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I 

Abstract 

In this work, sluice gate flows are investigated in detail using CFD simulations and an 

approach based on the integral momentum balance is elaborated for the calculation of the 

discharge under standard and inclined sluice gates. For this purpose, different control volumes 

are first analyzed and rated. To solve the momentum balance of the most suitable control 

volume, the pressure forces at the control volume boundaries in the upstream region, at the 

sluice gate wall and at the sluice gate opening as well as the momentum coefficients at the 

control volume boundaries in the headwater and at the sluice gate opening are required. To 

determine these, CFD simulations are first performed and analyzed for common relative gate 

opening heights ε and angles of inclination α. To determine the pressure forces, the pressure 

distributions from the CFD simulations are parameterized as a function of relative sluice gate 

opening and angle of inclination. By integrating the parameterized pressure distributions, it is 

then possible to determine the pressure forces relevant for the integral momentum balance as a 

function of the relative sluice gate opening and the angle of inclination. The momentum 

coefficients are also first determined from the CFD simulations and then parameterized as a 

function of the relative sluice gate opening and angle of inclination. 

With the parameterization formulas for pressure forces and momentum coefficients 

determined in this way, the discharge of standard and inclined sluice gates can be calculated 

with the aid of the integral momentum balance. The plausibility of the approach was confirmed 

by comparison with measured values and calculations available in the relevant literature. 

The pressure distributions and momentum coefficients, initially assumed to be constant 

across the width, are further investigated for the 3D case for different relative sluice gate widths. 

Deviations in the pressure distributions and velocity profiles were found due to  

three-dimensional flow structures, which in previous work were shown to be constant across 

the width. Likewise, for very narrow sluice gates, the ever-increasing influence of the frictional 

forces of the sidewalls was found. To take these 3D effects into account in the momentum 

balance, a 3D coefficient is introduced. With this coefficient, accurate calculations can be made 

for narrow sluice gates where 3D effects are relevant. 
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II 

Kurzfassung 

In dieser Arbeit werden Schützströmungen anhand von CFD Simulationen detailliert 

untersucht und ein auf der integralen Impulsbilanz basierender Ansatz zur Berechnung des 

Durchflusses unter senkrechten und geneigten Schützen wird ausgearbeitet. Hierzu werden 

zunächst verschiedene Kontrollvolumen analysiert und bewertet. Zur Lösung der Impulsbilanz 

des am besten geeigneten Kontrollvolumens, werden die Druckkräfte an den 

Kontrollvolumengrenzen im Oberwasser, der Schütztafel und an der Schützöffnung sowie die 

Impulsbeiwerte an den Kontrollvolumengrenzen im Oberwasser und an der Schützöffnung 

benötigt. Um diese zu ermitteln, werden zunächst CFD Simulationen für gängige relative 

Schützöffnungshöhen 𝜀  und Neigungswinkel 𝛼  durchgeführt und analysiert. Um die 

Druckkräfte zu ermitteln, werden die Druckverteilungen aus den CFD Simulationen in 

Abhängigkeit der relativen Schützöffnung und des Neigungswinkels parametrisiert. Durch 

Integration der parametrisierten Druckverteilungen können anschließend die für die integrale 

Impulsbilanz relevanten Druckkräfte in Abhängigkeit der relativen Schützöffnung und des 

Neigungswinkels ermittelt werden. Die Impulsbeiwerte werden auch zunächst aus den CFD 

Simulationen ermittelt und dann in Abhängigkeit der relativen Schützöffnungshöhen und der 

Neigungswinkel parametrisiert. 

Mithilfe der so ermittelten Parametrisierungsformeln für Druckkräfte und 

Impulsbeiwerte kann der Durchfluss von senkrechten sowie geneigten Schützen mithilfe der 

integralen Impulsbilanz berechnet werden. Beim Vergleich mit Messwerten und Berechnungen 

einschlägiger Literatur konnte die Plausibilität/Richtigkeit des Ansatzes bestätigt werden.  

Die zunächst als über die Breite konstant angenommenen Druckverteilungen und 

Impulsbeiwerte werden im Weiteren für den 3D Fall für verschiedene relative Schützbreiten 

untersucht. Dabei konnten Abweichungen in der Druck- und Geschwindigkeitsverteilung 

aufgrund von dreidimensionalen Strömungsstrukturen festgestellt werden, die in bisherigen 

Arbeiten als konstant über die Breite dargestellt wurden. Ebenfalls konnte für sehr schmale 

Schütze der immer stärker zunehmende Einfluss der Reibungskräfte der Seitenwände 

festgestellt werden. Um diese 3D Effekte in der Impulsbilanz zu berücksichtigen, wurde ein 3D 

Koeffizient eingeführt. Mit diesem können auch schmale Schütze, bei denen 3D Effekte 

relevant sind, genau berechnet werden.  

 



Content 
 

 

III 

Content 

Abstract ....................................................................................................................................... I 

Kurzfassung ................................................................................................................................II 

Content ..................................................................................................................................... III 

List of Abbreviations ................................................................................................................. V 

1 About Sluice Gates .................................................................................................................. 1 

2 Fundamentals on Sluice Gate Hydraulics ............................................................................... 6 

2.1 Sluice Gate Discharge ...................................................................................................... 6 

2.1.1 Free Sluice Gate Flow ................................................................................................ 7 

2.1.2 Submerged Sluice Gate Flow ................................................................................... 11 

2.1.3 Other Sluice Gate Types .......................................................................................... 14 

2.2 Detailed Flow Characteristics of Free Outflow .............................................................. 18 

2.2.1 Surface Eddy and Water Level Increase at the Gate ................................................ 20 

2.2.2 Corner Vortices ........................................................................................................ 21 

2.2.3 Shock Waves ............................................................................................................ 23 

2.3 Similarity Laws and Scaling Effects for Sluice Gate Flows .......................................... 24 

2 .4 Hydraulic Jump Downstream of Sluice Gates ............................................................... 30 

3 Integral Conservation Equations Applied on Sluice Gates ................................................... 35 

3.1 Conservation Equations .................................................................................................. 35 

3.2 Control Volumes for Calculating the Discharge of Sluice Gates ................................... 37 

4 CFD Simulation of Sluice Gate Flows .................................................................................. 42 

4.1 Numerical Models .......................................................................................................... 42 

4.2 Solvers ............................................................................................................................ 43 

4.3 Simulation Domain and Boundary Conditions ............................................................... 44 

4.4 Initial Conditions ............................................................................................................ 46 

4.5 Grid Study ....................................................................................................................... 47 

5 Sluice Gate Pressure Distributions ........................................................................................ 48 

5.1 Bottom Pressure Distribution ......................................................................................... 52 

5.1.1 Parameterization of the Bottom Pressure at the Opening ........................................ 54 

5.1.2 Parameterization of the Bottom Pressure Distribution ............................................ 61 

5.2 Opening Pressure Distribution ........................................................................................ 68 

5.2.1 General Parameterization Approach for the Opening Pressure Distribution ........... 69 

5.2.2 Parameterization of the Standard Sluice Gate Opening Pressure Distribution ........ 70 

5.2.3 Parameterization of the Inclined Sluice Gate Opening Pressure Distribution ......... 73 

5.2.4 Integral of the Opening Pressure Distribution ......................................................... 77 



Content 
 

 

IV 

5.3 Gate Pressure Distribution .............................................................................................. 79 

5.3.1 Dimensionless Sluice Gate Pressure Distribution .................................................... 80 

5.3.2 Water Level Increase at the Sluice Gate Wall ......................................................... 80 

5.3.3 Eddy Height and Attachment Point at the Sluice Gate Wall ................................... 82 

5.3.4 Maximum Gate Pressure .......................................................................................... 85 

5.3.5 Parameterization of the Standard Gate Pressure Distribution .................................. 87 

5.3.6 Parameterization of the Inclined Gate Pressure Distribution ................................... 93 

5.3.7 Gate Force ................................................................................................................ 98 

6 Momentum Coefficient ....................................................................................................... 103 

6.1 Momentum Coefficient Profile ..................................................................................... 105 

6.2 Momentum Coefficient at the Opening ........................................................................ 110 

7 Discharge from Momentum Balance .................................................................................. 114 

7.1 Approach to Calculate the Discharge with the Momentum Balance ............................ 114 

7.2 Comparison of the Calculated Discharge from the Momentum Balance for the Standard 

Sluice Gate with Literature Values ..................................................................................... 116 

7.3 Comparison of the Calculated Discharge from the Momentum Balance for the Inclined 

Sluice Gate with Literature Values ..................................................................................... 118 

8 3D Effects on Sluice Gate Flows ........................................................................................ 121 

8.1 3D Pressure Distributions ............................................................................................. 123 

8.1.1 3D Bottom Pressure Distribution ........................................................................... 126 

8.1.2 3D Opening Pressure Distribution ......................................................................... 128 

8.1.3 3D Gate Pressure Distribution ............................................................................... 130 

8.2 3D Momentum Coefficient at the Opening .................................................................. 133 

8.3 Momentum Balance with 3D Effects ........................................................................... 134 

9 Summary ............................................................................................................................. 139 

APPENDIX A: 3D Shear Stress and Shear Force .................................................................. 142 

APPENDIX B: Fitting Error Calculation - SSE and RMSE .................................................. 147 

List of Figures ........................................................................................................................ 151 

List of Tables .......................................................................................................................... 157 

Bibliography ........................................................................................................................... 158 

 



List of Abbreviations 
 

 

V 

List of Abbreviations 

Latin Letters 

𝐴 [m²] surface area 

𝑎 [m] gate opening 

𝐵  [m] channel width 

𝐶𝑐  [-] contraction coefficient 

𝑐𝐷,𝑇 [-] Torricelli discharge coefficient 

𝑐𝐷,𝑑𝐵 [-] du Buat discharge coefficient 

𝑒 [-] error 

𝐹  [N] force 

𝑔  [kg m/s] gravitational acceleration 

ℎ  [m] water level 

ℎ𝑝  [m] pressure head 

∆ℎ  [m] water level increase at gate 

𝐻  [m] energy head 

𝐼  [N s] momentum 

𝑘  [-] fitting parameter 

𝐿  [m] length (dimensional analysis) 

𝑙  [m] length 

𝑀  [kg] mass (dimensional analysis) 

𝑚 [kg] mass 

�̇� [kg/s] mass flow rate 

𝑛 [-] fitting exponent 

𝑛𝑔𝑖𝑟𝑑 [-] fraction of cell edge length 

𝑃 [Pa] dimensionless pressure 

𝑝 [Pa] pressure 

𝑝0 [Pa] total pressure 

𝑄 [m³/s] discharge rate 

𝑞 [m²/s] specific discharge 

𝑟 [m] roughness 

𝑇 [s] time (dimensional analysis) 

𝑡 [s] time 

𝑈 [m/s] velocity 

𝑢 [m/s] x-velocity 

𝑉 or 𝑉 [m³] volume 

𝑣 [m/s] y-velocity 

𝑤 [m/s] z-velocity 

𝑋 [-] dimensionless z-coordinate 

𝑥 [m] x-coordinate 

𝑦 [m] y-coordinate 

𝑍 [-] dimensionless z-coordinate 

𝑧 [m] z-coordinate 

 



List of Abbreviations 
 

 

VI 

Greek Symbols 

𝛼 [°] angle of inclination 

𝛽 [-] momentum coefficient 

Δ [m] cell edge length 

𝜀 [-] relative gate opening 

𝜁 [-] relative gate width 

 [-] 3D coefficient 

𝛱 [-] relative pressure force 

𝜌 [kg/m³] density 

𝜏 [N/m²] wall shear stress 

Subscripts 

𝑎  attached flow 

𝐵  bottom 

𝑑𝐵  du Buat 

D  downstream 

𝑒  eddy 

𝐺  gate 

𝑆  shock 

SW  side wall 

𝑇  Torricelli 

U  upstream 

V  viscous 

𝑙  limit 

𝑥  x-component 

𝑂  opening 

0 𝑜𝑟 ∅  upstream 

1  downstream supercritical 

2  downstream subcritical 

𝐼  downstream supercritical 

𝐼𝐼  downstream subcritical 

Abbreviations 

CFD  Computational Fluid Dynamics 

CV  Control Volume 

𝐷𝐸𝑆  Detached Eddy Simulation 

𝐻𝑅𝐼𝐶  High Resolution Interface Capturing 

𝑀𝐵  Momentum Balance 

MSE  Mean Squared Error 

Para  Parameterization 

𝑅𝐴𝑁𝑆  Reynolds-Averaged Navier-Stokes equations 

𝑅𝑀𝑆𝐸  Root Mean Squared Error 

𝑆𝑆𝐸  Sum of Squared Errors 

U𝑅𝐴𝑁𝑆  Unsteady Reynolds-Averaged Navier-Stokes equations 

𝑉𝑂𝐹  Volume of Fluid 

 



1 About Sluice Gates 
 

 

1 

1 About Sluice Gates  

Sluice gates are control structures in hydraulic engineering that can be used to dam the 

upstream water level of a channel or river or to regulate the discharge. Figure 1 shows two 

application examples. Figure 1 a) shows a sluice gate in front of the Jonitzer Mühle in Dessau, 

Germany, which today houses a hydroelectric power plant. The sluice gate can be used to 

control the flow of water to the hydroelectric power plant. Another application is shown in 

Figure 1 b), where the sluice gate is used for irrigation in agriculture.   

 
Figure 1: Application examples for sluice gates a) sluice gate in front of a former mill, now a hydroelectric 

power plant b) sluice gate for controlling irrigation ditches 

The classic sluice gate consists of a flat plate that is immersed in the water. If the gate 

is arranged perpendicular to the ground, the gate is also referred to as a standard sluice gate. 

The distance between the bottom and the gate lip is called the opening height a and can be 

varied by the drive of the sluice gate. Figure 2 a) shows the main dimensions of a sluice gate at 

free outflow. In the upstream region of the sluice gate, the water level is dammed up to the 

height h0. The water flows out through the gate opening with the height a. If the water level h1 

in the tailwater is lower than the opening height a, this is called free outflow, and if the water 

level in the tailwater is higher than the opening height or gate lip, this is called submerged 

outflow. In the case of free outflow, a jet contraction forms downstream of the gate edge, the 

smallest water level is also called vena contracta. The angle between the bottom of the channel 

and the gate is referred as the angle of inclination α. Figure 2 b) shows an example of the gate 

flow of a standard sluice gate (α = 90°) with free outflow in a laboratory flume. The jet 

contraction in the tailwater is clearly visible. Another main dimension of the sluice gate is the 

width B. In a rectangular channel, this also corresponds to the channel width.  
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Figure 2: Sluice gate with supercritical outflow a) schematic drawing with main dimensions b) laboratory 

flume 

In Figure 3, the flow for a standard sluice gate was visualized using particles and a laser 

sheet in a laboratory flume. For different opening heights a, the type of outflow changes. In 

Figure 3 a) and b) the outflow is submerged. It can be seen, however, that a jet with a jet 

contraction is nevertheless formed, only underwater. In Figure 3 c) there is still supercritical 

outflow, but very close to the opening there is a hydraulic jump, the transition from supercritical 

to subcritical flow. In Figure 3 d) there is also supercritical outflow, but here there is no 

hydraulic jump in the image. The flow phenomena shown will be described in more detail in 

the following fundamentals chapter. However, the main focus of this thesis is on the free 

outflow, as shown in Figure 3 d). 

 

Figure 3: Different types of discharge of a standard sluice gate in a small-scale laboratory flume 

a) submerged outflow (𝐚 = 𝟐𝟎 𝐦𝐦 )b) submerged outflow (𝐚 = 𝟏𝟓 𝐦𝐦 )c) free outflow with hydraulic 

jump (𝐚 = 𝟏𝟎 𝐦𝐦) d) free outflow (𝐚 = 𝟖 𝐦𝐦)  
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To control the discharge or the water level, the opening height a can be adjusted on the 

sluice gates. Figure 4 shows two examples of how the adjustment is performed. In Figure 4 a), 

the sluice gate is driven by a hand crank, and a gear transmission. At this gate a worm gear first 

transmits the rotary motion so that less power is needed to drive it. A lantern pinion then 

converts the rotational motion into the translational lifting motion. The wooden gate is guided 

in a steel U-profile. Figure 4 b) shows a newer sluice gate with electrical drive. The gate is 

moved by an electric motor with worm gear in order to change the opening height a. In this 

case, a trapezoidal-threaded spindle is used to convert the rotational movement into the lifting 

movement. The bearing of the steel gate is implemented by U-profiles made of steel.  

 

Figure 4: Standard sluice gate a) with hand crank and lantern pinion b) with AC-Motor and trapezoidal-

threaded spindle 

The preceding pages are intended to provide a general overview of sluice gate design 

and application examples. The core of this work is the fluid mechanics analysis of sluice gates 

using computational fluid dynamics (CFD) simulations to investigate a new calculation 

approach for the discharge under sluice gates with free outflow based on the conservation of 

mass and momentum, whereby the basic approach, the calculation of the discharge of sluice 

gates by momentum balance, has already been carried out with simplified pressure distributions 

by Malcherek [1].  

A further elaboration of the calculation approach for sluice gate flows on the basis of 

the momentum balance is necessary, since for the calculation of sluice gate flows in most 

textbooks a theory based on the Torricelli outflow velocity derived from the Bernoulli equation 
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is used, which leads to incorrect results for the calculation of sluice gate flows and must 

therefore be corrected by an outflow coefficient. However, incorrect use of the Bernoulli 

equation for fluid mechanics problems is not uncommon. The best known is the widely used 

explanation for the lift of airfoils, see [2], where it is wrongly assumed that the flow splits at 

the leading edge of the airfoil and meets again at the trailing edge at the same time (same transit 

time assumption). The path at the upper side of the airfoil is longer than at the lower side. Based 

on the same transit time assumption, the Bernoulli equation is used to describe a pressure 

difference between the upper and lower side of the airfoil. The argumentation with the Bernoulli 

equation using the same transit time is wrong. In fact, the flow along the upper path, reaches 

the trailing edge faster than at the lower path, for more details, see Epple et al. [2]. When 

calculating lift, it is therefore preferable to use the momentum balance instead of the Bernoulli 

equation, and the same applies to sluice gate flows, which is discussed in more detail below. 

The momentum balance approach has several advantages compared to Bernoulli’s 

energy conservation principle, which was used in previous work on sluice gate discharge 

calculations. Bernoulli’s energy conservation principle has two major drawbacks: It is only 

valid along streamlines, it works with the magnitude of the velocity vector and flow directions 

cannot be distinguished. But on the other hand, the discharge is an integral quantity of the 

normal component of the velocity over the opening cross section. Therefore, outflow problems 

where the velocity is not perpendicular to the opening cross section have to be solved 

adequately using the integral momentum balance. Furthermore, the momentum equation is also 

valid for flows where the energy is not conserved as is the case for flows under sluice gates. 

However, it is more complicated since it is an integral vector equation whereas the energy 

equation is a scalar equation. In the case of the momentum equation, the pressure distributions 

must be known on all the control volume boundaries and the momentum fluxes on all open 

boundaries. As a result, the discharge can be determined without any empirical flow coefficient, 

which is used by the conservation of energy approach to correct the wrong assumptions. The 

integral momentum balance method is closed by the determination of the missing pressure 

distributions and momentum coefficients using CFD computations. The momentum balance 

method to calculate the discharge is applicable to the standard sluice gate as well as to the 

inclined sluice gate. For this purpose, the following work is structured as follows: In chapter 2 

of this thesis, the commonly used calculation approaches of the discharge will be discussed 

again, as well as different types of sluice gates are introduced. In addition, the detailed flow 

phenomena that occur during the free outflow of the sluice gate are discussed in detail and the 

current state of research is presented. In Chapter 3, the momentum balance for the sluice gate 
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is derived. To calculate the discharge with the formula resulting from the integral momentum 

balance, the pressure force at the opening and at the gate as well as the momentum coefficient 

at the opening must be known. For this purpose, CFD simulations of the sluice gate for different 

relative gate openings a/h0  and different angles of inclination α are performed as described in 

chapter 4.  The analysis and parameterization of the pressure distributions and pressure forces 

determined in the CFD simulations as well as the momentum coefficient are carried out in 

chapter 5 and chapter 6, respectively. In chapter 7, the derived pressure forces and the 

momentum coefficient are then used in the momentum balance to calculate the discharge. The 

discharge calculated in this way is also compared with relevant literature values and the results 

are discussed. In chapter 8, the elaborated momentum balance approach is further extended to 

include 3D effects.  
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2 Fundamentals on Sluice Gate Hydraulics 

In this chapter, the fundamentals of sluice gate flows are discussed, and various types 

of sluice gates are shown and explained. The sluice gate with sharp gate lip and supercritical 

outflow dealt with in this thesis is explained in detail. 

2.1 Sluice Gate Discharge 

The calculation of the sluice gate discharge Q is presented in established textbooks e. g. 

[3], [4] and [5] based on the assumption of a constant velocity at the opening uO, calculated by 

Torricelli's law: 

 uTorricelli = √2ghP (2-1) 

 

where g is the gravitational acceleration and hp is the pressure head. The discharge can then be 

calculated by multiplying the Torricelli velocity uTorricelli with the area of the gate opening 

AO =  a B. As this assumption deviates from experimental observations by up to 40 % [6], the 

discharge coefficient cD was introduced in the early 19th century to correct this deviation. The 

resulting equation for the discharge can then be written as: 

 Q = cD a B √2ghP (2-2) 

 

An early determination of the discharge coefficient was made by Weisbach [7] in 1855. 

His experiments with different opening heights and slopes enabled him to determine a constant 

value for this coefficient. Later, in 1871 [8] and 1880 [9], Bornemann presented different 

equations to calculate discharge coefficients for the free and the submerged outflow, 

respectively. In developing these equations, Bornemann referred to his own experimental data 

as well as experimental data from other authors such as Boileau [10], Weisbach [11], 

Linnebrügge [12] and Lesbros (published by Rühlmann [13]). Based on this data, he established 

equations for the discharge coefficients and demonstrated the dependence of these on the 

relative gate opening ε, finding different coefficients for the different experimental setups. The 

relative gate opening ε is a crucial parameter in sluice gate flows and defined as the ratio of the 

gate opening height a  divided by the upstream water level h0, see Eq.(2-3). 

