Patch-wise Integration of Trimmed Surfaces

Michael Loibl¹

Leonardo Leonetti², Alessandro Reali³ and Josef Kiendl¹

¹Universität der Bundeswehr München, ²Università della Calabria, ³Università di Pavia

September 27, 2021

Method

Nonlinear moment-fitting equations ٠

$$\int_{\Omega} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_m \end{pmatrix} d\boldsymbol{\xi} = \begin{bmatrix} f_1(\boldsymbol{\xi}_1) & f_1(\boldsymbol{\xi}_2) & \cdots & f_1(\boldsymbol{\xi}_n) \\ f_2\boldsymbol{\xi}_1) & \ddots & & \\ \vdots & & & \\ f_m(\boldsymbol{\xi}_1) & \cdots & f_m(\boldsymbol{\xi}_n) \end{bmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

- 1st decision: Positions of the integration points ξ_i from the patch-wise integration rule ٠ for the untrimmed patch
- 2^{nd} decision: Integration weights w_i as design variables •

Additional integration points

- Unsatisfactory results because of a shortage of points in the trimmed elements
- Extra integration points in a band along the trimming curves (symbol: \bigcirc)

Convergence study

- Example: Infinite plate with circular hole
- Improved convergence due to additional integration points

• Prospect: Positions and number of additional points as key for an amended method

Thank you for your attention!