15th World Congress on Computational Mechanics

Minisymposium "Multi-level iterative solvers for finite element systems" Yokohama | Japan | 31 July - 06 August 2022

Physics-based block preconditioning for beam/solid interaction

Max Firmbach¹ Alexander Popp¹ Matthias Mayr^{1, 2}

¹Institute for Mathematics and Computer-Based Simulation (IMCS), University of the Bundeswehr Munich
²Data Science & Computing Lab, University of the Bundeswehr Munich

Motivation & Goal

- Beam / Solid interactions occur in a wide variety of scenarios:
 - Engineering (steel-reinforced concrete, composite materials)
 - Biomechanics (collagen fibers in connective tissue)
- Time-to-solution dominated by cost for linear solver
 - Scalability through multilevel methods
 - Algebraic Multigrid (AMG) for its flexibility
 - But: Ill-conditioned matrix due to discretization and penalty regularization prohibit out-of-the-box block smoothing

Scalable AMG method for beam / solid interaction problems in penalty formulation

The coupling of beam-like structures with solid continua is described with the following coupled linearized system for beam/solid interaction:

$$\begin{pmatrix} \mathbf{K}_S + \epsilon \mathbf{M}^T \kappa^{-1} \mathbf{M} & -\epsilon \mathbf{M}^T \kappa^{-1} \mathbf{D} \\ -\epsilon \mathbf{D}^T \kappa^{-1} \mathbf{M} & \mathbf{K}_B + \epsilon \mathbf{D}^T \kappa^{-1} \mathbf{D} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{d}_S \\ \Delta \mathbf{d}_B \end{pmatrix} = - \begin{pmatrix} \mathbf{r}_S \\ \mathbf{r}_B \end{pmatrix}$$

Legend

- $(.)_S$ solid contribution
- $(.)_B$ beam contribution
- d displacement DOFs
- r residual
- ϵ penalty parameter
- κ scaling factor

The coupling of beam-like structures with solid continua is described with the following coupled linearized system for beam/solid interaction:

$$\begin{pmatrix} \mathbf{K}_{S} + \epsilon \mathbf{M}^{T} \kappa^{-1} \mathbf{M} & -\epsilon \mathbf{M}^{T} \kappa^{-1} \mathbf{D} \\ -\epsilon \mathbf{D}^{T} \kappa^{-1} \mathbf{M} & \mathbf{K}_{B} + \epsilon \mathbf{D}^{T} \kappa^{-1} \mathbf{D} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{d}_{S} \\ \Delta \mathbf{d}_{B} \end{pmatrix} = - \begin{pmatrix} \mathbf{r}_{S} \\ \mathbf{r}_{B} \end{pmatrix}$$

Legend

- $(.)_S$ solid contribution
- $(.)_B$ beam contribution
- d displacement DOFs
- r residual
- ϵ penalty parameter
- $\kappa \qquad {\rm scaling\,factor} \\$

- Solid DOFs
- Beam DOFs
- Coupling constraints

The coupling of beam-like structures with solid continua is described with the following coupled linearized system for beam/solid interaction:

$$\begin{pmatrix} \mathbf{K}_{S} + \epsilon \mathbf{M}^{T} \kappa^{-1} \mathbf{M} & -\epsilon \mathbf{M}^{T} \kappa^{-1} \mathbf{D} \\ -\epsilon \mathbf{D}^{T} \kappa^{-1} \mathbf{M} & \mathbf{K}_{B} + \epsilon \mathbf{D}^{T} \kappa^{-1} \mathbf{D} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{d}_{S} \\ \Delta \mathbf{d}_{B} \end{pmatrix} = - \begin{pmatrix} \mathbf{r}_{S} \\ \mathbf{r}_{B} \end{pmatrix}$$

Legend

- $(.)_S$ solid contribution
- $(.)_B$ beam contribution
- d displacement DOFs
- r residual
- ϵ penalty parameter
- κ scaling factor

Challenges:

- Highly non-diagonal and ill-conditioned block matrix due to penalty regularization
- Block matrix may be nonsymmetric due to beam formulation

One-level block preconditioning

Approximations in Schur complement BlockMethod(AMG)¹

1. Approximation \widehat{A} to form Schur complement \widetilde{S}

preconditioners

- $\Rightarrow \ \, {\rm Governed} \ \, {\rm by} \ \, {\rm the} \ \, {\rm type} \ \, {\rm of} \ \, {\rm block} \\ {\rm method} \\$
- $\Rightarrow \text{ e.g. } A \approx \widehat{A} := diag(A)$
- 2. Approximate block inverses within Schur complement preconditioner by standard AMG
 - ⇒ Approximation quality can be controlled through the AMG settings

