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Abstract
A fully conservative overset mesh method is proposed and applied to overcome the metric singularity at the symmetry line for
blunt bodies, e.g., capsules and blunted cones, in general curvilinear coordinates. The overset mesh is placed automatically at
the symmetry line by avoiding the collapse of the grid lines using a hexahedral structure in contrast to the prismatic structure
of a body-orientated mesh. In addition, the grid points of the overset mesh coincide with those of the body-orientated mesh
to avoid interpolation techniques to interchange the flow variables between the two meshes. This coincidence ensures the
conservation of the flow variables and avoids uncertainties at the shock as the method is naturally conservative. The thin-layer
Navier–Stokes equations for high Reynolds number flows are solved using an AUSM+ or an AUSMPW+ flux vector splitting
in combination with a mesh adaption to capture the shock accurately. For verification purposes of the proposed method,
a supersonic 2D-axisymmetric hemisphere cylinder is chosen and the results along the wall are verified. Furthermore, the
conservative properties of the applied overset mesh method are shown and the results on the stagnation line are presented. In
addition, a supersonic 3D calculation is investigated to show the applicability of the presented method for simulations with
an angle of attack.
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List of symbols
Latin symbols
a, a0, a1, and a2 Surface fitting coefficients
c Speed of sound
cp Specific heat capacity
e Total energy per unit volume
E, F, and G Convective flux vectors
Gv Viscous flux vector
H Total enthalpy
j Respective Cartesian coordinate
J Determinant of metric Jacobian
k Respective curvilinear coordinate
M Mach number
p Pressure
Pr Prandtl number
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Q Conservative state vector
r Distance for surface fitting
RN Nose radius
R1, R2 Radius for overset mesh generation
Re Reynolds number
Res Residual
s Arc length
t Time
T Temperature
T0, Ts Coefficients for Sutherland’s law
v Velocity components
V Absolute velocity
x Cartesian coordinates
Xn Wall normal distance

Greek symbols
α Angle of attack
γ Specific heat ratio
Γ Grid angle
ζ Normal coordinate direction
η Circumferential coordinate direction
Θ Grid angle in circumferential direction
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κ Thermal conductivity
μ Dynamic viscosity
μ0 Reference viscosity
ξ Tangential coordinate direction
ρ Density

Subscripts
i , l, and m Grid point number
max Maximum grid point number
n Normal direction
Stag Stagnation point
w Wall
1, 2, and 3 Directions in Cartesian coordinates
∞ Free-stream values

Superscripts
BM Body-orientated mesh
OM Overset mesh
s Shock
∗ Dimensional values

1 Introduction

Solving the Navier–Stokes equations in general curvilinear
coordinates in a finite difference manner for blunt bodies,
e.g., capsules and blunted cones, has the drawback that a
metric singularity occurs at the symmetry line. This singu-
larity is not of physical type but of numerical since it arises
from the transformation of the coordinate system. For blunt
bodies, all grid lines collapse into a single line at the sym-
metry line. Due to the collapse, the metric derivatives, which
describe the transformation between the Cartesian and the
general curvilinear coordinates, become zero in the circum-
ferential direction. This issue arises because the Cartesian
coordinates are equal on the singular line in this direc-
tion. In consequence, the determinant of the metric Jacobian
J is infinite, which makes a calculation of the govern-
ing equations impossible. However, calculations in general
curvilinear coordinates have the advantage that curved and
stretchedmeshes can be treatedwith uniformfinite difference
stencils on an equidistant grid [1]. Additionally, applying
boundary conditions is more convenient, e.g., at the wall
because the wall normal velocity for the no-penetration con-
dition in computing the Euler equations is known from the
transformation of a surface-orientated grid or in using a shock
fitting method in which the shock normal direction has to be
determined [2]. Although the metric singularity can be natu-
rally avoided in finite volumemethods, e.g., [3,4], because no
coordinate transformation is necessary, for finite difference
methods the transformation is mandatory for curved grids
and a solution for the metric singularity needs to be applied.

An advantage in using finite differences for the discretiza-
tion is that a grid point lies directly on the wall. In contrast,
in finite volume methods the flow variables are stored in the
cell center and therefore no direct flowfield information at the
wall can be estimated. Different approaches have been devel-
oped over the last decades by many researchers to treat this
issue. Some examples are outlined in the following to give
an overview of the developed methods and to emphasize the
research activity in this article.

The first approaches to calculate the flow variables at the
singularity were to use modified governing equations . One
of these developments was done by Palmer and Venkatapa-
thy [5]. They redefined the metric Jacobian as a combination
of the radial distance from the symmetry line and the met-
ric Jacobian written in cylindrical coordinates. Using this
approach, source terms occur in the modified Navier–Stokes
equations that become zero at the symmetry line instead
of being singular. This method gave good results in the
2D-axisymmetric case but did not perform as well in
3D cases. Another example of modified equations was given
by Kim and Morris [6]. In their method, redefining the grid
metrics, the calculation of the fluxes at the singular line is
possible but the Euler equations itself remain indeterminate
at the singular line.

Widely used approaches are averaging or extrapolation
techniques, excluding the symmetry line from the calcula-
tion of the governing equations. Kutler et al. [7] calculated
the flow variables at the symmetry line by local averaging
of the flowfield. A combination of a local arithmetic aver-
age and a one-sided two-point extrapolation was developed
by Riedelbauch and Müller [8] and high-order polynomial
curve fits were used by Prakash et al. [9]. Techniques like
these allow the calculation of the governing equations down-
stream of the symmetry line. But, by excluding the symmetry
line from the discretization of the governing equations, the
estimation of the flow variables at the symmetry line is not
conservative.

Overset meshes are another approach found in the lit-
erature to deal with metric singularities in general. In this
method, a second mesh is overlapped to the original mesh.
The structure of the overset mesh is chosen such that the col-
lapse of the grid lines is avoided. Using an overset mesh, the
meshes have to interchange their flow variables after each
iteration step, which serve as the boundary conditions for the
respective othermesh in the next iteration step. Typically, this
interchange is performed via interpolation techniques. Bin
et al. [10] and Uzun and Hussaini [11] for example used the
overset mesh method in combination with an interpolation
to avoid the singularity at the centerline in the simulation of
jets. Using interpolation techniques to interchange the flow
variables has the drawback that the conservation of the flow
variables cannot be ensured. Therefore,Wang [12] andWang
et al. [13] developed an overset mesh method that avoids
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interpolation techniques. In their development, new patched
boundaries are created between the overlappingfinite volume
cells which enable the calculation without any interpolation.
Their applied fully conservative method showed good results
compared to the non-conservative method using an interpo-
lation but is only applicable to finite volume discretizations.

