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Digital twins map physical objects, processes, and further entities from the real (physical) world into digital space. Going
one step further, hybrid digital twins combine physics-based modeling with data-based techniques to form a simulation tool
with predictive power. In the light of an increasing digitalization of our built world, such digital twins have great potential
to contribute to the protection of critical technical infrastructures. In case of bridges, digital twins can have a key role in
structural health monitoring. This contribution outlines a path to approach these goals and provides a proof of concept of a
hybrid digital twin for steel-reinforced concrete beams as a representative component in civil engineering structures.

Four model components are combined to form the hybrid digital twin, namely, a physics-based full-order model, a fast-to-
evaluate reduced-order model, a purely data-driven model, and a baseline model. Applied to the concrete beam, the full-order
model is based on a novel finite element formulation allowing for efficient modeling of slender structures embedded into solid
bodies. We use this method to capture the interaction between reinforcement components and concrete matrix of the beam.
As reduced-order model, a physics-informed neural network is trained with parts of the available measurement data and with
the governing equations of a simplified physical model. The data-driven model localizes cracks in the concrete in a statistical
outlier analysis of fiber-optical strain measurement data. In completion, the baseline model estimates the system behavior
based on a closed-from expression from civil engineering literature.

The proposed hierarchy of four models with decreasing model complexity allows to select an appropriate model according
to an application specific trade-off between model accuracy and cost. We demonstrate the combination of physics-based
modeling with data-driven techniques based on sensor data measured in a physical four-point bending test of the reinforced
concrete beam.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Critical infrastructures are the lifelines of modern society. For example, highway and railroad bridges are indispensable for
ensuring reliable public and private transport. In Germany, concrete bridges provide 88% of the total area of bridges on
federal highways. Moreover, approximately 50% of these bridges were built before 1980 and require regular inspection [1].
In the field of structural health monitoring (SHM), sensor-based digital representations of bridges are explored to reduce the
number of expensive on-site inspections. In particular, digital twins have great potential in SHM and predictive maintenance
of bridges [2].

The term digital twin was coined in the context of manufacturing, however, the concept is also explored in various other
fields such as health care, education, meteorology and construction [3]. From a general point of view, digital twins map
physical objects, processes, and further entities from the real (physical) world into digital space. For an overview of the
research on digital twins we refer to the recent review paper of Rasheed et al. [3]. The authors provide a broad perspective on
models for digital twins and discuss high fidelity numerical simulators, data-driven modeling, and reduced-order modeling as
enabling technologies for digital twins.

In the following, we focus on digital twins that model an underlying physical problem which is described by partial
differential equations (PDE) (Section 2). In particular, we develop a hybrid digital twin that combines physics-based modeling
with data-based techniques to form a simulation tool with predictive power. The process of generating a hybrid digital twin is
termed hybrid digital twinning. Inputs for this process include drawings, designs, Computer-Aided Design (CAD) geometries
of the physical system under consideration. Material properties are assumed to be known from literature or characterized
by experiments. To interact with its digital representation, the real system is expected to provide sensor data which may,
e.g., include strain measurements on the surface and in the interior with embedded sensors, displacements, accelerations, and
temperatures.

The application case of a reinforced concrete beam, presented in Section 3, brings us back to our motivation of concrete
bridges as we strive for a reliable digital representation of steel-reinforced concrete structures for damage detection. In
Section 4, we test the hybrid digital twin of a reinforced concrete beam with measurement data of a four-point bending test
performed in a physical experiment. Finally, Section 5 offers conclusion and outlook.
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Fig. 1: Spatial domain Ω and space-time domain Q [4]. Fig. 2: Feed-forward neural network with two hidden layers.

2 Models and Methods for Hybrid Digital Twins

A central requirement for a hybrid digital twin is an accurate description of the real physical system. Such an accurate de-
scription can be provided by high fidelity numerical simulators, e.g., finite element models [3]. Response times for individual
evaluations of a complex simulator can range from a few minutes to hours or even beyond. However, in digital twin appli-
cations that require many queries, e.g., uncertainty quantification, or real-time(-like) applications, e.g., control problems a
fast-response time is essential. In such cases, the response time of a high fidelity simulator becomes prohibitively expensive
and a trade-off between model accuracy and response time is required.

To allow for an application specific trade-off between accuracy and response time, we propose a hybrid digital twin that
has four components:

• a full-order model (FOM) that provides a detailed understanding of the physical behavior,

• a reduced-order model (ROM) that is fast to evaluate and can interact with sensor data,

• a data-driven model (DDM) obtaining insight into the system state based on statistical analysis of sensor data, and

• a baseline model (BLM) that provides an engineering estimate for the modeled system behavior.

