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ABSTRACT
A probabilistic data-driven approach that models the filtered reaction rate in large-eddy simulation (LES) is investigated. We propose a novel
framework that incorporates a conditional generative adversarial network and a Gaussian mixture model to take into account the statistical
fluctuations that are present in LES of turbulent reacting flows due to non-resolved subgrid structures, which cannot be predicted by purely
deterministic models and machine learning algorithms. The data from a direct numerical simulation of turbulent premixed combustion are
spatially filtered using a wide range of filter widths and employed for the training.We extract physically relevant parameters from the database
and reduce the input features to the network to the most influential ones based on the result of feature importance analysis. The trained model
is then tested on unseen timesteps and untrained LES filter widths, where it is able to accurately predict the distribution of the filtered reaction
rate.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146268

I. INTRODUCTION

Turbulent premixed flames of fuel-oxidizer combinations with
large activation energies are present in many technical combus-
tion applications. Prominent examples are flames using hydrogen
or hydrocarbons as fuel and pure oxygen or air as the oxidizer.
Large activation energies and low diffusivities of gaseous compo-
nents result in very thin reaction layers of premixed flames even at
atmospheric pressure. With increasing pressure and density, chem-
ical reaction rates rise while the diffusivities and heat conductivity
drop, reducing the reaction layer thickness further.

These thin reaction layers usually cannot be resolved numer-
ically in Reynolds averaged Navier–Stokes (RANS) simulations or
in large-eddy simulations (LES) where the size of typical computa-
tional cells is more than an order of magnitude larger than necessary
to numerically resolve the laminar flame structure embedded in the
turbulent flow field. Combustion models that represent the effects
of these subgrid structures are required to accurately simulate pre-
mixed combustion processes in most technical applications and
academic configurations.

Reaction layers are folded and stretched by the turbulent flow
field, but there is evidence from experiments and direct numerical
simulations (DNS) that even at quite large Karlovitz numbers, their

inner structure remains largely unaffected.1–3 The filtered reaction
term will then be roughly proportional to the laminar filtered one
multiplied by a wrinkling factor representing the subgrid flame sur-
face density. These results also suggest that such turbulent flames
may be approximately characterized by a single reaction progress
variable. The (density-weighted) Favre averaged transport equation
for such a progress variable c can be written as

∂ρ̄c̃
∂t
+ ∂ρ̄ũkc̃

∂xk
+ ∂

∂xk
(ρ̄ũkc − ρ̄ũkc̃) =

∂

∂xk
(ρDdiff

∂c
∂xk
) + ω̇, (1)

where ω̇ is the filtered chemical reaction source term and c̃ is the
Favre average of the progress variable.

The quasi-1D structure of many turbulent premixed flames is
used in many turbulent combustion models. In models of the fil-
tered laminar flame (FLF) model4 type, the chemical source term is
filtered from a 1D laminar flame profile and tabulated as a function
of the 1D filtered progress variable and of filter width. At runtime,
the tabulated source term is multiplied by a suitable wrinkling factor
from a separatemodel. Pfitzner et al.5 proposed recently an FLF vari-
ant that considers the effect of oblique flame propagation through
the filter volume on the flame surface area. During the runtime of
an LES, Eq. (1) will be solved with ω̇ from the model, which only
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depends on the filter size and the transported LES variables. The fil-
tered diffusion term may have to be modeled as well if ρDdiff is a
strongly nonlinear function of the progress variable. Here, we fol-
low a similar route, however, representing the filtered reaction rate
source term through machine learning based on data from a DNS
simulation.

For non-unity Lewis number fuels, such as lean hydrogen
combustion, accurately modeling the combustion requires more
than just a single quantity such as the progress variable. This is
because the fuel’s diffusivity is different from that of the rest of the
mixture. Local variations in equivalence ratio can cause thermo-
diffusive instabilities, leading to unstable combustion, flashback, and
blow-off. To accurately model non-unity Lewis number flames, an
additional transport equation for the mixture fraction is needed.6–8

The filtering operation in LES or RANS destroys information
about high-resolution structures of the velocity and progress vari-
able fields. After filtering, the full details of the fields present in a fully
resolved (i.e., DNS) representation usually cannot be fully recon-
structed from the filtered variable fields due to loss of information.
A certain LES field can obviously result from amultitude of different
DNS representations.9 While the filtered value of a linear function of
transported variables is equal to the function of the filtered variables,
this is not so for very nonlinear functions like chemical source terms.
In the LES transport equations, the effect of non-resolved structures
on non-linear functions of transported variables needs, therefore,
to be modeled. An example is the use of a wrinkling factor model
capturing the effect of non-resolved subgrid flame wrinkling.

As an alternative, subgrid effects can be represented by proba-
bility density functions (PDFs, which in the LES context are often
called filtered density functions, FDF).10,11 Usually, single-point
PDFs are used, which can either be presumed or derived from
their transport equation. To determine the parameters of presumed
PDFs, transport equations for moments of the relevant quantities
(i.e., velocities and species) are solved. Alternatively, transport equa-
tions for the PDF itself can be solved.12 The advantage is that the
very nonlinear chemical source term appears in closed form in this
transport equation but here the effect of turbulent fluctuations is
unclosed. Due to the high dimensionality of the PDF (when using
it with detailed chemistry mechanisms where each species generates
a new dimension in pdf space), usually stochastic methods are used
to approximate the solution of the PDF transport equation. The PDF
is represented by a number of particles (or Eulerian fields), which are
transported by stochastic transport equations. A stochastic term in
these transport equations simulates the effect of non-resolved turbu-
lent fluctuations of the velocity and species fields. Local mean values
of variables are extracted from the ensemble of PDF particles (or
fields) as simple averages.

