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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

In the industrial production process, the tolerance design of product is directly related to the product and production cost. This paper proposes an 
optimization method for the geometrical tolerance design of sheet metal parts based on joining simulation. Finite Element Method (FEM) is 
applied to simulate the influence of Body In White (BIW) joining process on the assembly deviation. Because the profile tolerance is widely used 
in the BIW sheet metal parts as the manufacturing requirements for the single parts as well as the assemblies to ensure the dimensional quality of 
the product, this type of tolerance on parts are mapped on the FE meshes in this work subjected to the Product Manufacturing Information (PMI). 
A sensitivity analysis is implemented to rank the tolerances by constructing meta-models. Without compromising the dimensional stability of the 
assembly, the geometrical tolerances of the single parts are optimized through a two-level optimization system. 
An automotive reinforcement assembly is studied to illustrate the proposed method. The maximum allowable tolerance ranges of the 
reinforcement part are adapted with respect to a pre-defined process capability index. The result provides a quantitative tolerance optimization 
strategy for BIW parts in an early development phase. 
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1. Introduction 

In automotive industry, the real products are inevitably 
different from nominal design because of the influence of the 
manufacturing processes. Deviations of single parts may cause 
serious quality problems in the final product and thereby 
increase the product cost [1]. For the BIW parts, the technical 
and functional requirements are ensured by tolerances [2]. 
Properly defined tolerances not only ensure the function of the 
product, but also reduce the cost. Therefore, more and more 
attention is paid on the tolerance analysis in the product 
development process. As mentioned in [3], an optimal tolerance 
design in early development stage has more impact on the cost 
reduction than in the late production stage. Nevertheless, due to 
the limitation of traditional statistical tolerance analysis method 
the influence of manufacturing processes (such as clinching, 
welding) is not considered in the current simulation models. 
Too strict single part tolerances are usually designed to achieve 

the dimensional stability of the assembly. The variation 
simulation based on FEM implies that the geometrical variation 
is absorbable after the joining process [4]. By combining 
optimization algorithms, the process parameters are optimized 
to reduce the deviation of the part and the assembly [5, 6]. 
However, less attention is paid on the optimization of single 
part tolerance designs while simultaneously maintaining the 
dimensional stability of the whole assembly. 

Therefore, this paper focuses on the tolerance optimization 
for the BIW parts without compromising the required process 
capability index after the joining operation. The work is 
structured as followed: section 2 introduces the related work 
regarding variation simulation and tolerance optimization. In 
section 3, a tolerance optimization method is proposed for the 
BIW parts. Both geometrical variation of single parts and effect 
of joining process are considered in the simulation model. The 
method is illustrated with a BIW part in section 4. A sensitivity 
analysis is carried out to classify the importance of geometrical 
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In automotive industry, the real products are inevitably 
different from nominal design because of the influence of the 
manufacturing processes. Deviations of single parts may cause 
serious quality problems in the final product and thereby 
increase the product cost [1]. For the BIW parts, the technical 
and functional requirements are ensured by tolerances [2]. 
Properly defined tolerances not only ensure the function of the 
product, but also reduce the cost. Therefore, more and more 
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development process. As mentioned in [3], an optimal tolerance 
design in early development stage has more impact on the cost 
reduction than in the late production stage. Nevertheless, due to 
the limitation of traditional statistical tolerance analysis method 
the influence of manufacturing processes (such as clinching, 
welding) is not considered in the current simulation models. 
Too strict single part tolerances are usually designed to achieve 

the dimensional stability of the assembly. The variation 
simulation based on FEM implies that the geometrical variation 
is absorbable after the joining process [4]. By combining 
optimization algorithms, the process parameters are optimized 
to reduce the deviation of the part and the assembly [5, 6]. 
However, less attention is paid on the optimization of single 
part tolerance designs while simultaneously maintaining the 
dimensional stability of the whole assembly. 

Therefore, this paper focuses on the tolerance optimization 
for the BIW parts without compromising the required process 
capability index after the joining operation. The work is 
structured as followed: section 2 introduces the related work 
regarding variation simulation and tolerance optimization. In 
section 3, a tolerance optimization method is proposed for the 
BIW parts. Both geometrical variation of single parts and effect 
of joining process are considered in the simulation model. The 
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variants with respect to the dimensional quality of the assembly. 
As a result, a multi-objective optimization problem can be 
formulized for the assembly with different target. Initially 
designed tolerances of a BIW assembly are optimized without 
compromising the dimensional quality of the assembly. Finally, 
conclusions and a brief outlook is presented in section 5. 

