
COMPARISON OF SINGLE-IMAGE URBAN HEIGHT RECONSTRUCTION FROM
OPTICAL AND SAR DATA

Michael Schmitt∗, Michael Recla

Department of Aerospace Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
(michael.schmitt, michael.recla)@unibw.de

KEY WORDS: Remote Sensing, Photogrammetry, Radargrammetry, Single-Image Depth, 3D Reconstruction, Urban Areas

ABSTRACT:

Deep learning-based depth estimation has become an important topic in recent years, not only in the field of computer vision. Also in
the context of remote sensing, scientists started a few years ago to adapt or develop suitable approaches to realize a reconstruction
of the Earth’s surface without requiring several images. There are many reasons for this: First, of course, the aspect of general
economization, since especially high-resolution satellite images are often accompanied by high data acquisition costs. In addition,
there is also the desire to be able to acquire high-quality geoinformation as quickly as possible in time-critical cases – for example,
the provision of up-to-date maps for emergency forces in disaster scenarios. Finally, a reconstruction of topography based only on
single images can also provide important approximate values for the classic multi-image methods. For example, various processing
steps in a classical InSAR process chain require a rough knowledge of the Earth’s surface in order to achieve the most accurate
and reliable results. In this paper, we review the developments documented in the remote sensing literature so far. Using an
established neural network architecture, we produce example results for both very-high-resolution SAR and optical imagery. The
comparison shows that SAR-based single-image-height reconstruction seems to bear an even greater potential than single-image
height reconstruction from optical data.

1. INTRODUCTION

Since it was understood that it is possible to reconstruct the
three-dimensional environment with the help of images, there
have been efforts to reduce the number of images required for
this to a minimum – and this minimum is, of course, a single
image. Already in the 1970s, a first approach to this end was
developed by computer scientists for the 3D reconstruction of
objects at close range. This approach is based on an evaluation
of illumination directions and their corresponding shadows, and
was therefore called Shape from Shading. For an overview of
important developments and techniques in this field, the inter-
ested reader is referred to the detailed review by (Zhang et al.,
1999). In remote sensing, Shape from Shading has been adap-
ted primarily for the analysis of SAR images, since these have
many well-defined and geometrically easy-to-model shadow re-
gions due to the oblique-viewing image geometry inherent in
the SAR technique (Di Martino et al., 2014). However, shape-
from-shading approaches have also been implemented for op-
tical data, e.g., to evaluate images from the Mars Express mis-
sion (O’Hara and Barnes, 2012), or to reconstruct ice-covered
terrain (Cooper, 1994). However, because the results of these
methods never reached the quality of classical stereo results, 3D
reconstruction from single images then enjoyed a rather shad-
owy existence for a long time and was mainly used to sup-
port classical stereo methods - for example, in the matching
of optical multi-view images (Heipke, 1992), or the coregistra-
tion of SAR images in classical interferometric SAR processing
pipelines (Natsuaki and Hirose, 2012).

With the rise of deep learning, researchers and engineers, es-
pecially from the field of robotics and autonomous driving, re-
turned to single-image-based 3D reconstruction. The primary
motivation was (and still is) the desire to economize spatial per-
ception for autonomous, AI-based navigation tasks – on the one
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hand by reducing the number of sensors required for data ac-
quisition, and on the other hand by accelerating automated data
evaluation. Since this usually involves the derivation of dis-
tances between the navigation subject and the environment (i.e.,
spatial depth), this research field is referred to in the literature
as single image depth estimation (SIDE). For a summary of the
developments in the general SIDE field, which mainly refers to
the analysis of classical optical images with horizontal viewing
direction, interested readers are referred to the overview article
by (Mertan et al., 2021).