Such stochastic methods will not simply yield the mean value
(plus in some cases variances) of the transported quantities. Instead,
the stochastic process will produce an approximation to the full PDF,
from which theoretically the mean values and all higher moments
can be derived, and often represented by linear superposition of
multiple PDFs resulting in the joint distribution of mean and covari-
ance. The models that estimate stochasticity underlying in data have
been successfully applied to a wide variety of engineering appli-
cations, such as the prediction of atmospheric turbulence13,14 and
modeling in molecular dynamics simulation.15,16

In contrast to deterministic models, stochastic models will not
yield the same solution when starting from a certain set of ini-
tial values. Thus, several simulations need to be run and averaged
to compute mean values (and their variances) or long averaging
times have to be run in the case of steady-state situations. A poten-
tial advantage of stochastic methods is that, in principle, it may
be easier to model the effect of backscatter from the non-resolved
(DNS) scales to the resolved (LES) ones. This is, however, seldomly
done. Recently, Akram et al. investigated a reduced order LESmodel
based on the inertial manifold applicable to non-reacting flows and
it was capable of reconstructing unresolved dynamics (backscatter)
without using the stochastic method.17

Another fact that supports the necessity of stochastic models
can be introduced by the incomplete nature of under-resolved sim-
ulations such as RANS and LES. In these simulations, turbulence
often has to resort to the coarse-grained models at the scales for
which numerical resolutions are not sufficient, which causes pre-
dictive variability.18 Deterministic models, e.g., the eddy-viscosity
concept, rely on the assumption that the turbulence can be per-
fectly expressed by a finite set of local vectors, and it can generate
only single unique evolution rather than predicting all the evolutions
possible. However, the models based on uncertainty are capable of
estimating a broad range of possible evolutions.18

When filtering LES quantities from DNS, for strongly nonlin-
ear functions (e.g., the reaction source term) filtered with a large
filter size, it is probable that the filtered functions cannot be fully
described by functions of the filtered LES transported variables
alone. Due to the variability arising from the coarse-grained descrip-
tion, plots of the filtered reaction source term conditioned on LES
variables (or functions thereof) will exhibit some scatter with a
certain variance. While a perfect model using the chosen set of
LES variables will reproduce the conditioned filtered DNS data,
the remaining scatter will be a sign of the inability of models with
the chosen variables to represent the effect of subgrid structures
(irreducible error19 and optimal LES model20).

Deep learning has been applied to model a wide range of
LES subgrid-scale (SGS) combustion quantities, such as scalar
dissipation rates,21,22 filtered density functions,22–24 flame surface
densities,25–27 progress variable variances,28,29 and filtered reaction
rates directly.30–32 SGS modeling is usually set up as a super-
vised regression task, with the model trained to minimize a least
squared error with ground truth SGS data computed from a fil-
tered DNS. The most straightforward network architecture is a
multilayer perceptron composed of fully connected layers, which
provides fully local predictions.21–24,26 Shallow convolutional neural
networks (CNNs) have often been used to incorporate short-range
contextual information.26–28,30,31 CNNs have pioneered exceptional
breakthroughs in image and video computer vision33–35 and are also
well-suited to work on numerical combustion data discretized on
large multidimensional grids. Deep CNNs with fully convolutional
architectures, such as U-Nets25,29 and ESRGANs,36 benefit from effi-
ciently working on the entire field for increased modeling precision
and sampling efficiency at the cost of increased parameter count and
model complexity.

Although many combustion models based on deep learning
have been proposed, most of the studies23,25,28–30 have applied deter-
ministic machine learning modeling to the turbulent reacting flows,
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which can be considered as a result of a random process driven by
the turbulence. Recently, Ihme et al.37 emphasized the importance
of a probabilistic approach and statistical learning for the machine
learning frameworks that analyze and model the combustion
data.

While deterministic models will reproduce the mean values
of variables, a stochastic method can attempt to also represent the
scatter around the mean values with correct statistical properties.
The generative adversarial neural network (GAN) is a type of deep
learning algorithm that is capable of probabilistic prediction to rep-
resent the stochastic relationship that underlies any observed data.
Goodfellow et al. argued that the GANs could actually learn the
probability latent in the data under the condition that the training
data are sufficiently detailed and the network architecture is fully
capable of mimicking the data.38 In the computational fluid dynam-
ics (CFD) community, the GANs have been successfully used in the
representation of unsteady hydrodynamic data39 and high-fidelity
combustion data.36

Probabilistic modeling has been used to super-resolve the
low-resolution fields of scalar and vector fields using GANs.36,40

Given low-resolution filtered fields, the generator of the GAN
is adversarially trained to generate corresponding high-resolution
fields. At inference time, it can be queried to generate samples
from this distribution of high-resolution data. Probabilistic neu-
ral networks (PNNs) have also been investigated to quantify the

uncertainty of neural network predictions in surrogate modeling
of fluid flows.41 PNNs are trained to output a set of mixing prob-
abilities, means, and variances that defines a Gaussian mixture
model, which can, therefore, provide uncertainty estimates over its
predictions.

We propose a novel data-driven turbulent combustion model
that provides a stochastic prediction of the filtered reaction rate
source term using an uncertainty-aware deep learning method. In
Sec. II, we present the DNS of a premixed turbulent flame in a slot
burner configuration that is used as our training data. Section III
describes the details of the GAN-based modeling, with an emphasis
on its motivation and distinctive factors compared to the previous
probabilistic modeling we have conducted. Results for the feature
importance analysis to reduce the complexity of the input para-
meters are presented in Sec. IV A. The test results of the trained
model for the unseen time snapshot and untrained LES filter widths
are provided in Sec. IV B. Finally, the conclusion of this study is
presented in Sec. V.

II. DIRECT NUMERICAL SIMULATION DATABASE
A. Characteristics of the DNS

The slot burner Bunsen configuration studied here was chosen
as it contains a large surface area of wrinkled flame fronts covering

FIG. 1. Visualization of the DNS. (a)
Progress variable c slice view in the
xy-plane over time. (b) 3D view of the
iso-surface c = 0.75 at t = 2.2τ corre-
sponding to the progress variable value
at the peak heat release in an unstrained
laminar flame, colored by the normalized
curvature κδL.
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a wide range of wrinkling intensity from quasi-laminar flame fronts
near the inlet to highly wrinkled regions downstream that feature
flame front interactions and detached pockets of the unburnt mix-
ture. It is, therefore, well-suited to be converted into a diversified
database to train a machine learning model to predict the wrinkling
factor, specifically for flames with a unity Lewis number. Visualiza-
tions of the flame in its steady state are shown in Fig. 1, and key
simulation parameters are recalled in Table I.

