
1.  Introduction
In some estuaries, deepening and dredging caused a shift to very high sediment concentrations resulting in 
thick layers of fluid mud. Examples for such hyper-turbid estuaries are the Ems, Loire and Yangtze river. 
The Ems estuary is located at the German-Dutch border, see Figure 1a, with main riverine inputs from Ems 
(  3 180 m sE  ) and Leda (  3 124 m sE  ). Intensive dredging of the river has changed the flow profile such that the 
flood phase, compared to the ebb phase, is shorter, with higher velocities and acceleration. This led to an 
over 40 km long estuarine turbidity maximum (ETM) and the formation of a thick fluid mud layer with 
concentrations up to several tens to hundreds of grams per liter (Schrottke, 2006; Talke et al., 2009). Recent 
measurements of Becker et al. (2018a) show strongly varying concentration and velocity profiles over a tidal 
cycle. The processes occurring in the Ems are illustrated in Figure 1b which shows the concentration of 
suspended sediment over a tidal cycle in the estuary. During flood tide (position A), intense mixing occurs 
and the sediment concentration profile increases almost linearly from the free surface to the consolidated 
mud layer at the bottom. A shear layer is located near the bed, above the lower pronounced density gradient 
(lutocline). During slack water (position B) the sediment in the upper layer settles down and a two-layer 
flow forms, divided by a second lutocline. The rapid change in the concentration profile can be explained 
with turbulence damping due to stratification, which reduces vertical mixing and in turn leads to increased 
settling. The position of the largest density gradient moves upwards from the consolidated mud interface 
to the fluid mud-water interface. This restratification is related to damping of turbulent mixing processes. 

Abstract  This study focuses on a holistic modeling approach, in which water, fluid mud, and 
immobile mud are all calculated by only one set of equations. To integrate the immobile mud into this 
concept, a holistic transport equation including sediment transport and consolidation is developed. In 
some estuaries, extensive deepening and dredging resulted in tidal deformation and sediment import to 
such extent, that hyper-turbid conditions developed. Recent measurements from the Ems estuary show 
that the locations of interfaces between water, fluid mud, and consolidated mud vary during a tidal cycle. 
Conditions are varying from fully mixed to stably stratified. As a suitable case study for the holistic model, 
a 1D vertical numerical simulation of the Ems has been set up, which is able to qualitatively reproduce the 
observed vertical velocity, concentration, and velocity shear profile. The simulation shows mud-induced 
periodic stratification.

Plain Language Summary  This study describes a 1D hydrodynamic-numerical model, 
which is called holistic as water, fluid mud, and immobile bed are solved by only one set of equations. 
Many estuaries are deepened and straightened to enable passage for ever-larger ships. In some estuaries, 
those artificial changes heavily influence the flow behavior and caused a shift to very high sediment 
concentrations resulting in thick layers of fluid mud. The presence of mud alters the flow- and turbulence 
behavior compared to pure water and subsequently must be included into the modeling equations. The 
model includes the immobile mud, where flow velocities and turbulence are zero. This is possible with a 
rearranged consolidation equation and the adaption of model parameters to be valid in cases of very high 
sediment concentration. Recent measurements from the Ems estuary show that the vertical concentration 
profile in the estuary strongly varies with time during one tidal cycle: There are phases of a stable fluid 
mud layer and phases of fully mixed conditions where no mud layer is present. As a possible application 
of the holistic model, a 1D vertical numerical simulation of the Ems estuary has been set up. The 
simulation results are in good agreement with field observations.
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During ebb tide (position C) the flow velocities are usually not as large as during flood tide due to tidal 
asymmetry. Accordingly, the turbulent mixing is weaker compared to flood tide such that it cannot destroy 
the layered structure entirely.

Figure 1c shows the sediment concentration in the Ems estuary from optical backscatter measurements of 
Becker et al. (2018a). The sensor casts were collected every 30 min and the resulting vertical profiles are 
interpolated over time.