Coupling constraints are considered on fine level only

- Block method can be:
 - \Rightarrow Block LU
 - \Rightarrow Uzawa
 - \Rightarrow SIMPLE

¹Wiesner, T. A.; Mayr, M.; Popp, A.; Gee, M. W. and Wall, W. A. (2021): "Algebraic multigrid methods for saddle point systems arising from mortar contact formulations", *Numerical Methods in Engineering*, 122, 15:3749-3779

Due to the penalty regularization using just a diagonal approximation of the inverse inside the Schur complement calculation is not sufficient:

- Sparse approximate inverse methods (SPAI²) can produce better approximation
- Use matrix graph of A to calculate inverse \widehat{A} on this sparsity pattern
- Based on Frobenius norm minimization:

 $\min_{\widehat{A} \in S} ||A\widehat{A} - I||_F$

with ${\cal S}$ being the set of all sparse matrices with some known structure

Parallel computation

Decomposition into several least squares problems makes it inherently parallel: $||A\widehat{A} - I||_F^2 = \sum_{k=1}^n ||(A\widehat{A} - I)e_k||_2^2,$ for each row k solve $\min_{\widehat{a}_k} ||A\widehat{a}_k - e_k||_2$ with QR-decomposition

²Grothe, M. J. and Huckle, T. (1997): "Parallel preconditioning with sparse approximate inverses", *Journal Of Scientific Computing*, *18*, *3:838-853*

Using just the pattern of A as input might not result in a satisfactory result, the matrix pattern needs to be enriched for a good sparse inverse approximation:

- Static approch by using recursive powers of graph of matrix $A \rightarrow$ recursion depth defined as level l
- Combining rows of graph J(A) such that³:

 $J(A_{k,:}^{l}) = J(A_{k,:}^{l-1})J(A^{l-1})$

• Pre- and post filtering of input graph and sparse inverse approximation with threshold value τ

SPAI with static pattern selection

- **1.** Tresholding of J(A)
- 2. Determine graph of powers of A: $J(A^l)$
- 3. Calculate sparse inverse approximation \widehat{A}
- 4. Post filtering of \widehat{A}

³Chow E. (2001): "Parallel implementation and practical use of sparse approximate inverse preconditioners with a priori sparsity patterns", *The International Journal Of High Performance Computing Applications*, 15:56-74

Not all block inverses need to be approximated with a full multigrid cycle:

- Due to Schur complement calculation, good approximation of one matrix block is already available
- Using this information for smoothing results in the following SPAI smoother⁴:

 $x^{k+1} = x^k - \widehat{A}(Ax^k - b)$

with \widehat{A} being a sparse approximate inverse

Solve "Schur complement" equation with a conventional AMG method:

- Standard relaxation methods don't converge due to non-diagonal dominance
- Polynomial smoothers like the Chebychev iteration provide decent results

⁴Bröker O. and Grote, M. J. (2002): "Sparse approximate inverse smoothers for geometric and algebraic multigrid", *Applied Numerical Mathematics*, 41:61-80

Settings

Discretization

# Solid DOFs:	12288
# Beam DOFs:	1860
# procs:	6

Solver

Newton convergence: 10^{-6} (rel) GMRES convergence: 10^{-8} (rel)

Material Parameters

 $\begin{array}{ll} \mbox{Solid:} & E_S = 100 \frac{N}{m^2}, \nu_S = 0.3 \\ & \mbox{hyperelastic Saint Venant-Kirchhoff model} \\ \mbox{Beam:} & E_B = 1000 \frac{N}{m^2}, \nu_B = 0.0 \\ & \mbox{torsion-free Kirchhoff-Love model} \\ \mbox{Penalty:} & p = 1000 \frac{N}{m} \\ \end{array}$

- Minimal working example to investigate the influence of the sparse inverse approximation to the block smoothing schemes
- Sub-solves are done with a direct method

Block LU

τ	$1e^{-1}$	$1e^{-2}$	$1e^{-3}$	$1e^{-4}$	$1e^{-5}$	$1e^{-6}$
$J(A^0)$	184	184	184	184	184	184
$J(A^1)$	171	74	23	21	21	21
$J(A^2)$	193	102	14	9	9	8
$J(A^3)$	174	15	15	6	3	2

- Shows the averaged iterations of the linear solver in the first newton step
- Sparsity pattern level on the left side and the threshold value for pre- and post filtration on the top
 - $\Rightarrow J(A^0)$ is equivalent to the matrix diagonal J(diag(A))
 - $\Rightarrow J(A^1)$ resembles the sparsity pattern J(A)
 - \Rightarrow The patterns $J(A^2)$ and $J(A^3)$ are the respective combinations on level 2 and 3