FOM, ROM, and BLM are derived from amathematically formulated physical model of the real system. Therefore, Section 2.1
presents a PDE-based initial boundary value problem (IBVP) as starting point for the model derivation. As ROM we consider
a physics-informed neural network (PINN). Subsequently, Section 2.2 outlines the derivation of a PINN formulation for a
general IBVP. In contrast, FOM, DDM, and BLM are based on more established methods which are introduced directly in the
context of the application case in Section 3.

2.1 Physics-based Modeling of Time-Dependent Problems

We consider a PDE for a vector-valued function u with ndf independent variables. For convenience, the PDE is expressed in
residual form, i.e., R(u) = 0, with R : Rndf → Rndf . Furthermore, the model problem requires the PDE to hold on a spatial
computational domain Ω(t) ⊂ Rnsd and over a time interval I = [0, tf ]. As indicated in Figure 1, the temporal evolution of Ω
generates the space-time continuum Q, and the evolution of the spatial domain boundary results in a space-time boundary P .
Points in the domain are characterized by the spatial coordinates xs ∈ Rnsd and the time coordinate t. For a three-dimensional
spatial problem, the spatial coordinates are collected in a vector xs = [x, y, z]T .

With these definitions, we can formulate the underlying physical model as IBVP. On the computational space-time domain
Q, we seek the solution u(xs, t) : Rnsd+1 → Rndf to a PDE in residual form accompanied by an initial condition u0(xs) and
Dirichlet boundary conditions g(xs, t), summarized as

IBVP





R(u(xs, t)) = 0, on Q,
u(xs, t) = u0(xs), at t = 0,

u(xs, t) = g(xs, t), on P.
(1)

While many traditional numerical schemes treat space and time separately, space-time methods, e.g., space-time finite
elements [4], have a uniform view on space and time, which is also adopted in physics-informed neural networks for time-
dependent problems [5].
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2.2 Physics-Informed Neural Networks for a General Initial Boundary Value Problem

The central idea of PINNs is to approximate the solution of an IBVP using a function represented by a neural network [5]

u ≈ û :=
(
NL(x; θ)

)′
, NL(x; θ) : Rdin → Rdout . (2)

Standard feed-forward networks NL(x; θ) (employed in our contribution) consist of L layers of neurons with associated
nonlinear activation functions ψ. See Figure 2 for an illustration of a network with two hidden (inner) layers. Connections
between the neurons are weighted and all network weights and biases (not pictured in Figure 2) are collected in the parameter
vector θ. When solving the forward IBVP (Equation (1)), the network input x ∈ Rdin consists of the space-time coordinates,
i.e., din = nsd + 1, and the network output represents the degrees of freedom of the considered IBVP, i.e., dout = ndf . In
an extension for a parameterized IBVP, model parameters can be added to the input vector to enable a query of the network
prediction for varying parameter values, e.g., when the PINN is used as surrogate model. Model parameters can also be added
to the network output to perform parameter identification when additional information is available, e.g., measurement data.

Returning to Equation (2), the network output is not directly used as approximation. Instead, a user-defined transformation
(·)

′
is first applied to the network output. In this contribution, a component-wise output scaling û = wNL(x; θ),w ∈ Rdout

is applied to weight the individual contributions. Moreover, the transformation can be used to enforce Dirichlet boundary
conditions as hard constraints [6]. The precise form of the transformation can be determined before the network training
through inspection of the problem characteristics or found through hyperparameter optimization.

To ensure that the PINN prediction û is a reasonable approximation of the solution u, the network parameters θ must be
determined according to the IBVP. One can formally state this as optimization problem with a loss function LIBVP which
represents the IBVP

θ∗ = argmin
θ

LIBVP(θ), where LIBVP = LPDE + LIC + LBC. (3)

The individual loss terms can be formulated as mean squared error. In the first loss term, the PDE in residual formR(u) = 0
is transformed into a mean squared error, namely

LPDE =

ndf∑

idf=0

ŵ(idf )

ndp

ndp∑

idp=0

[
R(idf )(û(x(idp)))

]2
. (4)

Therein, the inner sum adds up contributions from the ndp data points in the training set, which are used in a sampling-based
solution strategy for the optimisation problem (Equation (3)). In the outer sum, the entries of the vector-valued PDE residual
R are weighted by ŵ(idf ) (in addition to the output transformation applied in the construction of û). Likewise, violations of
the initial and boundary conditions in Equation (1) are transformed into mean squared error loss terms LIC and LBC that are
evaluated at additional sampling points on the domain boundaries.