Chemistry is described using a recently proposed reaction
source term formulation.42–44 It relies on an analytical solution to the
1D laminar transport equation of the progress variable, which leads
to a reaction source term ω(c) expressed as a polynomial expression
in the progress variable c. A reaction source term that provides an
analytical solution of the 1D laminar progress variable conservation
equation in a canonical coordinate space is

ωm(c) = (m + 1)(1 − cm)cm+1. (2)

This non-dimensional source term describes a single-step irre-
versible chemical mechanism and depends on a scalar parameterm,
which determines the flame thickness. It mimics closely a one-step
Arrhenius source term. This simplified description of the chemistry
was chosen to reduce the computational cost of the DNS since it is
generally accepted that wrinkling statistics of premixed flames can be
studied using simplified chemistry and transport assumptions45–47

and that the models that are derived can be adapted to simulations
with detailed chemistry and transport.48

A single-step irreversible mechanism is derived from the reac-
tion CH4 + 2O2 → CO2 + 2H2O. A progress variable is defined from
the methane mass fraction YF and its unburnt value Yu

F ,

c = 1 − YF

Yu
F
. (3)

Under unity Lewis number conditions, the rate of progress Q
of the reaction has been computed as in Ref. 29

Q = (ρusL)
2Yu

F

ρDWF
ωm, (4)

where ρu, sL, ρ, D, and WF are the unburnt density, laminar flame
speed, density, diffusivity, and fuel molar mass, respectively. An
unburnt gas temperature of Tu = 300 K and a constant pressure
P = 1 bar are set. m and sL are inputs to the source term formula-
tion, which are chosen tomatch the laminar flame speed and thermal
flame thickness δL of a GRI 3.0 detailed mechanism containing 53
species and 325 reactions,49 leading to sL = 0.37 m/s and m = 1.9
(δL = 450 μm), where δL is defined by (Tb − Tu)/max (∣∇T∣), where
Tb and Tu are the temperature of the burnt mixture and unburnt
mixture, respectively. Transport properties are set to a constant
unity Lewis number and a constant Prandtl number Pr = μCp

λ = 0.7,
where Cp is the heat capacity at constant pressure, λ is the thermal
conductivity, and μ is the dynamic viscosity that is modeled by a
power law

μ = μref(
T
Tref
)
α

. (5)

The reference dynamic viscosity μref = 1.8 × 10
−5 kg/m/s at

Tref = 300 K and the power-law exponent α = 0.683 are fitted on
a GRI 3.0 mechanism. Species diffusivities Dk = μ

ρSck
are computed

through constant Schmidt coefficients Sck = Pr to satisfy the unity
Lewis number assumption.

This DNS was performed using the AVBP code,50,51 which
solves the three-dimensional compressible Navier–Stokes equations
with a third-order finite element TTGC Taylor-Galerkin numer-
ical scheme.52 The domain is a rectangular box of size Lx × Ly
× Lz = 10.24 × 2.56 × 1.28 cm3 discretized on a regular Cartesian
mesh composed of 1600 × 400 × 200 hexahedral cells of size
dx = 64 μm. NSCBC inlet and outlet boundary conditions53 are
imposed in the x streamwise direction. A bulk flow of unburnt mix-
ture is injected at a bulk velocityUbulk = 25 m s−1 in the central third
of the inlet H = Ly/3 = 8.5 mm. It is surrounded by coflows of burnt
mixture with a velocity Ucoflow = 0.1 m s−1. In the unburnt–burnt
transition region at the inlet boundary, species mass fraction and
temperature profiles are imposed to follow the laminar flame profile

TABLE I. Numerical and physical parameters. Unless specified, the values of the physical parameters are taken from the
inlet unburnt mixture conditions.

Jet slot width H = Ly/3 8.5 mm
Domain size Lx × Ly × Lz 12 H × 3 H × 1.5 H
Bulk flow velocity Ubulk 25 m/s
Coflow velocity Ucoflow 0.1 m/s
Flow-through time τ = Lx/Ubulk 4.1 ms

Laminar flame speed sL 0.37 m/s
Laminar thermal flame thickness δL 450 μm

Turbulent fluctuation intensity u′ 2.5 m/s
Integral length scale lt 2.1 mm
Preheat zone Kolmogorov length scale η 54 μm
Damköhler number Da = (lt/δL )/(sL/u′) 0.69
Karlovitz number Ka = (u′/sL)3/2(lt/δL)−1/2(sLδL/υ)1/2 27
Jet Reynolds number Re = UbulkH/υ 14 200
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corresponding to the DNS operating conditions, and a smooth tran-
sition fromUbulk toUcoflow is enforced through a hyperbolic tangent
function. The remaining boundary conditions are no-slip adiabatic
walls in the y-direction and periodic conditions in the z-direction.

Turbulent velocity fluctuations are added to the bulk flow using
a synthetic generation method.54 A turbulent velocity fluctuation
field u′ is built from a Fourier series decomposition

u′(r, t) =
N

∑
n=1

vn(kn) cos (kn ⋅ r + ωnt) +wn(kn) sin (kn ⋅ r + ωnt),

(6)
with N = 200 modes. The Fourier modes {vn,wn}, wave vectors
kn, and pulsations ωn are random variables sampled to obtain a
Passot–Pouquet55 turbulence spectrum,

E(k) = 16u
′2

ke

√
2
π
( k
ke
)
4

exp [−2( k
ke
)
2

], (7)

where u′ = 2.5 m s−1 = Ubulk/10 is the turbulent fluctuation inten-
sity and ke is the wave number associated with the most energetic
length scale. ke is related to the integral length scale lt of the
spectrum through lt =

√
2π/ke, and its value is chosen to obtain

lt = 2.1 mm = H/3.
The impact of the mesh size on the resolution of the flame front

and the turbulence is discussed in the following. The thickness of
the laminar flame front δL is resolved on ∼7 mesh points, namely,
δL ≈ 7 ⋅ dx, where dx is the length of the unit cell. This allows for
an appropriate resolution of the flame structure with a simplified
single-step chemical mechanism.

The Kolmogorov length scale is not measured from the
theoretical Passot–Pouquet turbulence spectrum, as the synthetic
generation does not produce eddies as small as the theoretical
Kolmogorov length scale, and the shear layers at the inlet also
contribute to the turbulence seen by the flame. As a conse-
quence, the Kolmogorov length scale is computed from the density-
weighted averages in the preheat zone (defined as the region where
0.1 < c < 0.5) of the kinematic viscosity ν̃ and dissipation rate ε̃. Both
solenoidal and dilatational contributions to the dissipation rate are
considered,56

ε̃ = 1
ρ̄

⎡⎢⎢⎢⎢⎣
μω2 + 4

3
μ(∇ ⋅ u)2 + 2μ ∂2

∂xi∂xj
(uiuj) − 4μ

∂

∂xi
(ui∇ ⋅ u)

⎤⎥⎥⎥⎥⎦
.

