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Abstract: Anaerobic digestion, including the gas storage and the CHP unit plays a key role in energy
management of water ressource recovery facilities (WRRF). By demand-driven feeding management,
a higher degree of utilization of the gas storage tanks can be achieved, which means that a greater
decoupling of energy demand and energy generation is taking place. In this context, the predictability
of the produced gas volume plays an important role. In this study, a concept was suggested to forecast
gas production rates without the need for any analytical substrate characterization. Substrates lead
to specific patterns in the course of the gas production rates, which can be fitted using Gaussian
functions. As the parameters describing the Gaussian functions have a good correlation to the amount
of substrate fed to the digester a prediction of the rates is possible. Within this study a coefficient of
determination 82.9% over a period of 5 days was achieved.

Keywords: energy; demand-driven; biogas; gas production rate; patterns; prediction

1. Introduction

Above all, the sewage sludge treatment with the combined heat and power plants
(CHP) offers good opportunities to decouple energy consumption and energy production
on water resource recovery facilities (WRRF), especially since the effects on the wastewater
treatment processes within the WRRF remains largely unaffected. The degree of flexible
operation, i.e., the ability to generate a certain amount of electricity at a certain point in
time, is directly related to the size and flexibility of the CHP units, the available gas storage
capacity and the gas production rate. In order to make the interaction of substrate storage,
digestion, gas storage and CHP as efficient as possible, all processes must be projectable. In
other words, the following points must be known at all times:

• available amount and type of substrate
• gas production rates
• current gas storage capacities
• gas utility rate

In this context, the prediction of the produced gas volume plays a key role. In the
past, numerous models for forecasting biogas quantities have been developed. These can
be divided into static and dynamic models as well as deterministic and empirical models.
Many models and equations are available to calculate produced gas volumes based on
VSS, COD or carbon content or stoichiometric approaches e.g., Buswell Equation [1].
Using the theoretical conversion factor of 0.35 NLCH4/g COD the theoretical maximum
gas volume can be calculated knowing the COD content of the substrate [2]. However,
these approaches do not incorporate the dynamic characteristics of the anaerobic process.
Deterministic models describe mathematically the underlying chemical, physical and
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biological processes. They are based on abstracting reality by defining only the essential
process steps within a causality. Processes that do exist in reality, but are of secondary
importance for the cause-effect relationship, are neglected. Thus a simplification of reality is
created. In anaerobic degradation, the individual process steps are usually linked by a chain
of zero-, first- and second-order kinetics. An overview of developed deterministic models
is given in [3,4]. With the Anaerobic Digestion Model 1 (ADM1) [5] a mature deterministic
dynamic model is available, able to describe the anaerobic processes in detail, allowing
predictions on biogas volumes and conclusions on process stability. For this reason, the
ADM1 was used in numerous works as the basis for control mechanisms [6,7]. Due to
the high level of analytical work involved, the ADM1 in particular has only prevailed
in the academic and planning environment. The original ADM1 defines 19 processes
and requires the analysis of 64 parameters in order to characterize the input substrate
and digester state. In addition, various constants have to be determined to characterize
process kinetics, sometimes in a time-consuming manner, using a Biomethane potential
tests (BMP) among others. Weinrich succeeded in systematically simplifying ADM1. He
reduced the model to 4 process steps that were only described with first-order kinetics [8].
Lafratta introduced a model which is based only on 3 sequential first-order reactions
and reduced necessary analysis of the substrate to the parameter VS, VFA, and acetic
acid concentration [3]. While there are other models which require a smaller amount of
analytical work (e.g., [3,8,9]), still chemical analysis remains a limiting factor, especially
taking into account the changing substrate characteristics. The implementation of the
ADM1 with the intention of actively controlling the digester is currently unknown. In his
thesis, Maucky [7] presented a model predicted controller (MPC) based on the adapted
ADM1 model according to Weinrich [8]. Continuously certain parameters of the model are
optimized based on continuously measured data. As the descriptive function of the model
is lost and the model parameters are solely optimized with regard to gas production, the
question arises as to whether significantly simpler methods without a descriptive character
do lead to the same results, so that the prediction is possible without complex chemical
analysis and calibration.

