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Abstract: Tactical reconnaissance using small unmanned aerial vehicles has become a common
military scenario. However, since their sensor systems are usually limited to rudimentary visual or
thermal imaging, the detection of camouflaged objects can be a particularly hard challenge. With
respect to SWaP-C criteria, multispectral sensors represent a promising solution to increase the
spectral information that could lead to unveiling camouflage. Therefore, this paper investigates
and evaluates the applicability of four well-known hyperspectral anomaly detection methods (RX,
LRX, CRD, and AED) and a method developed by the authors called local point density (LPD) for
near real-time camouflage detection in multispectral imagery based on a specially created dataset.
Results show that all targets in the dataset could successfully be detected with an AUC greater
than 0.9 by multiple methods, with some methods even reaching an AUC relatively close to 1.0 for
certain targets. Yet, great variations in detection performance over all targets and methods were
observed. The dataset was additionally enhanced by multiple vegetation indices (BNDVI, GNDVI,
and NDRE), which resulted in generally higher detection performances of all methods. Overall, the
results demonstrated the general applicability of the hyperspectral anomaly detection methods for
camouflage detection in multispectral imagery.

Keywords: camouflage detection; anomaly detection; multispectral; hyperspectral; infrared;
image processing

1. Introduction

Small unmanned aerial vehicles (UAVs) equipped with imaging sensor systems such
as ALADIN or MIKADO of the German Armed Forces operate at relatively low altitudes
(ca. 30–150 m) and are commonly utilized for reconnaissance tasks in tactical environments,
as they are quickly deployed and allow to monitor very large areas without directly risking
human lives. However, military forces generally attempt to conceal themselves and their
equipment in their respective environments by using camouflage, making tactical recon-
naissance a particularly demanding challenge. Additionally, small tactical reconnaissance
drones are usually equipped with rudimentary visual or thermal sensor systems, which
do not necessarily provide enough information in order to distinguish between camou-
flaged objects and their surroundings. Deploying a sensor payload that provides spectral
information beyond visual or thermal range could therefore be crucial for the detection of
camouflaged objects, as camouflage might lose its effectiveness in certain spectral regions.

Hyperspectral imaging systems, for instance, are capable of capturing a unique and
distinctive spectral signature of every physical material, which can be successfully exploited
for camouflage detection [1,2]. However, considering a tactical environment with small
reconnaissance drones, the size, weight, power, and cost criteria (SWaP-C) of any payload
must be taken into account. As powerful as hyperspectral sensors can be, as expensive is
their acquisition. In addition, raw hyperspectral sensor data requires extensive postprocess-
ing in order to obtain a hyperspectral data cube, rendering online hyperspectral sensor data
evaluation nearly impossible. Compared to hyperspectral sensor systems, multispectral
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sensor systems generally come at a more favorable price, are lower in size and weight
and require much less postprocessing, making them considerably more relevant for any
airborne remote sensing application. Yet, their spectral resolution is significantly lower
and their spectral sensitivity per band is significantly higher, which could diminish their
practical value in other ways.

Nevertheless, multispectral imagery has found many applications in recent years,
ranging from precision farming [3–6], vegetational monitoring [7–12] and disturbance de-
tection [13–15] to biomass estimation [16], aquatic plant detection [17,18], bathymetry [19],
and even camouflage detection [20]. In [20], constrained energy minimization (CEM) in
combination with a customized version of the well-known OTSU thresholding algorithm
is applied to detect multiple camouflages in complex outdoor scenes of different perspec-
tives. In addition to the effectiveness of the proposed method, it requires prior spectral
knowledge about the camouflage, which might not be available in real-world tactical
reconnaissance scenarios.

Since multispectral imagery has already been proven for various applications, even
camouflage detection, the Institute of Flight Systems of the Universität der Bundeswehr
München is actively researching the possibilities of multispectral imaging systems in
tactical reconnaissance scenarios for computer-aided near real-time camouflage detection.
For this purpose, a multispectral sensor setup was composed, mounted on a commercial
drone, and utilized to collect a multispectral dataset containing multiple camouflaged
targets of different materials and sizes. Moreover, a set of four well-known methods for
hyperspectral anomaly detection (RX [21], LRX [21], CRD [22], and AED [23]) and one new
density-based method developed by the authors called local point density (LPD) were
adopted and applied on the specially created multispectral dataset. In addition to the raw
dataset, the methods were also applied on an extension with multiple vegetation indices
(BNDVI, GNDVI, and NDRE) of it, as they appeared to have increased contrast between
the targets and their surroundings. The performance of these methods for detecting the
camouflaged targets in the data were evaluated using the well-known metrics receiver
operating characteristic (ROC) and area under the curve (AUC) and are presented and
discussed in this paper. Since detection results should be available almost immediately
in a real-world tactical reconnaissance scenario, the algorithms were also assessed with
respect to the imposed near real-time requirement, which corresponds to a processing time
of less than one second in this paper. The specific time constraint of one second results
from a trade-off between the required availability of the detection results and the high
computational complexity of the detection algorithms.

Hyperspectral anomaly detection is a very active field of research in which targets are
characterized by spectral signatures that appear anomalous with respect to their current
context. Consequently, successful target detections do not require prior knowledge about
target signatures but a general approach for separating the target from background sig-
natures. The Reed–Xiaoli detector (RX) [21] is one of the most prominent algorithms. It
estimates the global covariance and the mean value per channel in a hyperspectral image to
calculate the Mahalanobis distance for each pixel, which serves as a measure of its anomaly.
As RX assumes that every background pixel follows a global Gaussian distribution, which
might be a very simplified assumption in some cases, several techniques built upon the
original RX detector have been introduced. For example, the local RX detector (LRX) consid-
ers only a window-based neighborhood for calculating the Mahalanobis distance, allowing
more accurate background estimations for each pixel. Further developments are the kernel
RX (KRX) [24], the cluster kernel RX (CKRX) [25], or the weighted RX (W-RXD) [26] detector,
for instance. In contrast to distribution-based background modeling, representation-based
detectors [22,27–29] assume that background pixels can be represented by certain or derived
parts of the original hyperspectral image such as background dictionaries or local regions
while anomalous pixels cannot. Furthermore, density-based [30,31], cluster-based [32], or
morphological attribute filtering-based [23] detectors have also been proposed.
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As it is assumed that camouflage spectrally differentiates from its surroundings in
multiple bands, although it does logically not in visual, camouflage could be treated as
a target for methods of hyperspectral anomaly detection. Moreover, the methods do not
require prior knowledge about spectral target signatures, which fits the needs of real-world
tactical reconnaissance scenarios where spectral characteristics of hostile camouflage should
generally be considered unknown. However, since the selected methods were developed
for hyperspectral imagery and for detecting spectral anomalies in general, they might
not necessarily work for multispectral imagery containing camouflaged targets. Hence,
the research work provided by this paper by compiling the dataset and evaluating the
applicability of the aforementioned methods.

