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Pressure-robust and conforming discretization of the Stokes equations on
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Pressure-robust discretizations for incompressible flows have been in the focus of research for the past years. Many pub-
lications construct exactly divergence-free methods or use a reconstruction approach [13] for existing methods like the
Crouzeix–Raviart element in order to achieve pressure-robustness. To the best of our knowledge, except for our recent
publications [3, 4], all those articles impose a condition on the shape-regularity of the mesh, and the two mentioned papers
that allow for anisotropic elements use a non-conforming velocity approximation. Based on the classical Bernardi–Raugel
element we provide a conforming pressure-robust discretization using the reconstruction approach on anisotropic meshes.
Numerical examples support the theory.
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1 Introduction

During the last years, pressure-robustness has emerged as an important property that discretizations for incompressible flow
problems should possess. The Stokes problem in a domain Ω is given for a data function f ∈ L2(Ω) and viscosity ν > 0 by

−ν∆u+∇p = f in Ω, (1a)
∇ · u = 0 in Ω. (1b)

A pressure-robust method for this problem yields velocity error estimates of the form, see [13],

∥u− uh∥1,h ≲ inf
vh∈Xh

∥u− vh∥1,h + hm|u|m+1,

whereXh is the discrete velocity space and ∥v∥21,h =
∑

T∈Th
∥∇v∥20,T . Missing pressure-robustness on the other hand, e.g.,

in the case of the classical family of Taylor–Hood elements, leads to error estimates of the type

∥u− uh∥1 ≲ inf
vh∈Xh

∥u− vh∥1 +
1

ν
inf

qh∈Qh

∥p− qh∥0,

where Qh is the discrete pressure space. Both estimates contain the best-approximation error for the velocity in the discrete
velocity space, however the advantage of the first estimate is obvious and leads to the descriptive name pressure-robust: the
velocity error does not depend on the pressure approximability and the viscosity of the fluid.

Due to intensive research, many pressure-robust methods are known, e.g., the Scott–Vogelius element [15], H(div)-
conforming discontinuous Galerkin methods [7, 12] or classical methods using a reconstruction approach to gain pressure-
robustness [13]. The proofs for all of these methods however rely on the assumption of shape-regularity on the mesh elements,
which excludes anisotropically graded meshes for boundary layers or edge singularities, which may occur in flow problems.
This shortcoming was treated in our publications [3,4], where the pressure-robust variant of the Crouzeix–Raviart method was
used and we could show error estimates for anisotropic meshes in the boundary layer and edge singularity settings.

Since the velocity approximation of the Crouzeix–Raviart method is non-conforming, the aim of this contribution is to
present a pressure-robust and conforming method which can be used for meshes that contain anisotropic elements. The
presented theory of this paper is contained in [11] in a more abstract setting.

2 Reconstruction approach for pressure-robustness

In order to achieve pressure-robustness, we employ the reconstruction approach introduced in [13]. Consider problem (1) on
a domain Ω ⊂ R2 with viscosity parameter ν > 0 and homogeneous Dirichlet boundary conditions. The weak form of this
problem is well known: Find (u, p) ∈ X ×Q = H1

0(Ω)× L2
0(Ω) so that

ν(∇u,∇v)− (∇ · v, p)− (∇ · u, q) = (f ,v) ∀(v, q) ∈ X ×Q. (2)

Since we later require that for the solution (u, p) ∈ H2(Ω)×H1(Ω) holds, we assume that Ω is a convex polygon where this
required regularity is guaranteed [10].
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The Helmholtz–Hodge decomposition of the data is given by f = Pf +∇ϕ, where Pf is the divergence-free part and∇ϕ
the irrotational part. Looking at the problem in the subspace of divergence free functionsX0 = {v ∈ X : (∇·v, q) = 0 ∀q ∈
Q}, we get the problem

Find u ∈ X0 so that ν(∇u,∇v) = (f ,v) = (Pf ,v) ∀v ∈ X0, (3)

where we see that the velocity solution is independent of the gradient part ∇ϕ of the data, see [13], as the test functions from
X0 areL2-orthogonal on gradients. We aim to preserve this property in the discrete setting by using a reconstruction operator
Ih, see [13], on the velocity test functions on the right hand side of the problem, so that the discrete version of (2) is given by