Empirical models do not incorporate mathematical equations which derive from
physical, chemical and biological processes but from analysis of time series data [10].
Computational intelligence and machine learning in particular had a major impact on
empirical modeling. Recently many approaches based on Artificial Intelligence like neural
networks (NN) were published [11–13]. An overview of different approaches is given
in [14]. Jeong [11] presented a hybrid deep-learning architecture for forecasting biogas
production. In the model, 17 input parameters of a large-scale plant, including inflows,
SRT, mass loadings of BOD, COD, suspended solids, total nitrogen and total phosphorous
among others, were taken into account. NN is known to depend on huge amounts of data
to provide satisfying results [14]. However, in large-scale facilities the amount of data e.g.,
characterization of input sludges and co-substrates are limited and TS, COD or others are
rarely measured on a daily basis. Continuously measuring sensors that could support the
implementation of NN are not yet available. Due to the above mentioned limitations, there
is a need for models that can be used for feeding control without significant additional effort
in the operation of digesters to forecast the gas volume in an hourly resolution and thus can
contribute to an efficient feeding management. Dittmer provided a linear regression model
to predict gas production rates as a function of the amount of substrate. The influence
of previous substrate additions is taken into account in the regression model, based on a
cross-correlation analysis [15]. This model does not require any analytical effort.

As part of this work, an empirical method is presented in which past gas production
curves are deconvoluted and a prognosis of future gas production rates are predicted using
simple linear regression. The method also does not require any chemical analyses.

The numerous constituents of the substrates used in anaerobic digestion are subject to
individual biological degradation processes, which are characterized by different conver-
sion rates. Gallert and Winter [16] are illustrating the generalized metabolic pathways of
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proteins, carbohydrates and lipids. Within anaerobic systems, it could be shown that hy-
drolysis in particular is assumed to be the limiting process step [17,18]. Hydrolysis involves
the solubilization of undissolved particulate matter and the biological decomposition of
complex polymers into dimers and monomers using enzymes. Lipids are degraded to fatty
acids, proteins to amino acids and carbohydrates into simple sugars. In anaerobic systems,
hydrolysis is often mathematically described by first-order kinetic model [4]. Figure 1
shows hydrolytic constants [d−1] determined by Christ et al. [19] (at 55 °C), O’Rourke
(1968) and Garcia-Heras (2003) for carbohydrates, proteins and lipids. The differences of
the khyd-values indicate the different degradation velocities between these substrate groups.

Figure 1. khyd-values for carbohydrates, proteins and lipids evaluated by Christ et al. [19] (a), Gujer
[20] with data of O’Rourke [21] (b) and Garcia-Heras [22] in [23] (c) .

All authors show differences between the three fractions with regard to the mean
and the range of the khyd-values. It is reasonable to assume for a mixture that there is a
time dependency between a constituent and its relative share on the amount of methane
produced on the time axis. Depending on the constituents of the substrate specific patterns
in the course of gas production rate should be observed. From numerous works e.g. Hubert
et al. 2019 a. o. it is known that the gas production rate follows a certain pattern after
feeding organic substrates. With regard to raw sludge (mixture of primary and excess
sludge), a very pronounced peak approx. 0.5–2 h after substrate addition is followed by a
broad shoulder [24]. Depending on the organic load the production rate reaches an almost
steady state after several hours. In addition, depending on the substrate used and the
conditions in the reactor including chemical, biological and physical properties, further
peaks and peak shoulders could be observed. In the present study it was investigated if
the course of gas production rate can be described mathematically and thus allowing a
statement about the future gas production rates without a characterization of the input
substrate. In fact the identification of specific patterns could potentially give a feedback on
the quantitative composition of the substrate as well as on the digester status. Although
the latter is not part of the present study, it will be determined in further studies.