In the following sections, the dataset, the extension of it, and the selected methods
are introduced in detail. Subsequently, the detection performances and runtimes of the
methods are presented and discussed, and possible future research focuses are pointed out.

The contributions of this work can be summarized as follows:

• Compilation of a multispectral dataset for camouflage detection (MUCAD);
• Development of a density-based hyperspectral/multispectral anomaly detector;
• Evaluation of five different methods adopted for near real-time camouflage detection

in multispectral imagery.

2. Materials and Methods
2.1. Dataset: MUCAD

The multispectral dataset for camouflage detection (MUCAD) consists of 23 samples,
each featuring 7 images with a resolution of 512 × 512 pixels and a corresponding ground
truth mask containing target annotations. All images have a color depth of 8 bits and a
ground sample distance (GSD) of 10 cm/px. Each kind of target is labeled with a different
but consistent color across all samples. An example of a single sample is shown in Figure 1.
(a) shows the visual band (which is technically not a single band but is treated as such in
this paper), (b–g) show the blue to LWIR bands, respectively, and are ordered by ascending
wavelength and (h) shows the ground truth mask with annotations for a grey tarpaulin
(dark blue), a green tarpaulin (light blue) and a 2D camouflage net (red).
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tarpaulin, and 2D camouflage net). (a) VIS; (b) blue; (c) green; (d) red; (e) EIR; (f) NIR; (g) LWIR; (h) 
ground truth. The grey tarpaulin, green tarpaulin, and 2D camouflage net are labeled as dark blue, 
light blue, and red, respectively. 

The samples of the dataset were not natively captured but cut out of a set of 
geographically referenced and aligned orthophotos (one for each band). In addition, the 
samples were pixel aligned based on the ECC criterion [33] using the implementation 
provided by OpenCV [34] and rescaled to fit a resolution of 512 × 512 pixels and a GSD of 
10 cm/px. 

The orthophotos were generated using the aerial image mapping software 
OpenDroneMap [35], where the raw sensor data were captured in 50 m height with 70% 
side and front overlap using a MicaSense Altum and a DJI Zenmuse XT2 mounted on a 
DJI Matrice 210 RTK V2. The complete setup, as well as a the generated visual orthophoto, 
are depicted in Figure 2. Visual and LWIR images were provided by the Zenmuse XT2 
and blue to NIR images were provided by the MicaSense Altum. Table 1 shows further 
details about the captured spectral information of each band. Since both cameras capture 
images with 16-bit color depth except for the visual band, the intensities of all images were 
resampled from 16-bit to 8-bit color depth. Moreover, LWIR images were rescaled 
between their min and max values across all LWIR images before they were resampled 
down to 8-bit color depth. In contrast to common practices, the spectral bands provided 
by the MicaSense Altum were not converted to reflectance maps but kept in their raw 
form as reflectance values only matter for actual vegetational measurements which were 
not intended to be conducted. 

Figure 1. Single sample of MUCAD containing three different targets (grey tarpaulin, green tarpaulin,
and 2D camouflage net). (a) VIS; (b) blue; (c) green; (d) red; (e) EIR; (f) NIR; (g) LWIR; (h) ground
truth. The grey tarpaulin, green tarpaulin, and 2D camouflage net are labeled as dark blue, light blue,
and red, respectively.
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The samples of the dataset were not natively captured but cut out of a set of geograph-
ically referenced and aligned orthophotos (one for each band). In addition, the samples
were pixel aligned based on the ECC criterion [33] using the implementation provided by
OpenCV [34] and rescaled to fit a resolution of 512 × 512 pixels and a GSD of 10 cm/px.

The orthophotos were generated using the aerial image mapping software Open-
DroneMap [35], where the raw sensor data were captured in 50 m height with 70% side and
front overlap using a MicaSense Altum and a DJI Zenmuse XT2 mounted on a DJI Matrice
210 RTK V2. The complete setup, as well as a the generated visual orthophoto, are depicted
in Figure 2. Visual and LWIR images were provided by the Zenmuse XT2 and blue to NIR
images were provided by the MicaSense Altum. Table 1 shows further details about the
captured spectral information of each band. Since both cameras capture images with 16-bit
color depth except for the visual band, the intensities of all images were resampled from
16-bit to 8-bit color depth. Moreover, LWIR images were rescaled between their min and
max values across all LWIR images before they were resampled down to 8-bit color depth.
In contrast to common practices, the spectral bands provided by the MicaSense Altum were
not converted to reflectance maps but kept in their raw form as reflectance values only
matter for actual vegetational measurements which were not intended to be conducted.
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downside of this method is the inability to capture dynamic scenes. 

Although this paper is about near real-time camouflage detection, the sensor–drone 
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systems only provide simple storage interfaces (USB stick and SD card), meaning that 
image processing must be performed offline. An on-board system capable of online image 
processing would have to be composed of sensor systems that provide a proper high-
speed interface. Furthermore, setting up such a system would have required a different 
hardware platform and additional on-board processing capabilities. However, in creating 
the dataset, which theoretically could have been produced by a system with online 

Figure 2. The visual orthophoto that was used to generate the visual bands of MUCAD. The setup
utilized for taking the raw images was composed of a DJI Zenmuse XT2 and a MicaSense Altum
mounted on a Matrice 210 RTK V2.