Recently, remote sensing researchers also started to adapt Deep
Learning-based SIDE approaches to the reconstruction of el-
evation maps from single satellite images. With their model
IM2HEIGHT, (Mou and Zhu, 2018) have developed a network
architecture in which deconvolution layers follow convolution
layers to first encode the spatial information present in the in-
put image into an abstract, compressed form, and then decode
this abstract form back into an elevation image. In contrast, the
IMG2DSM approach presented by (Ghamisi and Yokoya, 2018)
uses the principle of Generative Adversarial Networks (GANs),
in which a generator network is trained to generate realistic
artificial height images from satellite data, while a discrimin-
ator network is trained to efficiently distinguish artificial height
images from real height images. By alternating between the
generator and discriminator, this approach produces very high
quality result images, although the comparatively difficult train-
ing is a disadvantage compared to classical CNN architectures.
Since these pioneering prototypes, other research groups have
also attempted the development of CNN approaches for recon-
structing elevation data from individual aerial and satellite im-
ages, e.g. (Amirkolaee and Arefi, 2019, Pellegrin and Martinez-
Carranza, 2020). While most of the literature available so far
focuses on high-resolution aerial photographs and semi-urban
or small-town terrain, the work of (Recla and Schmitt, 2022)
is the first to investigate single-image height reconstruction for
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(a) (b)

Figure 1. Illustration of data used for training and testing in this study. (a) Optical imagery, (b) SAR imagery. The large parts
constitute the areas used for training, the smaller rectangles the common test area. For display purposes, the images are not shown to

scale.

the second important remote sensing modality – SAR remote
sensing. Their results, achieved for densely built-up inner city
areas, are found to provide a reconstruction quality similar to
that of approaches based on classical optical imagery. With
this paper, we intend to provide a comparison of single-image
height reconstruction results for very-high-resolution SAR and
optical remote sensing images of urban areas. Our intention is
to provide a better understanding of the potential of such mod-
ern height reconstruction approaches given the different sensor
modalities provided by remote sensing.

2. MATERIALS AND METHODS

In this section, we describe both the remote sensing data sources
and the backbone deep learning approach used in this study. All
experiments are carried out on real data.

.

Table 1. Properties of the remote sensing image data used in this
work

Property Optical Imagery SAR Imagery

Type aerial color ortho-
images

TerraSAR-X staring spot-
light mode intensity images

Source Geoportal Berlin German Aerospace Center
(DLR)

Acquisition
date 2021 2018

Resolution 0.2 m × 0.2 m 0.24 m × 0.6 m
Sampling 0.7 m × 0.7 m 1 m × 1 m

2.1 SAR and Optical Remote Sensing Data

The experiments in this paper are based on very-high-resolution
SAR and optical remote sensing data depicting the city of Ber-
lin, Germany. The images are shown in Fig. 1, and their spe-
cifications are described in Tab. 1.

The height reference for the study area is an image-derived di-
gital surface model provided by the Geoportal Berlin.

2.2 Deep Learning-based Single-Image Height Recon-
struction

For the experiments shown in this paper, we use a slightly ad-
apted version of the IM2HEIGHT architecture proposed by (Mou

and Zhu, 2018), whose structure is displayed in Fig. 2. Immedi-
ately, a so-called encoder-decoder structure can be recognized.
The left half of the network forms the encoder – a series of suc-
cessively connected processing blocks, which essentially con-
sist of a normalization, a convolution with 3×3 pixel filters and
a nonlinear activation function. After each processing block,
the resolution of the resulting images is halved by so-called
max-pooling. In this process, only the maximum pixel value
is retained in each case in a 2 × 2 pixel window slid over the
image. These values are then used to compose the input image
for the next processing block. In this way, the original image
is transformed step by step into increasingly complex repres-
entations. In the center of the network, a compact abstraction
of the original image is thus created. On the right-hand side
of the network, there are processing blocks of almost identical
construction, whose contribution is to use so-called deconvo-
lution kernels to transform the compact abstraction back into
an image-like representation with the same size as the input im-
age – in the case of the height reconstruction, a 2.5-dimensional
height image, i.e. an image in which each pixel contains an in-
dividual height value. For this process to work, training must
be performed in which the network is shown a large number of
sample image pairs – i.e., aerial or satellite image with an ex-
actly matching elevation image. In the case of SAR imagery,
which follows a slant-range projection geometry with signific-
ant difference between the nadir point and the scene center, we
use the projection approach described by (Recla and Schmitt,
2022) to connect height values and SAR image pixels. In the
case of optical imagery, which follows a close-to-nadir viewing
geometry, we use a simple spatial co-registration of 2.5D height
reference map and satellite image for that purpose.