2. Materials and Methods
2.1. Reactor Setup

A semi-continuously fed reactor with a working volume of 15 L was used for the
investigations. The reactor was fed one to two times a day with varying amounts of sludge.
Digested sludge was removed from the reactor daily. The operating temperature was set
to 37 °C. Hydraulic retention time was 15 days. The reactor was stirred continuously. The
substrate consisted of a mixture of primary and secondary sludge in a ratio of 1:1. The
sludge was taken from a nearby WRRF with 50.000 PE. The samples were immediately
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mixed, portioned and stored in the freezer. Samples were thawed to room temperature
prior to addition into the reactor. OLR ranged between 0.9 and 6.7 kgTVS/(m3 · d) aver-
aging an OLR of 3.2 kgTVS/(m3 · d) throughout the investigation, which is in the range
of recommended values taking into account a biodegradability of the sludge of around
50% [25]. An overview of the operating parameters is given in Table 1.

Table 1. Operating parameters of the digester.

Parameter Unit Value

T °C 37
HRT d 15
OLR kgTVS/(m3· d) 3.2

TSSubstrate % 6.2
TSDigestate % 3.9

Methane content % 65

2.2. Analytical Methods

The mixed sewage sludge SS as well as the digested sludge was analyzed for TS,
TVS, COD and organic acids (C2–C6). TS and TVS of the digested sludge were analyzed
gravimetrically by drying at 105 °C and subsequent incinerating at 550 °C. The organic
acids were measured once a week using gas chromatography (Agilent Technologies 6890 N;
capillary column Agilent J&W HP-FFAP) after filtrating the samples with a 0.45 µm syringe
filter and acidifying. The chemical oxygen demand (COD) was analyzed for the input
sludge as well as for the digested sludge using cell test (Spectroquant, Merck, Darmstadt,
Germany). Gas quantity was recorded via online gas counter (Ritter TG 0.5), and the values
were normalized to standard temperature and pressure conditions using Equation (1).

VN = V
pe · 273.15 K

(tb + 273.15 K) · 1013.25 mbar
(1)

The volume was plotted in 5 min intervals. Gas was collected in sample bags for
6 h. After 6 h the gas composition in the bags was determined. Gas quality (CH4, CO2)
was measured with an infrared-based biogas analyzer (Pronova SSM 6000). The sampling
bags were emptied after each measurement. All analysis were conducted according to the
analytical methods specified by the German Institute for Standardization (DIN), which are
in accordance to the APHA Standard methods.

2.3. Doping of Sewage Sludge with Glycerin

In a preliminary test, 25 g of glycerin was fed into a continuously operated reactor. A
week later, 850 g of sewage sludge was spiked with 20 g of glycerin. The intention was to
observe the extent to which characteristic curves of the gas production rate are maintained
with changing substrate composition.

2.4. Deconvolution of Gas Production Rates and Correlation Analysis

A 1:1 mixture of primary sludge and excess sludge was fed into the reactor daily
over a period of 21 days. The biogas quantities were automatically recorded in an interval
of 5 min. All values of the gas production rate > 3.0 NL/h, which occurred because of
the gas displacement by the feed were deleted from the raw data. Origin 2019 was used
for mathematical deconvolution. Deconvolution is a transformation process in which
a function is split into several sub-functions using mathematical operators. The sum
of the sub-function returns the original function vice versa. This method is used, for
example, in spectroscopy to separate overlapping peaks in order to quantify substances
in heterogeneous samples. Gaussian fit was chosen for deconvolution. Gaussian function
G(x) is defined as (2):
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G(x) = y0 +
A

w · (π
2 )

2 e
−2(x−xc)2

w2 (2)

y peak baseline
w peak width
A peak area
xc peak center

Deconvolution was executed starting from the time where the substrate was intro-
duced into the digester until approximately two hours after the gas production curve
reached an almost steady-state. The course of gas production rate was split into three Gaus-
sian curves The parameters wi, Ai, xc,i obtained from the deconvolution were examined for
a correlation to the amount of substrate added to the reactor.