The procedure for the dataset creation was chosen as it simplifies synchronization of
both camera systems and allows the generation of images with arbitrary resolutions and
ground sample distances only limited by the raw footage’s ground sample distance. The
downside of this method is the inability to capture dynamic scenes.
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Table 1. Characteristics and associated sensor of each band.

Band Sensor Center Wavelength Bandwidth

Visual (VIS) XT2 - -
Blue Altum 475 nm 32 nm

Green Altum 560 nm 27 nm
Red Altum 668 nm 14 nm

Edge-infrared (EIR) Altum 717 nm 12 nm
Near-infrared (NIR) Altum 842 nm 57 nm

Long-wave infrared (LWIR) XT2 10.5 µm 6 µm

Although this paper is about near real-time camouflage detection, the sensor–drone
system in Figure 2 itself does not allow near real-time image processing, as both camera
systems only provide simple storage interfaces (USB stick and SD card), meaning that
image processing must be performed offline. An on-board system capable of online image
processing would have to be composed of sensor systems that provide a proper high-speed
interface. Furthermore, setting up such a system would have required a different hardware
platform and additional on-board processing capabilities. However, in creating the dataset,
which theoretically could have been produced by a system with online capabilities, main
concerns were fast and reliable raw data generation without excessive preliminary work,
hence the hardware configuration described above. In addition, this paper only considers
the near real-time capabilities (processing time less than one second) of the detection
algorithms and not those of an entire system.

In total, MUCAD contains 8 different kinds of targets, whose placement is shown in
Figure 3. Each target was placed in a visually similar appearing environment. The first
three target classes are depicted in Figure 3a: (1) a green tarpaulin that was shaped to
appear like a bush instead of a simple green rectangular, (2) a 2D camouflage net that was
placed near the woods to appear like an extension of it and (3) a gray tarpaulin that was
placed in a concrete area and additionally shaped to avoid sharp rectangular appearing
transitions between the target and its environment. The fourth target is shown in Figure 3b:
(4) an artificial grass mat that was placed in very similar appearing high grass. Figure 3c
contains the fifth and sixth target classes: (5) a 3D camouflage net that was placed and
shaped to appear like a tree crown or a bush and (6) an artificial hedge that was placed in a
shadowed area and thrown over a bush to adapt its shape.

The last two target classes are shown in Figure 3d: (7) two lying persons in a tree’s
shadow wearing a battle dress uniform and a German field dress, respectively, and
(8) two gray cars which were initially not considered targets but became targets as their
color is close to that of the road but their heat signature is completely different. Figure 4
exemplarily shows the green tarpaulin, the grey tarpaulin, and the 2D camouflage net from
the ground perspective just before they were captured by the multispectral camera system.

The targets were acquired from multiple different sources. The green tarpaulin, the gray
tarpaulin, the artificial grass mat, and the artificial hedge were bought at a local hardware
store to cover the use case of utilizing relatively simple means and easily acquirable materials
to conceal objects in a suitable environment without having to shop online. To cover a classic
military use case, additional camouflage equipment was bought online. According to the
store pages, the 2D camouflage net and the 3D camouflage net were supposedly original
equipment of the Bundeswehr (German Armed Forces) and the Armed Forces of the Crown
(British Armed Forces), respectively. The German field dress and the battle dress uniform
were also authentic original military equipment, according to the store pages.

In the dataset, every target is almost evenly distributed across all samples to keep a
potential target class distribution bias as small as possible. Furthermore, to obtain more
meaningful detection results, the samples were cropped from the orthophotos in such a
way that each target is located in different parts of the captured area and that the same
target has different backgrounds considering the whole area captured by the sample. For
this reason, there are more samples than targets in the dataset.
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Figure 3. All camouflaged targets of MUCAD in their visual band. (a) Green tarpaulin (1), 2D
camouflage net (2), and gray tarpaulin (3); (b) artificial grass mat (4); (c) 3D camouflage net (5),
and artificial hedge (6); (d) two persons wearing a battle dress uniform and a German field dress,
respectively, (7) and two gray cars (8).
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The entire dataset was captured at the end of May 2021 at the test site of the Universität
der Bundeswehr München and is publicly available (See the Data Availability Statement at
the end of the article).

2.2. Camouflage Detectors

For the detection of camouflage in multispectral imagery, four well-known hyperspec-
tral anomaly detection methods were adopted: the classic Reed–Xiaoli detector (RX) and
local RX detector (LRX) [21], the collaborative representation-based detector (CRD) [22]
and the attribute and edge-preserving filter detector (AED) [23]. In addition to those four
existing methods, this work introduces a new target detection method: local point density
(LDP), which was inspired by dual window density (DWD) [31].

While there are a lot of powerful options available, the methods were primarily
selected by their prominence, expected implementation effort, and expected computational
requirements, although covering a great variety of distinct approaches was also a major
concern. For this reason, all methods are based on entirely different target and background
modeling techniques. The methods and their implementations are briefly discussed in the
following sections. For a deeper understanding of the algorithms’ theoretical foundations,
versed readers may look up the provided references to the original publications.

2.2.1. RX and LRX

The RX detector [21] is based on the assumption that spectral target and background
signatures in an image can be modeled by a single gaussian distribution, respectively.
Leading to the Mahalanobis distance for calculating an anomaly score for a single pixel:

dM =

√
(x− µ)T∑−1

(x− µ) (1)

where dM is the resulting Mahalanobis distance for the pixel of interest, x is the correspond-
ing pixel value vector, µ is the mean vector consisting of the mean values for each band
and ∑ is the covariance matrix for the image’s bands. The higher the Mahalanobis distance
for a single pixel the higher its anomality.