νah(uh,vh) + bh(vh, ph) + bh(uh, qh) = (f , Ihvh) ∀(vh, qh) ∈ Xh ×Qh, (4)

where ah(uh,vh) = (∇uh,∇vh) and bh(vh, ph) = −(∇ · vh, ph). Similar to (3) we can write this problem in the subspace
of discretely divergence-free functionsX0

h = {vh ∈ Xh : bh(vh, qh) = 0 ∀qh ∈ Qh}:

Find uh ∈ X0
h so that νah(uh,vh) = (f , Ihvh) ∀vh ∈ X0

h. (5)

The reconstruction operator Ih : Xh → H0(div,Ω) = {v ∈ H(div,Ω) : v · n∂Ω = 0} needs to satisfy the properties

∇ · (Ihvh) = ∇ · vh ∀vh ∈ X0
h, (6a)

∥vh − Ihvh∥0 ≲ h∥vh∥1,h ∀vh ∈ Xh. (6b)

This way when tested with vh ∈ X0
h, the right hand side of (4) satisfies (f , Ihvh) = (Pf , Ihvh)+(∇ϕ, Ihvh) = (Pf , Ihvh).

3 Modified Bernardi–Raugel discretization and error estimates

For the Bernardi–Raugel method, the velocity and pressure approximation spaces are defined by, see [6],

Xh = (P 1(Th)⊕ span{λ1
Fλ

2
FnF ∀F ∈ Fh}) ∩X, Qh = {qh ∈ L2(Ω) : qh|T ∈ P0(T ) ∀T ∈ Th},

where Th is the set of mesh elements, Fh is the set of mesh edges, nF the unit normal on facet F , and λi
F the linear nodal

basis functions associated with the endpoints of facet F . Thus, the velocity space is the space of continuous piecewise linear
functions enriched by normal-weighted quadratic facet bubble functions and the pressure space is the space of piecewise
constants.

With Ih = id we get the standard Bernardi–Raugel method (BR), while for the pressure-robust modification we can choose
Ih as the lowest-order Raviart–Thomas (BR-RT) or Brezzi–Douglas–Marini (BR-BDM) interpolation operators, see [14],
which we write as IRT0 and IBDM

1 , respectively. The two operators are defined by the following relations on every edge
F ∈ Fh

∫

F

(v − IBDM
1 v) · nF z ds = 0 ∀z ∈ P 1(Th), and

∫

F

(v − IRT0 v) · nF ds = 0.

Lemma 3.1 Let Xh and Qh be the Bernardi–Raugel finite element pair and let the reconstruction operator Ih be defined
by either (Ihvh)|T = IBDM

1 vh|T or (Ihvh)|T = IRT0 vh|T for all vh ∈ Xh and T ∈ Th. Then Ih satisfies (6) independently
of the mesh aspect ratio.

P r o o f. SinceXh ⊂ C(Ω)∩X , the operator Ih maps to a subspace ofH0(div,Ω). Estimate (6b) is proved by summing
the elementwise error estimates for the Raviart–Thomas and Brezzi–Douglas–Marini interpolation operators from [1] and [2],
respectively.

To show (6a) we prove that the reconstruction operator preserves the discrete divergence of functions fromXh, i.e.,
∫

T

∇ · Ihvhqh dx =

∫

T

∇ · vhqh dx ∀qh ∈ Qh

holds for all vh ∈ Xh and all T ∈ Th. Integrating by parts we get
∫

T

∇ · (Ihvh − vh)qh dx =

∫

T

(vh − Ihvh) · ∇qh dx+
∑

F∈F(T )

∫

F

(Ihvh − vh) · nF qh ds ,

where F(T ) is the set of facets of the element T . Since qh is piecewise constant it holds∇qh = 0 and by using the definition
of the operators IBDM

1 and IRT0 we see that the right hand side vanishes.
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Lemma 3.2 There is an operator IF : X → Xh that for all v ∈ X satisfies the properties

bh(v, qh) = bh(I
F
h v, qh) ∀qh ∈ Qh,∥∥IFh v

∥∥
1,h

≤ CF ∥v∥1,h,

with a stability constant CF that is independent of the aspect ratio of the mesh and the mesh size parameter h.