In order to investigate the impact of future measures to improve the situation in hyper-turbid estuaries, 
numerical models should be able to simulate the actual behavior of the system. When this is possible, the 
impact of planned measures can be studied using a numerical model before they are implemented.

Up to now, the interaction between fluid mud and tidal dynamics is seldom considered in hydrodynam-
ic-numerical models for large-scale applications. The simulation of fluid mud dynamics is complex because 
of specific rheological properties of mud and a wide range of interactions between sediment characteristics 
and flow behavior. Le Normant et al. (1993) used the 3D free surface flow model TELEMAC-3D and includ-
ed a sediment module to simulate cohesive sediment problems. The fluid mud dynamics were modeled by a 
depth-averaged approach, where fluid mud was represented by a constant, high viscosity. Le Normant (2000) 
applied this model for the Loire Estuary with a combination of a fluid mud module, erosion, deposition, and 
a vertical 1D bed consolidation module. Another fluid mud module is available in Delft3D, which calculates 
a separate mud layer with a constant sediment concentration (Winterwerp et al., 2002). However, those 
models neglect the rheological shear-thinning behavior of mud as a function of velocity shear and sediment 
concentration. Wehr and Malcherek (2012) simulated the complex non-Newtonian behavior of fluid mud 
with an isopycnal numerical model. This model concept can reproduce stably stratified flow conditions 
but not vertical mixing processes. Le Hir et al. (2001) introduced a continuous modeling approach, which 
combined water and mobile mud. Roland et al. (2012) developed a fluid mud module based on that con-
tinuous approach, which was coupled with the 3D flow models SHYFEM and SELFE. The model is able to 
reproduce stable stratification as well as vertical mixing of fluid mud. However, the immobile mud cannot 
be modeled and a detailed application and validation for an estuary are still needed. There is actually no 3D 
numerical model available which is able to simulate the described behavior of the sediment concentration 

Figure 1.  (a) Map of the Ems estuary and depth profile with location of the estuarine turbidity maximum (ETM). (b) Schematic picture of the vertical 
concentration profiles in the ETM. Position A shows a linear concentration profile due to strong mixing and a lutocline near the immobile bed. B shows 
stratified conditions with two lutoclines. During ebb tide, at position C, sediment concentrations remain high and less mixing compared to flood tide occurs. (c) 
Field observations of the vertical concentration profile from Becker et al. (2018a) with positions A, B, and C.
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during a tidal cycle in the Ems. Therefore, as a first step, 1D vertical (1DV) models should be developed in 
order to understand the fundamental processes involved in that complex system.

In this study, a holistic approach is presented which uses the same set of fundamental balance equations for 
the water column as well as for the mud layer. The model can be regarded as an extension of the continuous 
model approach as it goes one step further by including the immobile mud. Deposition, erosion, and con-
solidation are inherent parts of the holistic equations.

2.  Materials and Methods
The numerical model consists of four differential equations: The momentum balance, the sediment trans-
port equation, and the two-equation k- E  turbulence model. The four equations are implemented using the 
finite volume method.

Assuming that the main processes take place in the vertical direction only, a 1DV numerical simulation has 
been set up. This means that horizontal divergence of transports is not considered. Furthermore, earth rota-
tion, as well as internal pressure gradients due to horizontal density gradients are neglected. The suspended 
sediment is not treated as a separate phase but represented by a volumetric concentration and a settling 
velocity. The simulation does not include salinity, as salinity gradients in the Ems estuary are much smaller 
than those of sediment concentrations.