Instead of calculating the mean and covariance for the whole image, the LRX detector
operates in a small local neighborhood for each pixel, defined by an inclusion and exclusion
window size (Winc and Wexc). Considering that every image possesses an arbitrary GSD
and resolution and therefore also covers an arbitrary area in real-world space, it can make
sense to restrict the region where mean and covariance estimation is performed to improve
detection performance, as the whole image might cover multiple but entirely different
backgrounds and targets. Figure 5 shows the process of local neighborhood selection for a
single pixel under test (marked yellow). The outer blue window describes the inclusion
area, and the orange window describes the exclusion area, meaning that the mean and
covariance for calculating the anomaly score (Mahalanobis distance) of the yellow pixel
are estimated with all values that are contained in the blue window but are outside of the
orange window. Conclusively, the LRX detector is computational more expensive than the
plain RX detector but might achieve higher detection rates because of its local nature.

Both algorithms were implemented in C++ using Eigen 3 [36], parallelized using
OpenMP [37] and not modified in any way they work. Additionally, the algorithms were
interfaced for the us in Python 3 using Cython [38].
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Figure 5. Dual window neighborhood principle for anomaly detection. For the pixel under test
(marked yellow), only pixels that are inside the blue window but outside the orange area are
considered for estimating its anomaly score.

2.2.2. CRD

Collaborative representation-based detection [22] operates like the LRX detector in a
local neighborhood (see Figure 5), but works entirely different in calculating a pixelwise
anomaly score. In general, it is assumed that a non-anomalous pixel can be collaboratively
represented by a weighted sum of its neighboring pixels. The neighboring pixels are
the pixels in the local neighborhood defined by the exclusion and inclusion area of the
pixel under test. Consequently, it is also assumed that an anomalous pixel cannot be
collaboratively represented by its neighboring pixels. The problem can be described as an
optimization problem for a pixel vector under test x and its dual window neighborhood N:

arg min
α
‖x−Nα‖2

2 + λ‖α‖2
2 (2)

where N = {ni}sN
i=1 is a 2D Matrix of size sN = W2

inc −W2
exc containing all pixel values in

the dual window neighborhood of the pixel under test. x is the value of the pixel under test,
α is the weight vector whose elements describe the individual contribution of each pixel
in the neighborhood and λ is a regularization parameter that controls the weight of the
penalty of the weight vector’s squared second norm. Fortunately, the optimization problem
has a closed form solution and must not be solved iteratively (I is the identity matrix):

α̂ =
(

NTN + λI
)−1

NTx (3)

After obtaining the weight vector α̂ for a pixel under test, its anomaly score a can be
calculated, which is its reconstruction error at the same time:

a = ‖x− Nα̂‖2 (4)

The authors of CRD introduced an additional distance-based regularization method
and a sum to one constraint for the weight vector. Details can be found in the original
publication [22]. For the implementation in this work, both concepts were applied.

Although CRD is a rather slow method, it was initially thought that it can be greatly
accelerated by parallelizing it with a graphics card. Unfortunately, the matrix inversion
in Equation (3) turned out to be too complex for a single graphics card core, leading to
an even slower solution than a parallelized C++ implementation using Eigen 3 [36] and



Remote Sens. 2022, 14, 3755 9 of 21

OpenMP [37] that was used for the results in this paper (additionally interfaced with
Cython [38] for the use in Python 3).

2.2.3. AED

In attribute and edge-preserving filtering-based anomaly detection (AED) [23], it is
assumed that anomalous objects are generally small and characterized by a significantly
different intensity in a lot of bands compared to their backgrounds. In order to transfer
that assumption into an algorithm, the authors utilized morphological attribute filters [39]
to decompose the image under test into morphological attribute profiles (APs). In detail,
for each band two versions (the APs) are generated. One where all bright connected
components that have an area (number of pixels) lower than κ have been removed and one
where all dark connected components that have an area lower than κ have been removed.
These two versions are subtracted from each other to obtain a difference map that has very
large values where very bright or very dark connected components have been removed.
All difference maps undergo a special binary filtering step where only the pixels with
large values are retained and all others are set to zero. The filtered difference maps are
finally accumulated into a single anomaly map, which is processed by an edge-preserving
filter. Consequently, the final anomaly map has high values where a lot of connected
components have been removed that had much lower or higher intensities compared to
their backgrounds, thus indicating anomalous objects. It should be noted that the original
AED algorithm performs a dimensionality reduction step on the image before it is further
processed. This step was not deployed in this work, since it deals with multispectral
imagery, which is of low dimensionality by nature.

In addition to the originally proposed algorithm, a version with an extra filtering step
right after the binary filtering step that removes every bright connected component with
an area lower than ν or a compactness (area divided by the square of its perimeter length)
lower than υ was implemented. This additional filtering step is supposed to eliminate false
positive detections in each individual band before they are combined into a single anomaly
map. The customized version of AED is called AED-F (F for the additional filtering).

To reduce implementation effort, the edge-preserving filtering step for the final
anomaly map in both algorithms was achieved by a common bilateral filter [40] instead of
a domain transform recursive filter [41] utilized in the original publication [23].

AED and AED-F were implemented in Python 3 using sap [42] and OpenCV [34].

2.2.4. LPD

Inspired by DWD [31], a density-based [43] algorithm was developed that encom-
passes a comparatively less memory intensive and more equally weighted pixelwise density
computation, called local point density (LPD). LPD operates like LRX and CRD in a local
neighborhood that is defined by an inclusion and exclusion area, as it is shown in Figure 5.

For a pixel under test, its density is calculated according to:

ρ =
1

sM

sM

∑
i=1

exp

(
−
‖x−mi‖2

2

d2
c

)
(5)

where x is the pixel value vector, mi is the i-th element of M = N ∪ {x} and sM is the
size of M (sM = sN + 1). N =

{
nj
}sN

j=1 is the pixel’s dual window neighborhood of size

sN = W2
inc −W2

exc. dc is the cut-off distance, which in contrast to DWD is not determined
by calculating a distance matrix containing all distances between all pixel values but by
computing the average distance between all pixel values and the average pixel value:

dc =
1

sM

sM

∑
i=1
‖mi − µM‖2 (6)
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µM =
1

sM

sM

∑
j=1

mj (7)

Compared to calculating a distance matrix, this method is much less memory expen-
sive, as it is purely iterative and no matrix must be stored at all, which can prove useful in
large scale parallelized implementations and on memory limited platforms.

