfaces. We thus keep this input, 
although we suggest replacing it with a more high-resolution source 
should this become available in the future. 
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In our approach, the population density is normalized with a 
threshold of 1000 persons per square kilometer. Any pixel where the 
density exceeds this threshold receives the maximum score of 10, 
otherwise the density values are min–max scaled to a range of [0;10] 
after logarithmic transformation. 

2.2.2. Land transformation 
In the earlier approaches, land cover data was used to model the 

transformation of natural land into cultivated landscapes. We follow this 
idea but stick closer to the meaning of classic land cover classes. The fact 
that, e.g., an urban area is not a form of natural land cover is as obvious 
as, e.g., forest areas representing a relatively natural class. 

Since the resolution of land cover maps depends mostly on the 
remote sensing input data used to derive the land cover representations, 
significant progress was enabled in the last decades by the growing 
availability of freely available high-resolution satellite imagery. Thus, 
we replace the original global land use/land cover data with a resolution 
of 1 km by the WorldCover V100 data with a resolution of 10 m pro
duced from Sentinel-1 and Sentinel-2 imagery by ESA (Zanaga et al., 
2021). The conversion of WorldCover V100 land cover classes in weight 
factors is outlined in Fig. 1. Furthermore, the water class is masked out 
in the final result given the reason that large water bodies are often 
intensively used for fishing, water sports or tourism and generally enable 
access to their shores. They are thus exempted from our processing, 
which focuses on land surfaces only. 

2.2.3. Accessibility 
Apart from population density and land transformation, access to 

non-inhabited areas determines whether the human population can in
fluence the land. Access is provided by roads, railways and navigable 
rivers. We make use of OpenStreetMap (OSM) data, as it is usually up-to- 
date and globally available, even though the quality is not homogeneous 
across the globe (Haklay, 2010). In order to deduce accessibility from 
OSM, we first rasterize the OSM roads, railways, and waterways vector 
layer into a GeoTIFF file with a resolution of 10 m. Then, we convert this 
raster to an accumulated cost surface encoding the cumulative cost to 
the nearest traffic way for every pixel. The cost to traverse each pixel, 
represented in minutes per meter, is determined by the walking pace 
based on terrain slope, calculated by Tobler’s hiking function for off- 
path travel (Tobler, 1993). The prime source to calculate the terrain 
slope is the NASA Shuttle Radar Topography Mission (SRTM) Digital 
Elevation Model at a pixel spacing of 30 m. For the high latitude regions 
(>60◦N or 56◦S) residing outside the coverage of SRTM model, we 
replace it with the ALOS Global Digital Surface Model, which is also 
provided with a pixel spacing of 30 m. The maximum distance used for 
computation is 15 km. Finally, the cumulative costs are inversely scaled 
to a range of [0;10], with an upper threshold of eight hours as the 
maximum time limit a person can walk in one day. This process is 
illustrated in Fig. 2. An example of the maps produced from the work
flow is provided in Fig. 3. 

2.2.4. Electrical power infrastructure 
A final proxy for the influence of humanity on the environment is the 

Fig. 1. Adapted workflow, implemented in Google Earth Engine.  

Table 1 
Geospatial data sources: HII versus NI.  

Geospatial Data 
Source 

Human Influence Index Naturalness Index (Ours)  

Dataset Year Resolution Dataset Year Resolution 

Population density Gridded Population of the World 
v2 

1995 2.5 arc 
minutes 

Gridded Population of the World v4.11 2020 30 arc 
seconds 

Land transformation Global Land Use/Land Cover v2 1992–1993 1 km WorldCover V100 2020 10 m 
Accessibility Vector Maps 1960–1990s – OpenStreetMap 2020 – 
Electrical power 

infrastructure 
Defense Meteorological Satellite 
Program Stable Lights 

1994–1995 30 arc 
seconds 

VIIRS Stray Light Corrected Nighttime 
Day/Night Band Composites Version 1 

Monthly average 
from 2014 – present 

15 arc 
seconds  
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availability of electrical power, which can be approximated by 
analyzing nighttime illumination. Following the reasoning of Sanderson 
et al. (2002), we use monthly averaged VIIRS Stray Light Corrected 
Nighttime imagery and scale it in a similar manner as the population 
density, namely by normalization with a threshold and subsequent 
logarithmic transformation. The upper limit for the computation is 30 
nanoWatts/cm2/sr. Although the resolution of the dataset is only 15 arc 
seconds (corresponding to 463 m at the equator and 327 m at a latitude 
of 45◦), we still consider this input as an important piece of information, 
which should not be ignored. 