The 1D momentum equation in vertical (z) direction is

 


   
      

1 ( )rh t
u u gJ
t z z

� (1)

with the fluid velocity in component along the estuary E u , the rheological viscosity rhE  , the turbulent viscos-
ity tE  , the gravitational acceleration E g , and the resulting acceleration E gJ , where E J is the free surface gradi-
ent. The fluid density is calculated from       (1 )s s s wE  with the volume fraction of solid particles 



s

s

cE  , the sediment concentration E c , the sediment density   32650 kg msE  and the reference density 

of water   31000 kg mwE  . For the holistic model, the equations have to be valid in the water and in the 
immobile mud, which means for  0 1sE  . Combining rheological and turbulent viscosity was introduced 
by Le Hir et al. (2001). The rheological viscosity can be derived from measurements of fluid mud with a 
rheometer. The use of a rheological model based on specific measurements was implemented in a numer-
ical simulation for the first time by Knoch and Malcherek (2011). The rheological viscosity is large when 
sediment concentrations are large and velocity shear is low. The turbulent viscosity is calculated by the tur-
bulence model. In estuaries, a high turbulent viscosity results from strong turbulence due to vertical shear. 
By contrast, a high rheological viscosity suppresses turbulence and can lead to laminar flow conditions.

The adapted 1D sediment transport equation reads
    

      
c

hol
c c w cK
z z z z

� (2)

with the holistic diffusivity holE K  , which is later defined in Equation  13 and the settling velocity cE w  . The 
classical solution of the sediment transport equation has the shape of a Rouse profile, see for example, 
Rouse (1937). The inclusion of several additional terms and processes, such as a rheological viscosity, hin-
dered settling and turbulence damping, leads to a deviation from the typical Rouse profile. The following 
sections describe the properties of the model parameters within the holistic concept.

2.1.  Rheological Viscosity

Newtonian fluids are defined by a linear dependence between the two parameters: shear rate (velocity 
shear) E  and shear stress E  . The observed flow curve in a rheometer is linear with the proportionality con-
stant being the viscosity E  . Non-Newtonian fluids have a non-linear flow curve and/or can have a yield 
stress  yE  . The yield stress is the minimum shear stress that is necessary for flow to take place. Some fluids 
may have additional elastic and/or time-dependent characteristics. These are referred to as viscoelastic and 
thixotropic fluids, respectively.
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The yield stress increases with concentration, due to the increase in the number of interactions and the am-
plification of their intensity (Coussot & Piau, 1994). A simple approach to take this behavior into account is 
the Bingham model with an equation of the type        ( ) ( )y s y sE  with the Bingham yield stress  yE  , the 
Bingham viscosity yE  and the shear rate E  (O’Brien & Julien, 1988). The rheological viscosity is the shear 

stress E  divided by the shear rate  



  
max( , )| | s

1u

z

1 10
6  . As the model is sensitive to the minimum shear 

rate, a value of   6 11 10 sE  or smaller is recommended.

A few decades ago, the dependence of yield stress on volume fraction for fine sediments was found to 
be   1

r
y sE a  with  4 5E r  (Migniot,  1968). Most authors, such as O’Brien and Julien  (1988), Coussot 

and Piau (1994), Fonseca et al. (2019), and Carneiro et al. (2020), use an exponential function of the type 
  2 2exp( )y sE a b  instead of a power relation. This type does not result in   0yE  for   0sE  but in   2yE a  . 
Considering a holistic model, this means that water (   0sE  ) has a non-zero Bingham yield stress, which is 
not correct. For this reason, we adopt the power relation where in the case of   0sE  , there is no yield stress. 
There exist many yield stress measurements of mud samples for different densities and locations. Figure 2a 
compares the yield stress from different estuaries as a function of the volume fraction of solid particles. A 
least squares fit was applied to the data shown. We set  4E r  and achieved   5

1 8.44 10 PaE a  (  2 0.76E R  ).

The dependence of the Bingham viscosity on the solid content is    1exp( )y m sE b  with 1 20E b  (Malcherek 
& Cha, 2011). This relation indicates that in the case of no sediment, where   0sE  , the rheological viscosity 
yields the molecular viscosity    31 10 Pa smE  of water. The rheological viscosity can be calculated with 
the equation

  


 


1
1exp( ).

r
s

rh m s
a b� (3)

The rheological viscosity increases with higher volume fractions and decreases with increasing shear rate. 
The latter occurs due to the shear-thinning behavior of fluid mud. The rheological viscosity as defined by 
Equation 3 is a possible parametrization for mud in the Ems estuary and is valid for  0 1sE  .