The density calculated per pixel is additionally more evenly weighted compared to
DWD, as pixel density is calculated pixel-wise with respect to a local neighborhood which
is not the case in DWD, where pixel density is calculated window-wise with respect to a
local neighborhood, meaning that the local neighborhood is not centered around every
pixel under test as it is in LPD.

In the final density map, anomalous and background pixels have a low and high
density, respectively. The density map is converted into an anomaly map by negating it
and adding the lowest value to all pixels afterwards to avoid negative values.

LPD was implemented using C++ and Eigen 3 [36], parallelized using OpenMP [37],
and interfaced for use in Python 3 using Cython [38].

2.3. Vegetation Indices

As stated in the introduction, the methods described in Section 2.2 were applied to two
different configurations of MUCAD. First, on raw MUCAD, and second, on MUCAD-VI,
which is an extension of MUCAD with the vegetation indices BNDVI, GNDVI, and NDRE,
as it is described in Table 2. The indices were chosen as they appeared to be increasing the
visibility of some targets with respect to their environments (see Figure 6), which could
support successful target detections. All indices were computed online, meaning that
they were not statically saved as files but calculated right before the detection algorithms
were applied.

Table 2. Vegetation indices for online extension of MUCAD.

Index Formula

BNDVI
NIR−blue
NIR+blue

GNDVI
NIR−green
NIR+green

NDRE NIR−EIR
NIR+EIR
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3. Results

For the evaluation of each target detector with MUCAD, an image resolution of
256 × 256 pixels was chosen to conserve computing capabilities, resulting in an effective
ground sample distance of 20 cm/px for each sample. It is the lowest resolution that
still allows for visually detecting the smallest targets of the dataset (persons in uniforms).
Before the samples were processed by the algorithms, every band was z-normalized (mean
of zero and standard deviation of one). Additionally, the visual band was weighted by
one-third, since it was treated as a single band but technically consists of three individual
bands. As a postprocessing step, all bright connected components that had an area smaller
than nine pixels were removed in the final binarized anomaly map of each target detector,
as it was assumed that anomalous objects occupy an area of at least a third square meter
(9× 400 cm2 = 0.36 m2).

To find a near to optimal configuration for each target detector, multiple parameters
sets were applied (except for RX, which is parameterless). For LRX and LPD, Winc and Wexc
were set to: {(5, 15), (11, 31), (21, 61), (31, 91), (41, 121)}. Because of its expensive
computational requirements, the window sizes of CRD were selected slightly differently:
{(5, 15), (11, 21), (21, 31), (31, 41), (41, 51)}. As for the AED-based methods, κ was
set to: {25, 50, 100, 200, 300}. For AED-F, ν was also set to nine and υ (compactness
threshold) was set to 0.15.

The target detectors were applied on two different dataset configurations: the raw
version of MUCAD and an extended version with three additional bands: BNDVI, GNDVI,
and NDRE. The evaluation of each method was performed based on its receiver operating
characteristic (ROC) and the corresponding area under the curve (AUC). ROCs were
calculated for each target class and each capture individually, which were then combined
by threshold averaging [44] afterward to obtain a single ROC for each target class over
the whole dataset. ROCs with an AUC lower than 0.9 had such bad detection rates (true
positive rate) and high false alarm rates (false positive rate), that they were considered to
have not detected the target at all. Therefore, those weak results are not included in the
following tables and graphs for better clarity of the remaining results.

All experiments were conducted on a machine running Ubuntu 20.04 LTS with an
AMD Ryzen 9 3950X (16C/32T) and 128 GB Memory.

3.1. MUCAD

First, all target detectors were applied on the raw version of MUCAD. The resulting
receiver operating characteristics are displayed in Figure 7. Note that for each method
only the parameter configuration that achieved the highest AUC over all parameter con-
figurations of the method is shown. All other parameter configurations are not further
considered in the following evaluation. Each tile shows the results for a specific target class
and contains a color-coded ROC for every successful algorithm (note that each plot has
individual limits for the abscissa). The legend of every tile shows AUCs for each ROC
in parentheses.

As it can be seen, detection performances vary greatly across target detectors and
classes. The artificial hedge could only be detected by LRX and LPD. Still, their AUCs
are relatively low, and ROCs show that false alarm rates are already considerably high
before detection rates even reach 50%, which signalizes high difficulty for the methods
to detect the target. In contrast to that, the artificial grass mat, the green tarpaulin and
the gray tarpaulin were detected by all algorithms with high detection rates at low false
alarm rates. The 2D camouflage net, as well as the cars, were also detected by all methods
but with significantly lower performance, although LRX and CRD stand clearly out in
AUC and ROC. For the 3D camouflage net, only LRX and CRD could achieve considerable
results. Yet, the detection performances are almost as bad as for the artificial hedge, making
it the second target that could barely be detected. The persons were also detected only
by two algorithms: LRX and LPD. Only this time, LPD achieved a comparatively strong
performance with high detection rates at low false alarm rates.
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Table 3 contains the AUCs, parameter configurations, and runtimes for the ROCs
in Figure 7. The upper third of the table shows the AUC values of each algorithm for
every target class where the highest values are marked bold. As mentioned before, AUC
values lower than 0.9 are not included and were replaced by a “-”. Top scores are almost
evenly spread across LRX, LPD and CRD, showing that the detection task benefits from
local target and background assumptions, while the plain RX detector stays noticeably
behind the top performances in all target classes except for the gray tarpaulin. AED-based
methods fail in as many target class detections as RX but achieve close to best performance
for the artificial grass mat, the green tarpaulin and the gray tarpaulin. Moreover, AED-F
achieves consistently higher AUCs compared to its unmodified counterpart AED, showing
the effectiveness of the additional filtering. As already pointed out based on the ROCs,
the artificial hedge, the 3D camouflage net and the persons cannot be detected by a lot
of algorithms, though LPD achieves a strong detection performance for the person target
class. Those bad detection performances are likely due to weak spectral differences of the
artificial hedge (which even lies in the shadows) and the 3D camouflage net, and the small
spatial size of the persons, making them particularly hard to differentiate from normal
background clutter.