(8)

FIG. 2. Borghi–Peters turbulent combustion diagram. ●: present DNS; ▽: Luca
et al., 2019;3 ◻: Sankaran et al., 2015;59 ◇: Wang et al., 2017;60 △: Klein et al.,
2018.61

The value of the resulting Kolmogorov scale η = (ν̃ 3/ε̃)1/3
= 54 μm guarantees that the Pope criterion Δx/η < 2 is fulfilled for
the turbulent eddies near the cold boundary of the flame front.

The operating point of the present DNS in the Borghi–Peters
turbulent combustion diagram57,58 is represented in Fig. 2, along
with similar methane–air slot jet flame DNS configurations (or
single-step virtual chemistry in the case of Klein et al. 2018.61)
from the literature. For the comparison of configurations with vary-
ing temperature and pressure conditions, the Ret = 1, Ka = 1, and
Ka = 100 lines are plotted with the assumption that sLδL/ν = 1 in the
unburnt mixture, although for the present DNS sLδL/ν = 11.

B. Data pre-processing
Spatially filtered variables are generated from exact DNS

solutions through a convolution operation with a kernel G,

Q(x) = (G∗Q)(x) = ∫ G(x − x′)Q(x′)dx′. (9)

Followingmodern conventions in a priori testing of LESmodels,62,63

G is a 3D Gaussian kernel. For computational efficiency, it is factor-
ized in three 1D Gaussian kernels G1D successively applied along the
x, y, z-directions,

FIG. 3. Center slice view of Favre-
filtered progress variable c̃ at t = 2.2τ
for different filter widths. (a)Δ/δth ≈ 0.57
(nΔ = 4) (b) Δ/δth ≈ 1.71 (nΔ = 12).
(c) Δ/δth ≈ 3.43 (nΔ = 24). (d) Δ/δth
≈ 9.14 (nΔ = 64).
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G1D(r) = (
6

πΔ2 )
1/2

exp(−6r
2

Δ2 ), (10)

where Δ is the size of the filter and denotes its cutoff length. Filtered
variables are then downsampled by a factor nΔ = Δ/dx to reproduce
the coarse resolution of LES meshes. The filtered reaction source
term ω̇ learned by the ML method is calculated by evaluating ωm(c)
from the DNS c field using Eq. (2) and filtering according to Eq. (9).
Figure 3 shows the result of the filtering process of c̃ for differ-
ent filter widths. We have filtered the DNS database with seven
filter widths of Δ/δth ≈ 0.57, 1.14, 1.71, 2.29, 3.43, 4.57, 9.14, which
corresponds to nΔ = 4, 8, 12, 16, 24, 32, 64.

C. Data mining from DNS database
Data-driven modeling heavily relies on the quality of the input

data as it finds a mapping function between input and output, which
are often called feature and label, in the supervised learning concept.
Hence, determining which feature will enter the model is critical.

In the context of machine learning, feature importance analy-
sis refers to techniques that provide a quantitative measure of how
strongly input features are correlated with the target variable label,
giving us better interpretability of observed data.

A total of 11 features that are expected to represent the filtered
reaction rate ω̇ are selected as given in Table II. These features can be
computed using the variables available in an LES. They are selected
based on knowledge of turbulent combustion physics and on fea-
tures used in existing models. The importance of the Favre averaged
progress variable c̃, the magnitude of the gradient of Favre filtered
progress variable ∣∇c̃∣, and the magnitude of the Laplacian of Favre
filtered progress variable ∣∇2c̃∣ are already studied in Ref. 26. Para-
meters that are related to the velocity fields are also considered: the
magnitude of SGS velocity fluctuations u′Δ, the magnitude of the
filtered velocity ∣ũi∣, the magnitude of the gradient of the filtered
velocity ∣∇ũi∣, the magnitude of the filtered strain rate tensor ∣Si j ∣,
the magnitude of the filtered vorticity rate tensor from the velocity
fields ∣ωi j ∣, the resolved curvature κ̃, the resolved tangential strain

TABLE II. Full set of features extracted from the DNS to model the filtered reaction
rate.

Features Definition Normalization

c̃ c̃ = ρc
ρ̄ ⋅ ⋅ ⋅

∣∇c̃∣ ⋅ ⋅ ⋅ 1/δth
∣∇2c̃∣ ⋅ ⋅ ⋅ 1/δth2

u′Δ u′Δ =
√

1
3
τii
ρ̄ , τii = ρuiui − (

ρui×ρui
ρ̄ ) sL

∣ũi∣ ⋅ ⋅ ⋅ sL
∣∇ũi∣ ⋅ ⋅ ⋅ sL/δth
∣Si j ∣ ∣Si j ∣ = ∣ 12(

∂ũi
∂x j
+ ∂ũ j

∂xi
)∣ sL/δth

∣ωi j ∣ ∣ωi j ∣ = ∣Ωx +Ωy +Ωz ∣,Ωi j = 1
2(

∂ũi
∂x j
− ∂ũ j

∂xi
) sL/δth

κ̃ κ̃ = ∂Ni
∂xi

,Ni = − ∂ c̃
∂xi
/∣∇c̃∣ 1/δth

ãT ãT = (δi j −NiN j) ∂ũi∂x j
, δi j ≡

⎧⎪⎪⎨⎪⎪⎩

0, i ≠ j
1, i = j

sL/δth

Δ ⋅ ⋅ ⋅ δth

rate ãT , and the LES filter width Δ. The relationship between the fil-
tered reaction rate ω̇ and the curvature κ, tangential strain rate aT
has been studied in Refs. 64 and 65. It should be noted that c̃, ∣∇c̃∣,
∣∇2c̃∣, u′Δ, ∣Si j ∣, ∣ωi j ∣, κ̃, and ãT are Galilean invariant. The parameters
are normalized by δth and sL as given in Table II and then used
for the training. Figure 4 depicts slices of the selected parameters
at Δ/δth = 2.29 as an example.