2.2.  Turbulence Model

Turbulence models are used to calculate the turbulent viscosity in a fluid that affects several properties, 
for example, the velocity in the flow. Generally, in a stationary shear flow without sediment, a logarithmic 
velocity profile develops. Very close to the wall, in the viscous sublayer, the velocity profile is however linear. 

Figure 2.  (a) Yield stress as a function of volume fraction of solid particles. This model uses    5 48.44 10 Pay sE  as a possible parametrization for the Ems. 
Measurement data has been added from Dasch and Wurpts (2001) and Shakeel et al. (2020). (b) Settling velocities (absolute values) as a function of the volume 
fraction. The blue line is Stokes' settling velocity after Equation 10; the red line is hindered settling according to Equation 12, the green line is the consolidation 
settling velocity (Equation 8) that has been derived from the Gibson transport equation. The black line is the combined settling velocity (Equation 11). 

   6
10 20 10 mE d d  ,  160 g lgelE c  , 1 0.005E c  , 2 180E c  .
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The universal velocity profile represents the turbulent flow (log-law region) as well as the laminar flow (vis-
cous sublayer). The presence of fluid mud enlarges the viscous sublayer, that is, the region where the flow 
is laminar (Li & Gust, 2000). Having said that, the chosen turbulence model should be able to calculate the 
log-law region as well as the viscous sublayer. If the immobile mud is considered, the turbulence has to be 
zero as there is no movement and therefore no possible production of turbulent kinetic energy.

The k- E  turbulence model as developed by Wilcox (1988) consists of two differential equations, one for the 
turbulent kinetic energy E k and one for the dissipation rate E  . In contrast to the k- E   turbulence model (e.g., 
Launder & Spalding, 1974), the k- E  model is able to calculate the viscous sublayer without introducing 
additional damping functions (Wilcox, 2010). Furthermore, it has the ability to consider the Stokes' wall 
condition (   0bE u  ,  0bE k  ) in the bottom boundary condition for E  (Wilcox, 2010). Within this modeling 
concept, as E  has a finite value at closed boundaries where the turbulent kinetic energy is zero, it cannot 
be interpreted as a dissipation rate itself and is for this reason defined as the potential of a dissipation rate. 
Chmiel et al. (2020) have shown how the k- E  model is able to work in fluid mud and sediment layers and 
results in  0E k  for high concentrations. The turbulence model by Wilcox (1988) and adapted from Chmiel 
et al. (2020) is

  


   
        

1 ( ) ,rh t k
k k P G
t z z

 � (4)

      


   
       

21 ( ) .rh t kP
t z z k

� (5)

The coefficients of the turbulence model are   
1
2

E   ,  
5
9

E  ,  
3

40
E  and  

9
100

E   . The turbulent 
viscosity tE  results from


  

 
1 .t

t
k

�

The rheological viscosity is considered not only in the momentum balance but also in the turbulence model. 
The production of E k , kE P  , is obtained from


 

   

2

,k t
uP
z

�

the dissipation is
  ,k �

and the buoyancy term E G is calculated from
 
 





,t

s

gG
z�

where  sE  is the turbulent Schmidt number. kE P  is high in regions of high shear rates 

uE
z

 . This is usually the 

case above the lutocline, where changes in velocity are large. G is negative in the case of stably stratified 

flows as 


E
z

 is negative. This leads to a reduction of E k , which means the destruction of turbulence.