In this article, we propose a new approach on how the
general method of an overset mesh can be applied in a fully
conservative way to avoid the before-mentioned blunt body
metric singularity in finite differences. The overset mesh
will be placed at the symmetry line by avoiding the col-
lapse of the grid lines. Additionally, a coincidence between
the grid points of the two meshes will be required. As
stated by Hessenius [14], who used a point-discontinues
patched grid to simplify themeshing around 3Dgeometries, a
point-continuous patched grid approach enables a naturally
conservative calculation. This is the case because the grid
points of the meshes coincide at the boundaries and thus no
interpolation techniques are necessary for the interchange
of the flow variables. Patched grids, in contrast to overset
meshes, share a common boundary but do not overlap. We
will adopt this requirement of the coincidence of the grid
points to the overset mesh in this article to, in contrast to
the before-mentioned methods for finite difference methods,
enable the fully conservative calculation of the singular line
without any simplifications.

The article is organized in the following way. Firstly, an
overview of the governing equations will be given, including
the thin-layer Navier–Stokes equations, the thermodynamic
model, and the metric calculation for general curvilinear
coordinates. Secondly, the numerical method of the newly
developed code is presented. This section contains the imple-
mentation of the mesh adaption, the spatial and temporal
discretization, and the boundary conditions. In the next sec-
tion, the implementation of the fully conservative overset
mesh method is explained. This section is followed by the
”Results and discussion” section. In this section, first the
results along the wall for a supersonic 2D-axisymmetric
hemisphere cylinder are compared to the results of Esfaha-
nian et al. [15] to verify the newly developed code containing
the fully conservative overset mesh method and to compare
the results to the method of [8]. Furthermore, the conserva-
tion properties and accuracy of the singular line treatment
will be investigated. To demonstrate the applicability of the
presented method for simulations with an angle of attack,
lastly the results of a supersonic 3D calculation are shown
and discussed with regard to the conservation of the flow
variables and the accuracy of the predicted flowfield.

2 Governing equations

For verification purposes of the proposed method, test cases
at high Reynolds numbers are presented. For high Reynolds

number flows, the diffusion terms in the body tangential and
circumferential direction can be neglected as they are of order
1/Re1/2∞ or smaller [16]. The resulting set of equations are
the thin-layer Navier–Stokes equations. The dimensionless
compressible thin-layer Navier–Stokes equations in general
curvilinear coordinates read

∂Q
∂t

+ ∂E
∂ξ

+ ∂F
∂η

+ ∂G
∂ζ

= 1

Re∞
∂Gv

∂ζ
, (1)

where

Q = J−1 [ρ, ρv1, ρv2, ρv3, e]
T , (2)

E = J−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρvξ

ρv1vξ + ξx1 p

ρv2vξ + ξx2 p

ρv3vξ + ξx3 p

ρvξ H

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, F = J−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρvη

ρv1vη + ηx1 p

ρv2vη + ηx2 p

ρv3vη + ηx3 p

ρvηH

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

G = J−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρvζ

ρv1vζ + ζx1 p

ρv2vζ + ζx2 p

ρv3vζ + ζx3 p

ρvζ H

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

and

Gv = J−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
μa ∂v1

∂ζ
+ μ

3 bζx1

μa ∂v2
∂ζ

+ μ
3 bζx2

μa ∂v3
∂ζ

+ μ
3 bζx3

a

(
μ
2

∂(v21+v22+v23)

∂ζ
+ c∗

p∞T ∗∞
Pr∗∞V ∗2∞

κ ∂T
∂ζ

)

+μ
3 (ζx1v1 + ζx2v2 + ζx3v3)b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

with

a = ζ 2
x1 + ζ 2

x2 + ζ 2
x3

b = ζx1
∂v1

∂ζ
+ ζx2

∂v2

∂ζ
+ ζx3

∂v3

∂ζ
.

(5)

The total energy per unit volume is given by

e = p

γ − 1
+ 1

2
ρ(v21 + v22 + v23) (6)

and the total enthalpy by

H = γ

γ − 1

p

ρ
+ 1

2
(v21 + v22 + v23). (7)
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The Reynolds number is

Re∞ = ρ∗∞V ∗∞R∗
N

μ∗∞
. (8)

In (1)–(7), the flow variables are made non-dimensional by
their respective free-stream parameters ρ∗∞, V ∗∞, T ∗∞, μ∗∞,
and κ∗∞, except the pressure which is made non-dimensional
by ρ∗∞V ∗2∞ .

In our investigations, the thermodynamicmodel is assumed
as a perfect gas. The dimensionless temperature is then cal-
culated by

T = γ M2∞
p

ρ
, (9)

with the free-stream Mach number

M∞ = V∞
c∞

. (10)

As the Prandtl number is constant in the simulations, the
dimensionless thermal conductivity κ equals the dimen-
sionless dynamic viscosity μ. The dynamic viscosity μ∗ is
calculated by Sutherland’s law:

μ∗ = μ0

(
T ∗

T0

) 3
2
(
T0 + Ts
T ∗ + Ts

)
, (11)

with

μ0 = 0.17894 × 10−4 kg

m · s ,
T0 = 288 K,

Ts = 110.33 K.

(12)

The metric derivatives, describing the derivation of the
Cartesian physical coordinates to the equidistant curvilinear
computational coordinates (see Fig. 1), are calculated via
finite differences of second order. The inverse transformation
is

ξx1 = J (x2ζ x3η − x2η x3ζ ), ηx1 = J (x2ξ x3ζ − x2ζ x3ξ ),

ξx2 = J (x3ζ x1η − x3η x1ζ ), ηx2 = J (x3ξ x1ζ − x3ζ x1ξ ),

ξx3 = J (x1ζ x2η − x1η x2ζ ), ηx3 = J (x1ξ x2ζ − x1ζ x2ξ ),

ζx1 = J (x2η x3ξ − x2ξ x3η ),

ζx2 = J (x3η x1ξ − x3ξ x1η ), (13)

ζx3 = J (x1η x2ξ − x1ξ x2η ),

J−1 = (x2ζ x3η − x2η x3ζ )x1ξ + (x3ζ x1η − x3η x1ζ )x2ξ

+ (x1ζ x2η − x1η x2ζ )x3ξ .