2. State of the art 

Variation simulation is implemented in early stage of the 
product development process to predict the geometrical 
variation of a subassembly or the final product. For the 
components in automotive industry, tolerance analysis is 
considered as an important task to analyze the geometrical 
variations and to design the product tolerances. In current 
industrial cases, tolerance simulation is implemented using 
direct Monte Carlo (MC) simulation because of the efficient 
calculating process [7]. Regarding the non-rigid parts and the 
manufacturing processes, FEM based simulation delivers 
results with higher accuracy due to the consideration of physical 
property and material behavior in the simulation model. 
Commercial CAT (Computer aided tolerancing) tools are 
already capable to simulate the elastic effect of the process [8], 
which improves the simulation accuracy. Non-linear joining 
simulation is combined with the variation simulation to study 
the effect of welding process [9]. The different deviation results 
on the nominal parts and the toleranced parts imply that the 
assembly deviation is strongly affected by geometrical 
variations on parts as well as the non-linear joining process 
[10]. This drives the optimization work for the variations in the 
manufacturing process. 

For the rigid assembly, a sensitivity analysis is implemented 
with an optimization tool to identify the input parameters for 
statistical tolerance simulation [11]. The manufacturing cost 
and quality loss is taken into consideration for the tolerance 
optimization in [12, 13]. For the non-rigid assembly, the 
forming process parameters are optimized regarding the shape 
accuracy of the assembly [14]. However, the computational 
intensity of non-linear joining simulation increases 
dramatically for complex geometry. To tackle this deficit, the 
Design of Experiments (DoE) method is applied to efficiently 
select the sampling points in the design space and to analyze the 
relationship between input variables and responses [15]. By 
setting the minimal assembly deviation as the objective 
function, tolerance compensation strategy is developed for car 
bonnet assembly [6]. Besides, by applying the Genetic 
Algorithm (GA), the fixture layouts of compliant sheet metal 
parts are optimized for the improvement of the geometrical 
quality [16]. The mentioned optimization work focuses on 
either the rigid assembly, or the process parameters. A method 
to optimize the geometric tolerance design for non-rigid parts 
still needs to be developed. 

Regarding the single part tolerances with specific 
distributions, a multi-level system can be constructed for the 
tolerance optimization [17]. MC simulations is implemented 
efficiently based on the created meta-model instead of direct 
FE simulations. It allows the user to calculate the maximum 
tolerance range in the feasible region determined by the quality 
requirements on the assembly, which has the potential of 

reducing the manufacturing cost of the parts. Therefore, this 
paper focuses on a proper integration of this concept for the 
tolerances involved in the joining process. 

An overview of relevant work regarding variation analysis 
is listed in Table 1. Since the optimization for the 
process/production parameters are well studied, the geometrical 
tolerance is targeted in this work. Utilizing the FEM-based 
numerical simulation, the non-linear effect caused by the 
joining process is taken into consideration. To implement 
tolerance optimization considering the joining process, a 
method is introduced in the next section. 

Table 1: Overview of existing optimization work in manufacturing process 

Variable Statistical simulation 
based 

FEM-simulation 
based 

Process/product parameter [7, 11, 18] [5, 6, 16] 

Tolerance design [12, 18, 19] In this paper 

3. Method of tolerance optimization based on joining 
simulation 

As mentioned in the previous section, geometric tolerances 
involved in joining process are going to be optimized in this 
work. Nominal shape of the single parts are defined with 
corresponding tolerance specifications (initial tolerance 
design). The general concept of tolerance optimization scheme 
is introduced in 3.1, with a detailed introduction of the multi-
level system for the tolerance optimization in 3.2. 

3.1. General concept 

Based on the existing simulation method, a general concept 
of tolerance optimization is shown in Figure 1.  