2.5. Derivation of a Model Scheme and Implementation in Python

Based on the previous investigation a model schema is proposed and was imple-
mented in python. Parameters were optimized within Python using scipy.optimize. The op-
timization problem was solved using Sequential Least-Squares Programming (SLSQP) [26].
Optimization objective was to minimize the mean squared deviation between the measured
gas production values and the predicted values across all data points (Equation (3)). The
model was validated using the same data as described above. As initial parameters the
values of the first three feeding events received from the deconvolution with Origin 2019
were taken but altered moderately.

obj = min
t

∑
t=0

(ymeasured − ypredicted)
2 (3)

In order to avoid a possible arbitrary optimization results for example peaks becoming
negative, several constraints were set. At the time of substrate feeding t0 = 0 the following
condition was set:

y0 + ∑ G(t0) = y0 (4)

The range in which the variables can be optimized between two optimization steps
was restricted. The boundaries are listed in Table 2. Regression was calculated according to
the Equations (6)–(8).

y = a + b · x (5)

b =
∑ xi · yi − n · x̄ · ȳ

∑ xi
2 − n · ȳ2 (6)

a = ȳ − b · x̄ (7)

Table 2. Boundaries set for wi, Ai and xc,i.

Parameter Boundary

wi ±wi,init
Ai ±Ai,init
xc,i ± xc,i,init

2

3. Results and Discussion
3.1. Doping of Sewage Sludge with Glycerin

It was assumed that the peaks can quantitatively be assigned to certain substance
groups and their underlying degradation processes and that the area of the occurring
peaks is linearly dependent on the amount of substrate added. Figure 2 shows exemplarily
gas production rates after directly feeding glycerin in (a) and after feeding raw sludge
which was spiked with glycerin (b). Obviously, the peak in (a) which occurs around 12.5 h



Water 2023, 15, 614 6 of 15

after the feed is related to glycerin. In (b) the first series of peaks occuring between 0
and 7.5 h is characteristic for sewage sludge as observed in several publications in the
literature [24,27]. The second peak in (b) is related to glycerin once again. Although there
is a clear influence of the raw sludge on the shape of the glycerin peak there is still a clear
similarity given in the shape and the time-dependent occurrence in comparison to the
glycerin peak in (a). Looking at the area of the intersection of both courses (a) and (b) and
the glycerin course in (a), the ratio of the two areas is almost directly proportional to the
amount of glycerin. This substantiates to some extent the idea that peaks can be assigned
to substance groups. Furthermore, the idea and these results are so far in good agreement
with today’s knowledge of biological degradation processes of different substrates and the
different kinetic constants. Specific substances (e.g., proteins, lipids, carbohydrates) are
following specific degradation and metabolic pathways with the involvement of specific
microorganisms and enzymes. It is understandable that the different kinetics have to lead
to different time frames where methane is produced from specific substrates. Yet it is
known that specific substrates will have an influence on metabolic pathways. It was shown
that carbohydrates will have an influence on the degradation process of proteins [28,29]
which will blur specific patterns. Also there will be a change in the microbial community
and thus in the specific patterns with changing substrate composition [30–32]. So a key
factor in observing specific patterns in the course of gas production rates is the rate and
extent of substrate alteration in time.

Figure 2. Course of the gas production rate after feeding the reactor with glycerin (a) and after feeding
with a sewage sludge sample spiked with glycerin (b). The diagram below shows the intersection of
(a) and (b).

3.2. Deconvolution of the Course of Gas Production Rates and Correlation Analysis

The preliminary test described above gave rise to the idea of disassembling the course
of gas production rates into individual functions and to the question of how the individual
functions are related to different fractions of the substrate used.

First, the curves of the gas production rate, which were already available from various
experiments in the past, were evaluated. The different curves were fitted with different
functions, including the Lorentz, Voigt, LogNormal and Gaussian functions. Although all
functions partially showed good fitting properties as well, they didn’t seem to be as robust
using Origin 2019 as the Gaussian fit and failed to properly fit the course of production
rate in many cases. However, these functions could still be taken into account in further
studies. According to the OL differences in the distinctness of the curves can be observed.
This showed that the density of the data points is of great importance for characterizing the
curves. With high OLR, a data density of 15-min intervals is sufficient. If the organic load
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per feed is reduced to less than 1 kgTVS/(m3·d), a higher resolution of 5-min intervals and
less is required. Furthermore, it turned out that a fit with two Gaussian functions provided
sufficiently good results for low OLR < 1.0 kgTVS/(m3·d). However, three Gaussian
functions were required for higher organic loads. Throughout the recommended values
for the OLR according to DWA M 368 [25] curves could be described by three Gaussian
functions as shown in Figure 3.