 ε =
a

h0
 (2-3) 

In the works of e. g. Bornemann [8] or Rühlmann [13], the pressure head hP = h0 −
a

2
  

was assumed to be the difference in height between the upstream water level h0 and the center 

of the gate opening a. In later works (e.g. Fawer 1937 [14]) the upstream water level hp = h0 
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or the energy head hp = h0 +
u0
2

2g
 was used as the pressure head for the calculation of the 

Torricelli velocity uTorricelli  (Eq. (2-1)). The authors have chosen as pressure head  

hP = h0 − a, which was first introduced by du Buat [15] and also used by e. g. Weisbach [11], 

with the discharge coefficient cD,dB:  

 
cD,dB =

Q

a B √2g(h0 − a)
 (2-4) 

Note that the discharge coefficient depends on the chosen pressure head, but the 

discharge coefficient of a specific pressure head can also be converted to the discharge 

coefficient of another pressure head. For example, the Torricelli discharge coefficient cD,T, with 

hp = h0 , can be derived from the du Buat discharge coefficient cD,dB, with  hp = h0 − a, see 

Eq. (2-5): 

 

𝑐𝐷,𝑇 = 𝑐𝐷,𝑑𝐵√1 −
𝑎

ℎ0
 (2-5) 

 

2.1.1 Free Sluice Gate Flow 

Free flow under a sluice gate is when a jet contraction forms in the tailwater of the sluice 

gate and the water flows through the gate under supercritical condition. Various publications e. 

g. [16], [17], [18], [19] and textbooks e. g. [3], [4], [20], [21] use an energy conservation 

approach to calculate the discharge coefficient for the free sluice gate flow. Based on the 

findings of Keutner’s [6] study from 1932 who found that the velocity at the supercritical flow 

u1 downstream of the gate is almost constant, the discharge can be calculated, if the downstream 

water level h1  or the contraction coefficient cC =
h1

a
 is known. Figure 5, shows that the 

potential and kinetic energy upstream and downstream of the sluice gate in terms of the energy 

head: 

h0 +
u0
2

2g
= h1 +

u1
2

2g
 (2-6) 

Further the continuity equation for the up- and downstream region can be written as: 

h0 ∙ B ∙ u0 = h1 ∙ B ∙ u1 (2-7) 
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Figure 5: Frequently used sluice gate theory assuming energy conservation 

By rearranging Eq. (2-6) and inserting the continuity equation (Eq. (2-7)) we get: 

u1 = √
2gh0

1 +
h1
h0

 (2-8) 

With the downstream velocity u1 , the specific discharge Q  can be calculated by 

multiplying with the downstream flow cross-section h1B as follow: 

Q = h1 B u1 = h1 B√
2gh0

1 +
h1
h0

 (2-9) 

By rearranging Eq. (2-9) and substituting the contraction coefficient cC, we get: 

Q = a cC B u1 = a cC B√
2gh0

1 +
a cC
h0

 (2-10) 

By inserting the calculated discharge Q from Eq. (2-10) into Eq. (2-4), the discharge 

coefficient cD,dB can be calculated by the energy approach as follows: 

cD,dB = cC√
1

(1 + cCε)(1 − ε)
 (2-11) 
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Using Helmholtz's theory of free streamlines, in 1935 Müller [16] calculated the 

theoretical contraction of the tailwater using a simplified model neglecting the acceleration due 

to gravity and the frictional losses. He was able to show that, the contraction coefficient cC and 

thus also the discharge coefficient cD,dB depend solely on the relative gate opening ε. This 

approach to use the theory of free streamlines was further refined and extended to include 

inclined sluice gates by Werner [22] in 1963. An approximation function for calculating the 

contraction coefficient, based on the work of Müller [16] and Werner [22], was defined by 

Voigt [23] for the standard sluice gate as follows: 

cC =
1

1 + 0.64√1 − ε2
 (2-12) 

Based on experimental data of Gentilini [24] and own measurements, Aigner and 

Horlacher [25] have developed formulas for the parameterization of the jet contraction of 

inclined sluice gates. First, for the case ε = 0, the jet contraction is calculated as a function of 

the angle of inclination α as follows: 

cC,ε=0 = 1.3 − 0.8 √1 − (
α − 205

220
)
2

 (2-13) 

In addition, the approach to calculate the jet contraction for the standard sluice gate by 

Voigt (Eq. (2-12)) which represents the dependence of the contraction coefficient on the relative 

gate opening ε, was adapted in such a way that the jet contraction for the inclined sluice gate 

can finally be calculated as follows: 

cC =
1

1 + (
1

cC,ε=0
− 1)√1 − ε

210
α

 
(2-14) 

To calculate the discharge coefficient from the contraction coefficient, Aigner and 

Horlacher use a modified form of equation Eq. (2-11): 

cD,dB,AignerHorlacher = cC
√

1

(1 +
cC

1
ε
− 0.5

) (1 − ε)

 

(2-15) 

In Figure 6 a), the contraction coefficient is plotted according to the formula of Voigt 

and Aigner et al. as a function of the relative gate opening ε. Figure 6 b) shows the measurement 

results of Gentilini [24] and the parameterization of Aigner and Horlacher [25] for the discharge 

coefficient of the standard and inclined gate are plotted as an example. 
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Figure 6: a) contraction coefficient and b) discharge coefficient for standard and inclined sluice gates from 

literature 

The parameterization of Aigner and Horlacher, which was calibrated with the measured 

values of Gentilini, agrees with them very well. However, compared to other literature values 

by Swamee [26], Rouse [3], Henry [27], Roth and Hager [28] as well as Rajaratnam [29], who 

only investigated the standard sluice gate, the parameterization by Aigner and Horlacher is 

above the other widely cited literature values for the discharge coefficient, as can be seen in 

Figure 7. Which of the shown discharge coefficients is the correct one cannot be said 

conclusively, since the discharge coefficient varies among other things also by the inflow 

condition, scaling effects, wall roughness, channel width etc. of the channel. 

 
Figure 7: Discharge coefficient 𝐜𝐃,𝐝𝐁 of the standard sluice gate in dependency of the inverse relative gate 

opening 𝟏/𝛆 
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2.1.2 Submerged Sluice Gate Flow 

If the downstream water level is above that of the sluice gate opening (ℎ1 > 𝑎), this is 

referred to as a submerged flow. A schematic drawing of a submerged sluice gate is shown in 

Figure 8 a). Due to the larger water column of the backwater ℎ2, the pressure head difference 

between the upstream and downstream water level is smaller and therefore the flow through the 

gate opening is reduced. If the flow is submerged, a jet with a jet contraction also forms at the 

opening of the sluice gate, but this is normally not visible because the discharge takes place 

underwater. In Figure 8 b), the jet was therefore made visible with glass hollow spheres and a 

laser sheet. In the downstream area above the jet directly behind the gate, eddies form and the 

water level are slightly lowered. As the distance to the sluice gate increases, these eddies 

disappear and a velocity profile develops along the entire water depth.  

 

Figure 8: Submerged sluice gate a) schematic drawing b) flow visualization  

To calculate the discharge of submerged gates, the Torricelli outflow formula is also 

used here and corrected with a discharge coefficient for submerged sluice gate flows 𝑐𝐷 𝑠𝑢𝑏,𝑑𝐵. 

The discharge coefficient for the submerged gate depends on both the ratio of the upstream 

water level to the opening height 
1

ε
=
h0

a
 and the ratio of the downstream water level to the 

opening height 
h2

a
. Frequently cited studies on this subject were carried out by Henry [12]. The 

discharge coefficient cDsub,dB  for the submerged gate from Henry [12] is shown in Figure 9. 

Also shown in Figure 9 is the discharge coefficient cD sub,dB for 
h0

a
= 4 and 

h2

a
= 3 calculated 

by own CFD simulations, which agrees with the results of Henry [12].  
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Figure 9: Discharge coefficient 𝐜𝐃𝐬𝐮𝐛,𝐝𝐁 in dependency of the inverse relative gate opening 𝟏/𝛆 for 

submerged sluice gates 

If we look at the CFD simulation plots, showing the volume fraction of water and the 

streamlines, see Figure 10, it can be seen that the streamlines are similar in both cases. For both 

discharge types, the water jet exiting the gate opening is similarly contracted, but in the case of 

the submerged gate, the exiting water jet is underwater. However, the velocities of the 

backwater discharge are significantly lower due to the smaller difference between the upstream 

and downstream water levels. If the streamlines are also compared further downstream, they 

diverge further in the case of the submerged gate than in the case of the gate with free discharge, 

and thus the jet becomes wider until it is distributed over the complete downstream water level 

h2. However, this is no longer shown in Figure 10. 
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Figure 10: Volume fraction of water contour plot and streamlines for 𝐡𝟎 𝐚⁄ = 𝟒: a) free flow b) submerged 

flow (𝐡𝟐 𝐚⁄ = 𝟑)  
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2.1.3 Other Sluice Gate Types 

In addition to the plane sluice gates with a sharp gate lip, which is examined both 

vertically (standard sluice gate) and in inclined positions in this work, there are also other sluice 

gate types. A common variation of the plane sluice with sharp gate lip is the plane sluice gate 

with rounded gate lip at the opening. This is discussed, for example, in the textbook by Aigner 

and Bollrich [30]. The discharge coefficient cD,dB  for the sluice gate with rounded edge, 

calculated using the formula of Aigner and Bollrich [30], is shown in Figure 11 as a function 

of the relative edge radius 
r

a
. Also shown in Figure 11 are own simulation results for 

r

a
= 0, 

which corresponds to the sharp-edged sluice gate, for 
r

a
= 0.5, for 

r

a
= 1 and for  

r

a
= 3. For  

r

a
= 0.5 the CFD results and the parameterization from Aigner and Bollrich agree, while for  

r

a
= 0, for 

r

a
= 1 and for 

r

a
= 3 the CFD values are overestimated.  

 

Figure 11: Rounded edge discharge coefficient 𝐜𝐃,𝐝𝐁  in dependency of the relative gate edge radius 𝐫 𝐚⁄   

The volume fraction of water contour plot and the streamlines of the CFD simulations 

of the sluice gate with rounded edge are shown in Figure 12. Since with the increasing radius, 

the streamlines are already deflected upstream of the sluice gate opening a, the vena contracta 

becomes much smaller and the downstream water level h1 approaches the sluice gate opening 

height a with increasing radius r, which is indicated by an increasing contraction coefficient cC.  
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Figure 12: Volume fraction of water contour plot and streamlines of sluice gate with rounded edge for 

𝐡𝟎 𝐚⁄ = 𝟒 
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The sluice gate with 
r

a
=
h0

a
, shown in Figure 12, no longer has a straight part and also 

corresponds to a radial gate which is also a widely used sluice gate type. The radial sluice gate 

is treated e.g. in the textbook of Zanke [20]. In contrast to the plane gates, which are opened by 

a translatory movement, this one is opened and closed by rotation around a fixed pivot point. 

The discharge coefficient for the radial gate is given in dependency of the gate opening angle 

αR and the values for the discharge coefficient from Zanke [20] are shown in Figure 13. Also 

shown in Figure 13 are the results of own CFD calculations, with R = h0 = 0.4 m. Both the 

literature values and the CFD calculations show that the discharge coefficient increases with 

decreasing angle at the opening αR. Note: The radial gate with an opening angle of αR = 0° 

cannot be closed by rotation. 

   
Figure 13: Discharge coefficient 𝐜𝐃,𝐝𝐁 of radial in dependency of the opening angle 𝛂𝐑 

The volume fraction of water contour plot and the streamlines of the CFD simulations 

of the radial sluice gate are shown in Figure 14. The contraction coefficient cc of the jet also 

decreases with decreasing opening angle αR, since the jet is already aligned in the main flow 

direction. The radius of the radial sluice gate also has an influence on the flow variables, but 

this is considered to be of secondary importance in the practical books.  
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Figure 14: Volume fraction of water contour plot and streamlines of radial sluice gate for 𝐡𝟎 𝐚⁄ = 𝟒 
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2.2 Detailed Flow Characteristics of Free Outflow 

In the previous considerations, theoretical models of gate flows were shown, as they are 

often described in a simplified way in textbooks. Classically, gate flows are considered as 

two-dimensional flows, which can be assumed for the flow of broad gates (B ≫ a) at sufficient 

distance from the side walls. This approach is not uncommon in fluid mechanics and can be 

compared, for example, with the infinit wing theroy for airfoils. The flow phenomena occurring 

in the two-dimensional observation of gate flows are shown in Figure 15. The water level 

increases at the gate wall and the water level there is greater than the upstream water level h0 

by ∆h0. Further, an eddy is formed at the upstream water surface at the sluice gate wall. In this 

area, the flow is detached, further downstream the flow attaches at the gate wall.  

The height of the eddy hGe, the height of the attached flow hGa as well as the height of 

the water level increase ∆h0 have an influence on the pressure distribution at the sluice gate 

wall [31] and are described in detail in chapter 5.3. In the downstream region, the vena contracta 

already described in the previous chapter is formed.   

   
Figure 15: Detailed 2D flow characteristics of sluice gates, visualized by line integral convolution and 

streamlines 

In addition to the described flow characteristics, which also occur in a two-dimensional 

view, three-dimensional effects also occur due to the side walls. These effects depend on the 

relative gate width ζ, defined in Eq. (2-16). 

ζ =
B

a
 (2-16) 

For ζ = 4, the 3D simulation results are shown in Figure 16 in a representative way to 

explain these 3D effects in more detail. In Figure 16, the streamlines and the pressure 

distribution are shown in a resampled volume that only shows the cells in the simulation domain 
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with a volume fraction of water >1 %. The most important 3D effects are the forming corner 

vortices (Figure 16 (I)), which are the cause of the 3D effects on the pressure distributions. The 

water level increase at the sluice gate wall ∆h0, initially assumed to be constant for the 2D case 

along the y-coordinate, fluctuates near the corners due to the corner vortices. At the centers of 

the corner vortices, a surface vortex forms at the water surface (Figure 16 (II)), as also observed 

experimentally by Roth and Hager [28]. This can be explained by the energy conservation 

equation. Since due to the larger velocities in the vortex, the kinetic energy increases and hence 

the potential energy (water level) must decrease. The figure also shows that the pressure 

distribution on the gate (Figure 16 (IV)) and the sidewalls (Figure 16 (V)) deviates in the area 

of the corner vortices. Furthermore, the pressure distributions at the opening and at the bottom 

are also influenced by the corner vortices. Since the pressure distributions are crucial for the 

momentum balance, 3D effects on the pressure distribution will be also considered in this work.  

 

 
Figure 16: 3D Sluice gate CFD simulation for the standard sluice gate with 𝒉𝟎 = 𝟎. 𝟒 𝒎, 𝒂 = 𝟎. 𝟏 𝒎 and 

𝑩 =  𝟎. 𝟒 𝒎 a) streamlines and b) pressure contour plot 

 

In the following sections, the mentioned flow phenomena will be discussed in more 

detail and previous work on them will be presented. 
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2.2.1 Surface Eddy and Water Level Increase at the Gate 

Figure 15 shows that a surface eddy forms in the upper part of the sluice gate near the 

water surface. An experimental analysis of the upstream sluice gate flow characteristics was 

done by Rajaratnam and Humphries [32]. They parametrized the height and the length of the 

eddy at the upper sluice gate edge. Rajaratnam and Humphries [32] assumed that the height of 

the eddy at the sluice gate wall increases with increasing upstream water level h0 and doesn’t 

depend on the relative gate opening ε. They described only a dependency of the length of the 

eddy le on the relative gate opening ε and also on the surface tension. Harber et. al [33] and 

Roth et. al [28] described a Reynolds ridge at the upstream end of the surface eddy. The distance 

of this Reynolds ridge from the sluice gate wall, was defined by Rajaratnam and Humphries as 

the eddy length le. Later Cassan and Belaud [34] found out, that the length of the ridge is also 

a function of the upstream water level h0.  

The upstream water level at the gate also increases by ∆hG  at the sluice gate. In  

Figure 17 the water level increase is shown by the graphic from Keutners work from 1932 [6]. 

The water level increase is often determined by using the energy conservation approach, but it 

is lower due to losses, which was also found by Keutner.  

 

 
Figure 17: Sluice gate flow description from Keutner 1932 [6] 
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2.2.2 Corner Vortices 

The corner vortices are occurring at the corners between the sluice gate wall and the 

side walls, as shown in Figure 18 a). Looking perpendicularly at this vortex formation, see 

Figure 18 b), it can be seen, that the surface eddy combined with the corner vortices form a 

horseshoe shaped vortex, which was also described by Montes [35]. The corner vortices 

continue in the downstream region and run into infinity (Helmholtz's third theorem [36]).  

 

Figure 18: Streamlines showing corner vortices and surface eddy a) perspective view and b) frontal view 

The velocity at the corner vortices is larger as at the middle of the sluice gate. Also, at 

the center of the vortices the velocity increases and since the surface pressure is constant, due 

to energy conservation, the water level has to drop. The water level drop can be seen by a 

surface vortex in the simulations. The water level decrease was also shown by Roth and Hager 

[28], who also derived equations for the upstream position of the surface vortices. Roth and 

Hager also investigated anti-vortex elements with the aim of attenuating the shock waves 

generated by the corner vortices downstream. Further possibilities to display the corner vortices 

are shown in Figure 19. Figure 19 a) shows the magnitude of the vorticity from  10
1

𝑠
  to 50

1

𝑠
 

and in Figure 19 b) the Q-Criterion from 10
1

𝑠2
 to 1000

1

𝑠2
 is shown. 

However, the previous studies that analyzed the pressure distribution at the sluice gate, 

have not yet dealt with the influence of the corner vortices on the pressure distributions of sluice 

gates. This is also the subject of this thesis and is dealt with in Chapter 5. 
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Figure 19: Visualization of the corner vortices by a) vorticity magnitude and b) Q-Criterion 
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2.2.3 Shock Waves 

The local water level increases at the sidewalls, which are referred to as shockwaves in 

the literature, occur downstream of sluice gate in the supercritical flow region. Figure 20 shows 

a section perpendicular to the main flow direction or x-axis at the location of a shock wave at 

the dimensionless x-coordinate X = x/a = 2.5  from 3D CFD simulations. The water level 

towards the wall is initially lower at the corner vortices. At the wall, the water is then forced 

upwards again, forming a shock wave with a secondary eddy, also shown in Figure 20.  

Roth and Hager [28] described a dependence of the dimensionless shock position 𝑋𝑆 

and the dimensionless shock height 𝑍𝑆 of the shockwaves in dependence of the relative gate 

opening 𝜀  and proposed calculation formulas. Roth and Hager also studied anti-vortex 

elements, which are attached to the sluice gate and can reduce the shockwaves caused by the 

vortices by 50 %. 

Due to the shockwaves and the corner vortices, the measurement of an exact single value 

of the downstream water level ℎ1 or the contraction coefficient 𝑐𝐶  is not possible for three-

dimensional sluice gate flows. This difficulty was also described in the work of Aigner and 

Horlacher [25], who determined the discharge coefficient based on the contraction coefficient 

𝑐𝑐, see Eq. (2-15).  

 

 
Figure 20: Tangential velocity vectors and volume fraction of water at 𝑿 = 𝟐. 𝟓 for shockwave 

visualization 
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2.3 Similarity Laws and Scaling Effects for Sluice Gate Flows 

Similarity laws are used in fluid mechanics to transfer laboratory experiments on a 

model scale to real applications. With the help of a dimensional analysis by applying the 

Buckingham PI theorem, see e.g. [37], the dimensionless parameters can be determined, which 

must coincide in the laboratory model and in the real flow, so that a dynamic similarity exists. 

The theorem states that N physical variables with K dimensions can be represented in N − K 

dimensionless products Π. The theorem is applied to the sluice gate in the following and the 

dimensionless varibals are determined. 

The relevant physical variables to describe the sluice gate flow are the density of water 

ρ, the viscosity of water μ, the gravity acceleration g, the flow velocity e.g. the upstream 

velocity u0 and a characteristic length e.g. the upstream water level h0 (N = 5).  

f1(ρ, u0, μ, g, h0) = 0  (2-17) 

 

The fundamental dimensions to describe the physical variables are the mass (M), length 

(L) and time (T) (K=3). The dimensions of the physical variables, are shown in Table 1. 

Table 1: Physical variables with their dimensions for sluice gate flows 

ρ u0 h0 g μ 

M𝐿−3 𝐿T−1 𝐿 𝐿T−2 𝑀L−1T−1 

Eq. (2-17) can be expressed in N − K = 5 − 3 = 2  dimensionless Π  products, see 

Eq. (2-18).  

f2(Π1, Π2) = 0  (2-18) 

 

Following the Buckingham PI theorem, both dimensionless Π products Π1 and Π2 can 

be written as: 

Π1 = f3(ρ, u0, h0, μ) (2-19) 

 

Π2 = f4(ρ, u0, h0, g) (2-20) 

 

In the next step, exponents are introduced for the physical variables, which are then 

determined in such a way that the product of the physical variables becomes dimensionless. 
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Π1 =  ρu0
zh0
y
 μx (2-21) 

 

Π2 = ρ
wu0

vh0
u g (2-22) 

 

To determine the exponents, write Eq. (2-21) and Eq. (2-22) in dimensional terms, see 

Eq. (2-23) and Eq. (2-24).  

[Π1] = (ML
−3) (𝐿T−1)z(𝐿)y (𝑀𝐿−1T−1)x (2-23) 

 

[Π2] = (M𝐿
−3)w (L𝑇−1)(L)v (𝐿𝑇−2)u (2-24) 

 

The exponents of each fundamental dimension must add to zero for each equation. If 

we first consider Eq. (2-23), the following system of equations results for the exponents:  

M: 1 + x = 0 

L: −3 + z + y − x = 0 

T: −z − x = 0 

If you solve the system of equations the results are x = −1, y = 1 and z = 1. If these 

values are inserted into Eq. (2-21), one obtains: 

Π1 =
ρu0h0
 μ

 (2-25) 

The dimensionless product Π1 corresponds to the Reynolds number Re. The Reynolds 

number is the ratio of inertia forces to viscous forces in a flow and is an important dimensionless 

number in fluid mechanics. If we further consider Eq. (2-25), the following system of equations 

is obtained:  

M: w = 0 

L: −3w + 1 + v + u = 0 

T: −1 − 2u = 0 

From the system of equations, we obtain for the exponents w = 0, v = −
1

2
 and u = −

1

2
.  

Substituting these values into Eq. (2-22), we obtain: 

 Π2 =
u

√gh0 
 (2-26) 
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The dimensionless product Π2  corresponds to the Froude number Fr. The dimensional 

analysis has thus shown that for model investigations both the Froude number (Eq. (2-27)) and 

the Reynolds number (Eq. (2-28)) have to match the real application. 

Fr =
u

√gl 
 (2-27) 

 

Re =
ρul

 μ
 (2-28) 

Similar to compressible flows in aerodynamics where simultaneous Mach number and 

Reynolds number similarity cannot be established by model scaling, simultaneous Froud 

number and Reynolds number similarity cannot prevail in sluice gate flows by geometric 

scaling. This is shown in Figure 21, where the Froude and Reynolds numbers are plotted as a 

function of a characteristic length lchar , for u = 1 
m

s
, g = 9.81 

m

s
, ρ = 1000 

kg

m³
 and 

μ =  8.89 ∙ 10−4 Pa s . Since both Froud number and Reynolds number are directly proportional 

to velocity, there is no change in the shape of the two dimensionless ratios as velocity is varied. 

The only way to achieve dynamic similarity between the model and the real application would 

be to experiment with different fluids to change the viscosity or density.  

 

Figure 21: Behavior of Froude number and Reynolds number for different characteristic lengths  

To calculate the Froude number for the sluice gate, the discharge equation (Eq. (2-4)) is 

applied to calculate the average flow velocity u0 = Q/h0B in the upstream region as follows: 

u0 = cD,dB ε √2g(h0 − a) (2-29) 

 

If the average upstream velocity u0 (Eq. (2-29)) is substituted into the formula for the 

Froude number Fr (Eq. (2-27)), the upstream Froude number Fr0 is obtained: 



2 Fundamentals on Sluice Gate Hydraulics 
 

 

27 

Fr0 = √2 cD,dB  ε √(1 − ε) (2-30) 

 

From Eq. (2-30) it is clear that with geometric similarity ε = const.  and constant 

discharge coefficient cD,dB , Froud number similarity also prevails. With the mean upstream 

velocity u0, see Eq. (2-29), the upstream Reynolds number Re0 can also be calculated from Eq. 