2.3. Converting the scores to the final naturalness index 

Once all four input datasets are converted to weights, these weights 
are summed up for every pixel, leading to our modernized and upscaled 
version of the HII. The resulting score is then inversely normalized to the 
range [0;100] in order to gain the desired Naturalness Index. Since 
larger water bodies are not properly represented by the calculation of 
HII or NI, respectively, we further mask them by setting all pixels cor
responding to the Global Forest Change water mask of Hansen et al. 
(2013) to NaN values. 

3. Example results and validation 

In order to demonstrate and validate the feasibility of the Natural
ness Index proposed in this work, we use the methodology described in 
Section 2 for the automatic production of NI maps for three different 
study areas: Bavaria, Lapland, and Scotland (see Fig. 4). These study 
areas were selected based on their different degrees of population den
sity and are described in the following. 

3.1. Study areas 

Bavaria is a landlocked federal state of Germany, occupying an area 
of about 70,550 km2. With a population density of 185 people per km2 

and eight cities with more than 100,000 inhabitants, it serves as a good 
example for a densely populated central European region. According to 
the Bavarian State Ministry of the Environment, about 3% of the state’s 
area are designated conservation areas with strong protection status: 
two national parks and almost 600 less strictly protected nature 
reserves. 

Lapland is the largest and northernmost region of Finland and 
covers a land area of 92,667 km2 plus an additional 6316 km2 of lakes 
and rivers. With a landscape mainly consisting of mires and forests in the 
South and fells in the North, it is one of the least populated regions in 
Europe – only about 2 people per km2 live there. With more than 900 
designated conservation areas in total, almost all of Lapland (about 
90,000 km2) is protected. Thus, in this study, Lapland serves as a good 
example for a sparsely populated region at the (sub-)arctic outskirts of 
Europe. 

Fig. 2. Workflow to deduce accessibility.  

Fig. 3. An example image of (a) a digital elevation map (source: SRTM), (b) a slope map calculated from elevation, (c) a walking pace map based on terrain slope 
calculated using Tobler’s hiking function for off-path travel, (d) and an accumulated cost surface calculated over 15 km maximum distance. 

Fig. 4. Overview of the study areas: Bavaria, Lapland, and Scotland.  
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Finally, Scotland is supposed to serve as an intermediate example 
given its relatively high number of designated conservation areas 
(around 78,000) covering about 75% of the state. As part of the island of 
Great Britain, Scotland is surrounded by the Atlantic Ocean to the north 
and west, the North Sea to the northeast and the Irish Sea to the south. 
With a population density of about 68 people per km2, most of Scot
land’s population is concentrated in the so-called Central Belt in the 
Scottish Lowlands – a plain located between the Scottish Highlands and 
the Southern Uplands. 

3.2. Regional naturalness index maps 

The NI maps produced for the three study areas are depicted in Fig. 5. 
For sake of comparison, we also provide the maps from two similar 
products, namely the Human Footprint (HF) and Human Modification 
(HM) in Fig. 6. In addition, the histograms of the NI values for the study 
areas are presented in Fig. 7. The differences between Bavaria, Lapland, 
and Scotland become immediately apparent: While Bavaria mostly ex
hibits NI values in the medium range, with a few places of higher NI 
values in the mountainous regions located in the southern, eastern and 
northwestern part of the state, Lapland shows the highest average NI 
score with a map that is mostly “green” – apart from the direct sur
roundings of the capital city of Rovaniemi and the coastal city of Kemi. 
Scotland, as expected, is placed between Bavaria and Lapland in terms of 
the average NI value. While large parts of the region are determined to 
be more natural than most parts of Bavaria, the afore-mentioned Central 
Belt is clearly depicted by low NI values in the map. 

