Patch-wise Integration of Trimmed Surfaces

Michael Loibl ${ }^{1}$

Leonardo Leonetti2, Alessandro Reali ${ }^{3}$ and Josef Kiendl ${ }^{1}$
${ }^{1}$ Universität der Bundeswehr München
${ }^{2}$ Università della Calabria
${ }^{3}$ Università di Pavia
November 7, 2022

Motivation

How can we efficiently simulate free-form design?

Patch-wise integration of arbitrarily trimmed structures!

Image from 'Wikipedia'

Outline

1. Patch-wise Integration
2. Gauss Integration of Trimmed Elements
3. Method for Patch-wise Integration of Trimmed Surfaces
4. Numerical Results
5. Summary
6. Outlook

Derivation of Patch-wise Integration

- Patch-wise quadrature rules reduce the number of integration points considering the high smoothness of NURBS basis functions
- Numerical integration

$$
\begin{aligned}
& \mathbb{Q}=\sum_{i=1}^{n_{\text {quad }}} w_{i} f\left(\xi_{i}\right):=\int_{\Omega} f(x) d \xi \\
& \text { where } \quad f \text {... function which should be integrated } \\
& \xi \ldots \text { positions of } n_{\text {quad }} \text { integration points } \\
& w \ldots \text { weights of } n_{\text {quad }} \text { integration points }
\end{aligned}
$$

- Optimal integration points by optimizing positions and weights

Dependency of Patch-wise Rule on Integrand

- Integration of stiffness matrices

$$
\int_{\Omega} \nabla R_{i}(\boldsymbol{\xi}) \nabla R_{j}(\boldsymbol{\xi}) d \Omega
$$

2D-plane element

$$
\int_{\Omega} \Delta R_{i}(\boldsymbol{\xi}) \Delta R_{j}(\boldsymbol{\xi}) d \Omega
$$

where $\quad R \ldots$ basis function
ξ... parametric coordinates
$\Omega \ldots$ domain of the structure

Less Integration Points with Patch-wise Rule

- Patch-wise integration rules overcome element-wise thinking
- Example of patch-wise integration points for 2D-plane element and Kirchhoff-Love shell element:

$$
\begin{aligned}
p & =3 \\
\Xi & =\{0,0,0,0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1,1,1,1\}
\end{aligned}
$$

Trimming contradicts Patch-wise Integration

- Conventionally, trimmed elements integrated by mapped Gauss points

- Tensor-product structure of NURBS patches and of patch-wise quadrature rules violated by trimming
\longrightarrow Goal: Patch-wise integration also for trimmed structures!

Method for Patch-wise Integration of Trimmed Surfaces

Example: Infinite plate with circular hole

Distinction of Elements in case of Trimming

- Active-untrimmed
- Trimmed

57	58	59	60	61	62	63	64	Legend:	
49	50	51	52	53	54	55	56	36	active untrimmed
41	42	43	44	45	46	47	48		trimmed element
33	34	35	36	37	38	39	40		
25	26	27	28	29	30	31	32		
17	18	19	20	21	22	23	24		trimming curve
9	10	11	12	13	14		16		
1	2	3	4	5	6	7	8		

Distinction of Basis Functions

Choice of Integration Schemes

- Inactive (ia) \rightarrow no integration
- Trimmed $(\mathrm{t}) \rightarrow$ mapped Gauss integration
- Transition (tra) \rightarrow mixed integration
- Patch-wise (pw) \rightarrow patch-wise integration

| pw |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pw |
| pw |
| pw |
pw	pw	pw	pW	tra	tra	tra	tra
pw	pw	pw	pw	tra	tra	tra	tra
pw	pw	pw	pw	tra	tra		t
pw	pw	pw	pw	tra	tra	t	ia

Mixed Integration of Transition Elements (tra)

(1) Untrimmed basis functions \rightarrow patch-wise integration
(2) Trimmed basis functions \rightarrow Gauss integration
(3) Combinations of trimmed and untrimmed basis function \rightarrow Gauss integration

Consider a short example with:

- 3 basis functions (BF) with one degree of freedom per control point
- where basis function 3 is trimmed
$\left[\begin{array}{lll}K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33}\end{array}\right]=\underbrace{\left[\begin{array}{ccc}K_{11}^{p w} & K_{12}^{p w} & 0 \\ K_{21}^{p w} & K_{22}^{p w} & 0 \\ 0 & 0 & 0\end{array}\right]}_{(1) \text { untrimmed } \mathrm{BF}}+\underbrace{\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & K_{33}^{\text {gauss }}\end{array}\right]}_{(2) \text { trimmed } \mathrm{BF}}+\underbrace{\left[\begin{array}{cccc}0 & 0 & K_{13}^{\text {gauss }} \\ 0 & 0 & K_{23}^{\text {gauss }} \\ K_{31}^{\text {gauss }} & K_{32}^{\text {gauss }} & 0\end{array}\right]}_{\text {(3) trimmed and untrimmed BF }}$

Infinite Plate with Circular Hole

- Matching results from a standard trimming and the proposed integration method

Infinite Plate with Circular Hole

- Matching results from a standard trimming and the proposed integration method
- Clear reduction of number of integration points

Scordelis-Lo Roof with Elliptic Hole

Summary

- Patch-wise quadrature rules based on a tensor-product structure
- Tensor-product structure destroyed by trimming
- Proposed method extends patch-wise rules to trimmed surfaces

Outlook

- Comparison to weighted quadrature
- Optimized integration points in transition zone

- Extension to trimmed volumes

Thank you for your attention!

Contact: michael.loibl@unibw.de