2.3.  A Holistic Sediment Transport Equation

Sediment transport and consolidation affect each other. If sediment particles settle due to a decrease in 
turbulence, the sediments form a highly concentrated suspension near the bottom. If shear forces remain 
low, the suspension starts to consolidate. If shear forces are high, sediment that is already consolidated can 
be liquefied and entrained into the water column. Consequently, to account for the dependence of both pro-
cesses, they will be modeled together in one single differential equation. To do so, the Gibson consolidation 
equation needs to be rearranged such that it has the same mathematical shape as the classical sediment 
transport equation. This means that it consists of an advective and a diffusive term for the sediment concen-
tration E c . The one-dimensional consolidation equation from Gibson et al. (1967) is

    
 

       
                 

2 (1 )
(1 ) 1 ,f s ss s

f s s
w w

k
k

t z z g z
� (6)
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where fE k  is the permeability and  E  the effective stress. Merckelbach (2000) obtained 
    B

sE A C  from 

measurements for the effective stresses of soft mud layers. Derivation by z leads to 


   






1B s

sE A
z z

 , 

which can be included in Equation 6. The parameters are    8 9(3.9 10 4.1 10 ) PaE A  and  7.1 8.0E B  . 
Furthermore, substituting 


s

s

cE  yields








 




























c

t z
k cf s s

s

w
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,
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


   




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 
















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z

k
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c

z
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w

s
B

Kc

( )
.

1 


 

  
� (7)

This new equation now has the shape of the classical sediment transport equation and, as a result, leads to 
a formulation for a consolidation settling velocity and a consolidation diffusivity. The consolidation settling 
velocity is

 


 
    

 
, (1 ) 1 .s

c c f s s
w

w k� (8)

The consolidation diffusivity is











(1 )

.f s B
c s

w

k
K A

g
� (9)

The permeability fE k  is derived from Kozeny (1927) and Carman (1937) as


 




2 3
10

1 2
(1 )s

f
m s

gdk c�

with  10.003 0.0055E c  , the molecular kinematic viscosity     6 2 11 10 m smE  and the diameter 10E d  being 
the 10%E  quantile of particle diameter.

2.4.  From Settling to Consolidation

The next step is to establish a relation between settling in the water column and settling due to consolida-
tion. Fluid mud can be described as fine-grained sediment particles in a water suspension. As sediment has 
a higher density than water, the particles settle within the water column. For a single, spherical particle with 
the diameter E d , Stokes' formula for the settling velocity


 

 
   

 

2

,
1 1

18
s

c s
m w

gdw� (10)

is valid. However, falling particles generate a return flow and influence other particles in the vicinity. Thus, 
the settling velocity of the suspension decreases by a factor (1 )sE  . When comparing Equations 8 and 10 
similarities become obvious. In order to achieve a transition for both settling velocities, a blending is sug-
gested such that

 
   

   
           

2 3 2
10

1
2

(1 ) 1(1 ) 1 min , .
18 (1 )

s s
c s

w m s s

g d dw c
c

� (11)

The first part of Equation 11 is always negative and consists of those parts that are identical in both ,c sE w  
(with return flow effects included) and ,c cE w  . The second part is a minimum function of the remaining parts 

with an additional term 
 2

1
(1 )s

E
c

 for the Stokes' settling velocity. The term represents hindered settling, 

which is typical for high concentration suspensions. Winterwerp (2002) states three reasons for hindered 
settling. First, the return flow of a particle, which reduces the settling velocity of surrounding particles. 
Second, the increase of the viscosity of the suspension and, third, enhanced buoyancy due to increased con-
centration. All effects reduce the settling velocity with increasing sediment concentration, which leads to
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
  
       


, ,

1 min 1, (1 )

.
1 2.5

s
gel

c w c s

gel

c
c

w w
c

c

� (12)

The gelling concentration gelE c  is referred to as the concentration at which the flocs exist as a room-filling 
network (Camenen & van Pham Bang, 2011; Winterwerp & van Kesteren, 2004). It can be regarded as the 
transition from the hindered settling regime to consolidating mud (Dankers & Winterwerp, 2007). The set-
tling velocity obtained from Equation 12 becomes zero if  gelE c c  . Considering consolidation, the settling 
velocity should not be zero at that point, but equal to the velocity of the consolidating mud.