To keep the most important input features and prune the
unnecessary features, we employed the maximal information coef-
ficient (MIC)66 and Shapley value (SHAP)67 methods. The MIC
method provides a non-linear correlationmeasure between two con-
tinuous features x, y. We consider the set of all possible binnings
of (x, y) containing at most nx bins for x and ny bins for y, where
nx,ny are constrained by the user. For each binning (x̂, ŷ), the
mutual information I(x̂, ŷ), defined as the Kullback–Leibler diver-
gence between the joint distribution p(x̂, ŷ) and the product of the
marginal distributions p(x̂)p(ŷ), is computed. The maximal infor-
mation coefficient is the largest mutual information over the set of
all the binnings, with appropriate normalization between 0 and 1.

While theMICmethod only operates on the features, the SHAP
algorithm needs a pre-trained model because this method computes
the average marginal contribution of each feature with respect to
the prediction of the model. A previous study26 has demonstrated
how the input variables computed from the filtered progress vari-
able c influence on the target variable, flame surface density Σ,
using the SHAP method. Recently, Wang et al.68 have employed the
SHAPmethod to explain the effect of geometrical design parameters
for turbomachinery systems and the MIC has been also exploited
to interpret the turbulence CFD database to analyze uncertainty
estimates for turbulence models.69

Results of the feature importance analysis using SHAP andMIC
algorithms are indicated in Fig. 5. Regarding the SHAP analysis, a
deep learning model that will be introduced in Sec. III has been uti-
lized to compute the correlations with respect to the filtered reaction
rate ω̇. It is then trained on a total of 11 features listed in Table II
in order to compute the correlation indices for all the features con-
sidering in this study. Both algorithms indicate that the filtered
progress variable c̃ has the highest impact, followed by ∣∇c̃∣, ∣∇2c̃∣,
u′Δ, Δ, and the rest, in descending order. Usually, the parameters
∣∇c̃∣, u′Δ, Δ have been widely used as the model input features of
conventional flamelet surface density (FSD) models.70–72 The higher
impact of ∣∇2c̃∣ relative to u′Δ has not been expected and the effect of
∣∇2c̃∣ has not been considered anywhere (to the best of the author’s
knowledge).

Based on the presented result of the feature importance analy-
sis, two groups of parameters are defined: full and compact. The full
set includes: c̃, ∣∇c̃∣, ∣∇2c̃∣, u′Δ, ∣ũi∣, ∣∇ũi∣, ∣Si j ∣, ∣ωi j ∣, κ̃, ãT , and Δ, a
total of 11 parameters. The compact set includes: c̃, ∣∇c̃∣, ∣∇2c̃∣, u′Δ,
and Δ, a total of five parameters. In Sec. III, we compare the perfor-
mance of the proposed deep learning surrogate models trained on
the two sets of parameters.

III. PROBABILISTIC DEEP LEARNING MODELING
The contribution of this paper can be considered as an exten-

sion of a previous study26 that proposed a data-driven turbulent
combustion model using a residual neural network in conjunction
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FIG. 4. Center slice view of the variables
extracted for the filter width Δ/δth = 2.29
(nΔ = 16).

with a mixture density network (RES–MDN) to predict the statis-
tical quantities such as the mean μ and standard deviation σ of the
flame surface density Σ. This work has shown that the RES–MDN
has the ability to predict the stochastic behavior stored in the DNS
database accurately in a priori as well as a posteriori.

This paper presents improvements along the following two
perspectives.

(1) Introduction of a Gaussian mixture distribution: While a
RES–MDN that forecasts μ and σ representing a single Gaus-
sian distribution was employed in the previous study, this
work employs a mixture of Gaussian distributions to approx-
imate any arbitrary distribution. It assumes that the data
distribution can be represented as a linear combination of
kernel functions (e.g., Gaussian73). A Gaussian mixture has
a probability density function that reads

p(y∣x) =
K

∑
i=1

αi(x)ϕi(y∣x),

ϕi(y∣x) =
1

(2π)1/2σi(x)
exp{−(y − μi(x))

2

2σi(x)2
},

(11)

where y is the target data, x is the input vector, K is the
number of components in the mixture, and α is the mixing

coefficient with the constraint
K
∑
i=1

αi = 1. The parameters α, μ,

and σ are unknown parameters to be predicted by the neural
network. In this current contribution, we have used K = 10
distributions, which were found to adequately model the cur-
rent filtered DNS database. Readers who are interested in the
details of this approach can refer to chapter 5.2 in Ref. 74. It
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FIG. 5. Importance indices for each parameter computed by
the feature importance analysis methods, SHAP and MIC.

has to be emphasized that the use of a Gaussian mixture dis-
tribution is motivated by the fact that the filteredDNS dataset
for the current work covers several LES filter widths span-
ning a wide range from Δ/δth ∼ 0.57 to ∼9.14, whereas the
training database in the previous work involved a single LES
filter width Δ/δth ∼ 2.4 only. This increases the complexity of
the distribution to be modeled and justifies the use of a more
sophisticated model.

(2) Conditional adversarial training: Adversarial training is used
to train a GAN model that learns to generate outputs
drawn from a distribution that is indistinguishable from the
ground truth target distribution.28 More specifically, adver-
sarial training involves two neural networks, a generator G
and a discriminator D. G is trained to generate outputs that
closely match the target distribution of ω̇. D is alternatively
fed “fake” samples generated by G and “true” samples from
the ground truth distribution. D is trained to correctly clas-
sify the true and fake samples. G and D are jointly optimized

by an adversarial loss. In the end, the trained network G is
a generative model for the filtered reaction rate ω̇. While
a traditional GAN learns to sample probability distribution
p(y), a conditional GAN (cGAN) can learn to sample con-
ditional probability p(y∣x),75 which means that cGAN actu-
ally can represent the conditional probability p(ω̇∣x) where
x = {c̃, ∣∇c̃∣, ∣∇2c̃∣, . . . ,Δ}. The samples generated by the
cGAN are, therefore, controlled by a set of informative fea-
tures. Thus, the proposed model provides a mapping from
[x]→ {αm,μm, σm}→ [ω̇], where m is the number of com-
ponents in the mixture. Adversarial training is a good choice
for probabilistic modeling as the generator is encouraged to
learn an output distribution that is indistinguishable from
the ground truth distribution, without exactly copying the
ground truth values. Using traditional supervised training
with a mean squared error loss function could collapse the
model distribution to the specific sample distribution of the

FIG. 6. An overview of the training of the
conditional generative adversarial net-
work (cGAN) and the deep learning net-
work architecture employed in this study,
where α, μ, and σ denote mixing coef-
ficient, mean, and standard deviation,
respectively.
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training dataset, which is only a small sample of the true dis-
tribution to be learned. This learning task can be viewed as
probabilistic regression, for which cGAN has been studied
comprehensively in Refs. 76–79.