SIMPLE ($s=3,\omega=0.7$)							
	τ	$1e^{-1}$	$1e^{-2}$	$1e^{-3}$	$1e^{-4}$	$1e^{-5}$	$1e^{-6}$
	$J(A^0)$	-	-	-	-	-	-
	$J(A^1)$	-	-	-	369	68	48
	$J(A^2)$	-	-	320	11	11	11
	$J(A^3)$	-	-	-	7	5	4
	value "-" means no convergence						

- Shows the averaged iterations of the linear solver in the first newton step
- Sparsity pattern level on the left side and the threshold value for pre- and post filtration on the top
 - $\Rightarrow J(A^0)$ is equivalent to the matrix diagonal J(diag(A))
 - $\Rightarrow J(A^1)$ resembles the sparsity pattern J(A)
 - \Rightarrow The patterns $J(A^2)$ and $J(A^3)$ are the respective combinations on level 2 and 3

AR

Uzawa ($s = 3$,	$\omega = 0.7$)								
	τ	$1e^{-1}$	$1e^{-2}$	$1e^{-3}$	$1e^{-4}$	$1e^{-5}$	$1e^{-6}$		
	$J(A^0)$	-	-	-	-	-	-		
	$J(A^1)$	-	-	-	287	47	38		
	$J(A^2)$	-	-	268	11	11	11		
	$J(A^3)$	-	-	-	7	5	4		
value "-" means no convergence									

- Shows the averaged iterations of the linear solver in the first newton step
- Sparsity pattern level on the left side and the threshold value for pre- and post filtration on the top
 - $\Rightarrow J(A^0)$ is equivalent to the matrix diagonal J(diag(A))
 - $\Rightarrow J(A^1)$ resembles the sparsity pattern J(A)
 - \Rightarrow The patterns $J(A^2)$ and $J(A^3)$ are the respective combinations on level 2 and 3

Steel-Reinforced Concrete Beam

Settings

Discretization

# Solid DOFs:	5376
# Beam DOFs:	1686
# procs:	6

Solver

Newton convergence: 10^{-6} (rel)BiCGSTAB convergence: 10^{-8} (rel)

Material Parameters

 $\begin{array}{ll} \mbox{Solid:} & E_S = 30 \frac{N}{m^2}, \nu_S = 0.3 \\ & \mbox{hyperelastic Saint Venant-Kirchhoff model} \\ \mbox{Beam:} & E_B = 210 \frac{N}{m^2}, \nu_B = 0.0 \\ & \mbox{torsion-free Kirchhoff-Love model} \\ \mbox{Penalty:} & p = 1000 \frac{N}{m} \\ \end{array}$

*Four-point bending test under static loading*⁵

⁵Braml, T.; Wimmer, J. and Varabei, Y. (2022): "Erfordernisse an die Datenaufnahme und -verarbeitung zur Erzeugung von intelligenten Digitalen Zwillingen", *Innsbrucker Bautage 2022 (eds Berger, J.) (Studia, 2022), 31-49*

Fiber-Reinforced Composite Plate⁶

Settings

Discretization

# Solid DOFs:	1950
# Beam DOFs:	10992
# procs:	6

Solver

Newton convergence: 10^{-6} (rel)BiCGSTAB convergence: 10^{-8} (rel)

Material Parameters

 $\begin{array}{ll} \mbox{Solid:} & E_S = 10 \frac{N}{m^2}, \nu_S = 0.3 \\ & \mbox{hyperelastic Saint Venant-Kirchhoff model} \\ \mbox{Beam:} & E_B = 1000 \frac{N}{m^2}, \nu_B = 0.0 \\ & \mbox{torsion-free Kirchhoff-Love model} \\ \mbox{Penalty:} & p = 1000 \frac{N}{m} \\ \end{array}$

Deformation of the plate due to tensile load

⁶Steinbrecher, I.; Mayr, M.; Grill, M. J.; Kremheller, J.; Meier, C. and Popp, A. (2020): "A mortar-type finite element approach for embedding 1D beams into 3D solid volumes", *Computational Mechanics, 66:1377-1398*

What's next?

Weak scaling study: Cube filled with randomly placed and oriented fibers.

AMG(BlockMethod)

- Consider coupling constraints on all levels
- Assembly of the beam DOFs nullspace specific to beam formulation

- For now only considered torsion-free Kirchhoff–Love beam elements:
 - ⇒ Sufficient for a broad range of applications
 - ⇒ Restriction to straight center line in reference configuration

Extend to other beam formulations in the near future.

Thank you!

$\langle \! \rangle$

Collaborators:

- Matthias Mayr
- Alexander Popp
- Ivo Steinbrecher

References:

Open-source implementation will be available in TrilinosMueLu: https://trilinos.github.io/muelu.html

Contact:

- max.firmbach@unibw.de
- https://www.unibw.de/imcs-en