 

Fig. 1. General concept of joining simulation based tolerance optimization 

First, the CAD models of the single parts and the assembly 
should be exported from the product database, including the 
geometries and the PMI. The required PMI here are the process 
parameters such as the joining sequence, the fixture concept 
and the initial tolerance data. Nominal FE-meshes are created 
with the CAD geometries. A FEM joining simulation model for 
the joining process is constructed with the concept of PCFR 
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(Place, Clamp, Fasten, Release). To evaluate the assembly 
deviation with respect to tolerance requirement, the ‘released’ 
result is constrained by a measurement system. Theoretically, 
the part surfaces deviate within the initial determined tolerance 
ranges to describe the non-ideal parts. Since the FE-based 
joining simulation is applied in this work, the surface 
deviations are considered as geometrical variations and are 
mapped on the nominal FE meshes with the FE-preprocessor. 
To avoid huge computational intensity for FEM simulations, 
DoE is implemented to study the relationship between these 
geometrical variations and the assembly deviation. Instead of 
the direct MC simulation, a more efficient sampling method 
(i.e. Latin Hypercube Sampling) is applied to sample the 
tolerance values. 

The assembly tolerance specifications are used as 
constraints. After sufficient simulation runs (constrained by the 
type of the meta-model and the computational power), a meta-
model can be created to build up the relationship between 
single part tolerances and the assembly deviation. A sensitivity 
analysis can be implemented to evaluate the contributions of 
the single part tolerances. By comparing the assembly 
deviation with the tolerance requirements, the user can 
determine which tolerances need to be optimized. When the 
assembly deviation satisfies the requirement, the relatively 
insensitive variables can be optimized without compromising 
the requirements. When the assembly deviation does not fulfill 
the requirement of the assembly, it implies the other tolerances 
also need to be adjusted to ensure the feasible region. 

With the created meta-model, a multi-level system for the 
tolerance optimization can be created. An introduction of this 
system is given in section 3.2. The selected tolerances are 
parameterized. Assuming the tolerance is normal distributed, 
the standard deviation is optimized within the feasible region. 
The initially designed tolerances of the single parts are thereby 
optimized without compromising the dimensional stability of 
the assembly. 

3.2. Multi-level system for tolerance optimization 

The multi-level optimization system is an important part in 
the process of joining simulation based tolerance optimization. 
For the efficiency reason, a meta-model is pre-constructed with 
the joining simulation results. According to the basic 
methodology introduced in [17], the structure is divided into 2 
levels. Figure 2 denotes the structure and content of the multi-
level optimization system. The meta-model and the sensitivity 
analysis from the previous variation simulation are required 
here. Based on the sensitivity analysis, the variables in the 
multi-level system are divided into two types by the user: the 
tolerances to be optimized are defined as tpara, the rest 
tolerances are defined as noise variables tnoise. 

The level 1 optimization is a direct optimization. tpara is 
parameterized in this level (for the normal distribution the 
mean value μ and the standard deviation σ). The GA is applied 
to maximize the objective tolerances regarding the given 
bounds, iteratively. In this work, the possibility of failure is 
defined as the response and constrained by the Cpk, which is 
calculated in the level 2 optimization. 

 

Fig. 2: Multi-level system for the tolerance optimization 

The level 2 is a meta-mode based optimization. The 
parameters selected by GA are transferred to this level as input 
variables. Together with the noise variables, MC simulation is 
then implemented to sample the tolerance values. The sampled 
variables are imported to the given meta-model and the 
assembly deviation at Key Product Characteristic (KPC) s are 
calculated efficiently. By defining the dimensional 
requirements for the KPCs, a feasible region is determined. The 
probability of failure can therefore be calculated and is fed back 
to the level 1. An optimization tool is required for the multi-
level system. In this paper, the joining simulation is 
implemented with the FE-Solver LS-Dyna. The optimization 
tool LS-OPT is therefore used, because it has a direct link to 
the solver and it is capable to extract results from the result files 
with binary format. 

4. Industry case study 

4.1. Problem description 

The reinforcement part on BIW is analyzed in this work. 
According to the PMI, both parts are made of steel and have 
the same thickness of 0.89 mm. A joining partner base is used 
here instead of the complete platform. The reinforcement is 
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visualization of the tolerance surfaces on the parts, the 
tolerance specification is displayed in a combined form of the 
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on joining simulation will be implemented. 

As mentioned in Figure 1, a joining simulation model is 
created for the nominal geometry with the PMI. The detailed 
modelling process for the joining simulation is introduced in 
[22], the operation steps are divided as following: 
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variants with respect to the dimensional quality of the assembly. 
As a result, a multi-objective optimization problem can be 
formulized for the assembly with different target. Initially 
designed tolerances of a BIW assembly are optimized without 
compromising the dimensional quality of the assembly. Finally, 
conclusions and a brief outlook is presented in section 5. 