The schematic of the training process of cGAN is shown in
Fig. 6. As described above, the input vector x enters the generator
G in order to produce the fake ω̇. The discriminator D alternatively
takes the fake ω̇ and the real ω̇ from the filtered DNS as input.
The information on whether ω̇ is fake or not is also provided to
D by concatenating the labels with binary tags 0 (fake) or 1 (real).
The most challenging part of this study was to overcome mode
collapse, which is a commonly experienced problem when dealing
with GAN, in which the trained model fails to generate diversi-
fied outputs.80–83 Thus, the predictive performance of the model is
degraded significantly when mode collapse happens. To solve this
issue, we have tested various common GAN loss functions: stan-
dard,75 Wasserstein,84 Wasserstein with gradient penalization,85 and
least-squares.86 Training was only successful when using the least-
squares loss function (LS–GAN) and the utility of the LS–GAN has
been reported in many interdisciplinary sectors.87–89 The genera-
tor G and the discriminator D are then finally trained by stochastic
gradient descent with the ADAM optimizer.90

Regarding the generator G, the network processes the input x
at its input layer. It is followed by a fully connected layer (FCL) with
30 neurons, which is the value used in all the layers in G. Then, three
residual blocks are stacked repeatedly. A residual block consists of
three sets of FCL and rectified linear unit (ReLU) activation func-
tion.91 A residual skip connection is added to the main path before
a final ReLU activation. A mixture density (MD) block is then con-
nected to infer{α,μ, σ}. A softmax activation function is used for
the prediction of the mixing coefficients α due to the requirement
that they sum to unity.92,93 The mathematical definitions of ReLU
and softmax functions are provided in the Appendix, along with the
non-negative exponential linear unit (nnelu) function. The nnelu
function is used to ensure that the standard deviation σ always has a
positive value.94 A sampling layer is finally used to generate the sam-
pled ω̇ from the Gaussian mixture distribution. The ultimate output
of the proposed model is a stochastic distribution sampled from
the Gaussian mixture distribution, while the output of our previous
work26 was a set of statistical moments {μ, σ} defining a Gaussian
distribution that was not yet sampled from. The schematic of the
generator network is depicted in Fig. 6.

The network architecture of discriminator D was determined
through trial and error. The mode collapse can be caused depend-
ing on the size of the discriminator network. In addition, if the D
network is too large, vanishing gradient problems can occur.95 For
a GAN, the vanishing gradient problem denotes a situation where a
discriminator close to optimality cannot provide enough feedback to
the generator, making the training slow or stop completely. We have
tried different sizes of the network and we figured out that a suffi-
ciently large discriminator avoids both mode collapse and vanishing
gradients for our case. Five residual blocks and 100 neurons are used
to construct the D network.

For the training dataset, we have used five different time snap-
shots, which are t = 1.8τ, 1.9τ, 2.0τ, 2.1τ, 2.2τ. For each snapshot, we
built seven filtered snapshots using filter widths of Δ/δth ≈ 0.57,
1.14, 1.71, 2.29, 3.43, 4.57, 9.14. Table III describes which snapshots
are included in the training and testing datasets. For the testing

TABLE III. Datasets for training and testing.

Datasets Time step t LES filter width Δ/δth
Training 1.8τ, 1.9τ, 2.0τ, 2.1τ 0.57, 1.14, 2.29, 4.57, 9.14
Testing 2.2τ 1.71, 3.43

dataset, we selected the last time step 2.2τ and the LES filter widths
Δ/δth ≈ 1.71, 3.43. Therefore, what we aim to test is the extrapola-
tion capability with respect to time and interpolation capability with
respect to the filter width.

The hyperparameters employed in this study have been sum-
marized in Table IV. The total training time was taken to be 32 h
running on a Titan-X graphics processing unit (GPU) equipped
workstation. In order to implement the deep learningmodel in prac-
tice, the Python library Tensorflow probability96 has been utilized on
top of Tensorflow.97

For the purpose of examining the effect of the number of
input parameters entering the model, we have created two scenarios:

TABLE IV. List of hyperparameters used in this study. The values of learning rate,
β1, β2, and ∈ are the default values of the Adam optimizer implemented in Tensorflow.

Generator Discriminator

Number of neurons at layers 30 100
Number of residual blocks 3 5
Number of trainable parameters 9660 152 901
Learning rate 0.001 0.001
β1 0.9 0.9
β2 0.999 0.999
∈̂ 1 × 10−7 1 × 10−7
Weight decay None None
Optimizer Adam Adam
Loss function Squared L2 Squared L2

norm norm
Number of mini-batch
size of training 1024

FIG. 7. Mean squared errors between predicted ω̇ and ω̇ from filtered DNS for
different filter widths. The exact values are listed in Table V in the Appendix.
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MD–cGAN–Full and MD–cGAN–Compact, which correspond to
the proposed deep learningmodel with a total of 11 input parameters
and the model with five parameters. Furthermore, as a compar-
ison to MD–cGAN–Compact, we also set up a case without the
mixture density network and with five input parameters in order
to demonstrate the effect of the ability to estimate the probabil-
ity density based on the Gaussian mixture model. The other parts
of the network are equivalent to the network depicted in Fig. 6.
The residual skip connection in this neural network, which allows a
deeper neural network, is primarily responsible for its ability to infer
the target parameter. This case is henceforth referred to as ResNet
(abbreviated from residual neural network). The ResNet network
architecture does not use conditional adversarial training, mixture
density blocks, or sampling layers. Instead, it models the target para-
meter directly using only ResNet blocks. The hyperparameters for
the ResNet block are the same as the ones used in MD–cGAN
methods.