Table 3. Class-wise detection performances, parameter configurations and runtimes of each method
applied on the raw version of MUCAD. Detection results with an AUC less than 0.9 were replaced
with a “-” for better clarity.

Art. Hedg. Art. Gr. Mat Green Tarp Gray Tarp 2D Net 3D Net Person Car

Detection Performance (AUC)

RX - 0.9681 0.9768 0.9947 0.9543 - - 0.9566
LRX 0.9064 0.9961 0.9934 0.9998 0.9904 0.9598 0.9630 0.9605
AED - 0.9914 0.9953 0.9983 0.9656 - - 0.9226

AED-F - 0.9971 0.9970 0.9991 0.9732 - - 0.9359
LPD 0.9469 0.9976 0.9877 0.9797 0.9725 - 0.9889 0.9015
CRD - 0.9969 0.9977 0.9997 0.9886 0.9550 - 0.9782

Parameter Configuration (Winc and Wexc or κ)

RX - - - - - - - -
LRX (41, 121) (11, 31) (21, 61) (21, 61) (31, 91) (41, 121) (5, 15) (21, 61)
AED - 100 200 100 300 - - 300

AED-F - 100 200 100 300 - - 300
LPD (41, 121) (11, 31) (11, 31) (11, 31) (21, 61) - (5, 15) (21, 61)
CRD - (21, 31) (21, 31) (21, 31) (31, 41) (31, 41) - (41, 51)

Runtime

RX 6 ms
LRX 3700 ms 114 ms 350 ms 350 ms 894 ms 3700 ms 43 ms 350 ms
AED 295 ms

AED-F 525 ms
LPD 953 ms 74 ms 74 ms 74 ms 268 ms - 24 ms 268 ms
CRD - 2.8 min 2.8 min 2.8 min 8.2 min 8.2 min 0.5 min 17 min

The middle third of the table describes the parameter configuration for each detector
whose AUC is given in the first third. Depending on the algorithm, values stand either
for the inclusion and exclusion window (Winc and Wexc) or for the area of connected
components to be removed (κ). RX is parameterless. For the local neighborhood-based al-
gorithms, window sizes logically rise and fall with the targets’ sizes. As does the connected
component area for the AED-based methods.

The runtimes of the algorithms are outlined in the lower third of the table. The RX
detector does not have any parameters which results in a consistent runtime for each
target class. LRX, LPD and CRD depend heavily on their parameters, which translates into
increasing runtimes for larger window sizes. The runtimes of the AED-based methods
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are not influenced by their parameters and are therefore constant for each target class,
although the additional filtering in AED-F almost doubles its time consumption. CRD
has striking high runtimes due to its computational complexity, making it unsuitable for
any near real-time application regardless of its strong detection performance. All other
methods keep their time consumption below one second except LRX, which exceeds it
when window sizes are comparatively large. Note that the runtimes only contain the raw
method execution time and no time consumption caused by pre- or postprocessing.

Figure 8 shows the detection maps of all methods for an exemplary capture of MUCAD
containing the green tarpaulin, the grey tarpaulin, and the 2D camouflage net. The first
two images show the visual band (a) and the associated ground truth (b) of the capture,
followed by the detection maps (c–h) of RX, LRX, AED, AED-F, LPD, and CRD, respectively.
The parameter configurations of each method correspond to the second column in Table 3.
As it can be qualitatively observed, AED-F (f) produced much fewer false positives in the
detection map compared to AED (e). LRX (d) also generated much fewer false positive
detections than RX (c), which is consistent with their corresponding ROCs in Figure 7 and
AUCs in Table 3. LPD (g) produced a significantly different detection map with generally
higher anomaly scores compared to all other methods, but with no apparent negative
impact on its ROC or AUC. The detection map of CRD (h) appears to be very similar to the
detection map of LRX (d), although there are generally considerable differences in detection
performance, as indicated by their ROCs and AUCs.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 22 
 

 

in Figure 7 and AUCs in Table 3. LPD (g) produced a significantly different detection map 
with generally higher anomaly scores compared to all other methods, but with no appar-
ent negative impact on its ROC or AUC. The detection map of CRD (h) appears to be very 
similar to the detection map of LRX (d), although there are generally considerable differ-
ences in detection performance, as indicated by their ROCs and AUCs. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 8. Detection maps of all evaluated methods applied on an exemplary capture of the raw 
version of MUCAD. (a) VIS; (b) ground truth; (c) RX; (d) LRX (21, 61); (e) AED (200); (f) AED-F (200); 
(g) LPD (11, 31); (h) CRD (21, 31). The parameter configurations (in parentheses) correspond either 
to the inclusion and exclusion window or to the area of connected components to be removed. 

3.2. MUCAD-VI 
For the extended version of MUCAD (MUCAD-VI), receiver operating characteris-

tics for every target class are shown in Figure 9. The tiles and their contents follow the 
same pattern as in Figure 7. For the artificial hedge, only a subset of algorithms (RX, LRX, 
and LPD) could achieve more than 0.9 AUC, but LRX obtained much higher detection 
rates at equal false alarm rates compared to RX and LPD. The artificial grass mat, the green 
tarpaulin, and the grey tarpaulin were detected by all algorithms, with LRX, CRD, AED, 
and AED-F being close to an ideal detector for certain targets. All methods could detect 
the 2D camouflage net, although LRX clearly outperformed all other detectors. For the 3D 
camouflage net, only LRX and CRD could achieve comparatively high detection rates at 
low false alarm rates. LPD and RX obtained indeed more than 0.9 AUC but performed 
significantly lower than their competitors. The persons were detected solely by LRX, LPD, 
and CRD, with LPD clearly dominating in high detection rates at low false alarm rates. 
For the detection of the cars, RX, LRX, and CRD obtained very similar results and outper-
formed all other methods, with LPD not even reaching 0.9 AUC. 

