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Motivation & Goal

® Beam/ Solid interactions occur in a wide
variety of scenarios:

® Engineering (steel-reinforced concrete,
composite materials)

® Biomechanics (collagen fibers in
connective tissue)

® Time-to-solution dominated by cost for linear
solver

® Scalability through multilevel methods

® Algebraic Multigrid (AMG) for its flexibility

® But: Ill-conditioned matrix due to
discretization and penalty regularization
prohibit out-of-the-box block smoothing

Scalable AMG method for beam / solid interaction problems in penalty formulation
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Problem description

The coupling of beam-like structures with solid continua is described with the following coupled
linearized system for beam/solid interaction:

Kg+eMTx ™M —eMTx™'D Ads\ _  (rs
—eDTk— 1M Kg+eDTxk D) \Adp ) — rp

(.)s  solid contribution
(.)B  beam contribution
d displacement DOFs
r residual

€ penalty parameter
K scaling factor
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Problem description

The coupling of beam-like structures with solid continua is described with the following coupled
linearized system for beam/solid interaction:

Kg+cMTrk— M —eMTr~1D Ads) _  (rs
—eDTr~ 1M KB+EDTK371D Adp o rp

(.)s  solid contribution o Solid DOFs
(B b.eam contribution o Beam DOFs

d displacement DOFs . .

r residual ® Coupling constraints
€ penalty parameter

K scaling factor
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Problem description

The coupling of beam-like structures with solid continua is described with the following coupled
linearized system for beam/solid interaction:

Kg+cMTrk— M —eMTr~1D Ads) _  (rs
—eDTr~ 1M KB+EDTK371D Adp o rp

(\)s solid contribution ¢ Highly non-diagonal and

() beam contribution ill-conditioned block matrix due to
d displacement DOFs penalty regularization

r re5|d:1al * Block matrix may be nonsymmetric
€ penatty parameter due to beam formulation

K scaling factor
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One-level block preconditioning

BlockMethod(AMG)'

Approximations in Schur complement
preconditioners

1. Approximation A to form Schur

complement S
= Governed by the type of block
method
= eg A=~ A:=diag(A)
2. Approximate block inverses within ® Coupling constraints are considered on fine
Schur complement preconditioner by level only
standard AMG

* Block method can be:
= Block LU
= Uzawa
= SIMPLE

= Approximation quality can be
controlled through the AMG settings

"Wiesner, T. A.; Mayr, M.; Popp, A.; Gee, M. W. and Wall, W. A. (2021): "Algebraic multigrid methods for saddle point
systems arising from mortar contact formulations", Numerical Methods in Engineering, 122, 15:3749-3779
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o . <A
Sparse approximate invese AN

b

Due to the penalty regularization using just a diagonal approximation of the inverse inside the

Schur complement calculation is not sufficient:

® Sparse approximate inverse methods
(SPAI?) can produce better approximation

® Use matrix graph of A to calculate inverse A
on this sparsity pattern

Parallel computation

Decomposition into several least squares
problems makes it inherently parallel:
n

—~ . . )
® Based on Frobenius norm minimization: 1AA = 1|[f = Z I(AA = Dex|l2,
k=1
min ||[AA — ||z for each row k solve
Aes

min || Ay — ex||2
[

with S being the set of all sparse matrices with QR-decomposition

with some known structure

2Grothe, M. J. and Huckle, T. (1997): "Parallel preconditioning with sparse approximate inverses", Journal Of Scientific
Computing, 18, 3:838-853
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A priori pattern selection

Using just the pattern of A as input might not result in a satisfactory result, the matrix pattern
needs to be enriched for a good sparse inverse approximation:

® Static approch by using recursive powers of

graph of matrix A — recursion depth SPAI with static pattern selection

defined as level 1. Tresholding of .J(A)
® Combining rows of graph J(A) such that3: 5

. Determine graph of powers of A: J(A")

3. Calculate sparse inverse

1 _ -1 -1
J(Ag) = (A7) I (AT) approximation A

® Pre- and post filtering of input graph and 4. Post filtering of A
sparse inverse approximation with
threshold value 7

3Chow E. (2001): "Parallel implementation and practical use of sparse approximate inverse preconditioners with a
priori sparsity patterns", The International Journal Of High Performance Computing Applications, 15:56-74
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AR

Sparse approximate inverse smoother &R

Not all block inverses need to be approximated Solve "Schur complement" equation with a

with a full multigrid cycle: conventional AMG method:
® Due to Schur complement calculation, good e Standard relaxation methods don’t
approximation of one matrix block is converge due to non-diagonal
already available dominance
® Using this information for smoothing ® Polynomial smoothers like the
results in the following SPAI smoother?: Chebychev iteration provide decent
results

2 = gk — A(Azk — b)

with A being a sparse approximate inverse

4Broker 0. and Grote, M. J. (2002): "Sparse approximate inverse smoothers for geometric and algebraic multigrid”,
Applied Numerical Mathematics, 41:61-80
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Solid block with random fiber placement