IV. RESULTS
In this section, we test the generalization capability of the pro-

posed deep learning model on the unseen time snapshot for the
last time step ( τ = 2.2)and untrained filter width Δ/δth ≈ 1.71, 3.43
(equivalent to nΔ = 12, 24), as described in Sec. III.

Figure 7 shows the comparison of the quantita-
tive performances of four cases, such as MD–cGAN–Full,
MD–cGAN–Compact, ResNet, and algebraic model. As a basis
of comparison against the deep learning models, we introduce a
well-known FSD model from the literature, which was proposed
by Fureby.70,71 Details of the algebraic model can be found in the
Appendix. Values of mean squared error (MSE) between the filtered
DNS and predicted values are illustrated in Fig. 7 showing all the
LES filter widths including the training and testing datasets. The
exact values of MSE are provided in Table V in the Appendix.

It can be noticed that MD–cGAN–Full performs slightly bet-
ter than MD–cGAN–Compact and is noticeably more accurate than
the algebraic model. Note that the y axis is in logarithmic scale. For
both deep learning models, the test results for the untrained LES fil-
ter widths (Δ/δth ≈ 1.71, 3.43) do not deviate from the results of the
trained LES filter widths. In addition, the trend of the errors indi-
cates that the error levels increase as an LES filter width increases

FIG. 8. Plot of inference time normalized by the time taken by the algebraic model.
Note that the y-axis is in the logarithmic scale.

until Δ/δth ≈ 3.43 and then decreases again. It also shows that
ResNet performs similarly with two other deep learning cases. The
inference times taken by the models are compared in Fig. 8, nor-
malized by the time taken by the algebraic model. It is shown that
MD–cGAN–Full, MD–cGAN–Compact, and ResNet require a sim-
ilar time cost but MD–cGAN–Full shows the biggest demand time.
We found that the MD-cGAN models take ∼50 times longer to per-
form inference than algebraic models. It is important to note that we
performed the inference calculations on a GPU. The inference time
for a posteriori analysis could be reduced by using central process-
ing units (CPUs) instead. The differences in performance between
GPU-based and CPU-based inference are discussed in depth
in Ref. 98.

Figure 9 shows the comparison of the correlation plots of pre-
dicted ω̇ against ω̇ from the filtered DNS for the LES filter widths
Δ/δth ≈ 1.14, 1.71, 2.29, 3.43, 4.57. A hexbin plot has been used to
show the density of the points onto the 100 × 100 discretized
grid using a grey-colored scale. As shown in Fig. 7, scatters with
higher variance are observed for large filter widths, for example,
Δ/δth ≈ 3.43, 4.57. In contrast, it displays a tight spread of the pre-
diction for small filter widths, for example, Δ/δth ≈ 0.57, 1.14, which
was to be expected because, at these small filter sizes, there is a
negligible subgrid flame structure present.

It is found that theMD–cGAN–Compact shows little difference
in performance compared toMD–cGAN–Full. This fact implies that
the information latent in the compact set of features, which is repre-
sented by the parameters c̃, ∣∇c̃∣, ∣∇2c̃∣, u′Δ, Δ, is dominant. In other
words, the other parameters ∣ũi∣, ∣∇ũi∣, ∣Si j ∣, ∣ωi j ∣, κ̃, and ãT can be
neglected to predict the filtered reaction rate ω̇. This shows that fea-
ture importance analysis successfully reduces the number of input
features without compromising on model accuracy.

In order to demonstrate the learning capability of the
MD–cGAN–Compact qualitatively, slices of the ω̇ field from the fil-
tered DNS and predicted by the models are presented in Fig. 10. It
is shown that MD–cGAN–Compact can reproduce the exact values
as well as the geometrical structures of the flame front even though
it is tested on the untrained LES filter widths, whereas the algebraic
model predicts considerably lower values than the ground truth.

Further quantitative analysis to manifest the stochastic pre-
dictive ability of the proposed model has been conducted. We
generated 100 sample fields using the MD–cGAN–Full and the
MD–cGAN–Compact and then we computed their mean fields and
variance fields, respectively.

In Fig. 11, a quantitative comparison is attempted by showing
the total reaction rate of the mean field inside the total volume. It
is also found that the proposed deep learning model performs well
from this global point of view.

Despite the MD–cGAN–Compact model providing relatively
good prediction capability, there is some deviation from ground
truth when looking at the averaged profiles along an axial direction.
Figures 12(a) and 12(b) show the comparison of the spatial evolution
of both model predictions by plotting the mean ω̇ values averaged
on the transverse yz-plane as a function of the x-coordinate, gen-
erating 100 samples of predictions. The profiles inferred from the
trained filter widths match the profiles from the filtered DNS well
for both models. However, a deviation has been found in the esti-
mation by the MD–cGAN–Compact for the untrained filter width
Δ/δth ≈ 3.43. It appears that the unused parameters in the compact
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FIG. 9. Hexbin plots showing the correlation between the predicted filtered reaction rate ω̇ and ω̇ from filtered DNS for different filter widths. ※untrained LES filter width. (a)
Δ/δth = 1.14(nΔ = 8). (b) Δ/δth = 1.71(nΔ = 12)※. (c) Δ/δth = 2.29(nΔ = 16). (d) Δ/δth = 3.43(nΔ = 24)※. (e) Δ/δth = 4.57(nΔ = 32).
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FIG. 10. Center slice view of true and predicted filtered reaction rate ω̇ for the
unseen time snapshot and untrained LES filter widths. (a)Δ/δth = 1.71(nΔ = 12).
(b) Δ/δth = 3.43(nΔ = 24).

parameter set more accurately interpolate to the parameter space
represented by the untrained filter widths. In addition, Fig. 12(c)
illustrates the probabilistic nature of the proposed model, in which
the statistical mean profile predicted by the MD–cGAN–Compact
and its bandwidth of confidence are presented for the untrained
filter width Δ/δth ≈ 3.43, as an example. It shows that the range

of the prediction can cover the profile computed from the filtered
DNS.