Compared to the ROCs in Figure 7 (raw MUCAD), detection rates at low false alarms 
generally improved across all methods and target classes. Most noticeable, the artificial 
hedge (which was barely detected by LRX applied on the raw version of MUCAD) could 
be detected with much higher detection rates at much lower false alarm rates. 
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3.2. MUCAD-VI

For the extended version of MUCAD (MUCAD-VI), receiver operating characteristics
for every target class are shown in Figure 9. The tiles and their contents follow the same
pattern as in Figure 7. For the artificial hedge, only a subset of algorithms (RX, LRX, and
LPD) could achieve more than 0.9 AUC, but LRX obtained much higher detection rates
at equal false alarm rates compared to RX and LPD. The artificial grass mat, the green
tarpaulin, and the grey tarpaulin were detected by all algorithms, with LRX, CRD, AED,
and AED-F being close to an ideal detector for certain targets. All methods could detect
the 2D camouflage net, although LRX clearly outperformed all other detectors. For the 3D
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camouflage net, only LRX and CRD could achieve comparatively high detection rates at
low false alarm rates. LPD and RX obtained indeed more than 0.9 AUC but performed
significantly lower than their competitors. The persons were detected solely by LRX, LPD,
and CRD, with LPD clearly dominating in high detection rates at low false alarm rates. For
the detection of the cars, RX, LRX, and CRD obtained very similar results and outperformed
all other methods, with LPD not even reaching 0.9 AUC.
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Compared to the ROCs in Figure 7 (raw MUCAD), detection rates at low false alarms
generally improved across all methods and target classes. Most noticeable, the artificial
hedge (which was barely detected by LRX applied on the raw version of MUCAD) could
be detected with much higher detection rates at much lower false alarm rates. Additionally,
targets that were detected only by two methods in MUCAD, were detected by three to
four methods in MUCAD-VI. Although LPD previously managed to achieve more than
0.9 AUC for the cars, its detection performance fell below that threshold in its application
on MUCAD-VI.

Table 4 contains AUCs, parameter configurations, and runtimes for the methods and
ROCs in Figure 9. In the first third of the table, the detection performances in AUC are
displayed, with the highest value per target class marked in bold. LRX and CRD are clearly
dominating in terms of the number of highest AUC per class. AED-F and LPD achieved a
single top result, respectively, while RX and AED did not achieve any of the top results.
Additionally, LRX is the only algorithm that detected all targets (more than 0.9 AUC for all
targets). RX, LPD, and CRD could not detect the persons, the cars, and the artificial hedge,
respectively. In addition, not having accomplished top results in each class, it is notable
that AED-F achieved results relatively close to an ideal detector for the artificial grass mat,
the green tarpaulin, and the gray tarpaulin.

Table 4. Class-wise detection performances, parameter configurations, and runtimes of each method
applied on MUCAD extended by vegetation indices (MUCAD-VI). Detection results with an AUC
less than 0.9 were replaced with a “-” for better clarity.

Art. Hedg. Art. Gr. Mat Green Tarp Gray Tarp 2D Net 3D Net Person Car

Detection Performance (AUC)

RX 0.9426 0.9952 0.9795 0.9931 0.9591 0.9062 - 0.9842
LRX 0.9885 0.9997 0.9954 0.9997 0.9905 0.9721 0.9657 0.9754
AED - 0.9987 0.9992 0.9984 0.9756 - - 0.9233

AED-F - 0.9995 0.9995 0.9992 0.9815 - - 0.9385
LPD 0.9559 0.9989 0.9875 0.9778 0.9764 0.9460 0.9908 -
CRD - 0.9995 0.9971 0.9997 0.9853 0.9754 0.9025 0.9845

Parameter Configuration (Winc and Wexc or κ)

RX - - - - - - - -
LRX (41, 121) (21, 61) (11, 31) (21, 61) (31, 91) (31, 91) (5, 15) (21, 61)
AED - 100 100 100 300 - - 300

AED-F - 100 100 100 300 - - 200
LPD (41, 121) (11, 31) (11, 31) (11, 31) (21, 61) (21, 61) (5, 15) -
CRD - (21, 31) (21, 31) (21, 31) (31, 41) (31, 41) (5, 15) (41, 51)

Runtime

RX 6 ms
LRX 7300 ms 476 ms 148 ms 476 ms 2000 ms 2000 ms 53 ms 476 ms
AED 397 ms

AED-F 691 ms
LPD 1000 ms 78 ms 78 ms 78 ms 282 ms 282 ms 24 ms -
CRD - 2.8 min 2.8 min 2.8 min 8.2 min 8.2 min 0.1 min 17 min

As it has already been pointed out in the evaluation of the ROCs in Figure 9, com-
pared to the results obtained with raw MUCAD, detection performances for MUCAD-VI
consistently increased or were at least equally high. This is most noticeable for the artificial
hedge and the 3D camouflage net, which were most difficult to detect by all algorithms
(lowest AUC values). Furthermore, targets that were detected only by a small subset of
methods before, were detected by one to two methods more.

The parameter configurations in the middle third of table, indicating either the inclu-
sion and exclusion window sizes or the area of connected components to be removed, do
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not show any significant changes compared to the parameter configurations of the methods
when applied on raw MUCAD.

The opposite situation prevails for the runtimes in the lower third of the table. While
RX and CRD seem to be almost unaffected by the increased number of bands in MUCAD-VI,
all other methods show considerable higher runtimes. LRX needs roughly twice as much
time and the AED-based methods apparently scale linearly with the number of bands to
process. LPD is less sensitive to the number of bands, resulting only in a marginally higher
time consumption for the same parameter configurations.