(2-28): 

Re0 =
ρ cD,dB a √2g(h0 − a)

 μ
 (2-31) 

As can be seen from the equation above, the upstream Reynolds number Re0 changes 

with the scaling. In the literature, the discharge coefficient is generally considered constant for 

ε = const. and thus the Reynolds number dependency is neglected and only the Froud number 

similarity is prevailed. Nago [38] as well as Roth and Hager [27] have carried out investigations 

for different gate openings a to examine the scaling effects on the discharge coefficient. Nago 

[38] investigated the flow of standard sluice gates with opening heights a = 1.0 cm  to  

a = 12 .0 cm and gate widths from B =  10 cm to B = 40 cm and found that the discharge 

coefficient converges to a fixed value, when the gate opening is above a limit opening height 

al, for constant ε and is thus independent of the Reynolds number. For al > 6.0 cm and ε < 0.5 

he could no longer detect any appreciable influence of scaling effects on the flow. The discharge 

coefficient measured by Nago, which converges for large sluice gate openings a, agrees well 

with the measurements of Henry [27].  For small sluice gate openings al < 6.0 cm, however, 

Nago found a clear dependence of the discharge on the model scaling and thus on the Reynolds 

number. Furthermore, Nago could not find a clear dependence of the discharge coefficient on 

the channel width B . The smallest relative gate width investigated by Nago was  

ζ =   
10 cm

8 cm
= 1.25, as shown by Steppert, Epple and Malcherek [39] and as will be described 

in more detail in this thesis, significant width effects on the discharge coefficient only occur at 

ζ < 1.  

Furthermore, Nago also suspected a dependence of the jet contraction on the surface 

tension σ  or the Weber number We , see Eq. (2-32), which can also be derived from the 

dimensional analysis when the surface tension σ is taken into account. However, in Nago's 

experiments, which are supposed to prove this dependence, he also varied the Froude number 

Fr with the Weber number We. 

We =
ρu2lchar
σ

 (2-32) 
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Roth and Hager [28] also investigated the discharge of standard sluice gates with 

different opening heights in the range a = 10 mm to a = 120 mm. They found no significant 

scaling effects or Reynolds number dependencies on the discharge coefficient for al ≥ 50 mm. 

Nago did not carry out any investigations at a = 50 mm, but found that at a = 60 mm there is 

no longer any significant Reynolds number dependence and at the next smaller opening height 

a = 40 mm the Reynolds number has an influence on the discharge. Although he stated the 

limit at al = 60 mm , his test results would also confirm the limit of Roth and Hager at  

al = 50 mm. It should be noted here that this is not a hard limit anyway, but rather a flowing 

(or smooth) transition where the Reynolds number dependence becomes vanishingly small and 

is practically negligible. According to Roth and Hager [28], the influence of the surface tension 

only occurs at much smaller relative sluice gate openings than those investigated, which means 

that the dependence on the Weber number We can be neglected for practical applications in 

hydraulic engineering. The dependence on the Reynolds number is also practically negligible 

for most real applications, as sluice gate flows outside of laboratories are typically operated at 

gate openings larger than a = 50 mm. 

In order to calculate the discharge coefficient for small sluice gate openings a < 50 mm 

taking into account viscous effects, formulas were derived by Roth and Hager [28]. They found 

that if the Torricelli discharge coefficient cD,T for small gate openings a < 50 mm is plotted as 

a function of the relative gate opening ε, a minimum value for cD,T occurs. This minimum value 

cD,T,min, is at the relative gate opening εmin , and depends on the gate Reynolds number Rea 

introduced by Roth and Hager. The calculation formulas for cD,T,min  (Eq. (2-33)), εmin  

(Eq. (2-34)) and Rea  (Eq. (2-35)) according to Roth and Hager are given in the following 

equations: 

cD,T,min = 0.60 −
1

18
log (

Rea
1000

) (2-33) 

 

εmin = 0.05 + 0.40 log (
Rea
1000

) (2-34) 

 

Rea =
ρa√2ga

μ
 (2-35) 

Furthermore, according to Roth and Hager, the scaling effects or the Reynolds number 

dependence disappear for small epsilons (ε → 0)  and the discharge coefficient assumes the 

base value cD,T0 = 0.594 for ε → 0 independent of the opening height a. With these newly 



2 Fundamentals on Sluice Gate Hydraulics 
 

 

29 

introduced values the discharge coefficient cD,dB,Re for small gate openings (a < 50 mm) can 

be calculated considering the Reynolds number dependence using Eq. (2-36): 

cD,dB,Re =
(1 −

ε
εmin

)
2

(cD,T0 − cD,T,min) + cD,T,min

√1 −
a
h0

 (2-36) 

The results of Eq. (2-36) for a = 0.05 m, a = 0.01 m and a = 0.005 m are plotted in 

Figure 22. Due to the scaling effects, the discharge becomes larger for small ε according to 

Roth and Hager.   

 

Figure 22: Discharge coefficient 𝒄𝑫,𝒅𝑩,𝑹𝒆 of the standard sluice gate in dependency of the relative gate ε 

opening for various gate opening height 𝒂  

In summary, it can be said that for geometrically similar sluice gates with opening 

heights a > 50 mm, only the Froud number Fr similarity must be given. The influence of the 

Reynolds number Re is not significant here. In this work, sluice gate flows with opening height 

of a = 100 mm are analyzed in CFD, which allows the Reynolds number dependence to be 

neglected. In applications in hydraulic engineering, also usually only flows with a > 50 mm 

are of practical importance, whereby the results of this work can be directly transferred to these 

applications via the Froude number similarity.  
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2 .4 Hydraulic Jump Downstream of Sluice Gates 

As shown in the previous chapter, the outflow can basically be divided into free and 

submerged outflow. If the outflow is free, the flow is supercritical. However, it does not remain 

supercritical forever, but becomes subcritical again sooner or later when, for example, the 

normal water depth changes or an obstruction or hydraulic structure is located downstream. 

This water depth change is abrupt and is called hydraulic jump. Figure 23 shows the image of 

a laboratory flume with a standard sluice gate. On the left side the gate and a small part of the 

upstream region can be seen. In the tailwater of the gate in the center of the image, the free 

outflow is clearly visible. Further downstream, the high turbulent hydraulic jump can be seen, 

where the flow changes from supercritical to subcritical. 

 

Figure 23: Standard sluice gate with supercritical outflow and hydraulic jump downstream of the gate 

Figure 24 shows the schematic drawing of the hydraulic jump. The water height of the 

supercritical flow upstream of the hydraulic jump hI would correspond to the water depth of 

the supercritical outflow h1 at the sluice gate. The water height downstream of the hydraulic 

jump is designated hII . This water height downstream of the hydraulic jump hII  can be 

calculated by means of the integral momentum balance. The integral momentum balance and 

the mass conservation equation are presented in detail in chapter 3.1, but are already applied 

here as an example. 
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Figure 24: Schematic drawing of a hydraulic jump with control volume 

To calculate the hydraulic jump, a control volume is introduced as shown in Figure 24. 

The limits of the control volume were set immediately upstream of the jump at the supercritical 

flow and immediately downstream of the hydraulic jump at the subcritical flow, see also Figure 

24. Since the size of the control volume is thus small, friction losses at the walls of the control 

volume can be neglected in the momentum balance. In addition, we consider the flow direction 

to be horizontal, which eliminates the term of the gravity forces, and the flow is assumed to be 

stationary, which eliminates the transient term of the momentum equation. Finally, the 

momentum balance for the hydraulic jump is: 

0 = − ∫ p n⃗  dA − ∫ ρV⃗⃗ (V⃗⃗ ∙ n⃗ ) dA

∂Ω∂Ω

 (2-37) 

The streamlines in the head- and tailwater of the hydraulic jump are assumed to be 

parallel to the ground, resulting in a hydrostatic pressure distribution at the control volume 

boundaries. In addition, a constant velocity profile can be assumed upstream and downstream 

of the hydraulic jump. With these conditions, the following notation results for the momentum 

equation: 

−ρuI
2hIB + ρuII

2hIIB =
1

2
 ρghI

2B −
1

2
 ρghII

2  (2-38) 

The continuity equation for the hydraulic jump can be written as follows: 

ρBhIuI = ρBhIIuII (2-39) 

By substituting Eq. (2-39) into Eq. (2-38) gives: 

uI
2 (
hI
2

hII
− hI) =

g

2
 (hI

2 − hII
2 ) (2-40) 
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The flow velocity in the supercritical flow uI is replaced by the dimensionless Froude 

number FrI with uI = FrI√ghI, resulting in the following equation: 

 

2FrI
2 (
hI
hII
)
3

− (2FrI
2 + 1) (

hI
hII
)
2

+ 1 = 0 (2-41) 

The equation contains a total of three solutions, one of which is  
hI

hII
= 1. With this one, 

there is no change in the flow. By polynomial division with the trivial solution 
hI

hII
= 1 and 

subsequent application of the solution formula for quadratic equations, the flow can be solved 

analytically (see Malcherek [1]): 

(
h2
h1
)
1/2

=
1

2
(±√8FrI

2 + 1 − 1) (2-42) 

The negative solution is not possible, because one of the water depths would have to be 

negative. The positive solution of Eq. (2-42), is shown in Figure 25. The solutions of the 

equation for FrI < 1 are also not possible in real flows since a spontaneous jump from the 

subcritical to supercritical flow is not possible. For the sake of completeness, this solution, and 

the trivial solution 
hI

hII
= 1 are nevertheless also shown in Figure 25.  

 
Figure 25: Water level ratio according to the integral momentum balance of hydraulic jumps for different 

Froude numbers 𝐅𝐫𝐈 upstream of the jump 

To calculate the energy losses due to the hydraulic jump, the energy heights up- and 

downstream of the hydraulic jump are calculated first. For the velocity uI = FrI√ghI  the 

Froude number formulation is used again. Thus, for the energy height upstream of the hydraulic 

jump we get: 
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HI = hI +
uI
2

2g
= hI (1 +

FrI
2

2
) (2-43) 

Before the energy height HII  is determined, first from the continuity equation  

Eq. (2-39) the velocity uII downstream of the hydraulic jump is calculated. The water height 

downstream of the hydraulic jump hII  is calculated by Eq. (2-42), which finally gives the 

velocity uII downstream of the hydraulic jump: 

uII =
uIhI
hII

=
FrI √g hI 

√8FrI
2 + 1 − 1
2

 (2-44) 

From Eq. (2-42) and Eq. (2-44) finally results for the energy height HII downstream of 

the hydraulic jump: 

HII = hII +
uII
2

2g
= hI

(

 
√8FrI

2 + 1 − 1

2
+
1

2
(

FrI

√8FrI
2 + 1 − 1
2

)

2

)

  (2-45) 

 

From the energy height HI in the upstream region of the hydraulic jump (Eq. (2-43)) 

and the energy height HII in the downstream region of the hydraulic jump (Eq. (2-45)), the 

relative energy height loss HL,rel can be calculated. 

 

HL,rel =
HII − HI
HI

= (

 √8FrI
2 + 1 − 1
2

+
1
2(

FrI
√8FrI

2 + 1 − 1
2

)

2

)

 

(1 +
FrI
2

2 )

− 1 

(2-46) 

As can be seen from Eq. (2-46), the relative energy height loss HL,rel depends only on 

the Froud number FrI upstream of the hydraulic jump. The relative energy height loss as a 

function of the Froud number FrI is shown in Figure 26. Here it becomes again clear that with 

the solution Fr < 1 a spontaneous energy gain takes place, which is not possible according to 

the laws of thermodynamics. For Fr = 1, no jump takes place and therefore the energy loss  

HL,rel = 0. For Fr > 1, a hydraulic jump with energy losses takes place. The energy height 

losses HL,rel increases, as can be seen in Figure 26, with increasing supercritical flow Froud 

number FrI.    
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Figure 26: Energy loss through hydraulic jumps as a function of the Froude number 𝐅𝐫𝐈 upstream  

of the jump 

As the example shows, using the conservation of energy would have resulted in 

significant errors due to the neglect of energy losses. With the help of the momentum balance, 

however, the water depth downstream of the jump hII can be calculated correctly. The example 

shows the significant advantage of using the momentum balance. The energy losses do not have 

to be known, a priori, which raises the question why sluice gate flows are also not calculated 

using the momentum balance, but why the approach of energy conservation shown in Figure 5 

is still used. This question will probably not be answered in this work, but here the momentum 

balance for the standard and inclined sluice gate is worked out to provide the possibility of 

discharge calculation directly from the momentum balance. The elaboration for this is described 

in the following chapters. 
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3 Integral Conservation Equations Applied on Sluice Gates 

In this chapter, the conservation laws for mass and momentum are applied to sluice 

gates. The equations are generally suitable for solving all fluid mechanical problems. For some 

problems, such as supersonic (compressible) flows, additional conservation equations such as 

the conservation of energy are required. In hydraulics and hydrodynamics, however, the 

conservation equations of mass and momentum are often sufficient. As an example, the 

hydraulic jump from supercritical to subcritical flow was already shown in the previous chapter, 

which takes place in the tailwater of sluice gates with supercritical outflow. The water height 

downstream of the hydraulic jump was calculated by solving the integral equations of mass and 

momentum conservation. It was also shown the error that would have been made if the 

conservation of energy equation had been used without taking dissipation losses into account, 

as is the case with the calculation of sluice gates. In the following, the conservation equations 

for mass and momentum are described in more detail and are applied on sluice gate flows. For 

this purpose, various control volumes are also examined and a formula for calculating the 

discharge of sluice gates is derived from the conservation of mass and momentum.  

3.1 Conservation Equations 

The two basic physical principles required to calculate sluice gate flows are 

conservation of mass and conservation of momentum. Mass conservation states that mass can 

neither be destroyed nor generated. For a closed system it follows that, 

dM

dt
|
system

= 0 (3-1) 

where 

Msystem = ∫ dm =
M(system)

∫ ρ dV
V(system)

 (3-2) 

Further we want to consider the conservation of momentum. That is based on Newton's 

second law, which states that the force is equal to the time rate of change of momentum. For a 

closed system, the conservation of momentum can be written as follows, 

dI 

dt
|
system

= F⃗  (3-3) 
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where 

I system = ∫ V⃗⃗ dm =
M(system)

∫ V⃗⃗  ρ dV
V(system)

 (3-4) 

In order to transfer the conservation equations for a closed system (Eq. (3-1) and  

Eq. (3-3)) to an open system, through whose system boundaries mass as well as momentum can 

flow in and out, the Reynolds transport theorem is applied, see e. g. [40]. For mass conservation 

for an arbitrary control volume Ω with the open boundary ∂Ω can be written: 

dM

dt
|
Ω
= − ∫ ρ(V⃗⃗ ∙ n⃗ ) dA

∂Ω

 (3-5) 

For the conservation of momentum, the following equation results analogously: 

dI 

dt
|
Ω

= F⃗ − ∫ ρV⃗⃗ (V⃗⃗ ∙ n⃗ ) dA

∂Ω

 (3-6) 

The forces F⃗  that occur in hydrodynamics can be divided into volume forces and surface 

forces. Volume forces are caused by fields. Relevant for hydrodynamics is the effect of the 

gravitational field of the earth with the gravitational acceleration g⃗   on the mass M stored in the 

control volume Ω. Further, pressure forces and viscous forces act on the boundaries ∂Ω of the 

control volume and therefore are surface forces. Substituting these into Eq. (3-7), one obtains 

for the time rate change of the momentum in the control volume. 

dI 

dt
|
Ω

= Mg⃗ − ∫ p n⃗  dA

∂Ω

+ F⃗ viscous − ∫ ρV⃗⃗ (V⃗⃗ ∙ n⃗ ) dA

∂Ω

 (3-7) 

As can be seen from the mass conservation equation Eq. (3-5) and the momentum 

conservation equation Eq. (3-7), the mass and momentum flux through the control volume 

boundaries have a negative sign. This is due to the fact, that the normal vector n⃗  always points 

outward away from the control volume surface. If the normal vector n⃗   and the velocity vector 

V⃗⃗   are opposed, the transport quantity flows into the control volume and the scalar product n⃗ ∙ V⃗⃗  

becomes negative. However, since there is an increase in transport size, the momentum change 

must be positive. This is corrected by the negative sign. The same applies vice versa for 

outflowing mass and outflowing momentum.  
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3.2 Control Volumes for Calculating the Discharge of Sluice Gates  

In order to apply the momentum balance for the sluice gate and to determine the 

discharge from it, the selection of a suitable control volume (CV) is essential. There are several 

possible control volumes, the advantages, and disadvantages for three different control volumes 

will be discussed in this chapter. The first control volume shown in Figure 27 is similar to the 

control volume introduced by Malcherek [41] [42], who was the first to calculate the discharge 

of standard sluice gates using the momentum balance, but with simplified pressure distributions.  

 
Figure 27: Control volume I - large control volume with boundary at the opening  

For the calculation of the sluice gate discharge, it is sufficient only to look at the 

horizontal x-component of the momentum equation. Therefore, gravity cancels out in Eq. (3-

7). Further, it was assumed, that the flow is inviscid F⃗ viscous = 0  and steady  
d

dt
= 0  . 

Comparable to the sudden contraction in pipe flows, which was studied by Malcherek and 

Müller [43], the momentum balance reduces to a balance of momentum fluxes and pressure 

forces: 

dI 

dt
|
Ω

= 0 = − ∫ p n⃗  dA − ∫ ρV⃗⃗ (V⃗⃗ ∙ n⃗ ) dA

∂Ω∂Ω

 (3-8) 

The pressure force acting on the control volume I, shown in Figure 27, is the sum of the 

upstream hydrostatic pressure force F∅, the x-component of the gate pressure force FG sin (α) 

and the pressure force at the opening FO. Because the surface vectors between a-e and b-c are 

parallel to the x-axis, see Figure 27 and the fluid is assumed as incompressible, i.e. the density 

ρ is constant and considering also the pressure p and velocity u as constant along the width B, 

Eq. (3-8) becomes: 
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B∫ ρu2  dz
c

b

− B∫ ρu2  dz
e

a

= F∅ − FG cos(α) − FO (3-9) 

The integrals on the left side can be also written by mean velocities u̅, if the momentum 

coefficient β (Boussinesq coefficient) is introduced for every velocity profile u at the control 

volume boundaries: 

β =
B∫ u2 dz

z2
z1

A u̅2
 (3-10) 

The limits of the integral, shown in Eq. (3-10), are the lower z-coordinate z1 of the 

control volume boundary and the upper z-coordinate z2 of each control volume boundary, at 

the corresponding x-coordinate. Further, by using mean velocities u = Q/A  and assuming 

constant density ρ =  const.  the continuity equation, Eq. (3-5), can be written as: 

A∅ u∅̅̅ ̅ = AOuO̅̅̅̅  (3-11) 

Where in Eq. (3-11) A∅ = h∅ B is the upstream flow cross sectional area, u∅̅̅ ̅ is the mean 

upstream velocity, AO = a B  is the area of the gate opening and uO̅̅̅̅  is the mean opening 

velocity. Substituting Eq. (3-10) and Eq. (3-11) in Eq. (3-9) and rearranging, Eq. (3-9) becomes: 

βOAO u̅O
2 − β∅A∅  (

AOuO̅̅̅̅

A∅
)

2

=
F∅ − FG ∙ cos(α) − FO

ρ
 (3-12) 

 

AO
2  uO̅̅̅̅

2 ( 
βO
AO
−
β∅
A∅
) =

F∅ − FG cos(α) − FO
ρ

 (3-13) 

with Q = AOuO̅̅̅̅  Eq. (3-13) becomes: 

Q =
√

F∅ − FG cos(α) − FO

ρ ( 
βO
AO
−
β∅
A∅
) 

 (3-14) 

and with A∅ = h∅ B and AO = a B,  Eq. (3-14) finally becomes: 

Q =
√

F∅ − FG  cos(α) − FO
ρ
B (
 
βO
a
−
β∅
h∅
) 

 (3-15) 

Eq. (3-15) can be used to calculate the discharge under standard and inclined sluice 

gates from the integral momentum balance for control volume I (Figure 27). However, the 

pressure forces F∅, FG and FO as well as the momentum coefficients βO and β∅ must be known. 
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Because, upstream of the sluice gate the streamlines are parallel to the x-coordinate and hence 

the pressure distribution has to be hydrostatic and therefore the upstream pressure integral can 

be written as F∅ =
1

2
 ρ g h0

2 B.  The pressure integral at the gate FG and at the opening FO are 

depending on the angle of inclination α and on the relative gate opening ε. To determine these 

forces, the pressure distribution at the gate pG and at the opening pO were first parametrized 

based on CFD computations and then integrated. Also, the momentum coefficients are 

parametrized based on CFD data.  

The necessary parameterizations for forces and momentum coefficients depend on the 

choice of the control volume. To avoid the parameterization of the gate force FG, a control 

volume as shown in Figure 28 could be chosen. If applying Eq. (3-8) for this control volume, 

we get:  

B∫ ρu2  dz
c

b

− B∫ ρu2  dz
f

a

+ B∫ ρu(v⃗  ∙ n⃗ ) dx
c

f

= F∅ − FO (3-16) 

Eq. (3-16) shows that although the pressure force on the sluice gate wall is no longer 

needed, another term is added for the momentum flux at the boundary of the control volume, 

c-f. While the force on the sluice gate wall is a descriptive quantity and is also relevant, for 

example, for static calculations, the momentum flux at the control volume boundary c-f is less 

descriptive. 

 

Figure 28: Control volume II: small control volume with boundary at the opening 

Another possible control volume is shown in Figure 29. Here, instead of the control 

volume boundary at the opening, the control volume boundary in the downstream area was 

selected. Applying equation Eq. (3-8) to the control volume, the result is: 
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B∫ ρu2  dz
g

h

− B∫ ρu2  dz
e

a

= F∅ − FG cos(α) − F1 
(3-17) 

 

Instead of the pressure force and the velocity at the opening, the two quantities in the 

downstream area must be known for this control volume. These are dependent on the jet 

contraction. Since the jet contraction cC  and thus the downstream water level h0  changes 

depending on the angle of inclination α and relative gate opening ε, the control volume would 

also change for each calculation.  

 

Figure 29: Control volume III: large control volume with downstream boundary 

In contrast to control volume I, where the flow is calculated directly at the opening 

of the gate, in control volume III the flow is determined in the tailwater. In the derivation 

of Eq. (3-17), a frictionless flow was assumed for simplification (FViscous = 0). In reality, 

frictional forces occur at the control volume boundaries due to the wall shear stresses, 

which is why the control volume should be selected as small as possible. In addition, the 

wall shear stresses in the supercritical flow are much greater than in the subcritical flow, 

as shown in Figure 30, because of the high velocities at supercritical flows. For the example 

shown in Figure 30, the friction forces at the bottom when choosing CV III with a total of 

5.3 N/m, is 4.8 times as large when choosing CV I with 1.1 N/m.  In order to keep the error 

in neglecting the friction forces as small as possible, it is recommended to select CV I.  