P r o o f. This is proved in [5, Theorem 1] for a wide class of anisotropic two-dimensional meshes. In particular boundary
layer adapted meshes are included in the results from the reference.

The previous lemma provides the inf-sup stability result for the Bernardi–Raugel method in the form

inf
0 ̸=qh∈Qh

sup
0̸=vh∈Xh

bh(vh, qh)

∥vh∥1,h∥qh∥0
≥ β̃ > 0, (7)

where β̃ is the discrete inf-sup constant, as the existence of a Fortin operator is equivalent to inf-sup stability, see, e.g., [8,
Lemma 4.19]. We have to keep in mind that the results from [5] that are used in the proof are restricted to a wide class of
two-dimensional meshes.

The next result is a consistency estimate in the subspace of divergence-free functions.
Lemma 3.3 Let (u, p) be the solution of the Stokes problem with unit viscosity. The consistency error estimate

|ah(u,vh)− (f ,vh)| ≲ h∥vh∥1,h∥f∥0 ∀vh ∈ X0
h (8)

holds, where the constant is independent of the aspect ratio of the mesh and the mesh size parameter h.

P r o o f. We write for vh ∈ X0
h

|ah(u,vh)− (f ,vh)| ≤ |ah(u,vh) + bh(vh, p)− (f ,vh)|+ |bh(vh, p)|,

where the first term vanishes since X0
h ⊂ Xh ⊂ X . Estimating the second term, using the L2-projection operator πh onto

Qh, we get

|ah(u,vh)− (f ,vh)| ≤ |bh(vh, p)| = |bh(vh, πhp) + bh(vh, p− πhp)| = |bh(vh, p− πhp)|
≤ ∥∇h · vh∥0∥p− πhp∥0 ≤ ∥vh∥1,h∥p− πhp∥0.

The error of the L2-projection onto the piecewise constant functions can be estimated using [8, Theorem 1.103] which, using
the result that the Stokes solution is bounded by the data function, see, e.g., [8, Theorem 4.3], leads to the final estimate

|ah(u,vh)− (f ,vh)| ≲ h∥vh∥1,h∥p∥1 ≲ h∥vh∥1,h∥f∥0.

Lemma 3.4 Let (u, p) be the solution of the Stokes problem (2). Then for the Bernardi–Raugel element the approximation
properties

inf
vh∈X0

h

∥u− vh∥1,h ≲ h∥P(∆u)∥0, inf
qh∈Qh

∥p− qh∥0 ≲ h∥f∥0

hold, where the constants are independent of the aspect ratio of the mesh and the mesh size parameter h.

P r o o f. We first need the stability estimate for the Bernardi–Raugel interpolation operator from [5, Section 5.2], where it
was shown that for v ∈ H2(Ω) the estimate

∥∥IBRh v
∥∥
1,h

≲ ∥v∥1,h + h|v|2 (9)

holds on the types of meshes we use. With the technique from the proof of [9, II.(1.16)], we get

inf
vh∈X0

h

∥u− vh∥1,h ≲ inf
vh∈Xh

∥u− vh∥1,h ≲
∥∥u− IBRh u

∥∥
1,h

,

so that now only the error of the Bernardi–Raugel interpolation needs to be estimated. Since the operator IBRh preserves linear
polynomials we can use the stability estimate (9) and a Bramble–Hilbert type argument, which in the end leads to the estimate

inf
vh∈X0

h

∥u− vh∥1,h ≲ h|u|2.
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4 of 6 Section 18: Numerical methods of differential equations

As u ∈ H2(Ω) is the Stokes velocity solution for data f , we know, see, e.g., [3, Lemma 2], that it also solves a Stokes system
with data ν−1Pf . We can thus again use that the Stokes solution is bounded by the data function, see, e.g., [8, Theorem 4.3],
and estimate

|u|2 ≲ ν−1∥Pf∥0.

With [3, Equation (9)] we now get the desired estimate

inf
vh∈X0

h

∥u− vh∥1,h ≲ h∥P(∆u)∥0.

The estimate for the pressure can be acquired by again using the error estimate for the L2-projection into piecewise constants
πh from [8, Theorem 1.103], with which we can compute

inf
qh∈Qh

∥p− qh∥0 = ∥p− πhp∥0 ≲ h∥p∥1 ≲ h∥f∥0.