Fig. 1 Cartesian (x1, x2, and x3) and curvilinear (ξ , η, and ζ ) coordinate
systems around the hemisphere cylinder

Knowing these metric derivatives, the contravariant veloci-
ties can be derived from the Cartesian velocities by

vk = kx1v1 + kx2v2 + kx3v3, (k = ξ, η, ζ ). (14)

3 Numerical method

3.1 Mesh adaption

Our newly developed code, CONSST3D (Compressible
Navier–Stokes Steady 3D), uses a finite difference approach
in combination with a mesh adaption to capture the shock
accurately. Themesh adaption detects the shock at each body
tangential location ξ after a specified number of iteration
steps via the shock normal Mach number:

Mn ≥ 1 for low-pressure side
Mn < 1 for high-pressure side

}
, (15)

where

Mn =
(v1ζ

s
x1 + v2ζ

s
x2 + v3ζ

s
x3)/

√
ζ s2
x1 + ζ s2

x2 + ζ s2
x3

c
. (16)

Because the grid is aligned to the body and the shock shape
differs from the body shape, the grid lines are not perpen-
dicular to each other at the shock (Γ �= 90◦ in Fig. 2). In
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Fig. 2 Illustration of the mesh adaption algorithm to align the mesh
with the shock shape

consequence, the shock normal metric derivatives (ζ s
x1 , ζ s

x2 ,
and ζ s

x3 ) also differ from those in (13). By transforming the
tangential metric derivatives of (13), as explained in [2], the
required shock normal metric derivatives can be obtained.
In a second step, a linear interpolation is performed in the
wall normal direction ζ between the two previously detected
points to get the exact position that satisfies Mn = 1 (× in
Fig. 2). Finally, the resulting shock shape is smoothed and
the mesh is adapted in the wall normal direction. In the mesh
adaption step, the flowvariables are linearly interpolated onto
the new mesh. This mesh adaption process is applied at only
a few time steps of the overall computation, e.g., two times, at
a time step where the solution is converged. After each mesh
adaption step, the calculation of the governing equations is
again performed until the solution converges.

3.2 Spatial and temporal discretization

The spatial discretization is done by an AUSM+ [17] or
an AUSMPW+ [18] flux vector splitting. Two different flux
vector splittings are implemented in the code to use their indi-
vidual advantages. Starting from the initial solution, AUSM+
has shown to be themore stablemethod.Once themesh adap-
tion is performed and the grid is aligned with the shock,
AUSMPW+ is used as it gives more accurate results. In
contrast to AUSM+, it avoids overshoots of the flow vari-
ables at the shock and suppresses oscillations in the boundary
layer [18]. The primitive flow variables are interpolated by a
fully upwind MUSCL reconstruction of second-order [19].
To accomplish a TVD-character, the van Albada limiter [20]
is used for the simulations. The metric derivatives at i ±1/2,
to obtain the fluxes Fi±1/2, are calculated by the local aver-
age of the metric derivatives of the two neighboring grid

Fig. 3 Local averaging at i ± 1/2 of the metric derivatives for the flux
reconstruction of Fi±1/2

points (see Fig. 3). For the temporal discretization, a four-
stage low-storage Runge–Kutta method of second order is
used [21]. To accelerate the convergence to the steady state,
a local time-stepping is implemented into the code. At each
body tangential location, the time step is calculated via the
maximum eigenvalue of the Jacobianmatrices of the inviscid
fluxes [22].

3.3 Boundary conditions

At the wall, the Navier–Stokes characteristic boundary con-
dition (NSCBC) for a no-slipwall is applied [23]. In addition,
the heat flux at the wall is set to zero for an adiabatic wall.
In curvilinear coordinates, this boundary condition is [8]

0 = ∂T

∂n
= 1√

ζ 2
x1 + ζ 2

x2 + ζ 2
x3[

(ξx1ζx1 + ξx2ζx2 + ξx3ζx3)
∂T

∂ξ

+ (ηx1ζx1 + ηx2ζx2 + ηx3ζx3)
∂T

∂η

+ (ζx1ζx1 + ζx2ζx2 + ζx3ζx3)
∂T

∂ζ

]
.

(17)

To sustain second-order accuracy at the boundaries, ghost
points are used. The ghost points are extrapolated from
the interior region into the wall, the free-stream and the
outflow by a second-order extrapolation. In addition, for 2D-
axisymmetric calculations, the ghost cells are mirrored at
the symmetry line from the interior region. Therefore, care
must be taken calculating the metric derivatives at the sym-
metry line. Because the grid points are mirrored on this
axis, a mesh discontinuity occurs for stretched meshes (see
Fig. 4). Employing a stretching factor, the arclength s, respec-
tively, the Cartesian x j -coordinates ( j = 1, 2, and 3) of
the grid points vary along the geometry by a factor of Δ.
This is the case for all points except at the symmetry line
where Δs−1 = Δs1 due to the mirroring of the points. In
consequence, the metric derivatives of some of the Carte-
sian coordinates with respect to the curvilinear coordinates,
e.g., x2ξ , exhibit a discontinuity at the symmetry line by
employing a central finite difference for their calculation.
To guarantee a smooth metric, a one-sided finite difference
of second order is used at the symmetry line on the body-
orientated mesh and the overset mesh in all directions that
show this discontinuity. A central finite difference is only
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Fig. 4 Sketch of the mesh discontinuity at the symmetry line

employed for the metric derivatives that have to become zero
around the singular line, e.g., x1ξ , because the coordinates
are equal on both sides of the singular line. The one-sided
finite difference is also performed for the 3D calculations at
the symmetry line as the same discontinuity occurs.