2. State of the art 

Variation simulation is implemented in early stage of the 
product development process to predict the geometrical 
variation of a subassembly or the final product. For the 
components in automotive industry, tolerance analysis is 
considered as an important task to analyze the geometrical 
variations and to design the product tolerances. In current 
industrial cases, tolerance simulation is implemented using 
direct Monte Carlo (MC) simulation because of the efficient 
calculating process [7]. Regarding the non-rigid parts and the 
manufacturing processes, FEM based simulation delivers 
results with higher accuracy due to the consideration of physical 
property and material behavior in the simulation model. 
Commercial CAT (Computer aided tolerancing) tools are 
already capable to simulate the elastic effect of the process [8], 
which improves the simulation accuracy. Non-linear joining 
simulation is combined with the variation simulation to study 
the effect of welding process [9]. The different deviation results 
on the nominal parts and the toleranced parts imply that the 
assembly deviation is strongly affected by geometrical 
variations on parts as well as the non-linear joining process 
[10]. This drives the optimization work for the variations in the 
manufacturing process. 
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optimization in [12, 13]. For the non-rigid assembly, the 
forming process parameters are optimized regarding the shape 
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intensity of non-linear joining simulation increases 
dramatically for complex geometry. To tackle this deficit, the 
Design of Experiments (DoE) method is applied to efficiently 
select the sampling points in the design space and to analyze the 
relationship between input variables and responses [15]. By 
setting the minimal assembly deviation as the objective 
function, tolerance compensation strategy is developed for car 
bonnet assembly [6]. Besides, by applying the Genetic 
Algorithm (GA), the fixture layouts of compliant sheet metal 
parts are optimized for the improvement of the geometrical 
quality [16]. The mentioned optimization work focuses on 
either the rigid assembly, or the process parameters. A method 
to optimize the geometric tolerance design for non-rigid parts 
still needs to be developed. 

Regarding the single part tolerances with specific 
distributions, a multi-level system can be constructed for the 
tolerance optimization [17]. MC simulations is implemented 
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requirements on the assembly, which has the potential of 
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(Place, Clamp, Fasten, Release). To evaluate the assembly 
deviation with respect to tolerance requirement, the ‘released’ 
result is constrained by a measurement system. Theoretically, 
the part surfaces deviate within the initial determined tolerance 
ranges to describe the non-ideal parts. Since the FE-based 
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assembly deviation at Key Product Characteristic (KPC) s are 
calculated efficiently. By defining the dimensional 
requirements for the KPCs, a feasible region is determined. The 
probability of failure can therefore be calculated and is fed back 
to the level 1. An optimization tool is required for the multi-
level system. In this paper, the joining simulation is 
implemented with the FE-Solver LS-Dyna. The optimization 
tool LS-OPT is therefore used, because it has a direct link to 
the solver and it is capable to extract results from the result files 
with binary format. 

4. Industry case study 

4.1. Problem description 

The reinforcement part on BIW is analyzed in this work. 
According to the PMI, both parts are made of steel and have 
the same thickness of 0.89 mm. A joining partner base is used 
here instead of the complete platform. The reinforcement is 
clamped on four fixtures and is clinched on the base with 12 
clinching points (numbered from 1-12), see Figure 3. A 
tolerance specification is given for both single parts. For a clear 
visualization of the tolerance surfaces on the parts, the 
tolerance specification is displayed in a combined form of the 
international standard ISO [20] and the Daimler standard MBN 
[21]. In the following sections, a tolerance optimization based 
on joining simulation will be implemented. 

As mentioned in Figure 1, a joining simulation model is 
created for the nominal geometry with the PMI. The detailed 
modelling process for the joining simulation is introduced in 
[22], the operation steps are divided as following: 

 Op01: The single parts are placed onto the fixtures. 
 Op02: The clamps are closed to fix the parts. 
 Op03: The single parts are joined together. 
 Op04: The clamps are released and the deformed  

           assembly is located in measurement position. 
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Figure 3: (a) Tolerance specification for single parts; (b) The joining and 
fixture concept for the reinforcement part 

4.2. FEM-based variation simulation 

To integrate the geometrical tolerance in the simulation 
model, the nominal mesh is manipulated with the morphing 
module of the FE-preprocessor ANSA [23].  