3. EXPERIMENTS & RESULTS

This section describes the experiments and results achieved
with the materials and methods described in the preceding sec-
tion. These experiments are aimed at a comparison of single-
image height reconstruction capabilities with either SAR or op-
tical remote sensing imagery used as input to the convolutional
neural network architecture IM2HEIGHT described above.
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Figure 2. CNN architecture based on the IM2HEIGHT model (Mou and Zhu, 2018). In the left half of the network, the incoming image
data is successively transformed into increasingly abstract representations using learned convolution kernels. In the right half, the

center-resulting “representation cube” is again unfolded into an image-based representation, with the desired result in this case being a
height image. The connecting arrow shown above between the first and the last layer of the network represents a so-called skip

connection, which allows the spatial structures still present in the image at full resolution to be transferred to the resulting image.

Table 2. Quantitative evaluation results calculated for predictions on the hold-out test sets.

Data set RMSE [m] RMSElog Rel Rellog δ1 [%] δ2 [%] δ3 [%] SSIM
lower is better lower is better higher is better high. bett.

SAR 5.30 ± 1.23 0.23 ± 0.04 0.42 ± 0.13 0.16 ± 0.03 44.97 ± 10.21 66.38 ± 8.09 77.81 ± 6.41 0.78 ± 0.07

Optical 5.50 ± 1.68 0.28 ± 0.06 0.50 ± 0.14 0.20 ± 0.06 35.96 ± 10.94 53.59 ± 10.98 64.87 ± 11.09 0.82 ± 0.11

3.1 Experimental Setup

In both cases (SAR and optical), the model was trained on a
large number of specially prepared training data. For that, an
ADAM optimizer with the default learning rate of 0.001 was
used. The mean square error (MSE), also referred to as L2 loss,
was chosen as loss function. Just as described in the original
publications, each mini-batch consists of only a single image.
Because of the use of ReLUs as activation functions, all weights
are initialized with a Kaiming uniform distribution. To mitig-
ate overfitting effects, 15% of the training data is randomly de-
clared as a validation set for an early stopping mechanism.

To make the network more robust to different viewing angles,
random flipping was included in the data loader process. Thus,
for each draw from the data pool, the image is randomly
mirrored at one of the main axes before being fed to the net-
work.

All in all, the training set consisted of 1,671 annotated SAR
images and 2,775 annotated optical images, respectively, each
with a size of 256× 256 pixels and a ground resolution of 1 m
and 0.7 m per pixel, respectively. During training, the underly-
ing neural network was provided with these sample images in
multiple runs to learn how to convert the respective input image
data into an elevation image by mathematically optimizing the
model parameters.

3.2 Results

The two final models were then applied to the images from the
test subsets marked by the white rectangles shown in Fig. 1.
Since those subsets were unseen to the model during the train-
ing, a fair assessment is ensured. Results of the quantitat-
ive evaluation are summarized in Tab. 2, relying on metrics
commonly used in the SIDE literature (Eigen et al., 2014,
Amirkolaee and Arefi, 2019). Whereas the root mean square

error (RMSE) is a well-established standard for providing an
idea about average error in a test set, its logarithmic variant,
RMSElog is more robust against outliers and independent of er-
ror scale. Both the relative error Rel and its logarithmic variant
Rellog measure the average error relative to the size of the meas-
ured quantity. Finally, the delta measure δi calculates a ratio for
each pair of pixels and then counts the percentage of how many
of the pixel values are below a certain threshold. While all those
metrics are intended to measure the quantitative error of recon-
structed heights per pixel, it is also interesting to investigate
the visual reconstruction quality of the resulting height images.
For this, we use the structural similarity index measure (SSIM),
which is a metric to evaluate the structural similarity of a pre-
dicted image with respect to a reference image (Wang et al.,
2004).