Since the subject of wall shear stress distribution has only been dealt with to a limited 

extent in the literature, the wall shear stress at the bottom and at the side walls for various 

relative sluice gate widths ζ has been investigated and is shown in appendix A. 
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Figure 30: Up- and downstream bottom wall shear stress from CFD (𝐡𝟎 = 𝟎. 𝟒, 𝐚 = 𝟎. 𝟏 and 𝛇 = 𝟒) 

The comparison of the different control volumes has shown that the CV I, shown 

in Figure 27, is best suited for the discharge determination of sluice gates by momentum 

balance. As already mentioned, the forces FG and FO as well as the momentum coefficients 

β∅ and βO  must be determined in order to calculate the discharge. To determine these 

quantities, CFD simulations for different relative gate openings ε and angles of inclination 

α are first performed in this work. The CFD simulations are described in the following 

chapter. Based on the simulation results, parameterizations of the pressure distributions 

are carried out, from which the pressure forces can be determined by integration. 

Furthermore, the parameterization of the momentum coefficients is also carried out 

based on the CFD simulations in order to be able to determine the sluice gate discharge 

from momentum balance. 
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4 CFD Simulation of Sluice Gate Flows 

To become a detailed insight into the flow processes of sluice gate flows, CFD 

simulations were performed using the commercial CFD solver Simcenter Star CCM+ from 

Siemens PLM Software. In the following sections, the used models, the simulation setup and 

the grid study are presented. For detailed information on the used models, refer to the Simcenter 

Star CCM+ product documentation [44]. 

4.1 Numerical Models 

Sluice gate flows are gravity-driven flows in an open channel. From a fluid mechanics 

perspective, the channel is partially filled with water (liquid) and partially filled with air (gas). 

To model this multiphase flow with free surfaces in CFD, the Volume of Fluid (VOF) method 

is applied. The flow is calculated using the Unsteady Reynolds Averaged Navier-Stokes 

(URANS) equations [45]. The solution is quasi-steady, but the solver diverges by using the 

steady solver with the RANS equations. In the URANS solution, the free surface develops in 

the downstream region first, starting from the initial condition where no water is at the 

downstream region, see Figure 34. This URANS method of solution showed to be stable, for 

all investigated relative gate openings ε and angles of inclination α. 

For the closure of the governing equations (URANS), the k-ω SST Menter two-equation 

turbulence eddy viscosity model ( [46] [47] [48]) was selected. In Figure 31 the results of the 

chosen k-ω SST Menter two-equation turbulence model are compared by the discharge 

coefficient cD,dB , the gate force FG  and the opening force FO  with other two-equation 

turbulence models such as the standard k-ω model [49], the standard k-ε model [50], the 

realizable k-ε Two-Layer model [51] and also with the one-equation Spalart-Allmaras 

turbulence model [52]. While the standard k-ω model overestimates FG  and FO  and 

underestimates the discharge coefficient cD,dB , the other investigated models were 

underestimating FG and FO and overestimating cD,dB. The biggest deviations were found for the 

standard k-ε model, which is the oldest of the investigated models and the one-equation model 

of Spalart and Allmaras. The absolute deviations are small (<0.3%) and for the more recent 

standard k-ω model and realizable k-ε two-layer model, the deviations are even smaller 

(<0.11%). Comparing the results of all other turbulence models with the k-ω SST model, it can 

be seen that the deviations are small, in the order of 0,1% or 0,2%. Since also the k-ω SST is a 

very well tested, robust, well documented, and widely recommended turbulence model it was 

used throughout the computations in this work. For the wall treatment, the all-y+ model was 

chosen. 
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Figure 31: Deviation of discharge coefficient, gate force and opening force for investigated turbulence 

models compared to SST k-Omega model (ε=0.25) 

The free surface was modeled using the multiphase model with the Volume of Fluid 

(VOF) [53] approach. Former CFD investigations e. g. Kim [54], Cassan et al. [34] and Oner 

[55] have shown that the chosen numerical models are very well suited to calculate sluice gate 

flows. The fluids were treated as incompressible for both phases. The assumption of 

incompressibility for the simulation of sluice gates is also valid for the gas phase (air), because 

the pressure of the gas phase is ambient pressure, and the velocities are low compared to the 

speed of sound and therefore the Mach number is small (M<0.1). 

4.2 Solvers  

The segregated solver of Star-CCM+ was used to solve the differential equation. The 

conservation equations are solved sequentially. To avoid mixing of the two phases in the VoF 

model, the High Resolution Interface Capturing (HRIC) method is used for solving the 

multiphase flow. The sharpening factor of the HRIC solver was set to 0.5. The time step was 

chosen as  ∆t=0.1 s and 15 iterations are calculated per time step. The simulation has been 

shown to run stable and converge well with these settings, with a comparatively low 

computational cost for the high spatial resolution simulations. The simulations were computed 

on the Emmy parallel cluster of the Erlangen National High Performance Computing Center 

[56]. As convergence criteria the mass flow balance between inlet and opening, see Eq. (3-5) 

and the momentum balance between inlet and opening/gate, see Eq. (3-7) were monitored. 
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4.3 Simulation Domain and Boundary Conditions 

The simulation domain is shown in Figure 32. The simulation domain is divided into an 

upstream and a downstream region, which are connected by an internal interface. Care has been 

taken so that the cell nodes on both sides of the interface coincide perfectly, as it can be seen in 

Figure 33. The benefit of such an interface is, that the scalar values can be directly evaluated at 

the interface, in contrast to e. g. a plane section were the values have to be mapped into the 

plane section from adjacent cells. As a result, the opening pressure distribution and the opening 

momentum coefficient would not be evaluated exactly at the opening under the gate lip. In 

addition, the two regions with interface can be used to represent a sluice gate with a thickness 

of zero in the simulations, which means that the effects of the thickness of the gate lip can be 

excluded. For wide gate lips, there is a suction at the lower sluice gate edge which affects the 

flow as shown by Patt and Gonsowski [61] or Ahmed and Moayed [62].  

  

Figure 32: Simulation domain for sluice gates with boundary conditions  

The height of the mass flow inlet is set equal to the desired sluice gate upstream water 

level h0, which is constant for each simulation case (for each ε). The height of the downstream 

water level ℎ1 is not specified as a boundary condition and is calculated by the CFD solver. In 

the first iteration loop, the mass flow rate at the mass flow inlet is calculated with an initial 

estimated discharge coefficient of cD,dB = 0.6, which is a typical value see e.g. [30], using the 

du Buat discharge equation Eq. (2-4). After a first simulation loop, the water level is evaluated 

at the upstream plane, see Figure 32. With this water level a new discharge coefficient is 

calculated, using the du Buat discharge equation Eq. (2-4), and the mass flow rate is corrected 

based on the new discharge coefficient. The mass flow rate correction is repeated until the 
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difference between the evaluated upstream water level and the target upstream water level h0 

is smaller than 0.1 %. The simulations were carried out fully automatically using a java macro. 

 

Figure 33: Mesh and volume fraction of Water near the sluice gate opening 

At the pressure outlets, the relative pressure was set to 0 Pa, i.e. it was set equal to the 

environmental pressure and air was set to 100 % as backflow phase. The gravity vector was 

defined as g⃗ = (0 , 0 , −9.81 
m

s2
). The fluid properties of the two phases, water and air, are 

shown in Table 2. 

Table 2: Fluid properties for CFD simulations 

 Water Air 

Density ρ [kg/m3] 1000.00 1.18 

Dynamic Viscosity μ [ Pa s] 8.89 ∙ 10−4 1.86 ∙ 10−5 
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4.4 Initial Conditions 

The stability, convergence behavior and the solution of CFD simulations are also 

depending on the initial conditions. For the simulations to converge quickly, it has been shown 

that the initial conditions are well suited as shown in Figure 34, setting the initial upstream 

water level equal to h0 and assuming hydrostatic pressure for the upstream region. The initial 

velocity was set to zero in the complete simulation domain. It was found that the solver runs 

stable for a wide range of the simulated inverse relative gate openings 
1

ε
= 2 to 20 and angles 

of inclinations α = 15 deg to 90 deg, using ∆t = 0.1 s (𝑎 = 0.1 𝑚) and the initial conditions 

as shown in Figure 34. 

 
Figure 34: Initial conditions for sluice gate flow simulation a) pressure contour plot b) volume fraction of 

water contour plot 
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4.5 Grid Study 

For the discretization of the fluid domain, a structured grid with cubic volume cells 

(aspect ratio 1) was generated, using the directed mesher in Star-CCM+. For the grid study, the 

edge length of the cells ∆grid=
a

ngrid
 , was varied in fractions of the gate opening a and the 

discharge coefficient cD,dB  was monitored. Simulations for relative edge lengths of 1/8a , 

1/16a , 1/32a , 1/64a  and 1/128 a  were done using first and second order discretization 

schemes. For the first order discretization scheme the Richardson extrapolation ( [57], [58]) 

was computed, to estimate the result of an infinite small grid. The results of the grid study are 

shown Figure 35.  

 

 

Figure 35: Grid study and discretization error estimation 

The discretization error eCd,DB of the calculated discharge coefficient from the second 

order discretization with 
∆grid

a
=

1

ngrid
=

1

128
 has been calculated with eCd,dB =  0.04%. For the 

simulation results shown in this work, the simulations were done with a relative cell edge length 

of 
∆grid

a
≤

1

128
  and the second order simulation scheme was used. For ∆𝑔𝑟𝑖𝑑 =  1 128⁄ 𝑎 the 

2D grid consists of 4.259.840 volume cells. The structured mesh near the opening is shown in 

Figure 33.  
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5 Sluice Gate Pressure Distributions 

To solve the momentum balance for the control volume I, shown in Figure 27, the 

pressure forces at the sluice gate and at the opening must be determined. These forces are the 

integrals of the respective pressure distribution, which can be determined by CFD simulations. 

For this purpose, CFD simulations were carried out for different relative gate openings 

ε−1 =  {2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20}  and for different angles of inclination 

α =  {90°, 75°, 60°, 45°, 30° ,15°}. The CFD setup was described in detail in the previous 

chapter. For the angles of inclination α =  {30°, 15°} the sluice gate was only investigated for 

ε−1 =  { 3, 4, 5, 6, 7, 8, 10}. Larger values of ε−1 are not relevant for these angles in practice, 

since the sluice gates would become very long and thus cause large construction costs and 

additionally require an enormous amount of space. Likewise, the computational grid and thus 

the required computational cost would become very large, which is why these were not 

simulated. The CFD results presented in the following chapters always refer to own 

computations unless another author was explicitly named. 

Before considering the pressure distributions at the control volume boundaries in more 

detail, the pressure distribution of the sluice gate flow calculated by CFD will be presented here 

in general. Figure 36 shows the pressure contour plot for ε−1 = 4 and α = 90°. At the red 

marked positions, shown in Figure 36, at different positions of the dimensionless X-coordinate 

(Eq. (5-1)), the pressure distribution along the z-coordinate was evaluated.  

X =
x

a
 (5-1) 

These pressure distributions are shown in Figure 37 a), for the upstream region, and in 

Figure 37 b), for the downstream region.  

 

Figure 36: Pressure contour plot from CFD simulations 
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In the upstream region, hydrostatic pressure distribution prevails at a sufficient distance 

from the gate opening, see X = −5.00. As the distance from the gate opening decreases, the 

pressure at and near the bottom (z = 0) initially decreases. With increasing distance to the 

ground, the pressure distribution changes back to the linearly increasing hydrostatic pressure 

distribution. For X = −1.00, X = −0.75 and X = −0.50, the pressure decreases steadily with 

increasing distance from the ground. If one approaches the sluice gate opening even further, see 

X = −0.25, the pressure initially decreases and then increases again before the pressure falls 

again. The pressure distribution thus continuously changes to the pressure distribution at the 

sluice gate and at the opening at X = 0.00 . The drop at the lower edge of the gate at 

z =  a =  0.1 is striking, as this is where the outflow into the environment takes place and thus 

ambient pressure prevails. 

 

Figure 37: Pressure distributions at different locations of the dimensionless X-coordinate a) at the 

upstream region b) at the downstream region 

In the downstream region, see Figure 37 b), the water level as well as the pressure at the 

bottom decreases continuously with increasing distance to the opening ( X = 0.00)  and 

approaches the hydrostatic pressure distribution at the vena contracta. With the selected control 

volume I for calculating the discharge from the momentum balance, the pressure forces in the 

upstream region, at the gate and at the opening are required.  

As already described, the pressure at the bottom drops from the hydrostatic pressure 

through the water column in the upstream region h0, to the hydrostatic pressure of the water 

column in the downstream region, the height of the vena contracta h1. The distribution of the 

bottom pressure for the example ε−1 = 4 is shown in Figure 39. An important parameter for 
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the parameterization of the pressure distribution at the opening is the bottom pressure at the 

point X = 0.  

 

Figure 38: Bottom pressure distribution 

A graphical representation of the pressure force is shown in Figure 39. For the two-

dimensional case, this can be represented as the area "under" the pressure distribution multiplied 

by the width B. For the vertical sluice gate (Figure 39 a)) and for the inclined sluice gate with 

α = 45° (Figure 39 b)), the pressure distribution at the points X = −5.00 and X = 0.00, i.e. the 

pressure distribution at the opening and at the sluice gate, are plotted along the z-coordinate. 

For the inclined sluice gate, the pressure distribution on the gate was projected onto the z-axis. 

The area difference of the plotted pressure distributions multiplied by the gate width 

corresponds to the pressure integral ∫ p n⃗  dA
∂Ω

 of control volume I of the momentum balance 

along the x-coordinate. For the areas colored blue in the upper region, the pressure distribution 

at the gate is initially larger than the hydrostatic pressure distribution in the upstream region 

because the water level increases by ∆hG  at the gate, generating an additional hydrostatic 

pressure. This water level increase will be discussed in more detail when parameterizing the 

pressure distribution at the sluice gate. As a result of the water level increase the area difference 

is negative ∆A2 < 0. In the lower region, the pressure at the gate decreases and is smaller than 

the hydrostatic pressure at the upstream control volume boundary at X = −5.00. The pressure 

at the gate decreases to ambient pressure at the lower gate edge. At the opening, between the 

lower edge of the gate and the bottom, the pressure increases again, but always remains lower 

than the hydrostatic pressure at X = −5. Thus, the area difference ∆A1 shown in red in Figure 

39 is positive ∆A1 > 0.  

 



5 Sluice Gate Pressure Distributions 
 

 

51 

For the resulting force, this gives ∆F = (|∆A1| − |∆A2|) ∙ B. From Eq. (3-15) it can be 

seen that the larger the force difference ∆F, the larger the discharge Q through the sluice gate. 

Qualitatively comparing the area differences of the standard (Figure 39 a)) and inclined  

(Figure 39 b)) sluice gates, it can be seen that this is greater for the inclined one and therefore 

the discharge must also be greater.  

 
Figure 39: Graphical representation of the resulting pressure forces on the control volume a) for the 

standard sluice gate (𝜶 = 𝟗𝟎°) b) for the inclined sluice gate with 𝜶 = 𝟒𝟓° 

In order to calculate the pressure forces qualitatively, parameterization formulas are 

derived for the pressure distributions in the following chapters, which take into account the 

dependence on the relative gate opening ε and the angle of inclination α. We start with the 

bottom pressure distribution pB. This is not directly needed for the calculation of the flow from 

the momentum balance, but the value of the bottom pressure distribution at the position X = 0 

will be used later for the parameterization of the opening pressure distribution pO. The opening 

pressure distribution pO is parameterized in chapter 5.2 and by integration of this, the pressure 

force at the opening FO is determined. In chapter 5.3, the pressure distribution at the sluice gate 

is determined and its characteristics are discussed in detail. In order to determine a calculation 

formula for the pressure force on the gate FG, the newly derived formula for the gate pressure 

distribution pG is subsequently integrated. 
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5.1 Bottom Pressure Distribution  

The pressure at the bottom of the sluice gate decreases smoothly from the upstream 

hydrostatic pressure ρ ∙ g ∙ h0 to the downstream hydrostatic pressure ρ ∙ g ∙ h1. To compare the 

bottom pressure distributions for different relative gate openings, the dimensionless bottom 

pressure distribution PB  is introduced in dependency of the dimensionless x-coordinate 

X =  
x

a
 as:  

PB(X) =
pB(x) − ρ ∙ g ∙ h1
ρ ∙ g ∙ (h0 − h1)

 (5-2) 

Parameterization approaches for the bottom pressure have also been developed by other 

authors for the standard sluice gate, which emphasizes the importance of this parameter. 

Rajaratnam and Humphries [32] suggested an exponential approach for the parameterization of 

the upstream part of the dimensionless bottom pressure distribution, shown in Eq. (5-3): 

PB,RaHu(X) = 1 − (e
−
3∙X
2.42  ∙ (1 − k))    with k = 0.605 (5-3) 

In a previous study, Rajaratnam [29] investigated also the bottom pressure distribution 

downstream of the gate, where he found out that the pressure distribution for different relative 

gate openings can be described by a single curve and that at X ≈ 2, the bottom pressure becomes 

equal to the hydrostatic pressure of the downstream supercritical flow. Roth and Hager [28] 

introduced a new approach for the bottom pressure distribution, using a Gaussian function. 

They also mentioned, that the non-hydrostatic pressure part of the bottom pressure distribution 

is confined to −2 <  X <  2.  

PB,RoHa(X) = 1 − e
−
1
3
(X−1.7)2   (5-4) 

These both approaches of Rajaratnam et al. and Roth et al. are assuming, that the 

dimensionless bottom pressure distribution PB(X) does not vary with the relative gate opening 

ε. In Figure 40, the determined dimensionless bottom pressure distributions from CFD 

simulations for ε = 0.05  and ε = 0.5  were compared with the empirical equations of 

Rajaratnam et al. [29] and Roth et al. [28] and also with the numerical solution of Montes [35]. 

Looking at the CFD results, it can be seen, that for small values of the relative gate opening ε, 

the pressure at the bottom starts to decrease further upstream as compared to large values of ε, 

which results in a shift of the pressure distribution in negative X-direction for decreasing ε.  
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   Figure 40: Comparison of the dimensionless bottom pressure distribution 𝑷𝑩 from CFD with literature 

values from a) Rajaratnam et al., b) Montes and c) Roth et al.  

This phenomenon can be explained by the increase in length of the surface eddy le with 

decreasing ε, which was also observed by Rajaratnam [43] and is exemplarily shown in Figure 

41 for ε = 0.5 and ε = 0.05. To compare the length of the eddies le, a grid (black vertical lines) 

with constant x-spacing is shown in Figure 41 and it can be seen, that the ratio of the eddy 

lengths le,0.05 ⁄  le,0.5  ≈ 18. Because of the eddy, the streamlines are deflected in bottom 

direction and hence the effective flow cross section decreases, which leads to an increase in 

velocity (continuity equation). The velocity increase at the bottom as computed with CFD starts 

even further upstream of the position of the eddy starting point le. The dimensionless bottom 

pressure distribution of Rajaratnam et al. [29], Roth et al. [28] and Montes [35] have an better 

agreement with the CFD results for ε = 0.05 in the upstream region, while for the downstream 

region, Roth et al. approach agrees better with the CFD results for ε = 0.5. However, for a 
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precise description of the bottom pressure, the described dependency on the relative gate 

opening ε, has to be taken into account. 

 

Figure 41: Comparison of standard sluice gate surface eddy length 𝒍𝒆 for 𝜺 = 𝟎. 𝟓 and 𝜺 = 𝟎. 𝟎𝟓 

In the following subchapters, first the bottom pressure at the opening is analyzed and a 

parameterization approach is derived. Based on this approach a new parameterization approach 

for the upstream bottom pressure distribution for the standard and inclined sluice gates is 

derived.  

5.1.1 Parameterization of the Bottom Pressure at the Opening 

Like the bottom pressure distribution, also the pressure at the bottom of the opening 

pBO = pB(X = 0) (immediately under the gate lip) varies with the relative gate opening ε. To 

compare the bottom pressure at the opening for different relative gate openings ε , the 

dimensionless bottom pressure at the opening is defined as PBO =
pBO

ρ∙g∙a
. Experimental 

investigations on the pressure at the bottom of the opening pBO were done by Valentin [59], 

who described a nearly linear increase of pBO with 1/ε for 1/ε > 2 and derived a formula for 

this relation, see Eq. (5-5). 

PBO,Va(ε) = 0.575 ∙
1

ε
+ 0.325  (5-5) 
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The bottom pressure at the opening can be also determined by evaluating the bottom 

pressure distribution of Rajaratnam et al. [32] at X = 0, see Eq. (5-3). The resulting formula is 

shown in Eq. (5-6). 

PBO,RaHu(ε) = k ∙
1

ε
+ (1 − k) ∙ cc (5-6) 

Hence Rajaratnam et al. assumed cc=const., this approach is similar to Valentin’s linear 

approach, but with different coefficients. In the same way, the bottom pressure at the opening 

can be derived from the bottom pressure distribution of Roth and Hager [28], see Eq. (5-4). It 

can be seen in Eq. (5-7), that this approach is similar to Rajartanams and Humphries approach 

but has different coefficients. 

PBO,RoHa(ε) = 0.6184 ∙
1

ε
+ (1 − 0.6184) ∙ cc (5-7) 

These approaches, if cc is assumed as constant, underestimate the hydrostatic pressure 

for the limiting case of ε = 1, were the gate is not immersed into the water and the pressure at 

the bottom has to be equal to the hydrostatic pressure of the opening height, as shown in  

Figure 42. 

 
Figure 42: Limiting case: pressure distribution for 𝐡𝟎 = 𝐚 (ε=1) 

To determine a new approach, that is more accurate and satisfies the condition for the 

limiting case (PBO(ε = 1) = 1), the CFD results and the experimental results of Valentin [59] 

were used. In the first step, the linear approach which was suggested by other authors  

(Eq. (5-5), Eq. (5-6) and Eq. (5-7)) was used. Considering the limiting case, this linear approach 

reduces to:  

PBO(ε) = kBO ∙
1

ε
+ (1 − kBO)   (5-8) 
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The coefficient was determined as kBO = 0.566  using the non-linear least square 

method. The sum of square errors (SSE) and the root mean square error (RMSE) are used to 

quantitatively evaluate the goodness of this and further parameterization in this work. The 

definition of the SSE and the RMSE can be found in Appendix B. For the bottom pressure 

parameterization at the opening, using Eq. (5-8), the errors were calculated with SSE = 0.2548 

and RMSE = 0.07286 . As it can be seen in Figure 43 a), the new linear approach does 

overestimate the CFD and experimental values and the approaches of the other authors for 

1

ε
 <  4. For 

1

ε
> 4, shown in Figure 43 b), the new approach agrees well with the experimental 

and CFD results as well with the approach of Valentin, because both approaches have a similar 

slope. For small values of 1/ε , the approaches of Roth et al. and Rajaratnam et al. are 

underestimating the CFD and the experimental results of Valentin, while for larger values, 

1

ε
 >  ~3 their approaches are overestimating them. Note that as contraction coefficient for the 

Rajaratnam and Humphries approach cc=0.61 was used and for the approach of Roth and Hager 

cc=0.595 was used. 