 

Figure 4: Nominal FE meshes with design parameters and an example of the 
meshes after morphing with FE-Preprocessor 

Since the geometrical variation is modeled without 
hardware measurement data, many assumptions need to be 
declared. For the reinforcement part, each flange is considered 
as a tolerance surface (blue area in Figure 3). A linear morphing 
box is constructed so that all elements within the box are 
morphed by varying the control points (t_A1-4, t_B1-4). The 
surface deviation is then controlled by deviating these four 
variables. On the other hand, the clinching surfaces 9-11 (red 
area) are assumed to deviate only in the normal direction and 
therefore are varied by other four variables (clinch_1-4). The 
variable t_base is defined for the surface profile tolerance on 
the base. These tolerance surfaces are deviated as a whole 
normal to the surfaces. The neighboring elements are selected 
as morphing entities, which smoothen the deformation of the 
mesh. 

All the mentioned morphing activities are saved as design 
parameters. Upper and lower bounds are assigned to every 
design parameter. Figure 4 shows the nominal FE meshes of 
both parts with the design parameters, and an example of the 
parts after morphing. A variation simulation model is thereby 

constructed. In this work, only geometrical tolerances are 
studied. The process parameters can be varied but it also 
increases the computational cost. Two measurement points L 
and R are used to evaluate the dimensional stability on both 
flanges, see Figure 3. As a quality requirement, both flanges of 
the assembly are required to deviate within ±0.5 mm. The 
possibility of failure is represented as P(devi>0.5 ||devi<-0.5 ). 
The profile tolerances are assumed to be normally distributed, 
which means the tolerance can be described by two parameters 
(mean μ and standard deviation σ). The 𝑖𝑖th profile tolerance 
range can be described as 𝑡𝑡𝑖𝑖 = 6𝜎𝜎𝑖𝑖. The optimization problem 
can be formulated as: 

Max 𝑡𝑡𝑖𝑖(𝜎𝜎) (1) s.t. P(devi>0.5 ||devi<-0.5) ≤ 0.27% 
where the constraint is defined according to the process 
capability requirement Cpk> 1, so that the process can be 
achieved.  Because the optimization work is based on the meta-
model, an evaluation of the meta-model accuracy is necessary. 
In this work, four types of meta-models are evaluated: the 
linear and quadratic polynomial, the radial basis function 
(RBF) and the Feedforward Neural Network (FFNN). The root 
mean square error (RMS) is used to generally evaluate the 
meta-model accuracy by calculating the difference between 
predicted values and the computed response values. The 
Coefficient of Determination (R-sq) is a coefficient to indicate 
the percentage of the data variation that can be explained by the 
meta-model. 

Table 2: Evaluation for the meta-model accuracy 

Meta-model type Max RMS Err Min R-sq (%) 

Linear polynomial 0.1190 0.343  

Quadratic polynomial 0.0585 0.806  

RBF 0.0618 0.674  

FFNN 0.0412 0.854  

According to the number of variables and the order of the 
meta-model, 200 design points are sample by using Latin 
Hypercube Sampling (LHS) method [24]. The evaluation is 
recorded in Table 2. Among the four meta-model types, the 
FFNN meta-model shows the best accuracy and it is used for 
the further optimization work in this paper. The meta-model 
and the corresponding accuracy plot for measurement point R 
is illustrated in Figure 5. 

 

Figure 5: (a) Response surface for the deviation at R; (b) Accuracy plot of the 
meta-model 

Based on the meta-model, a global sensitivity analysis 
(Sobol’s analysis [25]) in Figure 6 shows the contribution of all 
single part tolerances regarding the deviation of measurement 
points L and R on the assembly. Since the displacement of 
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measurement points L and R are used to evaluate the 
dimensional quality of the assembly. Among the single part 
tolerances, the displacement of L is sensitive to the variable 
t_A3, while the displacement of R is sensitive to the variable 
t_B3 and t_B4. On the other hand, the assembly deviation is 
insensitive to the variable clinch_1-4 and the t_base, which 
implies that these tolerance ranges have the potential to be 
optimized. 

 

Figure 6: Sensitivity analysis regarding the dimensional quality of flanges 

Besides, the statistical results recorded in Table 3 imply that 
the assembly deviation at measurement R has 1.00% possibility 
of failure. Therefore, both the sensitive tolerance t_B3 and the 
insensitive tolerances clinch_1 and clinch_2 are optimized in 
this work (other tolerances can also be optimized according to 
the user’s need). Since there are more than one tolerance to be 
optimized, the problem is considered as a multi-objective 
optimization. A Pareto solution is then calculated as an optimal 
tolerance design. With the created meta-model, the multi-level 
optimization is constructed in the next section. 