From the numbers in Tab. 2 it can be seen that overall the SAR-
based reconstruction performs better in all metrics regarding
the quality of reconstructed heights, whereas the reconstruction
achieved from optical data performs better in terms of visual
structure.

A more detailed view on the results is provided in Fig. 3. It
shows two randomly selected example patches represented by
both SAR and optical test images. For each test image addi-
tionally the target height maps and the predicted height maps
are shown. Finally, the pixel-wise error distributions are shown
in the form of histograms. These examples illustrate two things:
First, the structurally somewhat clearer reconstruction in the
optical case becomes visible. Second, the difference in error
distributions becomes apparent, with mean differences between
predicted and reference heights of 1.97 m and -4.25 m in the op-
tical case, and 0.38 m and -1.32 m in the SAR case, respectively.
This seems to confirm the overall results (cf. Tab. 2) indicating
that single-image height reconstruction works slightly better for
SAR input data than for optical input data.
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Figure 3. Two randomly selected example images from the test sets, depicted for both the SAR case (columns 1 and 3), and the optical
case (columns 2 and 4). The bottom subfigure displays the corresponding error distributions.

4. DISCUSSION

4.1 Accuracies Reported in the Literature

In order to embed the experimental results presented in this pa-
per into a bigger picture, quantitative results achieved in other
works on single-image height reconstruction from remote sens-
ing imagery are summarized in Tab. 31. While they are, of
course, not directly comparable due to significant differences
in training and test sets, they can still provide a rule-of-thumb
understanding of the order of magnitude of single-image height
reconstruction qualities. From this summary, several insights

1 Please note that we do not show the results reported in (Mou and Zhu,
2018) and (Pellegrin and Martinez-Carranza, 2020), as they differ from
all other results by at least one order of magnitude, which seems to be
caused by an erroneous calculation of (R)MSE values.

can be drawn:

• All single-image height reconstruction results reported in
the literature so far achieve RMSE values in the range of a
few meters. This indicates a certain saturation in terms of
achieveable accuracy.

• Besides only a few exceptions, all results are achieved
with models trained and tested on VHR aerial photo-
graphs – mostly provided in the form of the ISPRS
Postdam/Vaihingen datasets (ground sampling distance:
0.05 m for Potsdam and 0.09 m for Vaihingen).

• Generally, results on VHR aerial imagery (RMSEs from
1.40 m to 3.89 m) are better than results achieved on satel-
lite imagery (RMSEs from 5.02 m to 6.45 m). This can
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Table 3. Reconstruction quality metrics achieved in related work. For sake of comparability, only the best RMSE value achieved by
training and testing on the same scene is reported for each work. Results of transferability were not considered where available at all.

Paper Data basis RMSE

(Ghamisi and Yokoya, 2018) Optical data (ISPRS Potsdam dataset) 3.89
Optical data (ISPRS Vaihingen dataset) 2.58

(Amirkolaee and Arefi, 2019)
Optical data (ISPRS Vaihingen dataset) 2.87
Optical data (ISPRS Potsdam dataset) 3.47
Optical data (own satellite-based dataset) 6.45

(Mahmud et al., 2020)

Optical data (DFC 2019 dataset) 5.02
Optical data (Urban 3D dataset) 6.15
Optical data (ISPRS Potsdam dataset) 3.73
Optical data (ISPRS Vaihingen dataset) 1.93

(Li et al., 2020) Optical data (ISPRS Vaihingen dataset) 1.70
Optical data (ISPRS Potsdam dataset) 1.40

(Recla and Schmitt, 2022) SAR data (own satellite-based dataset) 5.25

at least partially be explained with the lower spatial res-
olution of the satellite imagery (ground sampling distance
around 1 m).

This literature review confirms the validity of the results repor-
ted in this paper, which fall in the same accuracy category as
the results reported for optical satellite imagery.