 

Figure 43: Comparison of bottom pressure parameterization approaches at the opening with CFD and 

experimental results for a) 
𝟏

𝛆
< 𝟒 and b) 

𝟏

𝛆
> 𝟒 

Hence the linear approach does not predict the bottom pressure under the sluice gate 

edge precisely enough, the approach was extended adding an inverse proportional term kBO,2 ε
n 

which corrects the bottom pressure for small values of 
1

ε
. By including the limiting case 

(PBO(ε = 1) = 1), the extended approach becomes: 

PBO(ε) = kBO,1
1

ε
+ kBO,2 ε

n + (1 − kBO,1 − kBO,2) (5-9) 
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The parameters kBO,1 and kBO,2  of Eq. (5-9) were determined for n = 1, n = 2, n = 3 

and also for n  as an independent parameter, where n  was determined as n = 2.833 . The 

resulting parameters as well as the SSE and RMSE of the fittings are shown in Table 3. It can 

be seen, that the SSE and the RMSE of the new approach (Eq. (5-9)), are noticeable lower for 

all values of n, than for the linear approach (Eq.(5-8)).  

Table 3: Fitting parameters for the parameterization of the bottom pressure at the opening 

  Eq. (5-8) Eq. (5-9) n=1 Eq. (5-9) n=2 Eq. (5-9) n=3 
Eq. (5-9) 
n=2.833 

kBO,1 0.566 0.5829 0.5801 0.5791 0.5792 

kBO,2 - 0.1777 0.1317 0.1194 0.1207 

SSE 0.2548 0.02981 0.02588 0.02537 0.02535 

RMSE 0.07286 0.02519 0.02347 0.02323 0.02348 

The results of the five approaches for the parameterization of the bottom pressure under 

the sluice gate edge are shown in Figure 44. It can be seen that the approaches from Eq. (5-9), 

agree well with the experimental results of Valentin and with the CFD results over the complete 

range of the inverse relative gate opening 1/ε . Especially for small inverse relative gate 

openings, see Figure 44 a), the new parameterization approach agrees very well with the 

experimental values. 

 

Figure 44: New parameterization approaches of the bottom pressure at the opening 

Based on this new approach, the parameterization of PBO was extended for inclined 

sluice gates. For this, first the bottom pressure distributions of the inclined sluice gates were 

analyzed. An example of the dimensionless bottom pressure distribution for the investigated 

angles of inclination α for ε = 0.25 is shown in Figure 45.  
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Figure 45: Bottom pressure distribution for various angles of inclination for ε=0.25 

The pressure decrease starts further upstream for small angles of inclination, because 

the inclined sluice gate forms a kind of nozzle with the bottom and the length of this “nozzle” 

increases with decreasing angle of inclination, see also Figure 45. For angles of inclination close 

to α = 90°  and for the standard sluice gate (α = 90°) , the surface eddy also reduces the 

effective flow cross-section significantly. The surface eddy is less pronounced, the more the 

sluice gate is inclined, as can be seen in Figure 46. 

 

Figure 46: Comparison of surface eddies for α=15° and α=90° (ε=0.25) 
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If the flow cross-section is reduced, through the inclined sluice gate or the surface eddy, 

the flow velocity increases to satisfy the continuity equation and with increasing velocity at the 

bottom, the pressure at the bottom decreases (energy conservation). If the pressure decrease 

starts further upstream, the pressure at the bottom of the opening, see Figure 45 at X = 0, is also 

lower. For the parameterization of the bottom pressure at the opening (X = 0)  the 

parameterization approach for the standard sluice gate Eq. (5-9) can also be used, but the 

parameters kBO,1(α) and kBO,2(α) are depending on the angle of inclination α. The parameter 

kBO,1(α) does mainly represent the impact of the “nozzle” length, the parameter kBO,2(α) does 

mainly represent the impact of the surface eddy. The parameterization approach for the bottom 

pressure under the sluice gate edge (Eq. (5-9)) is now applied on the inclined sluice gate. The 

parameters kBO,1 and kBO,2  are determined for each angle of inclination α based on CFD data 

using the parameterization approach of Eq. (5-9) with n = 1 and are shown in Table 4.  

Table 4: Fitting parameters for bottom pressure at X=0 for the investigated angles of inclination α 

  α = 90 α = 75 α = 60 α = 45 α = 30 α = 15 

kBO,1 0.5829 0.5553 0.5170 0.4570 0.3640 0.2254 

kBO,2 0.1777 0.1035 0.0849 0.0504 0.0167 0.0049 

SSE 0.0298 0.0015 0.0048 0.0002 0.0001 0.0001 

RMSE 0.0252 0.0113 0.0200 0.0043 0.0039 0.0038 

The determined parameters are also shown in Figure 47 in dependency of the angle of 

inclination α. For the parameterization of the parameter kBO,1(α) the first approach is shown in 

Eq. (5-10). This approach considers the decrease in bottom pressure at the opening with 

increasing nozzle length.  

kBO,1(α) = 0.5829 −
0.1028

tan(α)
 (5-10) 

The approach from Eq. (5-10) does show the trend of kBO,1(α) with a SSE = 0.002929 

and a RMSE = 0.0242, but overestimates the parameter in the range between α = 30° and  

α = 60°, see Figure 47 a). Hence the approach of Eq. (5-10) was further improved to determine 

the parameters more accurate. The resulting approach is shown in Eq. (5-11) which shows a 

very good agreement ( SSE = 0.0001465  and RMSE = 0.005414 ) with the values from  

Table 4.  

kBO,1(α) = 0.5829 − 0.06459 ∙ (
1

tan(α)
+ 2 ∙ cos(α)2)  (5-11) 
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Figure 47: Fitting parameters for the parameterization of the bottom pressure at the opening a) 𝐤𝐁𝐎,𝟏(𝛂) 
and b) 𝐤𝐁𝐎,𝟐(𝛂) 

Looking at the parameter kBO,2(α), see Figure 47 b), it can be seen that the points are 

following a parabola approach with the vertex at the origin of the coordinate system. Inserting 

kBO,2 (
π

2
) =0.1777, the resulting formula for kBO,2(α)  with SSE = 0.0004756  and  

RMSE = 0.008903 becomes: 

kBO,2 (α) = 0.1777(
  α  
π
2

)

2

  (5-12) 

In Figure 48, a comparison of the CFD simulation results and the new developed 

parameterization approach for the bottom pressure at the opening 𝑃𝐵𝑂 (Eq. (5-9)) with the 

parameters of Eq. (5-11) and Eq. (5-12) is shown. The derived parameterization has a very good 

agreement with the CFD results over the complete investigated range of the inverse relative 

gate opening 
1

ε
 and for all investigated angles of inclination α. With the new parameterization 

approach, the pressure at the opening can now be calculated more accurately as a function of 

both the relative gate opening ε and the angle of inclination α. With the parameterization 

approaches known so far, it was only possible to determine the bottom pressure at the opening 

for the standard sluice gate. 
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Figure 48: Comparison of dimensionless bottom pressure at the opening 𝐏𝐁𝐎  from CFD (diamonds) with 

parameterization approach (lines) for the investigated angles of inclination 𝛂 for a) 
𝟏

𝛆
< 𝟒 and b) 

𝟏

𝛆
> 𝟒 

5.1.2 Parameterization of the Bottom Pressure Distribution 

The parameterizations of the bottom pressure distribution of Rajaratnam/Humphries see 

Eq. (5-3) and Roth/Hager see Eq. (5-4) are already shown in Figure 40. While these approaches 

are only valid for a certain region of the bottom close to the sluice gate opening at X = 0, 

Malcherek [1] suggested a hyperbolic tangent approach, see Eq. (5-13), that is valid for the 

complete range. The parameter X0 =
x0

a
 for this approach was determined by Malcherek based 

on measurement results of Roth and Hager [28].  

PB,Ma(X) =
1

2
(1 − tanh(X − X0)) with X0 =

x0
a
= 0.24  (5-13) 

Based on this approach, a modified bottom pressure distribution was derived by 

inserting Eq. (5-9) into Eq. (5-13) (PB,Ma(X = 0) = 𝑃𝐵𝑂) to determine the parameter X0. The 

resulting equation for the parameter X0 is shown in Eq. (5-14). The parameter depends now on 

the relative gate opening ε and as well on the contraction coefficient Cc.  

X0(ε) = −atanh(
2(PB0(ε) − Cc)

1
ε
−Cc

)  (5-14) 

The contraction coefficient was determined by CFD simulations and is shown in 

dependency of the relative gate opening ε in Figure 49 a). For the calculation of the bottom 

pressure distribution parameter X0 between or outside the investigated relative gate openings, 

CC was linearly inter- and extrapolated from the CFD results. The resulting parameter X0 is 
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shown in Figure 49 b). Also shown in Figure 49 b) is the original approach of Malcherek, which 

is equal with the new approach for ε = 0.392.  

 
Figure 49: a) Contraction coefficient and b) bottom pressure distribution parameter 𝐗𝟎 for the standard 

sluice gate 

The bottom pressure distribution can now be calculated using the new parameter X0. 

Figure 50 shows a comparison of the original hyperbolic tangent approach of Malcherek, the 

new approach which is also based on Malcherek’s approach and the CFD values. At X = 0 the 

hyperbolic tangent approach with the parameter from Eq. (5-14) agrees well with the CFD 

values for both investigated relative gate openings ε, which can be returned on the well selected 

factor X0. The original approach of Malcherek (X0(0.392) = X0,Malcherek) lays between the 

values of the new approach. For X > 0  the hyperbolic tangent approach of Eq. (5-13) 

overestimates the CFD values. For X < 0 the CFD approach agrees well with the new approach, 

while the agreement is even better for big relative gate openings ε, because the earlier decrease 

in bottom pressure due to lager surface eddies for small relative gate openings, as shown in 

Figure 41, is not considered here. 
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Figure 50: Comparison of bottom pressure distribution 𝐏𝐁 of the hyperbolic tangent approaches with 

CFD values 

To determine the bottom pressure distribution for the inclined sluice gate, the bottom 

pressure distribution for ε = 0.25  is first shown for various angles of inclination α  in  

Figure 51. Also shown in the figure is the hyperbolic tangent approach from Eq. (5-13) where 

X0 was determined by Eq. (5-14) and is shown in Figure 52. The contraction coefficient Cc that 

was used to determine X0 is also shown in Figure 52. 

 
Figure 51: Comparison of hyperbolic tangent approach for various angles of inclination α (𝛆 = 𝟎. 𝟐𝟓) 

At the opening, see X = 0 in Figure 51, the approach agrees again well because the 

factor X0 was determined with Eq. (5-14), which shifts the bottom pressure distribution so that 

it coincides at the point X = 0. For X > 0 and α = 45°, the hyperbolic tangent approach agrees 

very well with the simulation values. For X > 0 and α > 45°, the hyperbolic tangent approach 

overestimates the bottom pressure and for X > 0 and α < 45° the approach underestimates it. 



5 Sluice Gate Pressure Distributions 
 

 

64 

Upstream of the sluice gate (X < 0), the hyperbolic tangent approach Eq. (5-13) agrees best at 

α = 90°.  

 
Figure 52: Contraction coefficient 𝑪𝑪 and bottom pressure distribution parameter 𝐗𝟎 for inclined sluice 

gate (𝛆 = 𝟎. 𝟐𝟓) 

Due to the “nozzle” that is generated by the sluice gate, see Figure 45, the pressure 

decreases start further upstream of the gate with increasing angle of inclination α and the 

pressure gradient is smaller, which is not considered by Eq. (5-13). To take this behavior into 

account, a new section wise defined equation is suggested. For the upstream region (X < 0), 

the parameterization approach shown in Eq. (5-15) with the four fitting parameters kBU,1, kBU,2, 

kBU,3  and kBU,4  is suggested, which is an extension of the hyperbolic tangent approach of 

Malcherek, see Eq. (5-13), for inclined sluice gates.  

PBU(X) =
1

2
(1 − tanh(kBU,1 ∙ X − kBU,2)) +

1

kBU,3 ∙ X − kBU,4
  (5-15) 

The four parameters were determined, using the non-linear least square method and are 

shown in Table 1. The resulting bottom pressure distribution for  ε = 0.25  is shown in  

Figure 53. There is a good agreement with the CFD results over the complete range. The largest 

deviations are found at the opening (X = 0), which is, however, an important value, which is 

why the parameterization should be correct at this point in particular. 
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Table 5: Determined parameters for the upstream bottom pressure distribution 

 90° 75° 60° 45° 30° 15° 

kBU,1  0.8930 0.8269 0.7381 0.6199 0.4579 0.2487 

kBU,2 0.4188 0.3844 0.3276 0.2471 0.1504 0.0241 

kBU,3 35.4326 32.1650 27.5335 20.3202 11.8761 5.0547 

kBU,4 9.3293 8.9416 8.2039 6.9016 5.0524 3.3059 

SSE 0.0038 0.0043 0.0058 0.0097 0.0213 0.0997 

RMSE 0.0016 0.0017 0.0018 0.0017 0.0030 0.0066 

 

 
Figure 53: Comparison of extended hyperbolic tangent approach (Eq. (5-15)) for various angles of 

inclination α (𝛆 = 𝟎. 𝟐𝟓) 

Hence the bottom pressure at the opening is given by Eq. (5-9), one fitting parameter of 

Eq. (5-15) can be determined using this condition. The resulting equation can be solved for 

kBU,2, see Eq. (5-16) or for kBU,4, see Eq. (5-17): 

kBU,2 = −atanh(1 − 2(
PB0  − Cc
1
ε
−Cc

+
1

kBU,4
))  (5-16) 

 

kBU,4 =
1

1
2
(1 − tanh(−kBU2)) −

PB0 − Cc
1
ε −Cc

 
(5-17) 

The resuming parameters are then again determined using the non-linear least square 

method. For the approach from Eq. (5-16), the resulting parameters are shown in Table 6.  

A plot of the resulting parameterization function compared to the CFD results is shown in 

Figure 54. Comparing the errors in Table 6 and the curves in Figure 54 with the previous results 
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(Table 5 and Figure 53), it can be seen that the parameters determined in Table 6 give a much 

poorer representation of the upstream bottom pressure distribution. Only at the opening  

(X = 0) the parameterization of the upstream bottom pressure distribution PBU with kBU,2 from 

Eq. (5-16) agrees better with the CFD values. Also, the errors are partly two orders of magnitude 

higher than in the previous approach. 

Table 6: Determined parameters for the upstream bottom pressure distribution with  𝐤𝐁𝐔𝟐 constrained 

 90° 75° 60° 45° 30° 15° 

kBU,1 0.66796 0.60663 0.56492 0.48042 0.36530 0.25949 

kBU,2 1.56176 2.06675 1.28557 1.01395 0.90917 -0.01790 

kBU,3 14.07377 11.55954 10.98330 9.23706 5.73018 6.64704 

kBU,4 2.73000 2.45206 2.57896 2.51446 2.19693 4.03166 

SSE 0.18985 0.26992 0.25506 0.30208 0.45509 0.15130 

RMSE 0.01104 0.01316 0.01187 0.00951 0.01377 0.00815 

 

 
Figure 54: Comparison of extended hyperbolic tangent approach (Eq. (5-15)) with  𝐤𝐁𝐔,𝟐 Eq. (5-16) for 

various angles of inclination α (𝛆 = 𝟎. 𝟐𝟓) 

Looking at the results of the parameterization with kBU,4 determined from Eq. (5-17), 

on the other hand, see Table 7 and Figure 55, the course of the upstream bottom pressure 

distribution for the inclined sluice gate is well reproduced and also the values at the opening 

(X = 0) agree very well with the CFD values. The calculated errors correspond to the same 

order of magnitude as for the independent parameters in Table 5. 
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Table 7: Determined parameters for the upstream bottom pressure distribution with 𝐤𝐁𝐔𝟒 constrained 

  90° 75° 60° 45° 30° 15° 

kBU,1 0.8950 0.8398 0.7478 0.6341 0.4858 0.2598 

kBU,2 0.4166 0.3691 0.3144 0.2244 0.0914 -0.0253 

kBU,3 35.4334 32.0959 27.5558 20.3410 11.7717 5.2342 

kBU,4 9.4812 9.9800 9.0094 8.0427 7.1219 4.0930 

SSE 0.0038 0.0046 0.0060 0.0109 0.0357 0.1303 

RMSE 0.0016 0.0017 0.0018 0.0018 0.0039 0.0076 

 

 
Figure 55: Comparison of extended hyperbolic tangent approach (Eq. (5-15)) with 𝐤𝐁𝐔,𝟒  Eq. (5-17) for 

various angles of inclination α (𝛆 = 𝟎. 𝟐𝟓) 

In summary, it can be said that with the parameterization approach from Eq. (5-15), the 

upstream bottom pressure distribution of the inclined sluice gate can be represented very well. 

If Eq. (5-17) is used to determine the parameter kBU,4 in Eq. (5-15), it can be ensured that the 

bottom pressure at the opening PBU(X = 0) agrees with the parameterization approach of the 

bottom pressure at the opening PBO (Eq. (5-9)) and the CFD values. The resulting formula for 

the calculation of the upstream bottom pressure distribution for standard and inclined sluice 

gates is finally shown in Eq. (5-18): 

PBU(X) =
1

2
(1 − tanh(kBU,1 ∙ X − kBU,2)) +

1

kBU,3 ∙ X −
1

1
2
(1 − tanh(−kBU2)) −

PB0 − Cc
1
ε
−Cc

  

(5-18) 
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5.2 Opening Pressure Distribution  

For the parameterization of the opening pressure distribution pO , first the opening 

pressure distribution pO was nondimensionalized using the bottom pressure at the opening pBO, 

see Eq. (5-19), which is the maximum pressure at the opening.  

PO =
pO
pBO

  (5-19) 

The dimensionless opening z-coordinate ZO is defined in Eq.(5-20): 

ZO =
z

a
  (5-20) 

A schematic drawing of the dimensionless opening pressure distribution PO along the 

dimensionless z-coordinate ZO is shown in Figure 56 a). 

  

Figure 56: a) Schematic dimensionless pressure distribution at the opening with constrains and b) opening 

pressure distribution for the special case 𝐡𝟎 = 𝐚 = 𝐡𝟏 

A special case for the opening pressure distribution is when the gate lip is at the water 

surface and hence the upstream water level is equal to the gate opening and also equal to the 

downstream water level (h0 = a = h1), as shown in Figure 56 b). In this case, the opening 

pressure distribution pO is hydrostatic.  
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5.2.1 General Parameterization Approach for the Opening Pressure Distribution 

The pressure distribution at the opening pO  can be well described by a polynomial 

function, see Eq. (5-21), as suggested by Malcherek [1]. 

PO(ZO) = kO(ε) ∙ ZO
n + kO,1 ZO

2 + kO,2 ZO + kO,3 (5-21) 

The boundary conditions of the opening pressure distribution which must be satisfied 

by the parameterization approach are shown in Figure 56 a). The bottom pressure pBO at the 

opening, was already determined in section 5.1.1 and the formula is shown in Eq. (5-9) with 

the parameters given in Eq. (5-11) and Eq. (5-12). 

Inserting the bottom pressure distribution (pO(z = 0) = pBO  or PO(Z = 0) = 1 ) in  

Eq. (5-21) the parameter kO,3 can be determined as: 

kO,3 = 1 (5-22) 

At the gate lip (pO(z = a) = 0 or PO(Z = 1) = 0), the pressure is equal to the ambient 

pressure, since the flow direction at the edge, is parallel to the wall and air is in the adjacent 

region. Inserting this condition in Eq. (5-22) and Eq. (5-21), kO,1 can be written as: 

kO,1 = −kO(ε) − kO,2 − 1 (5-23) 

The change in pressure is the sum of the hydrostatic pressure increase and the change 

in pressure due to the curvature of the streamline (
dp

dr
= ρ 

U2

R
). Since the streamlines at the 

bottom are parallel to the bottom R → ∞ , the pressure increases are hydrostatic there 

(
dpO

dz
 =  − ρ g  or 

PO

dZ
 =

−ρ g a

pBO
) . With this boundary condition, the opening pressure 

distribution parameter kO,2  can be determined: 

kO,2 = −
ρ g a

pBO
 (5-24) 

Inserting Eq. (5-22), Eq. (5-23) and Eq. (5-24) in Eq. (5-21) and rearranging gives 

Eq. (5-25): 

PO(ZO) = kO(ε)(ZO
n − ZO

2) +
ρ g a

pBO
∙ (ZO

2 − ZO) − ZO
2 + 1 (5-25) 

With the boundary conditions, only the parameter kO(ε) and the exponent n has to be 

determined.  
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5.2.2 Parameterization of the Standard Sluice Gate Opening Pressure 

Distribution 

The pressure distributions, which are used for the parameterization were calculated 

using CFD. Figure 57 a) shows the opening pressure distribution pO  for the different 

investigated upstream water levels h0. As can be seen, the pressure increases with increasing 

upstream water level. With Eq. (5-19) and Eq. (5-20) the opening pressure distribution pO is 

first nondimensionalized to perform the parameterization. Figure 57 b) shows the dimensionless 

opening pressure distribution PO. Looking at the dimensionless opening pressure distribution, 

it can be seen that with decreasing upstream water levels h0  (increasing relative gate 

openings ε), the opening pressure distribution is approaching the hydrostatic pressure 

distribution, see black line in Figure 57 b). For decreasing relative gate openings, it seems that 

the opening pressure distribution approaches a constant value. The parameterization approach 

for the dimensionless opening pressure distribution PO was already introduced, see Eq. (5-21), 

and is carried out in the following on the basis of the values shown in Figure 57. 

 

Figure 57: a) Opening pressure distribution 𝐩𝐎 and b) nondimensionalized opening pressure 

distribution 𝐏𝐎 of the standard sluice gate from CFD for 𝒂 = 𝟎. 𝟏 𝒎 

In the first step, the exponent n from Eq. (5-21) was analyzed using the non-linear least 

square method to fit the data from the CFD simulations shown in Figure 57. The fit was done 

for n = [3,4,5,6,7,8,9,10] for all investigated relative gate openings ε and the corresponding 

SSE and the RMSE were calculated. Then the mean values of the SSE and the RMSE were 

calculated for each exponent n. The mean errors are shown in Figure 58. The mean errors 
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initially decrease with decreasing exponent n up to n = 8, where the errors are minimal. As the 

exponent n increases further, the mean SSE and the mean RMSE are increase again. Since both 

the SSE and the RMSE are smallest for n = 8, this is used for the further parameterization.  

 

Figure 58: RMSE and SSE for the investigates exponents n of the parameterization approach for the 

opening pressure distribution 

Inserting the previously determined exponent n = 8  into Eq. (5-21), the resulting 

function is used to determine the coefficient kO(ε), for the dimensionless opening pressure 

distribution PO. For the relative gate openings ε investigated in CFD, the fitting parameter 

kO is shown in Figure 59. To satisfy the special case h0 = a = h1, see Figure 56 b), where 

the pressure distribution is hydrostatic, the fitting parameter kO(ε) has to become zero. 