Fig. 8 aggregates the NI results over the three study regions in order 
to compare the average NI values between the overall landscape, urban 
areas, and different kinds of protected areas according to the Interna
tional Union for the Conservation of Nature (IUCN):  

• Category Ia refers to “Strict Nature Reserves”, which are strictly 
protected areas designated to protect biodiversity by strictly con
trolling and limiting human impact.  

• Category Ib refers to “Wilderness Areas”, which are usually large in 
area and widely unmodified without significant human habitation.  

• Category II finally defines “National Parks”, which commonly are 
large (near) natural areas set aside to protect large-scale ecological 
processes and ecosystem characteristics. In contrast to the other two 
categories, human visitation is allowed and not uncommon. 

The fact that the average NI values of those protected categories in 
the three study areas used in this paper are significantly larger than the 
average NI values of urban areas and even of the complete land surface 
of those areas confirms that the NI can indeed be used to distinguish 
more natural from less natural areas. 

4. Discussion 

As the results for the three study areas show, our approach allows the 
fully automatic generation of naturalness maps for extended regions. As 
Figs. 5–7 illustrate, a reasonable metric is produced, which indeed 
contains higher naturalness values for strongly protected conservation 
areas and lower values for the remaining areas, in particular urban 
areas. Similar to Fig. 6 but on a more detailed scale, Fig. 9 allows us to 
compare our new, high-resolution naturalness maps to state-of-the-art 
map products, i.e. the human footprint map and the human modifica
tion map, both in inverted form. In this zoom level, the better resolution 
of our new product can clearly be seen. This holds in particular for the 
Clyde Valley Woodlands National Nature Reserve shown in the top row 
of Fig. 9: While HF and HM would not allow to identify this small pro
tected area at all due to their low resolutions, in our NI map the reserve 
can clearly be identified. Besides, some parts of the landscape adjacent 
to the reserve are identified as more natural than the surroundings, 
which could be used by local stakeholders as a starting point to discuss 
issues such as a potential extension of the reserve. Of course, it has to be 
noted that this statement holds only from a technical point of view, 
while the establishment or extension of protected areas to a large part is 
of course a political issue, which cannot be addressed by the presented 
methodology. While the second example – the Cairngorms National Park 
shown in the second row of Fig. 9 – is less obvious, also here the higher 
resolution of our approach is clearly visible. A comparison to the HF map 
confirms a general agreement of both measures, especially considering 
the less natural areas to the northwest of the park. 

Although the approach described in this paper allows automatic 
generation of high-resolution land naturalness maps, there are a few 
limitations worth mentioning:  

• Relying on OSM data for accessibility analysis has the disadvantage 
of using a non-homogenous dataset, varying in its completeness and 
accuracy. Besides, there is not yet an established, seamless workflow 
to import OSM data into Google Earth Engine.  

• Some of the input datasets still are only provided with a resolution 
worse than our target resolution of 10 m per pixel (e.g. nighttime 
lights or population density data). It is expected that new products 
with improved resolution will further enhance the quality of our 
mapping results.  

• Although we have followed the rationales of future work on human 
influence/modification/footprint and have defined naturalness as 
the opposite of those phenomena, naturalness is still a not physically 
measurable entity. Our work should thus be seen merely as a tech
nical solution providing a sound, objective mapping product to 
domain experts (e.g. conservationists), who are invited to interpret 
them for further perusal. 

Fig. 5. The NI maps of Bavaria, Lapland, and Scotland produced with the method proposed in this article.  
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5. Summary & conclusion 

In this paper, we have presented the Naturalness Index as a new, 
high-resolution mapping of land naturalness (defined as the absence of 
human influence) on a regional scale. Its implementation in the cloud- 
computing environment of Google Earth Engine, and exploiting freely 
available, recent, and high-resolution geodata sources, allows an auto
mated production of naturalness maps for extended land regions. Using 
the presented approach, we created example NI maps for three European 
study areas with different characteristics: Bavaria, Lapland, and Scot
land. A detailed analysis of the resulting maps, including a comparison 
to existing state-of-the-art products, confirms the usefulness of the NI 
approach – in particular if a fine-grained, regional analysis is required. 

We believe that high-resolution NI maps can be used to provide relevant 
information to regional conservation stakeholders, e.g. in the context of 
debates about the establishment of new protected areas. 
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Reserve, Scotland. Second row: Cairngorms National Park, Scotland. 
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