Figure 3. Deconvolution of gas production rate curve 7 into three gaussian functions; COD-balance:
Percentages represent the share of the COD-equivalents of the deconvoluted peaks on the amount of
COD of the feed. For better illustration the course of gas production rate was flattend

To estimate the correlation between the parameters of the Gaussian functions and
the amount of feed, varying amounts of raw sludge were added daily to the reactor and
each resulting curve was broken down into three functions using Gaussian fit as described
above. In total, 19 days respectively 20 feeding events were evaluated. The raw data of the
gas production rates within 20 days is shown in Figure 4. The extreme values observed
in the plot can be explained by the gas measurement system analyzing gas composition
every 6 h and displaced volume by the feed. Only extreme values above 3.0 NL/h were
eliminated from the data set (see Figure 4). HRT and the resulting OLR were moderate
being 15 days and 3.2 kgTVS/(m3·d) averaged over the observation time. These values are
within the recommended range as described in the literature. Nevertheless, for individual
feeding events recommended values were clearly exceeded. The reactor was in a stable
state throughout the experiment showing a low concentration of organic acids of less than
100 mg/L and normal concentrations of methane of 65% on average in the gas phase.
Specific gas production was 420 NL/kgTVS which is an average value for an anaerobic
digester. Gas production curves were well pronounced. Depending on the amount of
substrate added, the curves were observable between 4 h (Peak 4) at an organic load of
0.86 g TVS/L per feed and 25 h at an organic load of 6.5 g TVS/L per feed (Peak 15).
The maximum gas production rate was between 1.2 NL/h and 2.04 NL/h occurring after
25 and 70 min after feeding. The baseline of the gas production rate was between 0.46
and 0.66 NL/h. Depending on the amount of substrate added, the total area of the curve
contributed between 36% and 68% to the total gas volume within the time when the curve
was observable. The COD equivalents of the peak area ranged between 3 g COD and 33
g COD calculated with a specific methane production of 0.35 m3CH4/kgCODdegraded [2].
The amount of COD of the added substrate ranged from 13 g COD to 100 g COD per
feed. On average, the COD-equivalent of the curves, which corresponds to degraded COD,
was around 25% (20–37%) of the COD of the substrate added. After the curve the gas
production rate turns into a linear slope. Figure 4 shows an example of the COD balance
for the gas production rate curve 7.
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Figure 4. Gas production rates during 20 days of reactor operation. Blue dots are representing the
extreme values due to the feeding. The numbers are a sequential numbering of the gas production
rate curves that occur after feeding. For better visualisation feeding events 8 to 12 were excluded.

From 20 analyzed gas production rate curves 19 curves could successfully be deconvo-
luted. The only curve that couldn’t be deconvoluted was at an OLR of 6.7 gTVS/L (Peak
15) due to the high OLR as well as the circumstance that the rate didn’t return to the level
of the baseline prior to the next feeding event. As expected, the peak area A and the width
w increased with the amount of substrate added. Furthermore, a slight right shift on the
time axes was observed for xc the higher the feed. The correspondingly derived parameters
wi, Ai, xc,i were plotted against the amount of substrate added. The result is shown in
Figure 5. A linear dependency is observed for all parameters.