Figure 59: Opening pressure distribution fitting parameter 𝐤𝐎(𝛆) for α=90° 

To parameterize the opening pressure distribution fitting parameter kO(ε) the function 

shown in Eq. (5-26) was introduced.  

kO(ε) = kO
∗  (1 − (

1

ε
)
kO
∗

)          with      kO
∗ = −0.6172  (5-26) 
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The fitting constant kO
∗  from Eq. (5-26) was determined as kO

∗ = −0.6172 using the 

non-linear least square method with SSE = 2.761 ∙ 10−4  and RMSE = 4.797 ∙ 10−3 . The 

parameterization approach from Eq. (5-26) is also shown in Figure 59. For the limiting case 

1

ε
→ ∞, the parameter kO(ε) tends to the constant limit kO(ε) = kO

∗ = −0.6172.  

The quality of the new opening pressure parameterization approach was checked by 

comparing it with results from the literature. Figure 60 shows the results of the standard sluice 

gate parameterization in comparison with the results of Werner [22] for the limit case ε → 0 , 

Han et al. [60] for ε =  0.395 and Montes [35] for ε =  0.2546. There is a good agreement of 

the parameterization results with the results of other authors.  

 

Figure 60: Parameterization approach of opening pressure distribution for standard sluice gate compared 

with results from a) Werner for ε=0 b) Hand Chow for ε=0.395 and c) Montes for ε=0.2546 

As shown, the new parameterization approach is very well suited to calculate the 

pressure distribution at the opening for the standard sluice gate. Eq. (5-27) shows again the 

parameterization approach for the opening pressure distribution of the standard sluice gate  

(Eq. (5-25)) with inserted coefficient kO(ε) (Eq. (5-26)) and exponent (n = 8): 

PO(ZO) = −0.6172 (1 − (
1

ε
)
−0.6172

) (ZO
8 − ZO

2) +
ρ g a

pBO
∙ (ZO

2 − ZO) − ZO
2 + 1 (5-27) 
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5.2.3 Parameterization of the Inclined Sluice Gate Opening Pressure Distribution 

The opening pressure distribution pO of the inclined sluice gates is exemplarily shown 

in Figure 61 a) for ε=0.25. The values of the opening pressure distribution become smaller as 

the angle of inclination α becomes smaller. To perform the parameterization, the pressure 

distribution pO  and the opening z-coordinate are first nondimensionalized, using again  

Eq. (5-19) and Eq. (5-20). The dimensionless opening pressure distribution PO  is shown in 

Figure 61 b). The deviations of the curves of the dimensionless pressure distributions PO for the 

shown angles of inclination α are small, compared with the deviations of the curves of the 

dimensionless opening pressure distribution PO  for different relative gate openings ε , see  

Figure 57 b). Because of the small dependency of PO on the angle of inclination α, two methods 

were introduced for the following investigations on the parameterization of the inclined sluice 

gate opening pressure distribution. A simplified approach, which assumes that the 

dimensionless pressure distribution does not depend on the angle of inclination α and a detailed 

approach which includes the (small) deviations of the dimensionless opening pressure profile 

due to the angle of inclination α. Even if there is no dependence of the angle of inclination α 

on the dimensionless opening pressure distribution PO in the simplified approach, the opening 

pressure distribution pO changes with the angle of inclination since the angular dependence of 

the bottom pressure is also taken into account here. 

 

Figure 61: a) Opening pressure distribution 𝐩𝐎 and b) dimensionless opening pressure distribution 𝐏𝐎 for 

the inclined sluice gate with ε=0.25  
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Simplified Approach 

The introduced parameterization approach of the opening pressure distribution of the 

standard sluice gate with the parameter kO(ε) (Eq. (5-26)) and the exponent n = 8 is also 

applicable for the parameterization of the opening pressure distribution of the inclined sluice 

gate. In a first approximation, the angle dependence is only considered via the dependency of 

the bottom pressure at the opening. The bottom pressure at the opening can be calculated with 

Eq. (5-9) derived in chapter 5.1.1. 

The opening pressure distribution pO for the inclined sluice gate and the CFD results 

are shown exemplary in Figure 62 a) for ε = 0.1  and in Figure 62 b) for ε = 0.25 . The 

parameterization fits well over all values of α. Only close to the gate lip, near z = 0.1, the 

profile of the opening pressure distribution is influenced by the angle of inclination due to a 

smaller curvature of the streamlines, but since this influence is small, it can be neglected in this 

approach. The opening pressure distribution pO of the inclined sluice gate was not shown yet 

by other authors, therefore a comparison with the literature is not possible here.  

 

 

Figure 62: Comparison of the parametrization results of the simplified approach (solid line) with CFD 

simulation results (dashed line) of the opening pressure distribution for a) ε=0.1 and b) ε=0.25 for various 

angles of inclination α 
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Detailed Approach 

For the detailed approach, both the exponent n and the parameter kO (ε) are determined 

for the different angles of inclination α. As the exponent n for the standard sluice gate was 

determined, also the exponent for the inclined sluice gate was determined using the non-linear 

least square method to fit Eq. (5-25) with the CFD data for the inclined sluice gate. The mean 

RMSE and the mean SSE over the exponents n are shown in Figure 63 for the investigated 

angles of inclination.  

 

Figure 63: Mean RMSE and mean SSE for inclined opening pressure exponent determination 

The exponents n with the smallest errors are also shown in Table 8. The exponent n is 

increasing with the angel of inclination from n = 8 for α = 90° until n = 16 for α = 45°. For 

smaller values (α < 45°), the exponent n does not increase further and the best agreement with 

the CFD results can be obtained for n = 16.  

Table 8: Determined opening pressure distribution exponent n and errors for various angles of inclination 

  α = 90 α = 75 α = 60 α = 45 α = 30 α = 15 

n 8 11 14 16 16 16 

SSE̅̅ ̅̅ ̅ 0.003544 0.014851 0.021423 0.020733 0.015051 0.009000 

RMSE̅̅ ̅̅ ̅̅ ̅̅  0.005046 0.010244 0.012268 0.011977 0.010063 0.007725 

For the different angles of inclination α  with the corresponding exponent n (see  

Table 8) and the investigated relative gate openings ε, the fitting parameter kO(ε) was now 

determined with the non-linear least square method, using the CFD simulations of the inclined 

sluice gate. The values determined in this way for the parameter kO are shown in Figure 64.  
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Figure 64: Fitting parameter 𝐤𝐎,𝛂(𝛆) for inclined sluice gates 

The dependency on the relative gate opening ε of the parameter kO can be again good 

approximated by Eq. (5-26). The fitting constant kO
∗  was determined, using the non-linear least 

square method. The results for kO
∗  are shown with the corresponding SSE and RMSE in  

Table 9. The resulting parameter curves from Eq. (5-26) with kO
∗  from Table 9 are also shown 

in Figure 64 for the investigated angles of inclination α.  

Table 9: Fitting constant 𝐤𝐎,𝛂
∗  for inclined sluice gates 

  α = 90 α = 75 α = 60 α = 45 α = 30 α = 15 

kO,α
∗  -0.6172 -0.6101 -0.6022 -0.5844 -0.5758 -0.4883 

SSE 0.000276 0.000450 0.000939 0.002393 0.001040 0.000622 

RMSE 0.004608 0.005882 0.008499 0.013570 0.012190 0.009425 

With the determined fitting constants in Table 9 and the exponent in Table 8, the 

opening pressure distribution pO for the detailed approach can be calculated using Eq. (5-25). 

Figure 65 shows the comparison of the detailed parameterization approach with the CFD values. 

The opening pressure distributions determined in the CFD and the detailed approach of the 

opening pressure distribution parameterization agree well. However, deviations also occur here 

and the approach matches the CFD values only slightly better than the simplified approach, but 

is much more complex. For the determination of the opening force FO in the following chapter, 

the simplyfied approach is therefore used.  
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Figure 65: Comparison of the parametrization results of the detailed approach (solid line) with CFD 

simulation results (dashed line) of the opening pressure distribution for various angles of inclination α for 

a) ε=0.1 and b) ε=0.25  

5.2.4 Integral of the Opening Pressure Distribution  

The force at the opening FO can be determined by integrating the pressure distribution 

at the opening pO from the bottom (z = 0) to the gate lip (z = a). With the definition of the 

dimensionless opening pressure Eq. (5-19) and the dimensionless gate coordinate Eq.(5-20), 

the opening force FO  can be determined by integrating the dimenionless opening pressure 

distribution pO, see Eq. (5-28).  

 
FO = ∫ pO dz

a

0

= pBO ∙ a ∙ B ∙ ∫ PO dZO

1

0

 (5-28) 

The general approach for the dimensionless opening pressure distribution PO  was 

introduced in Eq. (5-25). Substituting this equation into Eq. (5-28) gives the following equation: 

FO = pBO a B ∫ (kO(ε) (ZO
n − ZO

2
)+

ρ g  a

pBO
 (ZO

2 − ZO)− ZO
2 + 1)  dZO

1

0

 (5-29) 

Solving the integral in Eq. (5-29) yields Eq. (5-30): 

FO = pBO  a  B (kO(ε)
2 − n

3(n + 1)
−
ρ g a

6 pBO
+
2

3
) (5-30) 
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Determining the bottom pressure at the opening pBO  from Eq. (5-9) and using the 

simplified approach with n = 8  and kO(ε)  from Eq. (5-26), the force at the opening can be 

determined from Eq. (5-30). The results for FO obtained in this way are shown in Figure 66. Also 

shown in Figure 66 are the CFD results. These are in excellent agreement with the 

parameterization. A comparison with literature values is not possible since a parameterization 

of the opening force as a function of the angle of inclination α and the relative gate opening ε 

was carried out for the first time in this work. 

 

Figure 66: Pressure integral at the opening 𝐅𝐎 for standard and inclined sluice gates 
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5.3 Gate Pressure Distribution  

The gate pressure distribution is probably the most studied pressure distribution on 

sluice gates, as it is not only important from a fluid mechanics point of view, but also for 

structural mechanics calculations. Early investigations on the gate pressure distribution were 

done by Koch and Carstanjen [61], who described a decrease of the pressure at the gate, due to 

the increase in velocity and hence the dynamic pressure. Kulka [62] integrated the approach of 

Koch and Carstanjen [61] and derived a formula for the pressure force at the sluice gate wall 

FG, for mechanical calculations. Later, Pajer [63], Cheng et. al [64], Han/Chow [60], Montes 

[35] and Belaud/Litrico [65] calculated the pressure distribution at the sluice gate using 

numerical approaches. Experimental results of the pressure distribution were given by Gentilini 

[24] (for the inclined sluice gate with α = 45°), Finnie/Jeppson [66] and Roth/Hager [28]. 

Castro-Orgaz/Hager [67] calculated the pressure distribution based on an exponential increase 

of the velocity at the sluice gate wall, where the exponent was determined by applying 

momentum balance for a known contraction coefficient Cc and discharge coefficient cD. 

The main characteristics of the pressure distribution are the water level increase at the 

sluice gate wall ∆hG, the ZGa or ZGe coordinate, where the flow attaches at the sluice gate wall 

or the surface eddy height and PGm at ZGm, where the gate pressure reaches its maximum value. 

 

Figure 67: Main characteristics of the gate pressure distribution 

While from ZG = 1 to ZGe, the pressure increase is hydrostatic, from ZGe to ZG = 0 the 

pressure is smaller than the hydrostatic pressure. The characteristic properties of the pressure 

distribution on the sluice gate shown in Figure 68 will be discussed in the following chapters. 

At first, the dimensionless representation of the pressure distribution and the dimensionless gate 

coordinate will be shown. Then the water level increase at the sluice gate ∆hG, the attached 

flow coordinate or eddy height ZGa = ZGe  as well as the maximum pressure pGm  and the 

location of the maximum pressure ZGm of the pressure distribution are investigated.  
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5.3.1 Dimensionless Sluice Gate Pressure Distribution 

To analyze and parametrize the gate pressure distribution along the sluice gate wall, the 

gate pressure distribution pG and the z-coordinate at the gate were first normalized, so that at 

the gate lip the normalized gate coordinate ZG = 0 and at the upstream water level at the sluice 

gate wall, the normalized gate coordinate ZG = 1 . The gate pressure distribution was 

normalized by dividing the gate pressure distribution pG  by the hypothetical hydrostatic 

pressure at the gate lip. The water column of this hypothetical hydrostatic pressure distribution 

is equal to the upstream water level h0 plus the water level increase at the sluice gate wall ∆hG 

minus the height of the gate opening a . The equation for calculating the dimensionless 

Z-coordinate ZG is shown in Eq. (5-31) and the equation for calculating the dimensionless gate 

pressure PG is shown in Eq. (5-32). 

ZG =
(z − a)

h0 + ∆hG − a
  (5-31) 

 

PG(ZG) =
pG(ZG)

ρ g (h0 + ∆hG − a)
  (5-32) 

5.3.2 Water Level Increase at the Sluice Gate Wall  

At the sluice gate wall, the water level increases and is higher than the upstream water 

level h0 of the sluice gate flow. The water level increase depends on the relative gate opening 

ε. The difference between the water level at the sluice gate and the upstream water level is 

introduced as ∆hG. In early studies, it was assumed, that the upstream water level h0 at the 

sluice gate wall decreases or is constant ( [61], [62], [68]). Later on, e.g. Keutner [6] described 

an increase of the upstream water level near the sluice gate wall due to a reduced flow velocity 

near the water surface until a point in a distance upstream of the sluice gate. Between this point 

and the sluice gate wall, an eddy occurs, which was described by Keutner as “Deckwalze”. In 

this region a further increase in the upstream water level was described. The eddy itself was 

observed earlier e. g. by Koch and Carstanjen [61], but the water level increase was not 

mentioned there. For the calculation of the upstream water level increase at the sluice gate wall 

a stagnation point was assumed at the sluice gate wall, and it was also assumed that the upstream 

water level at this point is equal to the total energy head H0 . This relation was found by 

E. Lindquist from Stockholm, published later in Germany at the “Zentralblatt der 

Bauverwaltung” in 1930 [69]. In later works e. g. [63], [16], [70], [71] on sluice gate flows, this 

approach was used in this time to calculate the water level increase at the sluice gate, from the 
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upstream velocity u0. This method is commonly used until today. The water level increase at 

the sluice gate from this approach can be calculated using Eq. (5-33): 

∆hG =
u0
2

2  g
 (5-33) 

Naudascher [72] [5] assumed a lower water level than the upstream energy head  

(Eq. (5-33)), due to dissipation losses caused by the eddy and due to a non-uniform upstream 

velocity distribution.  

In this work ∆hG was determined using values from the CFD simulations. The water 

level increase was calculated with the energy conservation approach Eq. (5-33) as well as the 

actual water level increase from the CFD simulations was determined. To determine the water 

level increase from CFD, the pressure at the sluice gate pG at the position h0 was determined, 

which corresponds to the hydrostatic pressure of the water level increase. From this, the water 

level increase can be determined as follows:  

∆hG =
pG(h0)

ρ g
 (5-34) 

The representation of the water level increases ∆hG  at the sluice gate wall is done 

dimensionless by dividing it by h0 − a. The CFD results of the dimensionless water level 

increase 
∆hG

h0−a
 in dependency of the relative gate opening ε are shown in Figure 68 for both 

approaches Eq. (5-33) and Eq. (5-34). 

  

  
Figure 68: Water level increase ∆𝐡𝐆 at the sluice gate wall in dependency of the relative gate opening 𝛆 

As shown in Figure 68, the dimensionless water level increase 
∆hG

(h0−a)
 increases with 

increasing relative gate opening ε for both approaches. The dependence of the dimensionless 
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water level increase 
∆hG

(h0−a)
 on ε can be represented by a power function passing through the 

origin (0,0) . With the coefficient k∆hG , the function shown in Eq. (5-35), is used as 

parameterization approach for the dimensionless water level increase 
∆hG

(h0−a)
.  

∆hG
(h0 − a)

= k∆hG ε
5
2 (5-35) 

The coefficient k∆hG is determined for both approaches (Eq. (5-33) and Eq. (5-34)) with 

the non-linear least square method. For the energy conservation approach (Eq. (5-33)),  

k∆hG = 0.78 is obtained with the errors SSE = 2.48 ∙ 10−5 and RMSE = 0.001438. For the 

real water level increase determined with Eq. (5-34) directly at the sluice gate wall, the 

coefficient k∆hG = 0.62 is obtained with the erros SSE = 1.44 ∙ 10−5 and RMSE = 0.001095. 

The errors are small for both calculation methods, from which it can be concluded that the 

approach introduced in Eq. (5-35) is well suited for the calculation of the dimensionless water 

level rise 
∆hG

(h0−a)
. Also shown in Figure 68 are the dimensionless water level increases calculated 

by the authors Fangmeier and Strelkoff [73], Cheng, Liggett and Liu [64] and Finnie and 

Jeppson [66]. Investigations from Fangmeier et. al and Cheng et. al, do agree well with the 

energy approach. Only for large relative gate openings ε the approach of Fangmeier et. al does 

significantly overestimate the parameterization function (Eq. (5-35)) with k∆hG = 0.78. The 

calculations of Finnie et al. do underestimate both approaches and the other literature values. 

The difference between the energy conservation approach and the real water level increase are 

caused by dissipation losses of the surface eddy. The dissipation losses were also already 

observed by Naudascher [5]. For the parametrization of the gate pressure distribution later in 

this work, the water level increase including dissipation losses (Eq. (5-35) with  

k∆ = 0.62) will be used. 

5.3.3 Eddy Height and Attachment Point at the Sluice Gate Wall 

An important parameter in the analysis of the sluice gate pressure distribution is the 

point at which the flow attaches to the gate, this point is called the attachment point with the 

dimensionless gate coordinate ZGa and is shown schematically in Figure 69. Between the water 

surface ZG = 1  and ZGa , an eddy occurs, where the dynamic pressure is low and has no 

significant impact on the sluice gate pressure distribution, hence for ZG > ZGa the sluice gate 

pressure pG(ZG) is hydrostatic. The height of this eddy at the sluice gate is measured in the 

Z-direction and is referred to as hGe.  
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Figure 69: Pressure distribution at sluice gate wall with attachment point 𝐙𝐆𝐚 and eddy height 𝐡𝐆𝐚 

Between the gate lip ZG = 0 and ZGa, the flow is attached and the velocity and hence 

the dynamic pressure increases along the streamline near the sluice gate wall through gravity. 

For the calculation of ZGa, a field function was created in Star CCM+, with which the deviation 

of the pressure at the sluice gate pG(z) from the theoretical occurring hydrostatic pressure 

(h0 + ∆hG − z) ρ g is calculated. This corresponds quasi to the dynamic pressure at the sluice 

gate, but since the velocity is equal to zero at the sluice gate due to the no slip condition, it 

cannot be designated in this way. Since the pressure through the boundary layer is constant in 

a direction perpendicular to the surface, the dynamic pressure thus determined is the dynamic 

pressure of the streamline adjacent to the boundary layer in the free flow. Figure 70 shows a 

schematic plot of the dynamic pressure determined in this way. In addition, streamlines have 

been shown in the figure, which show that a stagnation point occurs at ZGa. 
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Figure 70: Gate flow characteristics: eddy, stagnation point and attached flow 

At the stagnation point the velocity and thus the dynamic pressure is zero. The position 

of the stagnation point, which is equal to the position of ZGa, can thus finally be calculated from 

the CFD simulations with Eq. (5-36): 

ZGa = ZG(pG = min((h0 + ∆hG − z) ρ g − pG(z))) (5-36) 

With ZGa, the eddy height hGe can be calculated with the help of Eq. (5-37) by first 

calculating the dimensionless distance from ZGa  to the water surface ZG = 1  and then 

converting this back to normal coordinates with the help of Eq. (5-31). 

hGe = (1 − ZGe)(h0 + ∆hG − a) + a  (5-37) 

The values calculated in this way for the standard sluice gate are nondimensionalized 

by dividing them by the upstream water level h0 . Rajaratnam and Humphries [32] also 

nondimensionalized the eddy height in this way. They found in their experiments that for the 

investigated relative gate openings from ε = 0.04  to ε = 0.4  the nondimensionalized eddy 

height can be given as constant with 
hGe

h0
= 0.28. Figure 71 shows the CFD values and the result 

of Rajaratnam and Humphries. The dimensionless eddy heights read out from the CFD seem to 

increase with decreasing relative gate opening. Therefore, for a parameterization of the 

dimensionless eddy height hGe/h0 a function depending on the relative gate opening ε might 

be chosen. Nago [38] also described scale effects on the size of the eddy. Because the eddy 

height hGe is not needed for further calculations, no parameterization is performed for it in this 

work. Note: The eddy height was evaluated here at a random time step, but since the eddies are 

subject to large fluctuations, a time-resolved analysis is suggested here for more detailed 

investigations. 
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Figure 71: Relative eddy height 𝐡𝐆𝐞/𝐡𝟎 in dependency of the relative gate opening 𝛆 

5.3.4 Maximum Gate Pressure  

The pressure at the sluice gate initially increases hydrostatically from the water surface 

in negative z-direction to the gate lip. At the point ZGa, where the flow attaches to the gate, the 

pressure continues to increase but no longer as strongly as at the beginning. This increase takes 

place until the maximum pressure pGm is reached at the position ZG = ZGm. The maximum 

pressure at the gate is reached when the change of the dynamic pressure at the gate is equal to 

the change of the quasi hydrostatic pressure, see Eq. (5-38). However, since the no-slip 

condition exists at the gate wall, it is actually the dynamic pressure of the streamline above the 

boundary layer. From Eq. (5-38) it follows that the maximum value of the pressure at the gate 

can be calculated with Eq. (5-39). 

      
d

dz
((h0 + ∆hG − z) ρ g − pG(z)) =

d

dz
(ρ g (h0 + ∆h − z)) (5-38) 

 

 
dpG(z)

dz
= 0 (5-39) 

The values for the nondimensionalized maximum gate pressure PGm calculated in the 

CFD as well as those given by Roth and Hager [28], Belaud and Litrico [65] and Castro-Orgaz 

and Hager [67] are shown in Figure 72 as a function of the relative gate opening ε. The 

maximum nondimensionalized gate pressure PGm from the three papers ( [28], [65], [67]) were 

determined from the pressure distributions given in these papers. These pressure distributions 

will be discussed in more detail in the following chapters when parameterizing the gate 

pressure distribution. As can be seen in Figure 72, the dimensionless maximum gate 

pressure increases with decreasing relative gate opening. While for ε = 0, which means the 
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gate is closed, the maximum gate pressure is PGm = 1 and equal to the hydrostatic pressure at 

the bottom. The maximum pressure PGm  agrees well for all studies for small relative gate 

openings (ε < 0.1). Whereas for larger relative gate openings ε, the maximum pressure PGm 

calculated in CFD is larger than that calculated by the other authors. All the results shown 

diverge for increasing relative gate openings ε. 