The settling velocities from Stokes, Winterwerp, the consolidation velocity, and the applied transition are 
shown in Figure 2b. The combined formula for cE w  shows the requested behavior for mud. At higher volume 
fractions or concentrations, respectively, the settling velocity decreases and merges into ,c cE w  . Finally, if the 
volume fraction   1sE  , the settling velocity becomes zero. The achieved function (Equation 11) has a similar 
shape as the approach from Equation 12, but we use Equation 11 in the holistic model because the formula 
includes the consolidation velocity and consists of neither a gelling concentration nor a discontinuity in 
the slope.

2.5.  A Holistic Diffusivity Approach

The classical sediment transport equation consists only of the turbulent diffusivity tE K  . For the holistic ap-
proach a consolidation diffusivity cE K  , see Equation 9, exists in the immobile mud where the turbulent vis-
cosity is zero. Morphodynamics and fluid mechanics are usually modeled separately and connected via 
the sediment flux in between. Sediment is eroded when the shear stress is higher than the erosion shear 
strength. In this holistic approach, erosion can only be included as a diffusivity as there is no separate equa-
tion. Accordingly, an erosion diffusivity  2

e cE K l  is added. It is proportional to the absolute value of the 
velocity shear and a proportionality constant which has been denoted as erosion mixing length cE l  . Figure 3a 
illustrates a water and immobile mud layer with  tE  , eE K  and cE K  . In contrast to the flow velocity, the velocity 
shear is non-zero at the interface between water and bed. For that reason, eE K  must be proportional to the 
velocity shear.

We define the holistic diffusivity as
  ,hol c tK K K� (13)

Figure 3.  (a) Scheme of diffusivity and velocity shear in the water column and immobile mud. In contrast to the velocity, the velocity shear is non-zero at the 
pronounced density gradient (dashed line). (b) Turbulent Schmidt number from Equation 14, where   36.7 10 mcE l  .
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with  t t eE K K  . The ratio between turbulent viscosity and diffusivity   t
s

t
E

K
 is the turbulent Schmidt 

number  sE  . According to the relations defined above






.t

s
t eK� (14)

As illustrated in Figure 3b,  sE  decreases with increasing velocity shear and decreasing turbulent viscosity. 
Typically,  sE  is a function that is derived from second-order turbulence models, depending on shear and 
stratification. Here, the turbulent Schmidt number is also a function but not derived from second-order 
closure but from adding the erosion diffusivity to the turbulent viscosity. Consequently, the relation be-
tween mixing of momentum and mixing of masses is modified. Further research is needed to verify this 
assumption. This modification also influences the buoyancy term, which is typically not only present in 
Equation 4 but also in Equation 5. When the buoyancy term is added, another parameter that is dependent 
on the Schmidt number function arises. Again, as the relation between mixing of momentum and mixing 
of sediment was modified, this is also subject to further research.

3.  Simulation of the Ems Model
The aim of the simulation is to reproduce the processes occurring in the Ems estuary, especially to simulate 
mud-induced periodic stratification and to show that the model includes the immobile bed. The 1DV model 
solves the differential equations for velocity, sediment concentration, and the turbulent quantities E k and E  . 
The model Equations 1, 2, 4, and 5 are discretized using the finite volume method. The water level E h and 

the gravitational acceleration E gJ (where 
dhE J
dx

 ) are predefined. In order to account for the time-dependent 
water level, tidal constituents M2 and M4 are considered, as they are the most dominant at the study site. 
The M4 component has a phase shift that yields the characteristic asymmetrical profile of the Ems. The 
flood phase is shorter and exhibits higher velocities compared to the ebb phases. The vertical resolution is 
  0.237 mE z  ; the grid is equidistant except for the last cell, which is adapted to the current water level. We 
use Equation 3 for the rheological viscosity, Equation 11 for the settling velocity, and Equation 13 for the 
holistic diffusivity. An erosion mixing length of   36.7 10 mcE l  yields the best model fit to the observations 
from the Ems estuary (Table 1).