To apply the boundary conditions at the ghost points, the
flow variables are extrapolated into the wall and the outflow
with a second-order extrapolation. The extrapolation of the
flow variables into the wall only serves to sustain the second-
order accuracy as the wall boundary condition is applied
using the NSCBC and the thermal boundary condition of
(17). In the free-stream, the free-stream flow conditions
are specified and for 2D-axisymmetric calculations a no-
penetration boundary condition is applied at the ghost points
at the symmetry line. In this article, two kinds of simula-
tions are performed, 2D-axisymmetric, and 3D calculations.
For 2D-axisymmetric calculations, the governing equations
can be discretized either with the 2D-axisymmetric govern-
ing equations [24] or performing a 3D calculation on only
one plane with the 3D governing equations of (1). The latter
approach is used in this article. In this case, the governing
equations are discretized on the median plane (solid line in
Fig. 5a). Two additional planes are placed in the circumferen-

(a) (b)

Fig. 5 Schematic sketch of the grid in the circumferential direction at
× in Fig. 1 for 2D-axisymmetric (a) and 3D (b) blunt body calculations
including the ghost points (dashed lines)

tial direction on each side (dashed lines in Fig. 5a) by rotating
the median plane around the x1-axis. These planes are nec-
essary to apply the boundary conditions because the flux
reconstruction also needs to be performed in the circumfer-
ential direction. Due to the use of a MUSCL-reconstruction
of second order (see Sect. 3.2), two planes are added. An
axisymmetric flow is characterized by a symmetric flow
around the x1-axis. Therefore, the density, pressure, and the
velocity v1 at the ghost points are set equal to values on the
median plane, and the velocities v2 and v3 are rotated around
the x1-axis in order to keep the spanwise velocity vη to zero.
For the 3D calculations, one half of the geometry is calcu-
lated (see Fig. 5b). As for the 2D-axisymmetric calculations,
two additional planes are placed for the boundary conditions
in the circumferential direction on each side. In this case,
the grid points and the flow variables are mirrored around
the x1/x2-plane to set the boundary conditions at the ghost
points.

4 Fully conservative overset meshmethod

The metric singularity, mentioned in the introduction, is
shown in Fig. 6 (red line) for a 2D-axisymmetric calcula-
tion. In this figure, the median plane is shown and the ghost
points on each side as described in Sect. 3.3. Because the
mesh is rotated around the x1-axis, all grid lines collapse in a
single line, at this location only, because the symmetry line is
the rotation axis for the mesh. Therefore, the metric deriva-
tives in the η-direction vanish (x1η , x2η , and x3η = 0) since
the x1-, x2-, and x3-coordinates are equal in the η-direction
for all grid lines at the symmetry line (i = 0), e.g.,
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η, x3

ξ, x2

ζ

x1

See Fig. 7a

Fig. 6 Metric singularity (red line) at the nose of a blunt body config-
uration on the body-orientated mesh

x1η = −x1i−1 + x1i+1

2
= 0, with x1i−1 = x1i+1 . (18)

Consequently, the determinant of the metric Jacobian J
is infinite due to J−1 = 0 (see (13)) and J = 1/J−1.
Due to the indeterminate metric, a calculation of the gov-
erning equations at the symmetry line is impossible in
this coordinate system since the state vector Q and the
fluxes E, F, G, and Gv become zero. This behavior is
nonphysical since the state vector in Cartesian coordinates
(Qcart = [ρ, ρv1, ρv2, ρv3, e]T) is not restricted to become
zero and the transformation relation between the coordinate
systems must be satisfied. To overcome this issue, an overset
mesh, originally developed by Benek et al. [25] and Steger et
al. [26], is placed at the symmetry line in the newly developed
code. In the overset mesh method, different meshes are over-
lapped and calculated separately. After each iteration step,
the meshes interchange their flow variables at the bound-
aries, to receive the flowfield information of the other mesh
for the discretization of the governing equations. The inter-
change of the flow variables can be performed in different
ways, having their individual advantages and disadvantages.
If the meshes do not coincide, interpolation techniques are
convenient ways to interchange the flow variables but have
the disadvantage that the conservation of the flow variables is
not given and numerical difficulties and uncertainties occur
at shocks [13]. Therefore, conservative methods were devel-
oped for finite volume codes to avoid these difficulties and to
ensure the conservation of the flow variables, e.g., [12,13].
These methods create new patched boundaries between the
finite volume cells to ensure an interchange of the flow vari-
ableswithout interpolation techniques. Thismethod however
is not applicable to finite differences. Therefore, another
approach is applied in this article, explained in the following,
which requires a coincidence of the meshes. By the coinci-

dence, the interchange of the flow variables can be performed
without any interpolation which is conservative in a natu-
ral way [14]. The method will be named fully conservative
overset mesh method in this article because the conserva-
tive governing equations are used for the discretization and
in addition, caused by the coincidence of the two meshes,
the interchange of the flow variables is also conservative due
to the avoidance of interpolation techniques. If interpola-
tion techniques would be used only the governing equations
remain conservative but the overall methodwould not sustain
the conservation of the flow variables.

In Fig. 7a, the detailed view of Fig. 6 is shown contain-
ing two grid planes of the body-orientated mesh (red lines)
parallel to the surface of the geometry to explain the applied
method. In addition, the overset mesh is presented (black
lines). The latter has a hexahedral structure in contrast to
the prismatic one of the body-orientated mesh. This hexahe-
dral structure avoids the collapse of the grid lines, by which
the metric becomes determinate, and enables a calculation
of the governing equations. The overset mesh is generated
containing two grid points in the x2- and x3-direction to per-
form the calculation on the symmetry line ((0, 0) in Fig. 7b)
with a second-order accuracy. The points marked with a
◦ (calculation points) are used as the boundary values for
the discretization of the governing equations on the singular
line (0, 0) and the points marked with × (metric points) are
necessary to calculate the metric derivatives for each ◦. Two
different routines are developed to calculate the grid points of
the overset mesh, depending on whether a 2D-axisymmetric
case or a 3D case is investigated. For both cases, the cal-
culation points (◦) are calculated with the restriction of the
coincidence between the meshes, respectively, that the coor-
dinates of the calculation points are equal on both meshes,
which enable the before-mentioned interchange of the flow
variables without interpolation techniques.

In the 2D-axisymmetric case, the calculation points (◦)
can be placed directly at Θ = 0◦ knowing the coordinates of
the body-orientated mesh and at Θ = 90◦, 180◦, and 270◦,
by rotating the body-orientated mesh. The angle Θ is the
rotation angle around the symmetry line (singularity) shown
in Fig. 7b. The metric points (×) are estimated as follows.
As shown in Fig. 7b, due to the rectangular shape in the
x2/x3-plane, the x2- and x3-coordinates equal the corre-
sponding coordinates of the calculation points (◦). As an
example, the x2-coordinate of point 3 equals the
x2-coordinate of point 1 and the x3-coordinate equals the x3-
coordinate of point 2. In consequence, the
x1-coordinate is the remaining variable to be determined.
For 2D-axisymmetric calculations, the shock, respectively,
the mesh, is axisymmetric around the x1-axis. Therefore, the
x1-coordinate of the metric points can be estimated from the
coordinate information on the median plane of the body-
orientated mesh. With the previous assumption, the distance
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(a) (b)

Fig. 7 Overset mesh at the symmetry line for 2D-axisymmetric calculations: Body-orientated mesh (red lines), Overset mesh (black lines)

(a) (b)

Fig. 8 Overset mesh (red lines) at the symmetry line for 3D calculations

from the singular line R1 on the median plane is equal to the
distance of the metric point R2,

R1 = R2, with R2 =
√
x22 + x23 . (19)

With the estimated distance R1, the x1-coordinate is deter-
mined by a linear interpolation between the two respective
grid points on the body-orientated mesh (green ◦ in Fig. 7b)
by

x1 = R1 − x2i
x2i+1 − x2i

(x1i+1 − x1i ) + x1i . (20)

Due to the axisymmetric assumption, this x1-coordinate
matches the respective coordinate at the metric point.