Nevertheless, from an OLR of 5 gTVS/L on, the linearity is increasingly lost for several
parameters e.g., w1, xc,2 (see Figure 5). It is assumed, that linearity would have been given
for all parameters if the feeding interval would have been increased between feeding events
15 and 16. Because these values were far outside the recommended range, they were not
included in the calculation of R². In future works, it could be assessed to what extent these
findings could be used in order to identify digester overloading. Furthermore, curve 16
was supposed to be influenced by the feeding event 15 which could be an explanation that
16 also differed to a greater extent from the regression line. R² ranged between 0.73 and
0.98 indicating linearity verifying the assumptions made. An overview of all R² is given
in Table 3. During the experiment, the reactor was in a steady state, which means it was
already adapted to the substrate. It is intuitive that in this case, the total peak area A which
is representing the gas production especially of easily degradable fractions should be in a
linear relationship with the amount of substrate added if substrate composition doesn’t
change. For the given equilibria, stoichiometry according to Buswell [1] should apply. As
the ratio between different fractions of the substrate or more precisely substances with
equal degradation velocity doesn’t change, linearity should also be given for the “sub”
areas Ai. According to first-order kinetics, the occurrence of the maximum rates on the
time-axes shouldn’t change with changing input amounts. However, since the maximum
gas production rates did change according to these investigations, this could mean, that the
hydrolysis constants should be dependent on the amount of substrate added in first-order
kinetic models. Trying to translate these findings to the processes in anaerobic digestion, a
shift of the maximum production rate on the time-axes could be due to a longer mixing
time at higher volumes. Since the energy provided for mixing the reactor did not vary,
a corresponding dispersion of the substrate will take more time with larger amounts of
substrate. Another aspect that could lead to a shift is, that different species are involved
in the degradation of specific substrates. According to Fuhrer [33], who identified and
quantified glucose metabolism in different bacterial species in aerobic systems, uptake
velocities can differ significantly from species to species. When the supply of nutrients is
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low, the occurrence of the maximum turnover rates will mainly depend on those organisms
that convert the quickest, while slower organisms could become more visible in the patterns
of gas production rates when there is a high availability of nutrients. This could lead to a
shift in the point in time of the maximum gas production rates. It could also be concluded
that the different degradation pathways of a substrate, for example the degradation of
glucose to acetic acid, propionic acid, butyrate, etc. (cf. [16]), are in terms of conversion rates
not directly proportional to each other, depending to the amount of substrate. Production
of necessary enzymes could also have an influence on xc,i as well as on wi. As xc,i is
determined by the Gauss function and A has a linear character also w is supposed to have
a certain linearity as those three are the only unknowns in the Gauss function. Uptake
capacities could have an influence on the width w as well as the mixing. Nevertheless,
the approach involves solely mathematical operations to find the best-fitting A, w and
xc,i to characterize the gas production rate curves. This does not necessarily implement a
description of the real processes in the digester. The extent to which the presented results
allow statements about the possibility of deriving a quantitative assignment of the peaks to
defined substrate fractions, describing the quality of the mixing or recognizing overloading
and inhibitions is to be investigated in the future.

Figure 5. Linear relationship between wi, Ai, xc,i and the amount of substrate added. Red dots
represent OLR > 5 kg TVS/L. They were not taken into account in calculating R2.

Table 3. Determined R2-values for wi, Ai, xc,i in relation to the amount of substrate added.

Peak wi Ai xc,i

1 0.86 0.95 0.83
2 0.87 0.93 0.84
3 0.73 0.80 0.98

3.3. Model Scheme and Implementation in Python

The results allowed for a suggestion of a concept to predict gas production rates based
on fitting previous gas production rate curves. The concept is based on the continuous
sequence of five process steps:
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1. Define initial values
2. Forecast of gas production rates with initial values
3. Measurement of actual gas production
4. Update values using least square fit
5. Recalculate the regression gradient

Due to the low slope in the gas production rate following the pronounced peak, y0 was
defined as a constant that changes from feeding event to feeding event. The sequence is
supposed to run after each feeding event. The schematic of the concept is shown in Figure 6.
First, input values must be estimated (1). A forecast of the rates is calculated using the input
values (2). Based on the scheduled amount of substrate minput, the parameters of the Gauss
function are calculated using the regression coefficients according to Equations (8)–(10). The
gas production rate at time x can be determined according to Equation (11) by the sum of
the individual Gaussian functions. The predicted rates are compared with the measured
values (3) and the initially estimated parameters are optimized by minimizing the sum of
squared errors for a defined time horizon (4). The coefficients of the linear regression for the
Gaussian parameters are calculated based on the optimized values received from past gas
production curves (5). With these values, a further forecast of the rates can be made depending
on the amount of substrate added. The model could be further optimized by introducing a
fourth Gaussian function representing the slow degradable fractions, replacing the baseline
y0. However, the solver used in this study failed to find suitable solutions for the parameters
of a fourth Gaussian function, which could be due to the boundaries set or the solver itself. In
order to predict the gas production of different substrates, e.g., raw sludge and a co-substrate,
each substrate must go through the protocol separately. Finally, the sum of the Gaussian
function is added.