Table 3: Nominal value of tolerance parameters and the statistical responses 

Tolerance μ 6σ Statistical response 

t_clinch_1 0 0.5 mm PL(devi>0.5) 0 

t_clinch_2 0 0.5 mm PL(devi<-0.5) 0.02% 

t_B3 0 1.0 mm PR(devi>0.5) 0.96% 

PR(devi<-0.5) 0.04% 

4.3. Setup for the optimization system 

As mentioned in section 3.2, the optimization tool LS-OPT 
is used in this work. Figure 7 shows the implementation of two-
level optimization system. In this optimization, there are 13 
tolerance variables, among which three tolerances are 
parameterized by μ and σ. In this work, the mean values of 
insensitive tolerances are assumed to be 0, the mean value of 
sensitive tolerance μt_B3 is adjustable within [-0.5, 0.5], the 
standard deviations σt_B3, σt_clinch_1 and σt_clinch_2 are optimized 
with the given bound [0, 1/3] (corresponding to the tolerance 
range of ±1). 

Therefore, four transfer variables are defined in level 1 and 
they are automatically defined as input parameters in level 2. 
In the Setup in level 1, the initial values and the bounds of the 
σi are defined by user. LHS is applied to sample the parameter 

values within the bounds. Afterwards the level 2 optimization 
starts. The objective functions are defined in the composite 
block, where the maximal tolerance intervals are defined as 6σi. 
The GA algorithm is used in the optimization block for the 
multi-objective optimization. Four constraints (see Table 4) are 
defined here to ensure the assembly dimensional stability 
regarding the Cpk. 50 Generations for GA with the population 
size of 60 are defined as the termination criteria. These 
parameters are determined by user, depending on both the 
computation time and capacity. For the level 2 optimization, 
the input parameters consist of the objective tolerances that are 
parameterized by μ and σ transferred from the level 1 and the 
rest tolerances. With the imported meta-model, 100000 MC 
simulations are implemented with little computational effort. 
The deviation requirements (±0.5 mm) for measurement points 
L and R are defined as constraints, the possibility of failure is 
calculated and delivered back to level 1 as responses. 

 

Figure 7: two-level tolerance optimization system using LS-OPT 

4.4. Tolerance optimization results 

After 50 optimization iteration, the Pareto trade-off are 
plotted in Figure 8. Among the feasible solutions, the set with 
maximum t_B3 is considered in priority since this tolerance 
range reduces after the optimization. Based on this criteria, a 
set of the optimal solution is selected and recorded in Table 4. 

By keeping the safety rate at the level of 99.73%, which is 
the requirement for achieving a production process that is under 
statistical control, the tolerance range of clinch_1 is extended 
from 0.5 mm to 1.5 mm, the tolerance range of clinch_2 is 
extended from 0.5 mm to 2.0 mm. On the contrary, the 
tolerance range of t_B3 should be reduced from 1.0 mm to 0.7 
mm to ensure a feasible solution. 

This result gives a suggestion to optimize the initial 
tolerance design for single parts by involving the joining effect. 
In this case study, two points on the assembly are evaluated. 
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Figure 3: (a) Tolerance specification for single parts; (b) The joining and 
fixture concept for the reinforcement part 

4.2. FEM-based variation simulation 

To integrate the geometrical tolerance in the simulation 
model, the nominal mesh is manipulated with the morphing 
module of the FE-preprocessor ANSA [23].  

 

Figure 4: Nominal FE meshes with design parameters and an example of the 
meshes after morphing with FE-Preprocessor 

Since the geometrical variation is modeled without 
hardware measurement data, many assumptions need to be 
declared. For the reinforcement part, each flange is considered 
as a tolerance surface (blue area in Figure 3). A linear morphing 
box is constructed so that all elements within the box are 
morphed by varying the control points (t_A1-4, t_B1-4). The 
surface deviation is then controlled by deviating these four 
variables. On the other hand, the clinching surfaces 9-11 (red 
area) are assumed to deviate only in the normal direction and 
therefore are varied by other four variables (clinch_1-4). The 
variable t_base is defined for the surface profile tolerance on 
the base. These tolerance surfaces are deviated as a whole 
normal to the surfaces. The neighboring elements are selected 
as morphing entities, which smoothen the deformation of the 
mesh. 