4.2 Reasons for Better Performance of SAR-based Height
Reconstruction

As the results presented in Tab. 2 and Fig. 3 indicate, SAR-
based single-image height reconstruction seems to perform
slightly better than single-image height reconstruction using op-
tical imagery as input. Also, the literature review collected in
Tab. 3 does not seem to contradict that perception. In spite of
the fact that the results are not directly comparable, it can be
seen that the reported RMSE values for experiments carried out
on spaceborne optical imagery are 5.02 m (DFC 2019 dataset),
6.15 m (Urban 3D dataset), and 6.45 m (unpublished dataset),
whereas for spaceborne SAR data 5.25 m are reported (Recla
and Schmitt, 2022).

There are two hypotheses that can possibly explain this beha-
viour:

1. In case of optical data, the annotation is usually car-
ried out be providing orthorectified imagery with a co-
registered, georeferenced height map, which can be con-
sidered a valid approximation given the nadir-like acquis-
ition geometry of most optical remote sensing imagery.
However, as has been well-known to the photogrammetry
community, this is not fully correct from a geometric point
of view (Amhar et al., 1998), especially if VHR images
with non-nadir viewing angles are used. Thus, in a re-
cent study from the field of computer vision, single-image
height estimation was paired with a variant of optical flow
for static images in order to predict more accurate height
maps (Christie et al., 2020). The only available study on
single-image height prediction from SAR imagery, how-
ever, made use of a sophisticated annotation workflow that
projected every height value to its correct pixel counterpart
in the original SAR image geometry (Recla and Schmitt,
2022). This might lead to slightly larger height prediction
errors for the optical imagery compared to the SAR im-
agery – especially for facade regions.

2. Due to the system-inherent side-looking viewing geometry
of SAR sensors, SAR images contain more information
about building facades than about roof areas. Together
with the complementary phenomenon of radar shadow-
ing, this leads to very strong height cues, which can be
exploited beneficially by the convolutional neural network
for height prediction. In the end, there have already been
works on building height estimation from single SAR im-
ages using domain expertise about the imaging geometry
in the pre-deep learning era (Wegner and Soergel, 2008).
In contrast, optical images in nadir geometry more or less
only contain ground and roof areas and thus lack signific-
ant height cues. Height predictions will therefore mainly
be supported by context information and can more easily
suffer from ambiguities. A conceptual comparison of SAR
vs. optical imaging is sketched in Fig. 4.

A B C
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A'D'E'F'

B'/D'

C' E'
F'

slant range

ground

focal
plane

RADAR

optical sensor

Layover
Shadow

Figure 4. Schematic comparison between the SAR and optical
imaging principles. While an optical system measures angles, a

SAR converts signal travel times to distances and maps them
into its resolution cells – and is inherently side-looking.

In summary, there are some hints towards the notion that SAR
is the favorable sensing modality when it comes to single-image
height reconstruction in remote sensing. However, future work
will have to consider the following points:

• A more sophisticated data annotation needs to be used in
the optical case, i.e. similar to the SAR case, a direct 3D
to 2D relationship has to be employed rather than a mere
overlay of ortho-imagery and 2.5D height data.
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• Besides (near-)nadir optical imagery, also oblique-view
optical imagery should be used in the experiments to have
a really fair comparison.

• Evaluations should not be carried out anymore in the
patch-relative height space, but in actual 3D world co-
ordinates.

Only if those issues are properly addressed will we be able to
get a really fair comparison of single-image height prediction
from SAR and optical sensors. This paper can be seen as a step
in that direction.

5. SUMMARY & CONCLUSION

In this paper, we have used a simple state-of-the-art convolu-
tional neural network architecture to train models for the pre-
diction of urban height maps from single optical and SAR im-
ages. Using training and test data from the city of Berlin, Ger-
many, we compared the reconstruction results regarding the
achieved accuracies. In conjunction with an analysis of eval-
uation metrics reported in related literature, we conclude that
SAR-based single-image height reconstruction might perform
slightly better than single-image height reconstruction from op-
tical imagery. We hypothesize that besides pre-processing is-
sues, the difference between side-looking and nadir-looking
imaging geometries is the main reason for this difference: Since
SAR systems observe facade and shadow information, which
provides a lot of valuable height cues, optical systems are more
prone to ambiguous height predictions, because they observe
mostly ground and roof information.
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