wi = aw,i + bw,i · minput (8)

Ai = aA,i + bA,i · minput (9)

xc,i = axc,i + bxc,i · minput (10)

y(x) = y0 + G1(x) + G2(x) + G3(x) (11)

The concept was then transferred into a Python script. A question that was still unclear
was how many curves or which time horizon should be taken into account in order to
optimize the values of A, w, xc. The amount of feeding events respectively the time horizon
is supposed to be dependent on the organic load and thus on how well the patterns are
defined. Substrate characteristics will also have a major impact on the time horizon. An
overall statement on the required time horizon is thus not feasible and will differ from case
to case. In the following in each iteration step, three feeding events respectively three days
were optimized. Figure 7 shows the result of the optimization of wi, Ai, xc,i for each of the
sub-functions.

For each curve, new values are obtained that can potentially be used to recalculate the
regression constants as intended in step 4. It is not useful to consider all data points collected
in the past, which means that in each loop several data points should be deleted and new
ones should be added. In this study, regression was calculated using the parameters of
the past three feeding events. The variation coefficients for regression parameters b for
wi, Ai, xc,i are given in Table 4. How many data points should be taken into account in order
to calculate robustly the regression has still to be specified. It depends on how fast and
intense substrate characteristics are changing over time on one side, and on the other on
the changing dynamics of the processes within the reactor. With the regression constants,
the gas production rate can now be predicted based on the amount of substrate added.
Figure 8 shows the prediction and measured values in a 5-day forecast. Averaged over 6
iteration steps (with one iteration step including optimizing wi, Ai, xc,i and y0 for the past
three gas production curves, recalculating the regression coefficients and forecasting gas
production rates for the next 5 feeding events based on the scheduled amount of substrate)
the difference between forecast and measured values over the period of 5 days was 5%.
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The coefficient of determination was calculated to be 82.9% on average over 6 iterations.
This value is in a similarly good range as the results of the model presented by Lafratta [3],
which were in the range of 72 and 87% within 24 h or the results by Poggio [34] using
the ADM1 simulating gas production from food and green wastes (74.0–93.3%). The deep
learning models introduced by Jeong et al. [11] achieved a coefficient of determination of
38 to 76%. Nevertheless, these models were used on full-scale WRRFs. The mean absolute
percentage error (MAPE) averaged 17% for 6 iterations. Dittmer achieved scores of 13.87
and 18.13% with a model based on time series analysis. It must be pointed out that the
scope of the investigation in this study was very limited and further data sets must be
used for validation of the method described. The good prediction is also due to the fact
that approx. 50% of the gas production can already be described by the baseline. It is
assumed that this accuracy is sufficient to establish a feeding-management system in order
to maximize the utilization efficiency of gas storage capacities. Considering that no analysis
is required, the method can thus be considered very promising. However, the method
cannot be used ubiquitously. While the properties of the sewage sludge will not change
significantly over the course of the day, co-substrates can behave very differently. The
properties can vary significantly from batch to batch. This would require substrate storage
facilities of a corresponding size, so a certain degree of homogenization of the substrate
properties can occur. In the case of effective feeding management a substrate storage for
co-substrates is necessary after all.

Figure 6. Proposed model scheme for prediction of gas production rates consisting of 5 steps.
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Figure 7. Gaussian fit of the curves 1, 2 and 3 (see Figure 4). Upper Figure shows the fitted gas
production rate course (green) in comparison to the measured (blue) and the course calculated with
initial values (red). Lower Figure shows the separated Gaussian functions (green) for each curve.

Figure 8. Prediction of gas production rates from 5 feeding events. The first three curves are used to
optimize the Gaussian parameters (green). Based on the optimized values the following 5 curves are
predicted (yellow).

