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Motivation & Goal

• Beam / Solid interactions occur in a wide
variety of scenarios:
• Engineering (steel-reinforced concrete,
composite materials)

• Biomechanics (collagen fibers in
connective tissue)

• Time-to-solution dominated by cost for linear
solver
• Scalability throughmultilevel methods
• Algebraic Multigrid (AMG) for its flexibility
• But: Ill-conditionedmatrix due to
discretization and penalty regularization
prohibit out-of-the-box block smoothing

Goal
Scalable AMGmethod for beam / solid interaction problems in penalty formulation
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Problem description

The coupling of beam-like structures with solid continua is described with the following coupled
linearized system for beam/solid interaction:(

KS+εMTκ−1M −εMTκ−1D
−εDTκ−1M KB+εDTκ−1D

)(
∆dS

∆dB

)
= −

(
rS

rB

)

Legend
(.)S solid contribution
(.)B beam contribution
d displacement DOFs
r residual
ε penalty parameter
κ scaling factor
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• Solid DOFs
• BeamDOFs
• Coupling constraints
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Challenges:
• Highly non-diagonal and
ill-conditioned block matrix due to
penalty regularization

• Block matrix may be nonsymmetric
due to beam formulation
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One-level block preconditioning

Approximations in Schur complement
preconditioners
1. Approximation Â to form Schur
complement S̃
⇒ Governed by the type of block

method
⇒ e.g. A ≈ Â := diag(A)

2. Approximate block inverses within
Schur complement preconditioner by
standard AMG
⇒ Approximation quality can be

controlled through the AMG settings

BlockMethod(AMG)1

• Coupling constraints are considered on fine
level only

• Block method can be:
⇒ Block LU
⇒ Uzawa
⇒ SIMPLE

1Wiesner, T. A.; Mayr, M.; Popp, A.; Gee, M. W. and Wall, W. A. (2021): "Algebraic multigrid methods for saddle point
systems arising frommortar contact formulations", Numerical Methods in Engineering, 122, 15:3749-3779
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Sparse approximate invese

Due to the penalty regularization using just a diagonal approximation of the inverse inside the
Schur complement calculation is not su�icient:

• Sparse approximate inverse methods
(SPAI2) can produce better approximation

• Usematrix graph ofA to calculate inverse Â
on this sparsity pattern

• Based on Frobenius normminimization:

min
Â∈S

||AÂ− I||F

with S being the set of all sparse matrices
with some known structure

Parallel computation
Decomposition into several least squares
problemsmakes it inherently parallel:

||AÂ− I||2F =
n∑

k=1
||(AÂ− I)ek||22,

for each row k solve
min

âk

||Aâk − ek||2

with QR-decomposition

2Grothe, M. J. and Huckle, T. (1997): "Parallel preconditioning with sparse approximate inverses", Journal Of Scientific
Computing, 18, 3:838-853
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A priori pattern selection

Using just the pattern ofA as input might not result in a satisfactory result, the matrix pattern
needs to be enriched for a good sparse inverse approximation:

• Static approch by using recursive powers of
graph of matrixA→ recursion depth
defined as level l

• Combining rows of graph J(A) such that3:

J(Al
k,:) = J(Al−1

k,: )J(Al−1)

• Pre- and post filtering of input graph and
sparse inverse approximation with
threshold value τ

SPAI with static pattern selection
1. Tresholding of J(A)
2. Determine graph of powers of A: J(Al)
3. Calculate sparse inverse
approximation Â

4. Post filtering of Â

3Chow E. (2001): "Parallel implementation and practical use of sparse approximate inverse preconditioners with a
priori sparsity patterns", The International Journal Of High Performance Computing Applications, 15:56-74
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Sparse approximate inverse smoother

Not all block inverses need to be approximated
with a full multigrid cycle:
• Due to Schur complement calculation, good
approximation of one matrix block is
already available

• Using this information for smoothing
results in the following SPAI smoother4:

xk+1 = xk − Â(Axk − b)

with Â being a sparse approximate inverse

Solve "Schur complement" equation with a
conventional AMGmethod:
• Standard relaxation methods don’t
converge due to non-diagonal
dominance

• Polynomial smoothers like the
Chebychev iteration provide decent
results

4Bröker O. and Grote, M. J. (2002): "Sparse approximate inverse smoothers for geometric and algebraic multigrid",
Applied Numerical Mathematics, 41:61-80
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Solid block with random fiber placement

Settings

Discretization
# Solid DOFs: 12288
# Beam DOFs: 1860
# procs: 6
Solver
Newton convergence: 10−6 (rel)
GMRES convergence: 10−8 (rel)

Material Parameters
Solid: ES = 100 N

m2 , νS = 0.3
hyperelastic Saint Venant-Kirchho�model

Beam: EB = 1000 N
m2 , νB = 0.0

torsion-free Kirchho�-Love model
Penalty: p = 1000 N

m

• Minimal working example to
investigate the influence of the
sparse inverse approximation to the
block smoothing schemes