For 3D calculations, the overset mesh is generated by
a surface fitting method developed by Harder and Des-
marais [27]. The method differs from the applied procedure
for 2D-axisymmetric cases because for an angle of attack
in combination with the mesh adaption the assumption of
(19) is not valid anymore. This is the case because the shock
contour and, respectively, the mesh after the mesh adaption
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(a) (b)

Fig. 9 Sketches of the overset mesh generation for 3D calculations

is not symmetric around the x1-axis. Thus, the assumptions
made in the 2D-axisymmetric case to generate the overset
mesh are not valid and a 3D approach has to be used. In
Fig. 8, the mesh part around the singularity of half of the
3Dgeometry (see Fig. 5b) is shown, similar to Fig. 6, contain-
ing the body-orientated mesh (black lines) and the overset
mesh (red lines). To apply the surface fitting method, first
the body-orientated mesh of half of the geometry is mir-
rored around the x1/x2-plane (blue lines in Fig. 9a). This
step is not necessary if the whole geometry (360◦) is calcu-
lated. In a next step, the coefficients for the surface fitting
method (21) are calculated for each grid surface in the
ζ -direction, as shown in Fig. 9a, separately by using an
appropriate number of grid points. A number of mmax =
10 points on each circumferential grid line l on the cur-
rent grid surface on the body-aligned mesh is used in our
code for this estimation. Thereafter, the resulting spline
functions are used to determine the x1-coordinates of the
overset mesh. In order to calculate this coordinate, first the
x2- and x3-coordinates need to be estimated. A sketch pre-
senting the process for this estimation to generate the overset
mesh for one grid line in the circumferential η-direction (see
Fig. 8a) is given in Fig. 9b. In this sketch, the red solid
lines represent the grid lines on the body-orientated mesh.
Firstly, these lines are transformed into the x2/x3-plane by
the rotation angle Θ (red dashed lines). In this plane, the

x2- and x3-coordinates of the calculation points (green ◦)
and the metric points can be estimated as explained for the
2D-axisymmetric case (see Fig. 7b). The determined coor-
dinates are transformed back (red solid lines) and the
x1-coordinates of all calculation and metric points are cal-
culated for the actual grid line by the spline functions of the
surface fitting method as

x1 = a0 + a1x2 + a2x3 +
lmax−1∑
l=0

mmax−1∑
m=0

al,mr
2
l,m lnr

2
l,m,

(21)
with r2l,m = (x2 − x2l,m )2 + (x3 − x3l,m )2 and al,m , a0, a1,
and a2 are the coefficients calculated before [27]. This
method is applied for each grid line in the circumferential
η-direction as shown in Fig. 8a to calculate the metric deriva-
tives at the singularity which will be explained later in this
section.Only themesh displayed in Fig. 8b is used for the dis-
cretization of the governing equations. Using the mentioned
surface spline method, including 10 points on each circum-
ferential grid line for the calculation, a maximum deviation
between the dimensionless coordinates of the two meshes on
the calculation points (◦) was estimated to be 2 × 10−12 for
the test case investigated in this article. This very good agree-
ment allows the interchange of the flow variables without any
interpolation, respectively, fully conservative.

The interchange of the flow variables between the meshes
is performed in the followingway. In 2D-axisymmetric cases,
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the flow variables for the calculation points ◦ on the over-
set mesh at Θ = 0◦ are known from the discretization of
the governing equations on the body-orientated mesh. At
Θ = 90◦, 180◦, and 270◦, the flow variables are deter-
mined by the boundary condition in the circumferential
direction and the no-penetration condition at the symmetry
line, explained in Sect. 3.3. For 3D cases, the flow variables
can be interchanged directly between the meshes shown in
Fig. 8b. The only restriction is that grid lines of the body-
orientated mesh have to be placed atΘ = 0◦, 90◦, and 180◦.
AtΘ = 270◦, the flow variables are given by the mirror con-
dition (see Sect. 3.3) for simulations of half of the geometry.
Vice versa, the body-orientated mesh receives the flow vari-
ables at the singular line from the overset mesh to calculate
the fluxes at i + 1 for both cases.

The governing equations are discretized on the overset
mesh only on the symmetry line with the same spatial and
temporal accuracy (second order) as on the body-orientated
mesh (see Sect. 3.2). The surrounding grid points (◦) serve
as the boundary conditions. In general curvilinear coordi-
nates, the metric transformation can be performed with (13)
as for the body-orientated mesh. Therefore, the same code
is applied for both meshes switching between the two dif-
ferent metrics. The generation of the overset mesh and the
interchange of the flow variables between the two meshes
are implemented fully automatically in the code. In the ini-
tialization step and after each mesh adaption, an algorithm
places the grid points of the overset mesh based on the grid
points of the body-orientated mesh. The flow variables are
interchanged between the two meshes after each time step.
Although a second-order accuracy is chosen for the dis-
cretization, the proposedmethod is applicable to higher-order
methods by including more discretization points.

Another issue of the indeterminate metric at the symmetry
line (i = 0) is that the flux reconstruction for the first grid
point downstream of the symmetry line (i = 1) on the body-
orientated mesh is not possible. Since the metric terms are
calculated by a local averaging between the two neighbor-
ing points and the metric at i = 0 is indeterminate, also the
metric at i = 1/2 is indeterminate. Nevertheless, the met-
ric can be calculated at i = 1/2 due to the coincidence of
the overset mesh (OM) and the body-orientated mesh (BM).
The tangential and normal metric derivatives equal at the
symmetry line on the two meshes, which results in the met-
ric derivatives for the body-orientated mesh at the symmetry
line as

ξBMx1 = ξOMx1 , ηBMx1 = 0, ζBM
x1 = ζOM

x1 ,

ξBMx2 = ξOMx2 , ηBMx2 = 0, ζBM
x2 = ζOM

x2 ,

ξBMx3 = ξOMx3 , ηBMx3 = 0, ζBM
x3 = ζOM

x3 ,

J−1BM = 0.