Figure 72: Nondimensionalized maximum gate pressure 𝐏𝐆𝐦 in dependency of the relative gate opening 𝛆 

Figure 73 further shows the position of the maximum pressure ZGm as a function of the 

relative gate openings ε. The position of the maximum pressure ZGm decreases with decreasing 

relative gate opening ε in the direction of the gate lip. For the limiting case ε = 0, which 

corresponds to the closed gate with hydrostatic pressure distribution, the position of the 

maximum pressure ZGm is at the gate lip or at the bottom. This tendency is also satisfied by the 

pressure distributions of Belaud and Litrico [65] and Castro-Orgaz and Hager [67], while in the 

parameterization of Roth and Hager [28] the position of the maximum pressure is assumed to 

be constant. For small relative gate openings ε < 0.1, ZGm from the CFD simulations agrees 

very well with the results of Belaud and Litrico [65]. In the parameterization of Castro-Orgaz 

and Hager, the position of the maximum gate pressure ZGm is lower compared to Belaud and 

Litrico over the whole investigated range. The position of the dimensionless maximum gate 

pressure ZGm obtained from the CFD simulations, on the other hand, agrees better with the 

values of Castro Orgaz and Hager for ε > 0.3 than with those of Belaud and Litrico. 
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Figure 73: Position of the maximum gate pressure 𝒁𝑮𝒎 in dependency of the relative gate opening 𝜺 

 

5.3.5 Parameterization of the Standard Gate Pressure Distribution 

For the parametrization of the standard sluice gate pressure distribution, first the 

hydrostatic pressure component PGS(ZG) and the quasi dynamic pressure part PGD(ZG) were 

separated. The dimensionless hydrostatic pressure component PGS(ZG), can be calculated using 

Eq. (5-40): 

PGS(ZG) = 1 − ZG (5-40) 

To determine the dynamic pressure distribution, the gate pressure pG from the CFD 

simulations was first nondimensionalized using Eq. (5-31) and Eq. (5-32). The thus calculated 

dimensionless gate pressure PG(ZG)  is shown in Figure 74 a). To calculate the quasi 

dimensionless dynamic gate pressure PGD(ZG) , the dimensionless gate pressure PG(ZG)  is 

subtracted from the dimensionless hydrostatic pressure PGS(ZG), see Eq. (5-41). The quasi 

dimensionless dynamic gate pressure PGD(ZG) determined in this way is shown in Figure 74 b) 

for the investigated inverse relative gate openings 1/ε . In the following, the quasi-

dimensionless dynamic gate pressure is referred to as dimensionless dynamic gate pressure. 

PGD(ZG) = PGS(ZG) − PG(ZG) (5-41) 
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Figure 74: a) Dimensionless gate pressure 𝑷𝑮(𝒁𝑮) and b) dimensionless dynamic gate pressure 𝑷𝑮𝑫(𝒁𝑮) of 

the standard sluice gate from CFD 

At the upstream water level at the gate, the dynamic pressure is zero. The dynamic 

pressure increase starts when the flow is attached at ZG = ZGa. Hence for an exact definition of 

the gate pressure distribution, a piecewise-defined function is necessary, as shown in  

Eq. (5-42): 

PGD(ZG) = {
       f(ZG)            for            0 < ZG < ZGa

0               for        ZGa < ZG
 (5-42) 

For practical applications, it is useful to define a continuous function for PGD(ZG) over 

the complete sluice gate wall, because the position of ZGa depends on the relative gate opening 

ε and also on the upstream water level h0. Other authors such as Roth and Hager [28], Belaud 

and Litrico [65] and Castro-Orgaz and Hager [67] have also used a continuous function to 

parameterize the gate pressure distribution. In this work the dimensionless dynamic pressure 

PGD(ZG) at the sluice gate wall, is parametrized using the following equation with the parameter 

kG(ε): 

PGD(ZG) =
1

1
kG(ε)

∙ ZG + 1 
− kG(ε)  ∙ ZG 

(5-43) 

The parameter kG(α = 90°) for the standard sluice gate was determined for all relative 

gate openings ε investigated in CFD using the non-linear least square method. The parameter 

kG(α = 90°) for each investigated relative gate opening ε, determined in this way, is shown in 

Figure 75 (blue diamonds).  
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Figure 75: Parameter 𝒌𝑮(𝜶 = 𝟗𝟎°) for gate pressure parameterization of the standard sluice gate 

As it can be seen in the Figure 75, the parameter kG(α = 90°) increases linearly with 

increasing relative gate opening ε. For the limiting case ε = 0, the parameter kG must be zero, 

because the gate is closed and the dynamic pressure PGD(ZG) = 0 must be equal to zero. The 

course of the parameter kG(α = 90°) can be mapped with Eq. (5-44), where the parameter 

kG,90°  was calculated with the non-linear least square method as kG,90° = 0.48  with an  

R2 = 0.9982 . The parameterization errors were calculated with SSE = 8.4028 ∙ 10−7  and 

RMSE = 2,6462 ∙ 10−4. 

kG(ε, α = 90°) = kG,90° ∙ ε (5-44) 

Substituting Eq. (5-43) and Eq. (5-40) into (5-41), and converting them to PG(ZG), we 

obtain the following function for the dimensionless gate pressure distribution PG(ZG): 

PG(ZG) = 1 + kG(ε, α) ∙ ZG − (ZG +
1

1
kG(ε, α)

∙ ZG + 1 
 ) (5-45) 

With Eq. (5-31) and Eq. (5-32) the dimensionless gate pressure distribution (Eq. (5-45)) 

can be returned to the dimensioned form. For the cases a = 0.1 m, that was also investigated in 

CFD simulations, the pressure distributions were calculated with the new parameterization 

approach from Eq. (5-45). These are compared with the values from the CFD simulations in 

Figure 76. The pressure distributions from the CFD simulations and the new parameterization 

approach generally agree well.  
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Figure 76: Comparison of the gate pressure distribution from the parametrization (solid line) and from 

the CFD simulations (dashed line) for α=90° and a=0.1m  

The gate pressure distribution for the standard sluice gate has also been studied by other 

authors. In the following, the new parameterization approach is compared with these literature 

values, whereby these works are divided into two categories. The works of Pajer [63], Han and 

Chow [60], Cheng, Liggett and Liu [64] and Finnie and Jeppson [66], shown in Figure 77, have 

calculated the gate pressure distribution for a specific example, while the works of Roth and 

Hager [28], Belaud and Litrico [65] and Castro Orgaz and Hager [67], have proposed general 

parameterization formulas for the vertical sluice gate. These are exemplarily shown for ε = 0.5 

and ε = 0.05 in Figure 78.  
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Figure 77: Parameterization approach compared with data from  a) Pajer [63] with 𝛆 = 𝟎. 𝟏𝟐, b) Han and 

Chow [60] with 𝛆 = 𝟎. 𝟑𝟗𝟓, c) Cheng, Liggett and Liu [64] with 𝛆 = 𝟎. 𝟑𝟎𝟗 and d) Finnie and Jeppson [66] 

with 𝛆 = 𝟎. 𝟓𝟎𝟕 

The work of Pajer (Figure 77 a) and Cheng et al. (Figure 77 c) agrees very well with the 

parameterization formula over the entire course. The gate pressure calculated by Han et. al 

(Figure 77 b) is slightly larger than the gate pressure calculated with the parameterization in the 

region between the water surface z = h0 + ∆hG and the position of the maximum pressure zGm. 

In the region below zGm , the values of Han et. al are in excellent agreement with the 

parameterization. The values of Finnie et al. are also very well reproduced by the new 



5 Sluice Gate Pressure Distributions 
 

 

92 

parameterization. Only near the water surface z = h0 + ∆hG  the values of Finnie et al. are 

lower, because the authors have determined a smaller ∆hG, as shown in Figure 68. 

Comparing the derived parameterization with the parameterization approaches from the 

literature ( [65] [67] [28]), additional data for the parameterization approaches of these authors 

have to be provided first. For the approach of Belaud et al. no relation is given for the upstream 

water level h0 and the water level at the sluice gate wall h0 + ∆hG, because only h0 + ∆hG is 

used in the formula. However, since the upstream water level h0 must be known to calculate 

the realtive gate opening ε , the water level increase is calculated using Eq. (5-35) with  

k∆hG = 0.62. In the work of Roth and Hager, the water level increase ∆hG  at the gate is 

calculated using the conservation of energy approach, see Eq. (5-33). To use this approach, 

however, the discharge must be known. In the approach of Belaud and Litrico, the discharge 

must also be known since it occurs as a parameter in their parameterization approach. To work 

on the same data basis, the discharge determined from the CFD simulations was used for all 

parameterization approaches. Castro-Orgaz et al. assumed a constant value of the contraction 

coefficient cC = 0.61  for the parameterization of the pressure distribution to calculate the 

discharge from the energy conservation equation. For the calculation of the water level increase 

at the sluice gate ∆hG, the energy conservation approach was also used by Castro-Orgaz et al. 

In Figure 78 the parameterization approach derived in this work (Eq. (5-45)) and the CFD 

results are compared with the parameterization approaches of Roth and Hager [28], Belaud and 

Litrico [65] and Castro-Orgaz and Hager [67] for ε = 0.5  (Figure 78 a))and ε = 0.05  

(Figure 78 b)). For ε = 0.5, the results of the new parameterization and the CFD results are in 

between the parameterization results of the other authors, with Roth and Hager calculating a 

larger pressure and with the parameterization approaches of Castro-Orgaz and Hager and 

Belaud and Litrico calculating smaller pressures. For ε = 0.05 , the results of the new 

parameterization, the CFD results, and the parameterization results of Castro-Orgaz and Hager 

and Belaud and Litrico agree very well. The parameterization of Roth and Hager deviates from 

the other results and takes in places larger values than the hydrostatic pressure distribution, 

which is physically not possible.  
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Figure 78: Comparison of the parameterization approach with parameterization approaches from 

literature ( [65] [67] [28]) a) for 𝜺 = 𝟎. 𝟓 and b) for 𝜺 = 𝟎. 𝟎𝟓 

It was shown that the new parameterization approach is very well suited for 

parameterizing the gate pressure at the standard sluice gate. This has been confirmed both by 

own CFD results and by gate pressure data from other authors. 

 

5.3.6 Parameterization of the Inclined Gate Pressure Distribution 

The results presented so far have been limited to the standard sluice gate with α = 90°. 

Since the new parameterization approach (Eq. (5-45)) is also to be used to calculate the pressure 

distributions for inclined sluice gates, which is not yet possible with the parameterization 

approaches known in the literature, the approach is extended to include the inclined sluice gate. 

For this purpose, the pressure distribution of the inclined sluice gate is first nondimensionalized 

with Eq. (5-31) and Eq. (5-32) as for the standard sluice gate. The nondimensionalized pressure 

distributions PG for the different angles of inclination α are shown for the relative gate opening 

ε = 0.25 in Figure 79 a). The nondimensionalized pressure distribution PG is used to calculate 

the nondimensionalized dynamic pressure distribution PGD  with Eq. (5-41). The 

nondimensionalized dynamic pressure distribution is shown in Figure 79 b).  



5 Sluice Gate Pressure Distributions 
 

 

94 

Figure 79: a) Dimensionless gate pressure distribution and b) dimensionless dynamic gate pressure 

distribution of inclined sluice gates for 𝜺 = 𝟎. 𝟐𝟓 from CFD  

The following statements can be made about the dependency of the angle of inclination 

α on the gate pressure distribution PG and the dynamic gate pressure distribution PGD: 

- The gate pressure PG and the maximum gate pressure PGm decrease with decreasing 

angle of inclination α 

- The position of the maximum gate pressure ZGm increases upwards with decreasing 

angle of inclination α 

- The pressure distribution deviates earlier from the hydrostatic pressure distribution 

as the angle of inclination α decreases. 

- The dynamic pressure increases with decreasing angles of inclination already at 

larger ZG 

To parameterize the gate pressure distribution of the inclined sluice gate PG , the 

dimensionless dynamic pressure PGD is first parameterized using again Eq. (5-43) as for the 

standard sluice gate. The fitting parameter kG(α) was determined with the non-linear least 

square method using the CFD values and is shown in Figure 80 (diamonds) as a function of the 

relative gate opening ε for the different angles of inclination α. The parameter kG  for the 

inclined gate pressure distribution can be parametrized in dependency of the relative gate 

opening ε with Eq. (5-46). Eq. (5-46) is a modified form of Eq. (5-44), which was used for the 

parameterization of the standard gate pressure distribution, and results from Eq. (5-46) for 

kG2 = 1. 

kG(ε, α) = kG1 ∙ ε
kG2 (5-46) 
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Figure 80: Parameter 𝐤𝐆 for the parametrization of the inclined gate pressure distribution 

The parameters of the parameterization formula (Eq. (5-46)) kG1  and kG2  are 

determined using the non-linear least square method and are shown in Table 10 together with 

the parameterization errors.  

Table 10: Parameters 𝒌𝑮𝟏 and 𝒌𝑮𝟐 for inclined gate pressure parameterization 

  α = 90 α = 75 α = 60 α = 45 α = 30 α = 15 

kG1  0.048 0.08008 0.139 0.2112 0.3314 0.5097 

kG2 1 1.076 1.174 1.211 1.274 1.308 

SSE 8.40 ∙ 10−7 6.84∙ 10−7 9.54∙ 10−7 3.01 ∙ 106 2.71 ∙ 106 4.61 ∙ 106 

RMSE 0.0002646 0.0002493 0.0002945 0.000523 0.0007357 0.0009605 

In the next step, a function must be found which describes the dependence of the 

parameters kG1 and kG2 on the angle of inclination α. For this purpose, the values determined 

in Table 10 are shown graphically in Figure 81 as a function of the angle of inclination α. Let 

us first consider the parameter kG1, shown in Figure 81 a). It was found, that the parameter can 

be modeled using Eq. (5-47). The parameterization constant kG,α1 = −0.6026 was determined 

with the non-linear least square method, with the errors RMSE = 0.01386  and  

SSE = 0.00096. The constant kG,90° = 0.48 was already determined in the previous chapter, 

where for α = 90° kG1  =  kG,90°. The course of the parameter kG1 determined with Eq. (5-47) 

as a function of the angle of inclination α is also shown in Figure 81 a). As can be seen from 

the figure and the small errors, the parameterization approach (Eq. (5-47)) is very well suited.  

kG1 = kG,α1 ∙ (sin(α) − 1) + kG,90° (5-47) 

To parameterize the parameter kG2, the parameter is shown in Figure 81 b) as a function 

of the angle of inclination α . The dependence can be represented by Eq. (5-48). The 

parameterization constant kG,α2 = 0.3164 was determined with the errors SSE = 0.0004413 
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and RMSE =  0.009394. The parameterization formula for kG2 is also shown in Figure 81 b). 

This agrees well with the values from Table 10. 

kG2 = 1 + kG,α2 ∙ cos (α) (5-48) 

 

Figure 81: a) parameter 𝒌𝑮𝟏 and b) parameter 𝒌𝑮𝟐 for inclined gate pressure parameterization in 

dependency of angle of inclination 𝜶 

Finally, substituting Eq. (5-47) and Eq. (5-48) into Eq. (5-46) yields the function shown 

in Eq. (5-49) for the parameter kG(ε, α). For α = 90°, Eq. (5-49) reduces to Eq. (5-44), the 

fitting parameter for the standard sluice gate parameterization. Eq. (5-49) is thus valid for both 

the standard and the inclined sluice gate. Figure 80 shows the course of the parameter kG(ε, α).  

kG(ε, α) = (kG,α1 ∙ (sin(α) − 1) + kG,90°)ε
1+kG,α2∙cos (α) (5-49) 

Substituting the parameter determined by Eq. (5-49) into Eq. (5-45), the formula for the 

dimensionless pressure distribution PG(Z) is obtained as a function of the relative gate opening 

ε and the angle of inclination α. With the help of Eq. (5-31) and Eq. (5-32) the gate pressure 

distribution pG (z) can be determined from the dimensionless gate pressure distribution PG (Z). 

In Figure 82, the newly determined pressure distribution is compared with the CFD results for 

the different investigated angles of inclination α . For the relative gate openings ε = 0.25 

(Figure 82 a)) and ε = 0.1 (Figure 82 b)) the results generally agree very well. Only in the area 

of the maximum pressure pGm deviations occur for the angles α = 75° and α = 60°.  
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Figure 82: Comparison of the parametrization results (solid line) with CFD results (dashed line) of the 

gate pressure distribution for a) ε=0.25 and b) ε=0.1 for various angles of inclination α 

The pressure distribution for the inclined sluice gate was also investigated by 

Gentilini [24] and Montes [35], for α = 45° and ε = 0.2. The parameterization are compared 

with the results of Gentilini [24] in Figure 83 a) and with the results of Montes [35]  

Figure 83 b). The parameterization results agree well with the results of Gentilini and Montes. 

The derived parameterization function for the gate pressure distribution could thus be confirmed 

for both the standard and the inclined sluice gates by comparison with literature values.  

 

Figure 83: Comparison of the new inclined gate pressure distribution parameterization approach with 

data from a) Gentilini [24] and b) Montes [35] for α=45° 
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5.3.7 Gate Force  

The force FG acting on the sluice gate can be determined by integrating the pressure 

distribution along the sluice gate wall. For the calculation of the discharge from the momentum 

balance, see Eq. (3-15), the component of the pressure force parallel to the x-axis FGx  is 

required. To determine this, we first integrate the pressure distribution pG(z)  along the 

z-coordinate from the gate lip z = a  to the free water surface at the sluice gate wall  

z = h0 + ∆hG . Since we assume a two-dimensional pressure profile and thus the pressure 

distribution is constant along the width (y-axis), the pressure integral can be directly multiplied 

by the width B. This results in the following equation for the pressure force FGx in x-direction 

on the sluice gate: 

FGx = B∫ pG(z)
h0+∆hG

a

dz (5-50) 

To solve this integral, it is first converted to the dimensionless form using Eq. (5-31) 

and Eq. (5-32). Where the hydrostatic pressure at the lower sluice gate edge  

pGS = ρ ∙ g ∙ (h0 + ∆h − a)  and the wetted sluice gate surface AG = (h0 + ∆h − a) ∙ B  are 

introduced for simplifications. This gives the formula shown in Eq. (5-51). 

FGx = pGS AG∫ PG(ZG)
1

0

dZG (5-51) 

The integral of the dimensionless pressure distribution (Eq. (5-45)) along the 

dimensionless gate coordinate ZG is solved in detail below:  

∫ PG(ZG)
1

0

dZG = ∫

(

 
 
1 + kG(ε, α) ∙ ZG − (ZG +

1

1
kG(ε, α)

∙ ZG + 1 
 )

)

 
 
dZG

1

0

  

 

                          = ∫ 1 dZG

1

0

+∫ kG(ε, α) ZGdZG

1

0

−∫ ZGdZG

1

0

−∫
1

1
kG(ε, α)

∙ ZG + 1 
dZG

1

0

  

 

                             = 1 +
1

2
kG(ε, α) −

1

2
− kG(ε, α) ln (

1

kG(ε, α)
+ 1)  

 

                             =
1

2
(1 + 2 kG(ε, α) (

1

2
− ln (

1

kG(ε, α)
+ 1))) (5-52) 
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Finally, if the integral determined in Eq. (5-52) is substituted into Eq. (5-51), Eq. (5-53) 

is obtained for the pressure force FGx in the x-direction: 

FGx = pGSAG
1

2
(1 + 2 kG(ε, α) (

1

2
− ln (

1

kG(ε, α)
+ 1))) (5-53) 

The parameter kG(ε, α) can be determined with Eq. (5-49). For the case that the sluice 

gate is closed (ε = 0), the pressure force FGx must be equal to the hydrostatic pressure force 

FGSx in x-direction, see Eq. (5-54). This can be confirmed since the parameter kG(ε, α) = 0 and 

for this case Eq. (5-53) is equal to Eq. (5-54).  

FGSx =
1

2
pGSAG =

1

2
ρgB(h0 + ∆h − a)

2 (5-54) 

To compare the pressure forces for different relative gate openings ε, the dimensionless 

pressure force Π is introduced. This represents the ratio of the force FGx (Eq. (5-53)) acting on 

the sluice gate to the hydrostatic pressure force FGSx (Eq. (5-54)). The dimensionless pressure 

force Π was also used in this way by Roth and Hager [28].  

Π =
FGx
FGSx 

=
FGx

1
2
ρgB(h0 + ∆h − a)

2 
 (5-55) 

Figure 84 shows the CFD values and the newly determined parameterization approach 

of the dimensionless gate force Π as a function of the relative gate opening ε for the standard 

sluice gate (α = 90°), where for the standard sluice gate the parameter kG(ε, 90°) reduces to 

the form shown in Eq. (5-44).   

 

Figure 84: Dimensionless gate force 𝚷 of the standard sluice gate in dependency of the relative gate 

opening 𝛆 

The parameterization constant was originally determined with kG,90° = 0.048. If one 

compares for this value (kG,90° = 0.048) the values of the newly parameterized dimensionless 
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gate force Π with the CFD values, one finds that these correspond very well in the profile, but 

the values for the parameterization approach are smaller. In order to improve the 

parameterization of the pressure force, the parameterization constant kG,90° was redetermined 

on the basis of the pressure force determined in the CFD simulation. The parameterization 

constant kG,90°
∗ = 0.038  was determined using the non-linear least square method. The 

dimensionless gate force determined with the newly determined parameter kG,90°
∗  is also shown 

in Figure 84. This agrees very well with the results of the CFD simulations, which is why the 

parameter kG,90°
∗  is used to determine the gate force in further calculations, to calculate the 

discharge via the momentum balance. 

As already shown in chapter 5.3.5, the authors Roth and Hager [28], Belaud and Litrico 

[65] and Castro Orgaz and Hager [67] have published parameterization approaches for the 

determination of the gate pressure distribution for the standard sluice gate in their works, which 

have already been shown in Figure 78. By integrating these approaches, the pressure force can 

be determined for comparison with the pressure force determined in this work. Figure 85 shows 

the dimensionless pressure force Π determined by integrating the different approaches as a 

function of the relative gate opening ε. Considering the integral of the pressure distribution of 

Roth and Hager [28], it can be seen that it takes very large values compared to the other authors 

and for small relative gate openings ε the gate pressure force is larger than the hydrostatic 

pressure force (Π > 1) , which is physically not possible. This inconsistency was already 

recognized by Roth and Hager [28] in the same paper, which is why they also proposed another 

independent function to parameterize the dimensionless gate force Π. This new function agrees 

very well with the CFD simulation values and the new parameterization for small relative gate 

openings ε < 0.2 . For larger values of ε , there are some deviations between the 

parameterization formula of Roth and Hager and the new parameterization approach, but 

compared to the other works, they still agree well. The integrals of the pressure distributions of 

Belaud and Litrico [65] and Castro-Orgaz and Hager [67] run similarly over the whole range 

of the investigated relative gate openings ε, where for ε < 0.1 their values also agree with the 

pressure distribution of Roth and Hager [28] as well as the CFD values and the values of the 

new parameterization approach. For ε > 0.1, the dimensionless pressure force Π obtained by 

integrating the pressure distributions of Belaud and Litrico [65] and Castro-Orgaz and Hager 

[67] are smaller than the other values shown in Figure 85. 
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Figure 85: Comparison of dimensionless gate force 𝚷 of the standard sluice gate in dependency of the 

relative gate opening 𝛆 with results from the literature ( [65] [67] [28])  

In contrast to the parameterization formulas of the gate force from other authors, the 

parameterization formula for the x-component of the gate force (Eq. (5-53)) determined in this 

work is also valid for the inclined sluice gate. The dependency on the angle of inclination is 

considered by the parameter kG(ε, α) (Eq. (5-49)). Figure 86 shows the dimensionless gate 

pressure force Π obtained by the new parameterization for the investigated angles of inclination 

α. For the parameterization constants occurring in Eq. (5-49), the previously determined values 

kG,90°
∗ = 0.038, kG,α1 = −0.6026 and kG,α2 = 0.3164 were used. Also shown in Figure 86 is 

the dimensionless gate force Π determined from the CFD simulations. The parameterization 

values agree very well with the CFD simulation values. Literature values for the pressure force 

on the inclined sluice gate are not available, therefore the parameterization cannot be compared 

with these. 