All the mentioned morphing activities are saved as design 
parameters. Upper and lower bounds are assigned to every 
design parameter. Figure 4 shows the nominal FE meshes of 
both parts with the design parameters, and an example of the 
parts after morphing. A variation simulation model is thereby 

constructed. In this work, only geometrical tolerances are 
studied. The process parameters can be varied but it also 
increases the computational cost. Two measurement points L 
and R are used to evaluate the dimensional stability on both 
flanges, see Figure 3. As a quality requirement, both flanges of 
the assembly are required to deviate within ±0.5 mm. The 
possibility of failure is represented as P(devi>0.5 ||devi<-0.5 ). 
The profile tolerances are assumed to be normally distributed, 
which means the tolerance can be described by two parameters 
(mean μ and standard deviation σ). The 𝑖𝑖th profile tolerance 
range can be described as 𝑡𝑡𝑖𝑖 = 6𝜎𝜎𝑖𝑖. The optimization problem 
can be formulated as: 

Max 𝑡𝑡𝑖𝑖(𝜎𝜎) (1) s.t. P(devi>0.5 ||devi<-0.5) ≤ 0.27% 
where the constraint is defined according to the process 
capability requirement Cpk> 1, so that the process can be 
achieved.  Because the optimization work is based on the meta-
model, an evaluation of the meta-model accuracy is necessary. 
In this work, four types of meta-models are evaluated: the 
linear and quadratic polynomial, the radial basis function 
(RBF) and the Feedforward Neural Network (FFNN). The root 
mean square error (RMS) is used to generally evaluate the 
meta-model accuracy by calculating the difference between 
predicted values and the computed response values. The 
Coefficient of Determination (R-sq) is a coefficient to indicate 
the percentage of the data variation that can be explained by the 
meta-model. 

Table 2: Evaluation for the meta-model accuracy 

Meta-model type Max RMS Err Min R-sq (%) 

Linear polynomial 0.1190 0.343  

Quadratic polynomial 0.0585 0.806  

RBF 0.0618 0.674  

FFNN 0.0412 0.854  

According to the number of variables and the order of the 
meta-model, 200 design points are sample by using Latin 
Hypercube Sampling (LHS) method [24]. The evaluation is 
recorded in Table 2. Among the four meta-model types, the 
FFNN meta-model shows the best accuracy and it is used for 
the further optimization work in this paper. The meta-model 
and the corresponding accuracy plot for measurement point R 
is illustrated in Figure 5. 

 

Figure 5: (a) Response surface for the deviation at R; (b) Accuracy plot of the 
meta-model 

Based on the meta-model, a global sensitivity analysis 
(Sobol’s analysis [25]) in Figure 6 shows the contribution of all 
single part tolerances regarding the deviation of measurement 
points L and R on the assembly. Since the displacement of 
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measurement points L and R are used to evaluate the 
dimensional quality of the assembly. Among the single part 
tolerances, the displacement of L is sensitive to the variable 
t_A3, while the displacement of R is sensitive to the variable 
t_B3 and t_B4. On the other hand, the assembly deviation is 
insensitive to the variable clinch_1-4 and the t_base, which 
implies that these tolerance ranges have the potential to be 
optimized. 

 

Figure 6: Sensitivity analysis regarding the dimensional quality of flanges 

Besides, the statistical results recorded in Table 3 imply that 
the assembly deviation at measurement R has 1.00% possibility 
of failure. Therefore, both the sensitive tolerance t_B3 and the 
insensitive tolerances clinch_1 and clinch_2 are optimized in 
this work (other tolerances can also be optimized according to 
the user’s need). Since there are more than one tolerance to be 
optimized, the problem is considered as a multi-objective 
optimization. A Pareto solution is then calculated as an optimal 
tolerance design. With the created meta-model, the multi-level 
optimization is constructed in the next section. 

Table 3: Nominal value of tolerance parameters and the statistical responses 

Tolerance μ 6σ Statistical response 

t_clinch_1 0 0.5 mm PL(devi>0.5) 0 

t_clinch_2 0 0.5 mm PL(devi<-0.5) 0.02% 

t_B3 0 1.0 mm PR(devi>0.5) 0.96% 

PR(devi<-0.5) 0.04% 

4.3. Setup for the optimization system 

As mentioned in section 3.2, the optimization tool LS-OPT 
is used in this work. Figure 7 shows the implementation of two-
level optimization system. In this optimization, there are 13 
tolerance variables, among which three tolerances are 
parameterized by μ and σ. In this work, the mean values of 
insensitive tolerances are assumed to be 0, the mean value of 
sensitive tolerance μt_B3 is adjustable within [-0.5, 0.5], the 
standard deviations σt_B3, σt_clinch_1 and σt_clinch_2 are optimized 
with the given bound [0, 1/3] (corresponding to the tolerance 
range of ±1). 