As seen in the figure, predicted and measured values match very well at the beginning.
The further the forecast extends into the future, the greater the deviations are becoming as
the baseline changes according to the feeding history. From day 5, larger deviations between
forecast and measurement are visible. This shows the need for constant recalculation in
tight intervals. Table 4 shows the coefficient of variance of the parameters wi, Ai and xc,i
calculated for 5 iteration steps. The values are high between 10 and up to 52% which is due
to the small number considered for the calculation of the regression. The first Gaussian
peak shows the highest variation. The first Gaussian peak is supposed to be tightly related
to short-chain fatty acid (SCFA) concentration. Since it was not possible to guarantee the
same acidification of the feeding samples (differences arose due to the differences in the
sample quantity and the standing time before adding to the reactors), the large fluctuations
can be partially explained. Nevertheless, the substrate used was homogenous over the
observation period. In large-scale facilities, substrate characteristics will permanently vary
to some extent leading to a higher discrepancy between forecast and measured values.
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Table 4. Coefficient of variance of regression parameter b for wi, Ai and xc,i.

Parameter b
%

w1 51.7
w2 24.7
w3 31.7
A1 28.9
A2 18.0
A3 24.0
xc,1 28.4
xc,2 14.6
xc,3 10.4

4. Conclusions

The prediction of the gas production rate in an anaerobic digester is of particular
importance in order to establish a feeding management system. Due to the high analyt-
ical effort, developed models have not been able to establish themselves yet. Instead of
descriptive models, simple, robust and, above all, practicable models are needed to predict
gas production on large-scale facilities. As part of this work, it was shown that a good fit
of the gas production rate curves is possible using the Gaussian function. The respective
parameters of the Gaussian function also showed a high correlation with the amount of
substrate given into the digester, which allows a prediction of the gas production rates via
linear regression. The prediction can be carried out without any biological and chemical
analysis. The optimization of the respective parameters is carried out continuously and
thus adapts to the changing conditions of the substrate and the reactor. This system takes
into account any influencing factors on gas production, without validating them since the
continuous calibration is based solely on past gas volume measurements. The amount of
gas displaced by the substrate added is taken into account, as is the quality of the mixing or
stripping effects through continuous circulation. The method performed well. Substituting
y0 by a fourth Gaussian sub-function could probably further improve the performance.
However, it must be noted that the investigations were carried out on experimental reactors
and transferability to large-scale systems is still pending.

In this context, data-logging was not a limiting factor. Patterns were clearly observable
collecting data in 5-min intervals. In large-scale facilities kinetics seems to be faster, so that
the required resolution of corresponding patterns must be validated. Furthermore, large-
scale facilities are much more complex and numerous influencing factors such as changes in
pressure conditions, partial energy inputs from intermittent agitators can produce specific
patterns themselves which could overlay patterns triggered by the feed. However, these
influencing factors should be manageable and should be balanced out over a period of a
few hours, which is the resolution that is relevant for an effective feeding management.
Furthermore, moderate organic loads were considered within the scope of this work and
robustness at higher OLR has still to be evaluated. In addition, the method was only
validated on raw sludge. Transferability on co-substrates also needs further investigation.
A greater challenge is the very inconsistent feeding of the digester on large scale facilities.
The addition of numerous different substrates often does not follow any stringent rules and
interference in the gas production patterns is supposed to occurre which could complicate
finding a solution during the optimization process. In addition, unlike the experimental
reactors, the feeding processes take significantly longer time, so that it could be difficult
to assign the patterns to the respective event. Finally, it should be emphasized that this
type of evaluation of the gas curves represents a new way of drawing conclusions about
the substrate composition and the current conditions in the reactor itself. The description
of existing patterns provides a very good basis for applying new mathematical/statistical
approaches as well as AI especially if it is considered that continuously gas flow mea-
surements are widely established and thus provide a huge resource of data. With this
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background, the assignability of different substrates to the deconvoluted peaks will be
examined as well as the influence of operational parameters on wi, Ai and xc,i.
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