The 1DV model calculates the velocity, the sediment concentration, and the turbulent parameters over the 
vertical simulation domain. The total simulation time is 5 days, the time step E t is 10 s. The simulation 
reaches a steady state after an initial time period of three tidal cycles. The initial concentration in each cell 
is  1

0 28 g lE c  . The boundary conditions at the bottom are  0bE u  ,  0bE k  and   22500 m
b

s

E
k

 with the bot-

tom roughness   33.2 10 msE k  . No-flux boundary conditions are applied for concentration at the bottom 
and the free surface. At the free surface no-flux boundary conditions for E u and E k are chosen, which means 
that there is no wind stress acting on the surface. This is justified as the concurrent field observations were 
obtained on days of little wind. However, wind forces can be added to the model in future simulations if 
needed. The value for E  at the free surface is   10.1 ssE  . This value is chosen to be small, to reduce the flow 
velocity at the free surface. The model has been implemented in MATLAB. The simulation results are most 
sensitive to the vertical resolution, the settling velocity, the rheological viscosity, the erosion mixing length, 
and the initial sediment concentration.

4.  Results and Discussion
Figure 4a shows the simulation results of the vertical concentration profile over a time period of 19 hr in 
analogy to Figure 1c. Figure 4b compares the concentration, velocity, and velocity shear profiles for the 
positions A, B, and C for measurements and simulation. The water level periodically rises and falls similarly 
to the actual water level. At position A the sediment is distributed over the entire water column and the 
immobile mud layer is the thinnest among all three positions because of enhanced erosion during flood 
tide. The velocities at position A are high and directed upstream, and the highest shear is located close to 
the immobile mud. The simulation deviates from the linear concentration profile from the measurements. 
A possible explanation is that in the simulation only M2 and M4 tidal components are considered. As a 
consequence, the beginning of flood tide sets in less abruptly and leads to less acceleration and less mixing 
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Symbol Definition Value (Ems model) Unit

E c Sediment concentration 3E kg m

gelE c Gelling concentration 3E kg m

E d Particle diameter  620 10E E m

10E d Particle diameter at 10% sieve passage  620 10E E m
E g Gravitational acceleration 2E m s

E G Buoyancy term 2 3E m s

E J Free surface gradient E

E k Turbulent kinetic energy 2 2E m s

fE k Permeability 1E m s

sE k Bottom roughness  33.2 10E E m

cE K Consolidation diffusivity Equation 9,    84 10 PaE A  ,   7.5E B 2 1E m s

eE K Erosion diffusivity 2 1E m s

holE K Holistic diffusivity 2 1E m s

tE K Turbulent diffusivity 2 1E m s

cE l Erosion mixing length  36.7 10E E m

kE P Production of turbulent kinetic energy 2 3E m s

E u Velocity in x-direction 1E m s

cE w Settling velocity Equation 11, 1 0.005E c  , 2 180E c 1E m s

E z Vertical coordinate E m

E t Time step 10

E z Mesh spacing 0.237 E m
E Shear rate 1E s
mE Molecular viscosity  31 10E E Pa s
rhE Rheological viscosity 






y

yE E Pa s

tE Turbulent viscosity E Pa s
yE Bingham viscosity  exp(20 )m sE E Pa s
mE Molecular kinematic viscosity  61 10E 2 1E m s
 rhE Rheological kinematic viscosity 2 1E m s
 tE Turbulent kinematic viscosity 2 1E m s
E Bulk density 3E kg m