(22)

Knowing these metric derivatives, the local averaging can
be performed and the flux reconstruction at i = 1/2 is pos-
sible. For the 3D calculations, this method to calculate the
metric derivatives has to be performed for each grid line in
the circumferential direction (see Fig. 8a) because the metric
derivatives differ at the singular line for each. For example,
x2η = 0 for the grid lines at Θ = 0◦ and Θ = 180◦ but
x2η �= 0 for the other grid lines.

Another approach to calculate the metric derivatives at
the singular line for the flux reconstruction on the body-
orientated mesh for the first point downstream is as follows.
The metric derivatives describing the transformation rela-
tion between the Cartesian and the curvilinear coordinates,
x jk with j = 1, 2, and 3 and k = ξ, ζ, and η, can be com-
puted at the singular line also on the body-orientated mesh.
The issue arises in the inversion to estimate the back transfor-
mation. As the metric derivatives for the flux reconstruction
only need to be estimated at i = 1/2 to calculate the flux
at i = 1, the following process can be applied. Firstly, the
metric derivatives x jk are averaged between i = 0 and i = 1
as explained in Sect. 3.2. In a second step, the inversion of the
metric derivatives is applied for these averagedmetric deriva-
tives and the flux reconstruction can be performed. In this
case, the inversion is possible because the metric becomes
determinate half a grid point distance away from the singu-
larity.

In this article, the first method presented in this chapter
is used for the following test cases. To apply the method to
more complex geometries, e.g., ellipsoids and hyperboloids,
the second method should be preferred. In addition to saving
computational time because only one overset mesh needs to
be build, this method is more general without the assumption
of an equal metric on the two meshes at the singular line.

Thewhole process outlined in this section is performed for
each grid point in the wall normal direction on the singular
line.

5 Results and discussion

5.1 Supersonic 2D-axisymmetric hemisphere
cylinder

We chose a 2D-axisymmetric hemisphere cylinder [15] as
the test case to verify the presented method to overcome the
metric singularity and to compare the results of the new pro-
posed method in this article with the extrapolation technique
of Riedelbauch and Müller [8]. The free-stream conditions
are given in Table 1. With respect to (8) and a randomly cho-
sen density, the nose radius of the geometry can be estimated.
The mesh consisted of 100 × 180 grid points in the tan-
gential and normal direction, respectively. Twenty of those
180 points in the wall normal direction are used for the free-
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Table 1 Free-stream conditions for the hemisphere cylinder [15]

M∞ Re∞ T ∗∞

2.94 2.2 × 105 293K

Fig. 10 Computational domain before and after the mesh adaption
(black line)

stream to enable a constant inflow upstream of the shock
and to guarantee that the shock lies inside the simulation
domain. Therefore, the mesh adaption is performed by plac-
ing the 160th grid point at the detected shock location. A
number of 20 points for the free-stream was chosen because
Kufner et al. [28] used seven points in similar simulations. To
guarantee that the shock lies inside the simulation domain, a
slightly higher number of grid points was chosen for the fol-
lowing test cases. To resolve the boundary layer and the shock
accurately, the mesh was refined in these regions. Therefore,
the one-dimensional stretching function of Vinokur [29] was
used. This function enables a clustering of the grid points
near the wall and the shock, but remains smooth over the
whole wall normal direction. At the shock, the grid spacing
was mirrored for the grid points in the free-stream. The gas
was assumed as a perfect gas with Pr = 0.723 and a specific
heat ratio of γ = 1.4. The investigations were performed for
a laminar flow, and the wall was assumed to be adiabatic.
The initial shock shape was calculated via Billig’s correla-
tion [30]. On the low-pressure side, upstream of the shock,
the initial flow variables were set as the free-stream values
and on the high-pressure side, downstream of the shock, the
flow variables were initialized using the Rankine–Hugoniot
relations. Starting from the initial solution, the AUSM+ flux
vector splitting was used. After the mesh adaption was per-
formed, the flux vector splitting was changed to AUSMPW+.
The calculations were performed on the median plane (see
Fig. 5a) using the full 3D Navier–Stokes equations.

Fig. 11 Mesh independence study comparing the stagnation point tem-
perature of different grid distributions in the wall normal direction

The mesh adaption of Sect. 3.1 is shown in Fig. 10. The
initial shock shape, calculated via Billig’s correlation, is rep-
resented by the outer boundary of the domain. After themesh
adaption, the computational domain reduces to the surround-
ing black line and the mesh is aligned with the shock. The
black line lies aside of the shock due to the 20 points in the
free-stream mentioned before.

Firstly, a grid independence study was performed with
different number of grid points in the wall normal direction
ranging from 80 to 240 points. Because this article focus on
the treatment of the singularity, the stagnation point temper-
ature was chosen for the grid independence study. In Fig. 11,
the dimensionless stagnation point temperature is plotted
over the different grid distributions. Comparing the results, a
slightly lower temperature can be recognized on the grid con-
taining 80 points in the wall normal direction. With higher
number of grid points, the value for the temperature remains
nearly constantwith a small deviation around amean value of
2.7288 (dashed line in Fig. 11), calculated from the tempera-
tures between 100 and 240 grid points. With respect to these
results, 180 points in the wall normal direction were cho-
sen for the further investigations because this value enables
a good balance between accuracy and time efficiency.

The current results are compared to those of Esfahanian
et al. [15] to verify the capability of the code to accurately
predict the flow variables at the wall and to Riedelbauch
and Müller [8] to compare their one-sided two-point extrap-
olation technique with the proposed method of this article.
In Fig. 12a, b, the dimensionless pressure and temperature
are plotted along the wall over the dimensionless arc length
s∗/R∗

N. Comparing the pressure distribution with [15] in
Fig. 12a, a very good agreement is observed between the two
results along the entire wall. Themore sensitive flow variable
is the temperature inFig. 12b.Agoodagreement is foundhere
aswell with the results of [15], except at the junction between
the hemisphere and the cylinder, where a slight undershoot
occurs although a grid point is located directly at the junction
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(a) (b)

Fig. 12 Wall distributions along the dimensionless arclength for the 2D-axisymmetric calculation

(a) (b)

(c) (d)