• Sub-solves are done with a direct
method
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Comparison of di�erent sparsity patterns

Block LU

τ 1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

J(A0) 184 184 184 184 184 184
J(A1) 171 74 23 21 21 21
J(A2) 193 102 14 9 9 8
J(A3) 174 15 15 6 3 2

• Shows the averaged iterations of the linear solver in the first newton step
• Sparsity pattern level on the le� side and the threshold value for pre- and post filtration on
the top
⇒ J(A0) is equivalent to the matrix diagonal J(diag(A))
⇒ J(A1) resembles the sparsity pattern J(A)
⇒ The patterns J(A2) and J(A3) are the respective combinations on level 2 and 3
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Comparison of di�erent sparsity patterns

SIMPLE (s = 3, ω = 0.7)

τ 1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

J(A0) - - - - - -
J(A1) - - - 369 68 48
J(A2) - - 320 11 11 11
J(A3) - - - 7 5 4

value "-" means no convergence

• Shows the averaged iterations of the linear solver in the first newton step
• Sparsity pattern level on the le� side and the threshold value for pre- and post filtration on
the top
⇒ J(A0) is equivalent to the matrix diagonal J(diag(A))
⇒ J(A1) resembles the sparsity pattern J(A)
⇒ The patterns J(A2) and J(A3) are the respective combinations on level 2 and 3
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Comparison of di�erent sparsity patterns

Uzawa (s = 3, ω = 0.7)

τ 1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

J(A0) - - - - - -
J(A1) - - - 287 47 38
J(A2) - - 268 11 11 11
J(A3) - - - 7 5 4

value "-" means no convergence

• Shows the averaged iterations of the linear solver in the first newton step
• Sparsity pattern level on the le� side and the threshold value for pre- and post filtration on
the top
⇒ J(A0) is equivalent to the matrix diagonal J(diag(A))
⇒ J(A1) resembles the sparsity pattern J(A)
⇒ The patterns J(A2) and J(A3) are the respective combinations on level 2 and 3
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Steel-Reinforced Concrete Beam

Settings

Discretization
# Solid DOFs: 5376
# Beam DOFs: 1686
# procs: 6
Solver
Newton convergence: 10−6 (rel)
BiCGSTAB convergence: 10−8 (rel)

Material Parameters
Solid: ES = 30 N

m2 , νS = 0.3
hyperelastic Saint Venant-Kirchho�model

Beam: EB = 210 N
m2 , νB = 0.0

torsion-free Kirchho�-Love model
Penalty: p = 1000 N

m

Four-point bending test under static loading5

5Braml, T.; Wimmer, J. and Varabei, Y. (2022): "Erfordernisse an die Datenaufnahme und -verarbeitung zur Erzeugung
von intelligenten Digitalen Zwillingen", Innsbrucker Bautage 2022 (eds Berger, J.) (Studia, 2022), 31-49
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Fiber-Reinforced Composite Plate6

Settings

Discretization
# Solid DOFs: 1950
# Beam DOFs: 10992
# procs: 6
Solver
Newton convergence: 10−6 (rel)
BiCGSTAB convergence: 10−8 (rel)

Material Parameters
Solid: ES = 10 N

m2 , νS = 0.3
hyperelastic Saint Venant-Kirchho�model

Beam: EB = 1000 N
m2 , νB = 0.0

torsion-free Kirchho�-Love model
Penalty: p = 1000 N

m Deformation of the plate due to tensile load
6Steinbrecher, I.; Mayr, M.; Grill, M. J.; Kremheller, J.; Meier, C. and Popp, A. (2020): "A mortar-type finite element

approach for embedding 1D beams into 3D solid volumes", Computational Mechanics, 66:1377-1398
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What’s next?

Weak scaling study: Cube filled with randomly placed and oriented fibers.

...scale up

1 x 1 x 1 domain
• ∼ 25.000 Dofs
• 1 Processor

2 x 2 x 2 subdomains
• ∼ 200.000 Dofs
• 8 Processors

n x n x n subdomains
• ∼ ? Dofs
• n3 Processors
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Outlook

AMG(BlockMethod)

• Consider coupling constraints on all levels
• Assembly of the beam DOFs nullspace
specific to beam formulation

• For now only considered torsion-free
Kirchho�–Love beam elements:
⇒ Su�icient for a broad range of applications
⇒ Restriction to straight center line in

reference configuration
Extend to other beam formulations in the
near future.
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Thank you!

Collaborators:
• Matthias Mayr
• Alexander Popp
• Ivo Steinbrecher

References:
Open-source implementation will be available in
TrilinosMueLu: https://trilinos.github.io/muelu.html

Contact:
• max.firmbach@unibw.de
• https://www.unibw.de/imcs-en
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