Figure 13 depicts the density distributions of the mean ω̇ fields
predicted by the MD–cGAN–Compact together with its 95% confi-
dence interval and the density distributions of the filtered DNS as a
comparison. The reaction zone Z is selected such as to investigate
only the regions where the flame is located. The region is chosen to
cover only regions where ω̇ is greater than 10% of its maximum value

Z = {ω̇ ≥ 0.1 ×max (ω̇)}. (12)

The same definition has been used to identify the reaction zone
in Ref. 29. The MD–cGAN–Compact model exhibits a comparable
magnitude of errors in the prediction of ω̇ ∈ Z, and the accuracy level
of prediction for untrained filter widths is similar to the one for the
trained filter widths. It can be noted that the stochastic spreads of the
predictions increase as the LES filter width increases.

The comparison between MD–cGAN–Compact and ResNet
reveals the benefits of themixture density network. Figures 13(a) and
13(d) indicate that the distributions from ResNet are comparable
to MD–cGAN–Compact at the trained LES filter widths. However,
ResNet anticipates different tendencies of density distribution com-
pared with filtered DNS with respect to the untrained LES filter
widths in Figs. 13(b) and 13(c). Interestingly, ResNet, a deep neu-
ral network that is trying to estimate the probability density of the
target parameter directly by itself, provides a comparable predic-
tive power to the other methods for the training LES filter widths,
whereas for the untrained LES filter widths, the predictive power
significantly decreases. It is found that the probabilistic deep learn-
ing approach that models the joint distribution of the target para-
meter based on a linear combination of multivariate Gaussian
distributions demonstrates an improvement in the generalization
capability for the unseen data from untrained time snapshots and
LES filter widths.

V. CONCLUSIONS
A probabilistic deep learning model has been investigated as a

method of turbulent premixed combustion modeling in the context
of large-eddy simulation (LES). A slot burner jet flameDNS has been
used for the training database and the DNS is spatially filtered for a
large range of filter widths. By combining aGaussianmixture density
model and a conditional generative adversarial network, the filtered
reaction rate evaluated at different LES filter widths is predicted with
very good accuracy. In addition, we used a feature importance anal-
ysis that allows us to reduce the number of input parameters to the
model with no impact on its predictive ability, making the model
simpler and cheaper to evaluate and easier to interpret physically.
The generalization capability of the proposed deep learning model
tested on an unseen time step and untrained filter widths was studied
a priori and the proposed deep learningmodel was able to reproduce
the filtered reaction rate source term distributions quite accurately.

We aim to further develop our model by testing and validat-
ing it with various DNSes that have different turbulent conditions
and fuels, such as higher Ka numbers and non-unity Lewis num-
ber cases. We also plan to study the model’s ability to generalize to
different flame configurations through a posteriori analysis. Proba-
bilistic machine learning models have not been widely used for LES
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FIG. 11. Total reaction rate integrated
inside the domain volume for different
filter widths.

FIG. 12. Evolutions of the filtered reac-
tion rate ω̇ from the mean field (a),
(b) and mean profile predicted by the
MD–cGAN–Compact shown with its 95%
confidence interval (c), averaged on
the transverse plane along the stream-
wise x-direction. (a) MD–cGAN–Full. (b)
MD–cGAN–Compact. (c) Predicted pro-
files for Δ/δth = 3.43 (nΔ = 24).

FIG. 13. Comparison of distribution
density of the filtered reaction rate
ω̇ for different filter widths computed
from the filtered DNS (dashed), the
MD–cGAN–Compact (solid) and its
95% confidence interval (shade), and
ResNet (dashed dot). ※ untrained LES
filter width. (a) Δ/δth = 1.14(nΔ = 8)
(b) Δ/δth = 1.71 (nΔ = 12)※ (c) Δ/δth
= 3.43(nΔ = 24)※ (d) Δ/δth = 4.57
(nΔ = 32).
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TABLE V. Mean squared error (MSE) of the models for different filter widths.

MSE MD–cGAN–Full MD–cGAN–Compact ResNet Algebraic model

Δ/δth = 0.57(nΔ = 4) 1.540× 10−4 1.196× 10−4 1.882× 10−4 4.516× 10−2
Δ/δth = 1.14(nΔ = 8) 2.317× 10−4 2.405× 10−4 2.638× 10−4 2.934× 10−2
Δ/δth = 1.71(nΔ = 12)a 7.714× 10−4 1.447× 10−3 7.086× 10−4 2.041× 10−2
Δ/δth = 2.29(nΔ = 16) 7.484× 10−4 1.185× 10−3 7.589× 10−4 1.643× 10−2
Δ/δth = 3.43(nΔ = 24)a 1.498× 10−3 2.221× 10−3 1.963× 10−3 1.394× 10−2
Δ/δth = 4.57(nΔ = 32) 1.119× 10−3 1.578× 10−3 1.114× 10−3 1.345× 10−2
Δ/δth = 9.14(nΔ = 64) 3.916× 10−4 1.072× 10−3 1.081× 10−3 1.414× 10−2

auntrained LES filter width.

modeling, but they could provide powerful ways to capture the sta-
tistical nature of SGS variables. In the future, we could explore using
probabilistic models to represent filtered density functions in PDF
methods. In addition, it is important to investigate the uncertainty
quantification of these models to improve their interpretability.
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APPENDIX A: ALGEBRAIC FSD MODELS

We employ an FSD model proposed by Fureby71 and modified
in Ref. 70. This algebraically formulated FSD model reads

ω̇Alg = Ξ∣∇c̃∣ −
∂

∂xk
(ρD ∂c

∂xk
),

Ξ = (1 + Δ
εi
)
D−2

, εi =
sLΔ
u′ΔΓ

,

Γ = 0.75 ⋅ exp
⎡⎢⎢⎢⎢⎣
−1.2(u

′

Δ

sL
)
−0.3⎤⎥⎥⎥⎥⎦

⋅ ( Δ
δL
)
2/3

,

D = 2.05
u′Δ/sL + 1

+ 2.35
sL/u′Δ + 1

,

(A1)

where the LES filter width is Δ. In order to compute the filtered
reaction rate only, the diffusion term filtered from the DNS data is
subtracted from the model expression.

APPENDIX B: ACTIVATIONS FUNCTIONS USED

In this paper, we use the following activation functions:

ReLU(xi) = max (0, xi),

softma(xi) =
exi

∑N
j=1 e

x j
,

nnelu(xi) = 1 +
⎧⎪⎪⎨⎪⎪⎩

xi,
exi − 1,

if xi ≥ 0,
if xi < 0,

(B1)

where the input vector to these functions is represented by xi.
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