With these lemmas as preparation, we are able to prove the discretization error estimates. Due to Lemma 3.2 and the
restrictions on the mesh that come from the reference [5], we can only use two-dimensional meshes that are composed of
patches of three types: isotropic patches, boundary layer patches with anisotropic elements and corner patches. For a detailed
description please refer to [5, pp. 91–94].

Theorem 3.5 Let Ω ⊂ R2 be a convex polygon, Xh, Qh the Bernardi–Raugel finite element pair and (u, p), (uh, ph)
the solutions to (2) and (4). Further let the reconstruction operator Ih be defined by either (Ihvh)|T = IBDM

1 vh|T or
(Ihvh)|T = IRT0 vh|T for all vh ∈ Xh and T ∈ Th, and let Th satisfy the mesh conditions from [5]. Then the estimates

∥u− uh∥1,h ≲ inf
vh∈X0

h

∥u− vh∥1,h + h∥P(∆u)∥0,

∥p− ph∥0 ≲ inf
qh∈Qh

∥p− qh∥0 +
ν

β̃
inf

vh∈X0
h

∥u− vh∥1,h +
h

β̃
∥f∥0

hold, where β̃ is the discrete inf-sup constant.

P r o o f. Let vh ∈ X0
h be the best-approximation of u with respect to ∥·∥1,h and set wh = uh − vh ∈ X0

h. Then due to
the Pythagorean theorem we have

∥u− uh∥21,h = ∥u− vh∥21,h + ∥wh∥21,h. (10)

Using (5) and ah(u− vh,wh) = 0 we can estimate

∥wh∥21,h = ah(wh,wh) = ah(uh − vh,wh) = ah(u− vh,wh)− ah(u,wh) + ah(uh,wh)

≤
∣∣ah(u,wh)− ν−1(f , Ihwh)

∣∣.

Dividing by ∥wh∥1,h and combining this inequality with (10) yields

∥u− uh∥1,h ≤ ∥u− vh∥1,h +

∣∣ah(u,wh)− ν−1(f , Ihwh)
∣∣

∥wh∥1,h
. (11)

Recall the Helmholtz–Hodge decomposition of the data f = Pf + ∇ϕ and note that ∇ · Ihwh = 0 due to Lemma 3.1 and
wh ∈ X0

h. With (∇ϕ, Ihwh) = 0 we get
∣∣∣∣ah(u,wh)−

1

ν
(f , Ihwh)

∣∣∣∣ =
∣∣ah(u,wh)− ν−1(Pf , Ihwh)

∣∣

=
∣∣ah(u,wh)− ν−1(Pf ,wh) + ν−1(Pf ,wh − Ihwh)

∣∣
≤
∣∣ah(u,wh)− ν−1(Pf ,wh)

∣∣+
∣∣ν−1(Pf ,wh − Ihwh)

∣∣. (12)

By [3, Lemma 2], u is also the velocity solution of the Stokes problem with unit viscosity and right hand side ν−1Pf , which
means that we can apply the consistency estimate of Lemma 3.3, which yields

∣∣ah(u,wh)− ν−1(Pf ,wh)
∣∣ ≲ ν−1h∥wh∥1,h∥Pf∥0. (13)

The second term in (12) can be estimated using the Cauchy–Schwarz inequality and the interpolation error estimate for the
reconstruction operator Ih from Lemma 3.1, which gets us

∣∣ν−1(Pf ,wh − Ihwh)
∣∣ ≤ ν−1∥Pf∥0∥wh − Ihwh∥0 ≲ ν−1h∥Pf∥0∥wh∥1,h. (14)

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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We can now combine the individual estimates (13), (14) with (12) and insert the result in (11). Since vh was chosen as the
best-approximation of u in X0

h, we now have the final estimate

∥u− uh∥1,h ≲ inf
vh∈X0

h

∥u− vh∥1,h + h∥P(∆u)∥0,

where we also used the identity [3, Equation (9)].
To get the pressure estimate we also use the Pythagorean theorem to get

∥p− ph∥20 = ∥p− πhp∥20 + ∥πhp− ph∥20,

where πh : L2
0(Ω) → Qh is the L2-projection into the discrete pressure space. For the first term it holds ∥p− πhp∥20 =

infqh∈Qh
∥p− qh∥20. Since πhp− ph ∈ Qh and using the discrete inf-sup condition (7) we get