Settings
Discretization

# Solid DOFs: 12288
#Beam DOFs: 1860
# procs: 6
Solver
Newton convergence: 10 ° (rel)
GMRES convergence: 10~ % (rel)

Material Parameters

Solid:  Es=1002%,v5 =0.3

hyperelastic Saint Venant-Kirchhoff model
Beam:  Ep = 100025, v5 = 0.0

torsion-free Kirchhoff-Love model
Penalty: p = 1000

® Minimal working example to
investigate the influence of the
sparse inverse approximation to the
block smoothing schemes

® Sub-solves are done with a direct
method
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YA
Comparison of different sparsity patterns ﬁ;%s

T lel[1le? [1le3 [ 1le* [ 1e® | 1e7°
J(A) | 184 | 184 | 184 | 184 | 184 | 184
J(AY) | 11 74 23 21 21 21
J(A%) | 193 | 102 14 9 9 8
J(A3) | 174 15 15 6 3 2

® Shows the averaged iterations of the linear solver in the first newton step

® Sparsity pattern level on the left side and the threshold value for pre- and post filtration on
the top

= J(A")is equivalent to the matrix diagonal J(diag(A))
= J(A') resembles the sparsity pattern .J(A)
= The patterns J(A?) and .J(A?) are the respective combinations on level 2 and 3
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Comparison of different sparsity patterns

SIMPLE (s = 3,w = 0.7)

T le' [1le?[1le? | 1le? | 1e® | 1e©
JAY | - - - - - -
J(AY) - - - 369 | 68 48
J(A?) | - - 320 11 11 1
J(4% | - - - 7 5 4

value "-" means no convergence

® Shows the averaged iterations of the linear solver in the first newton step

® Sparsity pattern level on the left side and the threshold value for pre- and post filtration on
the top
= J(A%)is equivalent to the matrix diagonal .J (diag(A))
= J(A") resembles the sparsity pattern .J(A)
= The patterns .J(A?) and J(A?) are the respective combinations on level 2 and 3
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Comparison of different sparsity patterns

T le' [1le?[1le? | 1le? | 1e® | 1e©
JAY | - - - - - -
J(AD) - - - 287 | 47 38
J(A?) - - 268 n n 1
J(4% | - - - 7 5 4

value "-" means no convergence

® Shows the averaged iterations of the linear solver in the first newton step

® Sparsity pattern level on the left side and the threshold value for pre- and post filtration on
the top
= J(A%)is equivalent to the matrix diagonal .J (diag(A))
= J(A") resembles the sparsity pattern .J(A)
= The patterns .J(A?) and J(A?) are the respective combinations on level 2 and 3
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Steel-Reinforced Concrete Beam

Settings

Discretization
#Solid DOFs: 5376
# Beam DOFs: 1686
# procs: 6

N

Solver 22 ik |
107 (rel) Four-point bending test under static loading®

Newton convergence:
BiCGSTAB convergence: 102 (rel)

Material Parameters
Solid: Es =302%,vs =03
hyperelastic Saint Venant-Kirchhoff model
Beam: Ep =2102;,05 =0.0
torsion-free Kirchhoff-Love model
Penalty: p = 10002

5Braml, T.; Wimmer, J. and Varabei, Y. (2022): "Erfordernisse an die Datenaufnahme und -verarbeitung zur Erzeugung
von intelligenten Digitalen Zwillingen", Innsbrucker Bautage 2022 (eds Berger, J.) (Studia, 2022), 31-49
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Fiber-Reinforced Composite Plate®

Settings

Discretization
# Solid DOFs: 1950
# Beam DOFs: 10992

# procs: 6
Solver
Newton convergence: 107 (rel)

BiCGSTAB convergence: 1078 (rel)

Material Parameters
Solid: Es =102 ,vs =03
hyperelastic Saint Venant-Kirchhoff model

Beam:  Ep =1000-5,vp5 = 0.0
torsion-free Kirchhoff-Love model
. = N
e Deformation of the plate due to tensile load

8Steinbrecher, I.; Mayr, M.; Grill, M. J.; Kremheller, J.; Meier, C. and Popp, A. (2020): "A mortar-type finite element
approach for embedding 1D beams into 3D solid volumes", Computational Mechanics, 66:1377-1398
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What’s next?

Weak scaling study: Cube filled with randomly placed and oriented fibers.

scale up
_—

1x 1 x 1 domain 2 X 2 X 2 subdomains

® ~ 25.000 Dofs ® ~ 200.000 Dofs ® ~ ? Dofs
® 1 Processor ® 8 Processors ® n3 Processors
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Outlook

AMG(BlockMethod)

\ / ® For now only considered torsion-free
Kirchhoff-Love beam elements:
= Sufficient for a broad range of applications
= Restriction to straight center line in

\ >< / reference configuration

Extend to other beam formulations in the
near future.

® Consider coupling constraints on all levels

¢ Assembly of the beam DOFs nullspace
specific to beam formulation
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Thank you!

Collaborators:
® Matthias Mayr
® Alexander Popp
® |vo Steinbrecher

References:
Open-source implementation will be available in
TrilinosMueLu: https://trilinos.github.io/muelu.html
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Contact:
* max.firmbach@unibw.de
® https://www.unibw.de/imcs-en
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