Fig. 13 Contour plots at the hemisphere part of the 2D-axisymmetric calculation
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point. This undershoot is also reported by other researchers,
e.g., [31,32], and is caused by the curvature discontinuity at
this point. In addition, the thin-layerNavier–Stokes equations
may have an effect on the undershoot because the body tan-
gential diffusive terms are neglected [15]. Investigationswere
performedwith our code varying the number of grid points in
the wall normal direction but no significant influence on the
undershoot was observed. Although an undershoot occurs
at the junction point, the effect on the temperature further
downstream is small. The oscillations in the temperature dis-
tribution damp out after a few grid points and the results are
again comparable to those in [15]. Comparing the temper-
ature with the results of the extrapolation technique of [8],
a good agreement is found at the stagnation point as well.
Further downstream, the results of [8] overpredict the tem-
perature compared to the results of [15] and the results using
our proposed overset mesh method. The reason for the over-
prediction can be the relatively small grid point number of
31 points in the wall normal direction in their calcula-
tion. In their study, this test case was chosen to calibrate
the weighting factors of the one-sided two-point extrapo-
lation technique with the stagnation point temperature of an
axisymmetric code. In comparison with their method, no cal-
ibration of the proposed method in this article is necessary
to accurately predict the stagnation point temperature.

To show the applicability of the fully conservative over-
set mesh method, contour plots of the dimensionless density
ρ, dimensionless pressure p, dimensionless temperature T ,
and the Mach number M are shown in Fig. 13a–d at the
hemisphere part of the computed geometry. Notice that the
pressure is made non-dimensional with the free-stream static
pressure p∞ for this figure. The results in these figures show
the properties observed by Kim et al. [18], using their devel-
oped AUSMPW+ flux vector splitting on the overset mesh
and the body-orientated mesh. A detailed view of these prop-
erties is shown in Fig. 14 for the dimensionless temperature at
a surface location of s∗/R∗

N = 0.3778. Firstly, no oscillations
of the temperature occur in the boundary layer. Secondly,
only a small overshoot can be recognized at the shock. As no
overshoot occurs at the stagnation line (see Fig. 17), where
a normal shock appears, the small overshoots downstream
can be caused by a small misalignment of the mesh with
the shock. In the AUSMPW+ flux vector splitting, the nor-
mal total enthalpy is used to calculate the speed of sound.
Therefore, a small misalignment results in an inaccurate cal-
culation of the normal total enthalpy and in inaccuracies at the
shock, respectively. Although this slight overshoot occurs,
the shock is captured adequately using the implemented flux
vector splitting in combination with the mesh adaption of
Sect. 3.1. In addition to these results, the contour plots show a
smooth transition of the contour lines from the overset mesh
to the body-orientated mesh. No non-physical behavior is

Fig. 14 Detailed view of the wall normal temperature distribution at
s∗/R∗

N = 0.3778

observed, namely oscillations of the flow variables or the
shock.

To verify the conservation properties of the current over-
set mesh method, the stagnation point temperature and the
total enthalpy of the flowfield are investigated. The computed
stagnation point temperature is compared to the analytical
expression for an inviscid flow to show the conservation of
the total temperature along the stagnation line on the overset
mesh. The analytical stagnation point temperature is calcu-
lated with the free-stream Mach number M∞ to:

TStag,Analytical = 1 + γ − 1

2
M2∞ = 2.72872. (23)

In the simulations, the stagnation point temperature is pre-
dicted with TStag,Simulation = 2.72878. The deviation to the
analytical result is 2.199× 10−3%. The computed total tem-
perature at the stagnation point is slightly higher than the
analytical expression. The rise is caused by the viscous dis-
sipation in the boundary layer. Nevertheless, the two values
are compared because the boundary layer is very small at
the stagnation point and therefore also the viscous effects are
small.

To show the conservation of the flowvariables between the
twomeshes, a contour plot of the normalized total enthalpy at
the hemisphere part is presented in Fig. 15. The total enthalpy
H is normalized with the free-stream value H∞. The flow-
field is separated into an inviscid region and a viscous region
near thewall. Near thewall, the total enthalpy shows the typi-
cal behavior for an adiabatic wall condition. In the boundary
layer, the total enthalpy decreases with a slight overshoot
at the boundary layer edge, see e.g., [33]. In the inviscid
region of the flowfield, a conservation of the total enthalpy
is expected. Therefore, the investigation of the conservation
of the total enthalpy is focused on the inviscid region. Here
a maximum deviation of the normalized total enthalpy of
0.03% is observed. The slight deviation is caused by differ-
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Fig. 15 Contour plot of the normalized total enthalpy at the hemisphere
part of the 2D-axisymmetric calculation

Fig. 16 Contour plot of the residual at the hemisphere part of the
2D-axisymmetric calculation

ent reasons, e.g., non-conservative calculation of the metric
derivatives, see [34], or small inaccuracies at the shock.Over-
all, the deviation of the total enthalpy is the same on both, the
overset mesh and the body-orientated mesh. Therefore, the
conservation of the total enthalpy between the two meshes is
given.

To present the convergence properties of the proposed
method, the residual of (1)

Res =
∣∣∣∣−

∂E
∂ξ

− ∂F
∂η

− ∂G
∂ζ

+ 1

Re∞
∂Gv

∂ζ

∣∣∣∣ (24)

Fig. 17 Stagnation line results on the overset mesh of the
2D-axisymmetric calculation

is shown in Fig. 16. The residual decreases to maximum val-
ues around 5 × 10−7, where the highest residual is found
near the shock. Due to the mesh adaption, a small misalign-
ment can be the reason for the slightly higher residual at this
location. At the stagnation line (overset mesh), the residual
decreases to even lower values at the order of 1 × 10−10.
Overall, a good convergence employing the proposed over-
set mesh method is observed.

As the investigations in this article focus on the applica-
bility and accuracy of the fully conservative implementation
of the overset meshmethod, finally the stagnation line results
are presented. In Fig. 17, the stagnation line results are plot-
ted over the dimensionless wall normal distance X∗

n/R
∗
N. The

smooth profiles described for the contour plots in Fig. 13a–d
can be seen in detail in this plot. Accurate results are com-
puted at the stagnation line without any oscillations of the
flow variables even at the shock.

5.2 Supersonic 3D hemisphere cylinder

In this section, results are presented for a 3D simulation of
the hemisphere cylinder of Sect. 5.1 with an angle of attack
of α = −5◦. The calculations were performed on a 3D mesh
containing half of the geometry as shown in Fig. 5b consist-
ing of 100 × 180 × 37 grid points in the tangential, normal
and circumferential direction, respectively. The free-stream
conditions were kept the same such as in the investigations
of the 2D-axisymmetric case.