Figure 10 shows the detection maps of all methods for an exemplary capture of
MUCAD-VI containing the green tarpaulin, the grey tarpaulin and the 2D camouflage
net. The images (a–h) follow the same structure as the images in Figure 8. The parameter
configurations of each method correspond to the second column in Table 4. Compared
to the detection maps in Figure 8, the anomaly scores in the target areas are considerably
higher, particularly in the detection maps of AED (e) and AED-F (f), which qualitatively
confirms the generally higher detection performance of all methods observed in the ROCs
of Figure 9 and the AUCs of Table 4. AED-F (f) again generated much fewer false positives
than AED (e), as did LRX (d) compared to RX (c). In contrast to Figure 8, CRD (h) produced
a detection map with significantly fewer false positives compared to LRX (d).
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Figure 10. Detection maps of all evaluated methods applied on an exemplary capture of the extended
version of MUCAD (MUCAD-VI). (a) VIS; (b) ground truth; (c) RX; (d) LRX (21, 61); (e) AED (200);
(f) AED-F (200); (g) LPD (11, 31); (h) CRD (21, 31). The parameter configurations (in parentheses)
corresponds either to the inclusion and exclusion window or to the area of connected components to
be removed.

4. Discussions

The results showed that all adopted anomaly detection methods were principally
capable of detecting multiple targets in MUCAD and MUCAD-VI, clearly indicating the
applicability of hyperspectral anomaly detection methods for camouflage detection in mul-
tispectral imagery. However, none of the detectors could achieve strong and stable results
over all targets, although LRX was the only method that obtained more than 0.9 AUC for
all targets. Yet, the detection performances of all methods including LRX heavily fluctuated
across all targets. For instance, LPD outperformed all other methods for the relatively
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small person targets but achieved considerably worse results than LRX for all other targets,
which indeed works entirely different but operates in a local neighborhood very similar
to LPD. In addition, the AED-based methods achieved top detection performances for
the artificial grass mat, the green tarpaulin, and the gray tarpaulin but far worse results
for all other targets. The high detection rates for those specific targets might be induced
by the very homogenous surfaces and strong spectral distinctiveness compared to the
other targets. These observations indicate that each algorithm heavily depends on the
target’s properties for successful detections. As already indicated in the introduction, it
is the nature of camouflage that its spatial and spectral properties are usually unknown
in real-world reconnaissance scenarios, which makes it very difficult to account for these
strong dependencies. Fusing anomaly maps of different (or differently configured) target
detectors that were empirically evaluated to work for targets featuring specific properties
with very low false alarm rates could be an applicable approach to mitigate that issue to
some extent.

It must also be noted that all detectors generally depend on strong spectral differences
between targets and their surroundings, which is a logical requirement for the detectors to
work but must be considered for the evaluation of each detector. For example, the artificial
hedge lacks strong spectral distinctiveness in its environment as it is occluded by shadows,
but all bands except LWIR of MUCAD and MUCAD-VI depend on the target’s reflectance
properties which are naturally less prominent in low light environments. Therefore, the
algorithms had to detect targets with very little anomalous spectral characteristics, which
is of course more difficult than the detection of targets with strong anomalous properties.
The artificial grass mat, the green tarpaulin, and the grey tarpaulin possess very distinctive
and unique spectral signatures, which resulted in significantly high detection rates at low
false alarm rates for all algorithms compared to all other targets. In this context, it becomes
apparent that the successful detection of certain targets in certain environments depends
not only on the detection algorithms but on the underlying multispectral sensor setup
or dataset, as well. Since the environments and targets captured in MUCAD are limited,
the results account only for a very limited scope of possibilities. For different targets and
different environments, the multispectral sensor setup might be not suitable to provide
distinctive spectral signatures for each target, which in turn might then not be detected by
any algorithm.

Although the selection of vegetation indices added to MUCAD in MUCAD-VI may
seem arbitrary, the results indicate that a combination of the existing bands can have a
positive effect on the performance of the target detectors. Since the sensor setup or the
dataset is usually fixed in terms of bands and spectral raw information, an extension of
more deliberately chosen combinations of bands might even further improve the detection
performances compared to a selection of already predefined vegetation indices.

In terms of computational complexity and runtimes, all target detectors except CRD
were able to work at near real-time conditions under most circumstances. Only a few
parameter configurations led to runtimes slower than one second, although the number of
bands to process had some influence, as well. In real-world applications with near real-time
requirements, parameter configurations and the number of bands under consideration must
be properly selected to avoid excessive runtimes of sensitive algorithms. However, it must
also be noted that all runtimes were measured on a currently very powerful CPU, which
might not be available in real-world scenarios. Despite its strong detection performance, the
implementation of CRD in this work always requires much more time than a single second
and does therefore not fulfill near real-time requirements, making it currently unsuitable
for any real-world application.

Future research will focus on further improving the detection results by collecting
more multispectral data at different seasons and by investigating how multispectral raw
bands can be effectively enhanced, (i.e., by combining them) and selected in order to
maximize the visibility of camouflage in different environments.
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5. Conclusions

From the evaluation of the detection performances, it can be concluded that the
hyperspectral anomaly detection methods investigated in this paper can principally be
used for camouflage detection in multispectral imagery. However, since all methods
already showed strong variations in detection performance for the limited number of
different targets and environments in MUCAD, it must be assumed that even the best
detection algorithm could miss some targets in real-world applications. As failing to
detect a camouflaged hostile unit could prove fatal in a real-world reconnaissance scenario,
additional research must be conducted to further improve detection results.

In addition to the individual detector performances, the limited spectral information
provided by any multispectral sensor setup or dataset must also be taken into account. Some
spectral bands may not contain enough information for certain targets and environments
in order to lead to successful target detections. As shown in the results, enhancing the data
with carefully selected derived bands, such as vegetation indices, can successfully mitigate
that issue and result in higher detection rates of the algorithms.

Since multispectral imagery is not as complex as its hyperspectral counterpart, nearly
all detectors except CRD performed at near real-time requirements. However, some al-
gorithms quickly slowed down as the number of bands to process increased or their
parameters changed, which must be considered in a tactical reconnaissance scenario where
time is of the essence. The number of bands to process should therefore be kept as low as
possible and the parameter configuration carefully selected to minimize computation time.
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