When additional information from measurements or simulations is available in form of input-output pairs, respective
(weighted) loss terms can be added to the IBVP loss function.

L = LIBVP + LSimulationData + LMeasurementData. (5)

Such a combination of physics knowledge (IBVP) and available data is a key feature of hybrid digital twins. While the
procedure presented in this Section is applicable to general PDE-based IBVPs, we now turn our focus to the specific application
case of this contribution.

3 Application Case: Four-Point Bending Test of Reinforced Concrete Beam

As a representative component in civil engineering structures, we consider a steel-reinforced concrete beam. As application
case for the hybrid digital twin, the concrete beam is loaded in a four-point bending test configuration as shown in Figure 3 a.
The precise experimental setup and details of the data acquisition can be found in the publication of Braml et al. [7]. For the
sake of completeness, the most important test case specifications are summarized in the following paragraphs.

The beam has the dimensions 300 cm × b = 15 cm × 30 cm. Positions of the supports and load application points can
be seen in Figure 3 b and result in a lever arm a = 85 cm (distance between support and load application point). On the
(upper) compression side of the beam, steel reinforcement with a cross-sectional area of AS2 = 1.57 × 10−4 m2 is placed
at a distance d2 = 3.9 cm beneath the beam’s top surface. On the tension side, reinforcement with a cross-sectional area of
AS1

= 3.39 × 10−4 m2 is located at a distance d1 = 26.1 cm beneath the beam’s top surface. In the subsequent modeling,
a Young’s modulus EC = 29GPa is assumed for the concrete, a Young’s modulus ES = 200GPa is assumed for the
construction steel.

To measure longitudinal strains in the beam, fiber-optical sensors are embedded into the concrete in alignment with the
reinforcement on compression side (Sensor 1) and on the tension side (Sensor 2). During the considered test a sinusoidal
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a) b)

Fig. 3: Four-point bending test of reinforced concrete beam. Picture of the laboratory setup (a) and schematic drawing (b).
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Fig. 4: Fiber-optical strain measurements under the peak load of 10 kN. Compression side on the left (a) and tension side on the right (b).

cyclic load P (t) with a peak value of 10 kN is applied. At a sampling rate of 10Hz, each fiber-optical sensor reports strain
values for approximately 1000 points along the sensor as shown in Figure 4. Despite the alignment of the optical fiber with
the steel reinforcements, cracks in the concrete strongly influence the strain measurement on the tension side under the peak
load of 10 kN (Figure 4 b). After this outline of the real system, the following section describes its digital representation.

4 Hybrid Digital Twin of Reinforced Concrete Beam

In the following subsections, we present four models to compose a hybrid digital twin of a reinforced concrete beam. The
models are ordered according to an increasing model complexity.

4.1 Baseline Model

As BLM, we use a closed-form expression for an estimate of the axial strains in the tension reinforcement, εS , provided by
civil engineering literature [8, Chapter 5, Section 4.2.1.3]

εS = f(ES , EC , [a, b, AS1
, AS2

, d1, d2], P (t)). (6)

The estimate holds for the central region of the beam between the two load application points, where a constant bending
moment prevails. Equation 6 omits the explicit (referenced) formula for the estimate, yet stresses the exclusive dependency
on material properties, geometric properties, and the applied load as given in Section 3. No model calibration based on the
measurement data is performed. In Figure 5, the BLM prediction is compared to the corresponding sensor data and proves to
be a reasonable estimate for the bulk strain values. However, this model cannot account for cracks (peaks in the sensor data
displayed in Figure 5).

4.2 Data-Driven Model

A model which instead focusses on cracks is explored in the work of Milani et al. [9]. In a first step, the purely data-driven
approach approximates a decomposition of the strain measurement into bulk strains and crack influence on the sensor data
with an iteratively refined spline fit. After the approximated bulk strain values are subtracted, an outlier analysis is performed
to identify data points which can be statistically attributed to a crack. Finally, k-means clustering is applied to the marked data
points to find the crack centers. The result of the automatic crack detection in a fiber-optical strain measurement of Sensor 2
is shown in Figure 6.