sE Sediment density 2,650 3E kg m

wE Density of water 1,000 3E kg m

 sE Turbulent Schmidt number E

E Shear stress E Pa
 yE Bingham yield stress  5 48.44 10 sE E Pa

sE Volume fraction of particles
s

cE E

E Potential of a dissipation rate 1E s

Table 1 
List of Important Mathematical Symbols and Parameters for the Ems Model
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compared to the field observations. At position B, the simulation qualitatively shows the step in the concen-
tration profile, which indicates the development of a lutocline. The concentration values in the fluid mud 
layer (   135 g lE c  ) are slightly higher than the actual values. The velocity profile at the same position con-
sists of lower velocities in the fluid mud layer and higher velocities above the lutocline. The velocities in the 
fluid mud are overestimated by the simulation, which could be due to too low rheological viscosities. The 
velocity shear yields similarly high values above the upper and the lower lutocline. The field observations 
show higher velocity shear above the upper lutocline but the general behavior is well captured. Accord-
ingly, the simulation is able to reproduce the stratification of fluid mud. During ebb tide (position C), the 
velocities are directed downstream and the position of highest shear is right above the lower lutocline. The 
measurements deviate from that, as the upper lutocline still exists at position C. The measurement data does 
not provide insight into velocity shear data close to the bottom, which is probably lower than the calculated 
values. The too rapid destruction of the lutocline with the onset of ebb tide is probably due to several effects. 
First, the ebb tide starts too early compared to the measured data, causing the flow velocities to be too high. 
Second, the neglect of flocculation processes could also play a role: Macroflocs, which have higher settling 
velocities, could form during slack water and stabilize the lutocline at the beginning of the ebb phase. The 
simulation results should also be considered from the point of view of the 1D model: A vertical 1D model 

Figure 4.  (a) Simulation results of the vertical concentration profile from the 1DV model. The simulation results cover the same time range as the field 
observations shown in Figure 1c. (b) Comparison of velocity, concentration and velocity shear profiles at positions A, B, and C for measurement and simulation 
data.
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is only capable to simulate vertical transport processes (settling, entrainment, deposition, and erosion). It is 
not valid when horizontal transport processes are dominant in an estuarine system.

Although there are more advanced rheological models, turbulence models, or settling velocity approaches 
than those presented here, the simulation is able to qualitatively reproduce the mud dynamics in the Ems 
estuary. These parameters, which are usually determined by field or laboratory measurements, are subject 
to large uncertainties. The 1D model can therefore be considered as a useful tool to validate these param-
eters, which can then be implemented in 2D and 3D simulations. The total number of parameters used in 
our simulation was kept to a minimum, and the simulation of the Ems presented here does not require a 
separate fluid mud or sediment module. Overall, the simulation shows mud-induced periodic stratification 
and the results are in fair agreement with the actual data.

5.  Summary and Conclusions
A model approach has been presented which consists of four differential equations to calculate the flow 
velocity, concentration, and turbulence profile in a hyper-turbid estuary. The Gibson equation for consoli-
dation was rearranged to the same structure as the sediment transport equation. This procedure allows to 
include the simulation of sediment transport processes from settling to consolidation in one single equa-
tion. The model is valid in the water column, the moving mud as well as in the immobile bed. In that way, 
the model can be regarded as holistic. In classical models, the described layers are separated, and connected 
with empirical parametrizations.

A simulation of the hyper-turbid Ems estuary is presented and the simulation results show that the model 
can reproduce mud-induced periodic stratification. The simulation results are comparable to recent meas-
urements in the Ems estuary for the concentration profile, flow velocity, and velocity shear. The latter is an 
indicator for the production of turbulence and, on that account, turbulence itself. All quantities are also 
calculated in the immobile bed, where the flow velocity and turbulence are zero and concentrations are 
very high.

The holistic modeling approach is applicable to various problems, for example to studies of sediment set-
tling. To simulate a settling column for fine sediments, the free surface gradient in the momentum balance 
has to be set to zero. A homogeneous concentration can be defined at the initial time step. With time, the 
sediment settles and consolidates. This means that the model setup can be used to calibrate model parame-
ters for sediment settling and consolidation.

Data Availability Statement
V1.1 of the model code of the 1DV model used for the simulation is preserved at Malcherek and 
Schmidt (2021). The measurement data used for comparison is available through Becker et al. (2018b).
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