First of all, the contour plots of the dimensionless density
ρ, dimensionless pressure p, dimensionless temperature T ,
and the Mach number M are shown in Fig. 18a–d. Notice
again that the pressure is made non-dimensional with the
free-stream static pressure p∞ for this figure. The results are
presented on the x1/x2 median plane of the flowfield. It can
be recognized that also for an angle of attack no oscillations
of the shock occur. In contrast to the results without an angle
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(a) (b)

(c) (d)

Fig. 18 Contour plots at the hemisphere part of the 3D calculation

(a) (b)

Fig. 19 Wall distributions along the dimensionless arclength for the 3D calculation
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Fig. 20 Contour plot of the normalized total enthalpy at the hemisphere
part of the 3D calculation

of attack, minimal oscillations of the pressure, temperature,
and density occur at the symmetry line. In contrast, theMach
number does not show any of these oscillations and remains
smooth. Discussion on these oscillations will be made in the
following.

In Fig. 19a, b the dimensionless pressure and the dimen-
sionless temperature at the wall are shown along the dimen-
sionless arc length s∗/R∗

N for the 3D case. The distributions
are plotted for the windward side of the geometry and the lee-
ward side where the symmetry line, respectively, the metric
singularity, is located at s∗/R∗

N = 0. The stagnation point can
be recognized on the windward side slightly downstream of
the symmetry line. In these figures, no significant oscillations
can be recognized for both the pressure and the temperature.
The transition of the flow variables is smooth between the
overset mesh and the body-orientatedmesh. This implies that
the small oscillations seen in Fig. 18a–c have no influence
on the flow variables at the wall and can be caused by several
reasons which will be outlined in the following paragraph
with respect to the total enthalpy.

In Fig. 20, the normalized total enthalpy is shown for the
3D test case at the hemisphere part of the computed geom-
etry. Compared to the 2D-axisymmetric case in Sect. 5.1,
the deviation is slightly higher. In the 3D simulation, a max-
imum deviation of 0.09% is observed compared to 0.03%
in the 2D-axisymmetric case. This slightly higher deviation
can be caused by 3D effects which makes the simulation
more sensitive and can cause the minimal oscillations of the
flow variables explained before especially because the oscil-
lations occur in the region with the highest deviation. The
3D effects occur because the simulation domain contains of
37 grid planes in the circumferential direction compared to

1 grid plane in the 2D-axisymmetric case. Therefore, the
mesh adaption has to be performedon each of these grid lines.
Slight inaccuracies in the flowfield during the mesh adaption
can cause small misalignments of the mesh after the mesh
adaption, although the mesh is smoothed thereafter. These
misalignments can cause the difference in the conservation
of the total enthalpy between the 2D-axisymmetric and
3D case.

To further investigate the before-mentioned oscillations of
the flow variables around the singularity, plots of the dimen-
sionless temperature T over the arclength around the nose
part of the geometry are shown in Fig. 21a, b. An additional
computation with α = −10◦ was performed to examine the
influence of the angle of attack. The plots show the tempera-
ture distribution on different grid lines parallel to the surface
of the geometry starting from the wall up to the 140th grid
line. At α = −5◦, the small oscillations occur at the 100th
and 120th grid line. At the other grid locations, a smooth
profile can be recognized. Increasing the angle of attack to
α = −10◦, the oscillations vanish and smooth profiles occur
for every grid line. A reason for the difference between the
two computations can be the before-mentioned inaccuracies
in themesh adaption, which in this case seem to have a higher
influence at an angle of attack of α = −5◦.

Nevertheless, with regard to the small inaccuracies pre-
sented before, the results show that the fully conservative
overset mesh method is also applicable to 3D simulations
with only minimal oscillations in the flow variables which
have no significant influences on the shock or the flowfield.

6 Conclusion

In this article, we presented a fully conservative overset mesh
method to overcome the metric singularity at the symme-
try line for blunt bodies in general curvilinear coordinates.
The results for the presented 2D-axisymmetric calculations
showed that the method accurately predicts the flowfield
without oscillations. Further, the conservation of the total
enthalpy is ensured with only a minimal deviation of 0.03%.
In contrast to the other methods for finite differences pre-
sented in the introduction, the proposed method avoids
simplifications concerning the governing equations and cal-
ibration processes to accurately predict the flowfield at the
stagnation line. The 3D calculations with an angle of attack
showed similar properties applying the fully conservative
overset mesh method. Minimal oscillations of the flow vari-
ables occurred for an angle of attack of α = −5◦ but no
oscillations could be recognized for α = −10◦. A conserva-
tion of the total enthalpy was ensured also in this case with
a deviation of 0.09%. Overall we showed that the proposed
method can be applied in 2D-axisymmetric and 3D cases to
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(a) (b)

Fig. 21 Oscillations in the dimensionless temperature T around the singular line for the 3D calculations

overcome the blunt body metric singularity in finite differ-
ences in a conservative way.

To perform calculations for different thermodynamic
models, e.g., equilibrium or non-equilibrium flows, the pre-
sented method can be applied in a straightforward way.
For equilibrium flows, the method remains the same as
for the perfect gas because only the thermodynamic equa-
tions are modified. For calculations in thermochemical
non-equilibrium, additional equations are added to the gov-
erning equations and additional flow variables have to be
interchanged between the meshes in the same way as for the
perfect gas case in this article. Similar changes have to be
applied for calculations including turbulence models.

The proposed method is currently applicable to steady
flowfield simulations of blunted axisymmetric bodies. In
Sect. 4, a possible modification of the metric calculation is
given to apply the presented method to geometries with an
ellipsoid or hyperboloid as the nose part. An application to
more complex nose parts can cause issues due to the sur-
face fitting method to generate the overset mesh. Precisely,
generating the overset mesh with our proposed method for
abruptly varying geometries can result in inaccuracies not
satisfying the required coincidence of the grid points. Never-
theless,most blunt re-entry configurations contain a spherical
cap, ellipsoid, or hyperboloid as the nose part, and thus, the
calculation of the flowfield in these cases can be significantly
improved with the proposed method in this article. Further,
in case of moving body problems, the method is also lim-
ited to smooth grid changes. Additionally, in this case the
overset mesh generation and the applied mesh adaption have
to be performed in each iteration step of the calculation. As
the interpolation in the mesh adaption in this article is non-
conservative and would violate the overall conservation of
the proposed method, conservative approaches have to be
applied for the mesh adaption, e.g., [35].
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