4.3 Reduced-Order Model: Physics-Informed Neural Network

The combination of physics knowledge and measurement data in one model is tested with a PINN. From the physics point
of view, the concrete beam is modeled as elastic continuum. Based on the in-plane loading of the four-point bending test

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 5: Baseline model and measurement under the peak load. Fig. 6: Crack detection with data-driven model [9].
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Fig. 7: Physics-informed neural network. Network architecture visualization (a) and strain prediction (b).

configuration (Section 3), the body is assumed to be in plane-stress state. Hence, it is modeled as two-dimensional linear
isotropic elastic continuum in the plane of its major dimensions (as illustrated in Figure 3 b). With this modeling assumption,
the influence of the reinforcement can only be considered in a homogenized material model, i.e., as an increased Young’s
modulus.

Following the exposition in Section 2.2, the balance equations of linear elasticity in strong from can be directly transformed
into a loss function for a PINN. However, preliminary tests showed that a mixed-variable formulation is advantageous com-
pared to a displacement-based formulation. In the employed mixed-variable formulation, the stress tensor components are
introduced as additional network outputs as shown in 7 a and mean squared error terms of the constitutive equations are added
to the PDE loss (Equation (4)). Moreover, the mixed variable formulation allows for an enforcement of traction boundary
conditions as hard constraints [6].

Making use of the available sensor data, 200 data pairs ([position, strain in longitudinal direction]) from the measurement
of Sensor 1 (Figure 4 a) are added to the training data set and deviations are included as mean squared error terms in the loss
function according to Equation (5). The network training is performed with optimization algorithms provided through the
interface of DeepXDE [5].

The trained network can be directly used to predict displacements and stresses at each position of the two-dimensional
beam domain. Strain values can be obtained with a simple output operator applied to the network prediction. Figure 7 b
compares the network predictions for the sensor positions with the measurement data. On the compression side (Sensor 1),
the PINN prediction smoothly interpolates the sensor data. On the tension side (Sensor 2) – where no measurement data was
added – the physical model ensures that the PINN predicts roughly the right behavior. Still, the strain values are severely
underestimated. In an extension of this work, it is planned to add the magnitude of the load on the beam as an additional
network input, to profit from fast network predictions in a parameter-to-solution setting.

4.4 Full-Order Model: Finite Elements

On top of our model hierarchy (with respect to model complexity), we consider a finite element (FE) model which resolves
the interaction of reinforcement rods and concrete matrix. To this end, we employ the mixed-dimensional FE framework of
Steinbrecher et al. [10, 11]. Namely, the reinforcement rods are discretized with one-dimensional beam elements embedded
into a three-dimensional volume mesh of the solid matrix. In preliminary studies, the mixed-dimensional modeling provided
a drastic reduction of the computational cost with an acceptable relative accuracy: For the reinforced concrete beam a 3D-3D
model has 1 482 648 degrees of freedom, while the 3D-1D model (Figure 8 a) has only 6885 degrees of freedom.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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Fig. 8: Finite element model. Reinforcement discretized with beam elements (a). Comparison with linear bending beam theory (b).

The computed displacements of the solid and the axial strains of the beams show that the FE model predicts the behavior
of the four-point bending test qualitatively correct (Figure 8 a). However, the use of a linear elastic material model currently
prevents the quantitative comparison with measurement data for the concrete beam. Instead, computed strains are compared
to a linear bending beam theory estimate which is in reasonable agreement (Figure 8 b).

5 Conclusion and Outlook

We presented a hybrid digital twin concept that incorporates physics knowledge and sensor data of a real physical system.
Four models were combined to form a hybrid digital twin for a reinforced concrete beam. The BLM which computes a
scalar value for the longitudinal strains in the tension reinforcement is the fastest to evaluate. However, the model relies on a
thorough engineering understanding of the physical problem. When less domain knowledge is available, a DDM might help
to gain insight from a statistical analysis of the data. Regarding PINNs, we conclude that the method is particularly favorable
if measurement data is available and can be added to the loss function of the physical problem formulation. In case of the
employed FE model, the effort of combining two advanced modeling techniques (beam-to-solid coupling, material model of
concrete) should not be underestimated. In conclusion, a versatile hybrid digital twin contains a model hierarchy which allows
to select a model according to the accuracy demands and response-time requirements of the specific query scenario.

Despite the need to further refine the presented methods, steps are taken to address digital twin application cases in the field
of critical infrastructures. To this end, sensor data is collected on a 30m long steel-concrete composite bridge on campus of
University of the Bundeswehr Munich. Selected sample data to develop a benchmark study for bridge monitoring is available
online at https://github.com/imcs-compsim/munich-bridge-data.
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