Therefore, four transfer variables are defined in level 1 and 
they are automatically defined as input parameters in level 2. 
In the Setup in level 1, the initial values and the bounds of the 
σi are defined by user. LHS is applied to sample the parameter 

values within the bounds. Afterwards the level 2 optimization 
starts. The objective functions are defined in the composite 
block, where the maximal tolerance intervals are defined as 6σi. 
The GA algorithm is used in the optimization block for the 
multi-objective optimization. Four constraints (see Table 4) are 
defined here to ensure the assembly dimensional stability 
regarding the Cpk. 50 Generations for GA with the population 
size of 60 are defined as the termination criteria. These 
parameters are determined by user, depending on both the 
computation time and capacity. For the level 2 optimization, 
the input parameters consist of the objective tolerances that are 
parameterized by μ and σ transferred from the level 1 and the 
rest tolerances. With the imported meta-model, 100000 MC 
simulations are implemented with little computational effort. 
The deviation requirements (±0.5 mm) for measurement points 
L and R are defined as constraints, the possibility of failure is 
calculated and delivered back to level 1 as responses. 

 

Figure 7: two-level tolerance optimization system using LS-OPT 

4.4. Tolerance optimization results 

After 50 optimization iteration, the Pareto trade-off are 
plotted in Figure 8. Among the feasible solutions, the set with 
maximum t_B3 is considered in priority since this tolerance 
range reduces after the optimization. Based on this criteria, a 
set of the optimal solution is selected and recorded in Table 4. 

By keeping the safety rate at the level of 99.73%, which is 
the requirement for achieving a production process that is under 
statistical control, the tolerance range of clinch_1 is extended 
from 0.5 mm to 1.5 mm, the tolerance range of clinch_2 is 
extended from 0.5 mm to 2.0 mm. On the contrary, the 
tolerance range of t_B3 should be reduced from 1.0 mm to 0.7 
mm to ensure a feasible solution. 

This result gives a suggestion to optimize the initial 
tolerance design for single parts by involving the joining effect. 
In this case study, two points on the assembly are evaluated. 
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The optimization results may change by evaluating more 
KPCs. In this work, every single FEM simulation costs about 
20 minutes with eight core implicit calculation. With the help 
of parallel computing, it takes about 10 hours to build up the 
meta-model (200 runs). After then, 5 hours is needed for the 
optimization process (3000 runs), which substantially saves the 
computational time than direct simulations. 

 

Figure 8: The Pareto tradeoff plot for the tolerance design 

In general, the FEM-based joining simulation is combined 
with the tolerance analysis and tolerance optimization. Profile 
tolerances of single parts are optimized in this work, while the 
assembly deviation still satisfies the dimensional stability 
requirements. The proposed method shows the potential of 
reducing the product cost in early development stage. 

Table 4: Optimized single part tolerances after multi-level optimization 

Tolerance Optimized 
Value 

Tolerance Probability of failure 

t_clinch_1 σ = 0.25 1.5 mm PL(devi>0.5) 0.004% 

t_clinch_2 σ = 0.33 2.0 mm PL(devi<-0.5) 0.027% 

t_B3 σ = 0.12 0.7 mm PR(devi>0.5) 0.129% 

µ = 0.15 PR(devi<-0.5) 0.131% 

5. Conclusion and outlook 

A method is proposed for tolerance optimization in early 
stage regarding the manufacturing effect. Based on the joining 
simulation model, the initial tolerance design for the single 
parts is optimized through the proposed method. The tolerances 
that are insensitive to the assembly deviation is extended, 
which leads to a looser dimensional quality requirements on the 
manufacturing process of the single parts. The product cost can 
be thereby reduced. 

More variants such as the fixture positions, joining 
parameters, may be involved for an interdisciplinary 
optimization in the future work. The proposed method can be 
extended for Multi-station joining process. Different modelling 
methods can be integrated in the simulation model, for example 
the Sin Model Shapes [26]. Besides, an automation of mapping 
the geometric variations to the FE-model can improve the 
analysis efficiency. By integrating the real-time product  and 
production information, the method can also contribute to the 
analysis module of digital twin [27] for geometry assurance. 
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Tradeoff Plot
t_B3 vs. t_clinch_1 vs. t_clinch_2
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