∥πhp− ph∥0 ≤ 1

β̃
sup

vh∈Xh

bh(vh, πhp− ph)

∥vh∥1,h
=

1

β̃
sup

vh∈Xh

bh(vh, πhp− p) + bh(vh, p− ph)

∥vh∥1,h
. (15)

The first term in the numerator can be estimated using the Cauchy–Schwarz inequality, the error estimate for the L2-projection
into piecewise constant functions from [8, Theorem 1.103] which yields

|bh(vh, πhp− p)| ≤ ∥∇h · vh∥0∥πhp− p∥0 ≲ ∥vh∥1,h∥πhp− p∥0 ≲ h∥vh∥1,h∥f∥0. (16)

Since ph solves the discrete problem we get for the second term

|bh(vh, p− ph)| = |bh(vh, p) + νah(uh,vh)− (f , Ihvh)|
= |νah(u,vh) + bh(vh, p)− (f ,vh) + νah(uh − u,vh) + (f ,vh − Ihvh)|
≲ ν∥u− uh∥1,h∥vh∥1,h + h∥f∥0∥vh∥1,h, (17)

where in the last step the consistency of the method, the Cauchy–Schwarz inequality and the interpolation error estimate from
Lemma 3.1 was used. Now putting (16) and (17) into (15) and using the estimate for the velocity error yields the claimed
pressure estimate.

Corollary 3.6 Under the assumptions from Theorem 3.5 we have the estimates

∥u− uh∥1,h ≲ h∥P(∆u)∥0, ∥p− ph∥0 ≲ hβ̃−1∥f∥0,

P r o o f. This is a direct application of Lemma 3.4 to the estimates from Theorem 3.5.

4 Numerical example

We now present an academic numerical example to see the performance of the method on anisotropic meshes. The example
employs a manufactured solution of the Stokes equations on the unit squareΩ = (0, 1)2 described by the velocity and pressure
functions

u(x) =

(
tanh

(
y√
ε

)

0

)
, p(x) = tanh

(
y√
ε

)
− C(ε),

with a positive parameter ε. Both functions exhibit a boundary layer near y = 0, as can be seen in the visualization in Fig. 1.
The functions can be viewed as a fluid flow along a wall with no-slip boundary condition. The parameter ε can be used to

adjust the width of the boundary layer. Defining the boundary layer width as the distance from the wall where 99% of the free
flow velocity is reached, we compute

|u(·, τ)| = tanh

(
τ√
ε

)
= 0.99 ⇔ τ = 0.5

√
ε ln (199) ≈ 2.65

√
ε

for the transition point parameter τ of the Shishkin-type meshes we want to use. This type of mesh has a uniform element size
in x-direction and half of the total elements up to τ in the y-direction, see the bottom illustration in Fig. 1. The constant C(ε)
is needed to set the mean pressure to zero and can be computed by

C(ε) =

∫

Ω

tanh

(
y√
ε

)
dx =

√
ε ln
(
cosh

(
ε−

1
2

))
.
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Fig. 1: Top: Magnitude of velocity solu-
tion for ε = 10−3. Bottom: Shishkin-
type mesh.
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Fig. 2: Convergence plots for the boundary layer example for ε ∈ {10−4, 10−5}, ν =
10−4, with BR and BR-BDM methods.

Computations were performed with the BR and BR-BDMmethods for parameter choices ε ∈ {10−4, 10−5} and ν = 10−4

on uniform and Shishkin-type meshes. For the presentation of the numerical results we use the relative errors

∥u− uh∥1,h,rel =
∥u− uh∥1,h

∥u∥1,h
, ∥p− ph∥0,rel =

∥p− ph∥0
∥p∥0

.

The results are shown in Fig. 2. They clearly support the theoretical findings from Theorem 3.5 and Corollary 3.6, as the
plots show that the optimal convergence rate is reached for the modified method on anisotropic meshes. Furthermore, the plots
show on the one hand the clear advantage of the pressure-robust methods, where the velocity errors are significantly smaller
than for the standard method. On the other hand, the effect of the anisotropic mesh grading is obvious in the velocity errors as
well as the pressure errors.
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