It was shown that the formula shown in Eq. (5-53) for adjusting the x-component of the 

pressure force on the sluice gate is well suited for both the standard sluice gate and the inclined 

sluice gate. With the new parameterization, it is possible for the first time to calculate the gate 

pressure force for the standard sluice gate and the inclined sluice gate. 
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Figure 86: Dimensionless gate force 𝚷 of inclined sluice gate in dependency of the relative gate opening 𝛆 

The gate force in x-direction FGx, can also be used to calculate the total gate force FG 

(Eq. (5-56)) and the force acting in z-direction FGz (Eq. (5-57)). These formulas can also be 

used, for example, in the mechanical design of the sluice gate and the drive. 

FG =
FGx
sin (α)

 (5-56) 

FGz =
FGx
tan (α)

 (5-57) 
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6 Momentum Coefficient  

The momentum coefficient has already been used for the introduction of the momentum 

balance for the sluice gate in chapter 3.2, but it will be discussed in more detail in this chapter. 

The profile of the momentum coefficient along the main flow direction (x-direction) for the 

vertical and inclined sluice gate will be analyzed. Further, a parameterization of the momentum 

coefficient at the opening βO  is performed, which is required for the determination of the 

discharge from momentum balance according to Eq. (3-15). But first, the definition of the 

momentum coefficient for incompressible flows is repeated here: 

 

∫ u2 dA

A

: = β A u̅2  (3-10) 

Instead of the integral of the square of the velocity over the flow cross-section ∫ u2 dA
A

, 

the product of the square of the mean velocities and the flow cross-section u̅2A can be used in 

the momentum balance with the aid of the momentum coefficient β. This leads to significant 

simplifications, since the velocity does not have to be known at every point of the control 

volume boundary, but only one mean velocity and the momentum coefficient. Furthermore, the 

conservation of mass can also be written in terms of the average velocity u̅ for incompressible 

fluids in hydraulics, which makes it easy to combine the two conservation equations. Assuming 

a very wide channel with cross section h ∙ B, the flow along the width B can be assumed to be 

constant and the influence of the sidewalls can be neglected. From this follows for the 

momentum coefficient β for wide channels: 

 

β =
B∫ u2 dz

h

0

h B  u̅2
=
∫ u2 dz
h

0

h u̅2
 (6-1) 

where z = 0  is the channel bottom and z = h  is the water level. To evaluate the 

momentum coefficient profile from the CFD simulations, a plane must be created at each 

location X where a value for β is to be determined to evaluate the integral ∫ u2 dz
h

0
 and the 

surface-averaged velocity u̅. Since both water and air are simulated in the CFD simulations, 

selecting the entire flow domain as the input part for the plane would result in an incorrect 

momentum coefficient. Therefore, a threshold part is first created that includes only cells with 

a volume fraction of water >0.5. This threshold part is then selected as input part for the plane. 

The water level h(X) or the resulting flow cross section A(X) = h ∙ B at the respective location 

X, is determined with a max report for the z-position. This gives the z-coordinate of the upper 

cell of the respective level, which is still in the threshold with a volume fraction of water >0.5. 
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As a result, the flow cross section cannot change continuously, but only by a cell size  

∆grid=
a

ngrid
=
0.1 m

128
. Due to this discontinuity, small fluctuations in the momentum coefficient 

curves shown in the following chapter occur occasionally. The momentum coefficient βO 

required to solve the momentum balance for the control volume I, see Figure 27, can be 

evaluated exactly at the interface directly at the sluice gate opening (X = 0), where the flow 

cross section with h = a is known exactly. The momentum coefficient at the opening βO is 

therefore not affected by the described discretization errors.  
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6.1 Momentum Coefficient Profile  

In this section, the profile of the momentum coefficient of sluice gate flows along the 

dimensionless X-coordinate is examined. Figure 87 shows the momentum coefficient for the 

standard sluice gate from X = −15  to X =  3  for three different relative gate openings ε. 

Looking at the upstream region (X < 0), it can be seen that far upstream of the sluice gate the 

momentum coefficient is β∅ ≈ 1. The value here depends on the velocity profile u∅ of the flow 

upstream of the sluice gate. If the velocity profile is undisturbed u∅ =  const. there would be a 

block profile whose momentum coefficient β = 1. However, the real velocity profile differs 

from the block profile due to velocity changes in the boundary layer region. These changes are 

not directly influenced by the sluice gate, but by the channel properties upstream of the sluice 

gate. In the laboratory flume as well as in the CFD simulations carried out, the inlet channels 

are relatively short and smooth which makes the boundary layer less developed and thus the 

momentum coefficient close to one (β∅ ≈ 1). In river flows, the velocity profile u∅ can deviate 

much more from the block profile due to the roughness of the channel bottom and the length of 

the upstream flow, which can make the upstream momentum coefficient β∅ somewhat larger. 

For the logarithmic velocity profile, Malcherek [74] determined the momentum coefficient β∅ 

for various water depths and roughness and found that it is close to β∅ ≈ 1. Even for a very 

large roughness r = 0.1 m and a water depth of h∅ = 1 m, i.e., the roughness corresponds to 

10% of the water depth, the maximum momentum coefficient with β∅ = 1.14 is relatively low. 

Previous studies on the sluice gate have not taken into account the velocity profile of the inflow 

for discharge calculations, which leads to the conclusion that its influence is comparatively 

small. However, if the momentum coefficient at the upstream region is known, it can be now 

considered in the momentum equation, Eq. (3-15).  

If the sluice gate is approached from the upstream region, the momentum coefficient 

increases with decreasing distance to the sluice gate, similar to the sudden contraction studied 

by Malcherek and Müller [43], first gradually and then strongly. Immediately upstream of the 

sluice gate, the momentum coefficient reaches its maximum value.  
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Figure 87: Momentum coefficient β along X-axis for standard sluice gate 

This increase in momentum coefficient is due to the x velocity profile shown in  

Figure 88 at different positions of the dimensionless X coordinate.  

  

Figure 88: x-Velocity profile at different X-locations a) upstream Region b) downstream Region  

In the upstream region (Figure 88 a)), it can be seen that as the distance to the sluice 

gate decreases, the x-velocity profile approaches more and more the x-velocity profile at the 

opening at X = 0, which means that the x-velocity approaches zero for  (z > a = 0.1 m) and 

approaches the x-velocity profile at the opening uO for  (0 < z < a). The theoretical maximum 

value of the momentum coefficient for the vertical sluice gate βmax,90°  can therefore be 

determined with the x-velocity profile at the opening and the water height at the sluice gate as 

follows: 
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βmax,90° =
∫ uO

2  dz
a

0

(h0 + ∆hG) (
Q

(h0 + ∆hG)B
)
2 =

(h0 + ∆hG) ∫ uO
2  dz

a

0

(
Q
B
)
2  

(6-2) 

where ∫ uO
2  dz

a

0
= βOa u̅O

2 =
βO

a
 (
Q

B
)
2
is. Substituting the relation into Eq. (6-2) one 

obtains: 

βmax,90° =
∫ uO

2  dz
a

0

(h0 + ∆hG) (
Q

(h0 + ∆hG)B
)
2 =

h0 + ∆hG
a

βO 
(6-3) 

The maximum theoretically possible momentum coefficient βmax,90°  for the vertical 

sluice gate thus depends on the water height at the sluice gate, which can be calculated with  

Eq. (5-35) and the momentum coefficient at the opening βO. The momentum coefficient at the 

opening βO is derived in the following chapter and can be calculated using Eq. (6-9). 

Substituting the two equations into Eq. (6-3), the following equation finally results: 

βmax,90° =
h0 + (h0 − a) 0.62 (

a
h0
)

5
2

a
(0.02 

a

h0
+ 1.032) 

(6-4) 

In Figure 89, the maximum momentum coefficient from Eq. (6-4) is compared with the 

CFD results for the standard sluice gate. For this purpose, a plane was created directly in front 

of the sluice gate at position X = 0.001  in the simulations. The results from the CFD 

simulations and those from Eq. (6-4) generally agree well, although as expected the CFD results 

slightly underestimate βmax,90° from Eq. (6-4). 

 

 

Figure 89: Comparison of maximum momentum coefficient from Eq. (6-4) with CFD results 

Comparing the values for different relative gate openings ε in Figure 87, the increase of 

the momentum coefficient due to the sluice gate starts earlier with decreasing ε and also the 
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maximum value of the momentum coefficient becomes larger for smaller relative gate openings 

ε. This is due to the surface eddy already shown in Figure 41, which becomes longer and higher 

with smaller relative gate opening ε and thus reduces the effective flow cross section further 

upstream. This behavior is again like the sudden contraction observed by Malcherek and 

Müller [43], where the increase of the momentum coefficient for smaller contraction ratios also 

starts at the larger distance to the orifice. At the opening X = 0 where the flow cross section for 

the sluice gate suddenly reduces, the momentum coefficient drops abruptly to βO ≈ 1. Since 

the momentum coefficient at the opening βO is needed for the momentum balance and is not 

exactly equal to one due to the small irregularity of the x-velocity profile, see Figure 88 b) at 

X = 0, it will be determined exactly in the following chapter. Considering the momentum 

coefficient in the tailwater of the sluice gate (X > 0), it remains at β ≈ 1, since the x-velocity 

profile, see Figure 88 b), is also very uniform for (X > 0). Here the sluice gate differs from the 

sudden contraction, because for the sudden contraction the flow cross section in the downstream 

region does not change. In contrast to the sluice gate, a dead water zone with very low velocities 

forms directly behind the contraction, which causes the momentum coefficient to increase 

significantly before it drops again. 

The momentum coefficient for inclined sluice gates is shown in Figure 90 for ε = 0.25. 

If the momentum coefficient is first observed in the upstream region, the maximum value of 

the momentum coefficient decreases as the angle decreases. In addition, the momentum 

coefficient does not drop abruptly at the opening, but initially rises to a maximum value and 

then drops again to near one at the opening.  

 

Figure 90: Momentum coefficient β along X-axis for inclined sluice gates (ε=0.25) 

To explain this behavior, Figure 91 shows the inclined gate and the momentum 

coefficient curve. If we compare the position of the upper edge of the sluice gate with the 
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momentum coefficient profile, we can see that the maximum value of the momentum 

coefficient is reached at this point. The increase of the momentum coefficient upstream of the 

upper sluice gate edge can be explained by the fact that a surface eddy is also formed with the 

inclined sluice gate, but this is smaller than with the standard sluice gate, which also influences 

the velocity profile less. From the position of the upper sluice gate edge to the opening  

(X = 0), the momentum coefficient drops again. This is because with the inclined sluice gate, 

the flow cross-section through the gate is reduced and a kind of nozzle is formed. Through this 

"nozzle" the flow is accelerated more evenly than with the standard sluice gate. At the opening, 

the momentum coefficient drops to almost one and remains at about one in the downstream 

region. The momentum coefficient at the opening will be discussed in more detail in the 

following chapter since it is important for calculating the discharge from the momentum 

balance.  

 

Figure 91: Position of upper sluice gate edge and 𝛃𝐦𝐚𝐱 for inclined sluice gates 
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6.2 Momentum Coefficient at the Opening 

The momentum coefficient at the opening, which is required to calculate the discharge 

from momentum balance, is determined in this chapter. In the previous chapter, the profile of 

the momentum coefficient was already shown, and it was shown that it is approximately one at 

the opening. The exact value, however, is slightly above one. The exact value from the CFD 

simulations for the momentum coefficient at the opening for the investigated relative gate 

openings ε and angles of inclination α is shown in Figure 92. If we first look at the momentum 

coefficient at the opening for the standard sluice gate (α = 90°), we see that the maximum 

value is found here. The curve shows that the momentum coefficient at the opening is only 

slightly dependent on the relative gate opening ε. This dependency can be considered linear, 

whereby the slope is largest for α = 90° and decreases with decreasing angle of inclination α. 

The absolute value of βO also decreases with decreasing α. At α = 45°, the values are so close 

to one that the deviations can be neglected for the discharge calculation. For smaller angles, βO 

increases minimally again, but is still so low that a value of one can also be assumed here for 

practical calculations. 

 

Figure 92: Momentum coefficient at opening 𝛃𝐎 in dependency of the relative gate opening 𝛆 

This characteristic of βO can be explained by looking at the velocity profile, shown in 

Figure 93 for ε = 0.25 . While at the bottom at ZO = 0  the velocity decrease due to the 

boundary layer is similar for all velocity profiles, the shape of the velocity profiles distinguishes 

near the lower sluice gate edge at ZO = 1. For α = 45°, the velocity profile is constant over a 

wide range of ZO and has only a small decrease close to ZO = 1. For angles of inclination larger 

than 45°, the velocity reduction near ZO = 1 is more pronounced with increasing α and the 

reduction also starts at lower values of ZO . For angles of inclination smaller than 45°, the 

x-velocity close to ZO = 1 is also reduced but increases fast to a maximum in the region 
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0.9 <  ZO < 1 and then reduces again to a nearly constant velocity in the lower middle part of 

the x-velocity profile at the opening uO. 

 

Figure 93: x-velocity profile 𝐮𝐎 at the opening for ε=0.25 

For the parameterization of the momentum coefficient at the opening, a sectional 

defined function is used, since, as already mentioned, βO  for α ≤ 45°can be assumed as 

constant one. Considering the momentum coefficient βO for α > 45°, as shown in Figure 94 a) 

for ε = 0.5  and in Figure 94 a) for ε = 0.05 , the course can be approximated with a 

polynomial. The following equation is proposed as a parameterization function: 

βO,α>45°(α) = kβo ∙ (α[rad] − b) 
5
2   + c (6-5) 

If we set as boundary conditions that the momentum coefficient βO = 1 at the point  

α = 45° =
π

4
 and at this point the slope 

dβO,α>45°

dα
(
π

4
) = 0, the parameterization function with 

the parameter kβo is obtained as follows:  

βO,α>45°(α) = kβo ∙ (α[rad] −
π

4
) 
5
2   + 1 (6-6) 

The parameter for the momentum coefficient at the opening kβo is determined with the 

non-linear least square method using the data from CFD simulations. In Figure 94 a), the 

parameterization approach for the relative gate opening ε = 0.5  and in Figure 94 b) the 

parameterization approach for ε = 0.05 are shown graphically as an example. The results of 

the other relative gate openings investigated, as well as the SSE and RMSE, are summarized in 
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Table 11. The largest deviations occur for ε=0.5, but the deviations from the CFD values are 

generally small. 

 

Figure 94: Opening momentum coefficient from CFD and parameterization approach (Eq. (6-6)) for 

a) 𝛆 = 𝟎. 𝟓 and b) 𝛆 = 𝟎. 𝟎𝟓 

If the values determined for the parameter kβo , shown in Table 11, are plotted in 

dependency of the relative gate opening ε, see Figure 95, a linear relationship can be seen. The 

following function was therefore selected as parameterization function for kβo: 

kβo(ε) = kβo,1 ∙ ε + kβo,2 (6-7) 

 

Table 11: Parameter 𝒌𝜷𝒐 for the parameterization of the momentum coefficient at the opening  

 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 

kβo 4.18 ∙ 10−2 3.85 ∙ 10−2 3.69 ∙ 10−2 3.58 ∙ 10−2 3.53 ∙ 10−2 3.49 ∙ 10−2 3.45 ∙ 10−2 

SSE 4.67 ∙ 10−6 2.44 ∙ 10−7 1.92 ∙ 10−8 8.20 ∙ 10−8 1.75∙ 10−7 2.51 ∙ 10−7 2.89 ∙ 10−7 

RMSE 1.25 ∙ 10−3 2.85 ∙ 10−4 8.00 ∙ 10−5 1.65∙ 10−4 2.41 ∙ 10−4 2.89 ∙ 10−4 3.11 ∙ 10−4 

 ε = 1.0 ε = 1.2 ε = 1.4 ε = 1.6 ε = 1.8 ε = 2.0  

kβo 3.40 ∙ 10−2 3.37 ∙ 10−2 3.3510 ∙ 102 3.33 ∙ 10−2 3.31 ∙ 10−2 3.30 ∙ 10−2  

SSE 3.56 ∙ 10−7 4.32 ∙ 10−7 4.18 ∙ 10−7 4.79 ∙ 10−7 5.00 ∙ 10−7 5.25 ∙ 10−7  

RMSE 3.44 ∙ 10−4 3.79 ∙ 10−4 3.73 ∙ 10−4 4.00 ∙ 10−4 4.08 ∙ 10−4 4.18 ∙ 10−4  

The constants kβo,1 and kβo,2 were again determined using the non-linear least square 

method. Here, kβo,1 = 0.02  and kβo,2 = 0.032  were determined, with errors 

SSE =  9.7336 ∙  10−8 and RMSE = 8.6530 ∙ 10−5. The parameterization approach for kβo is 

shown in Figure 95. 
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Figure 95: Parameter 𝐤𝛃𝐨 in dependency of the relative gate opening 𝛆 

Summarizing the results of the parameterization, we finally obtain the following 

section-wise defined function for the momentum coefficient at the opening βO: 

βO = {
1                                                        for α ≤ 45° 

kβo(ε) ∙ (α[rad] −
π

4
) 
5
2   + 1      for α > 45°  

 (6-8) 

Where the parameterkβo(ε) can be calculated as follows: 

kβo(ε) = 0.02 ∙ ε + 0.032 (6-9) 

In Figure 96 the new parameterization function (Eq. (6-8)) for the momentum 

coefficient is compared with the CFD values of the momentum coefficient. The 

parameterization agrees well with the CFD values both in course and in magnitude.  

 
Figure 96: CFD values and parameterization approach of the momentum coefficient at the opening 𝜷𝑶 
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7 Discharge from Momentum Balance  

In this chapter, the discharge of standard sluice gates and inclined gates are determined 

via the integral momentum balance. For this purpose, a MATLAB [75] program for determining 

the discharge is shown as an example. First, the forces and momentum coefficients are 

calculated and then used in the momentum balance for control volume I. In order to discuss the 

correctness of the discharge Q calculated by momentum balance, the discharge coefficient cD,dB 

is determined for it using Eq. (2-4) and compared with relevant experimental and analytical 

work from the literature. 

7.1 Approach to Calculate the Discharge with the Momentum Balance 

With the pressure forces and momentum coefficients determined in the previous 

chapters, the discharge can now be determined using Eq. (3-15) derived from the integral 

momentum balance, which is shown below: 

Q =
√

F∅ − FGx − FO
ρ
B (
 
βO
a
−
β∅
h∅
) 

 
(3-15) 

The pressure force at the left control volume boundary can be determined by the 

hydrostatic pressure force, with F∅ =
1

2
∙ ρ ∙ g ∙ B ∙ h0

2. The velocity profile at the left control 

volume boundary is assumed as constant and hence the momentum coefficient is β∅ = 1. The 

x-component of the gate force FGx can be calculated using Eq. (5-53). At the right control 

volume boundary, the pressure force at the opening FO can be determined using Eq. (5-30) and 

the momentum coefficient at the opening βO is determined using Eq. (6-8). If the equations are 

entered into a computer program, the discharge Q of the sluice gate can be calculated from 

them. The following is an example of a MATLAB program that calculates the discharge Q via 

the integral momentum balance by entering the opening height a, the upstream water level h0, 

the angle of inclination α and the channel width B. To compare the discharge calculated from 

the integral momentum balance (Eq. (3-15)) with the CFD results, the MATLAB program 

shown below is used to calculate the discharge for a = 0.1 m, h0 = 0.11 m to h0 = 2.2 m, 

α = {90°, 75°, 60°, 45°, 30° ,15°}  and B = 1 m . The results of the momentum balance are 

shown in Figure 97 as a function of the inverse relative gate opening 1/ε. Also shown in  

Figure 97 is the discharge calculated in the CFD simulations. The results from the momentum 

balance and CFD agree very well. In the following chapters, the discharge calculated with the 

momentum balance is further compared with literature values, both for the standard sluice gate 

and for the inclined sluice gate.  
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%Sluice gate discharge from integral momentum balance 

function Q=Sluice_Gate_Discharge(a,h0,alpha,B) 

rho=1000; 

g=9.81; 

epsilon=a/h0; 

% Bottom Pressure at Opening 

kBO1=0.5829-0.06459*(1/tan(alpha)+2*cos(alpha)^2); 

kBO2=0.1777*(alpha/(pi/2))^2; 

KBO0=1-kBO1-kBO2; 

pBO=rho*g*a*(KBO0+kBO1*(h0/a)+kBO2*(a/h0)); 

% Opening Pressure Force 

kOstar=-0.6172; 

kO=kOstar*(1-(h0/a)^kOstar); 

FO=pBO*a*B*(-kO*(2/9)-rho*g*a/(6*pBO)+2/3); 

% Gate Pressure Force 

dh=(0.62*(epsilon)^2.5)*(h0-a); 

kG90star=0.038; 

kGa1=-0.6026; 

kGa2=0.3164; 

kG=(kGa1*(sin(alpha)-1)+kG90star)*epsilon^(1+kGa2*cos(alpha)); 

FG=0.5*B*rho*g*(h0+dh-a)^2 *(1+2*kG*(0.5-log(1/kG+1))); 

% Opening Momentum Coefficient 

if(alpha>pi/4) 

Beta_O=((0.02*epsilon)+0.032)*(alpha-pi/4).^(5/2)+1; 

else 

Beta_O=1; 

end 

% Discharge 

F=0.5*B*rho*g*h0^2-FG-FO; 

Q=sqrt(F/((rho/B)*(Beta_O/a-1/h0))); 

end 

 

Figure 97: Comparison of specific sluice gate discharge q calculated by momentum balance (MB) and 

computational fluid dynamics (CFD) for various relative gate openings 𝛆 and angles of inclination 𝛂 
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7.2 Comparison of the Calculated Discharge from the Momentum 

Balance for the Standard Sluice Gate with Literature Values 

The calculated sluice gate discharge from momentum balance is compared with the 

literature values of the standard sluice gate in Figure 98. For the comparison of the results, the 

du Buat discharge coefficient cD,dB was calculated with Eq. (2-4). Figure 98 consists of two 

graphs, where the works shown in the graph on the left (Figure 98 a)) have also studied the 

inclined sluice gate, while the works shown in the graph on the right (Figure 98 b)) have studied 

only the standard sluice gate. 

Looking at the experimental results of Fawer [14], Gentilini [24] and Shivapur and 

Prakash [76] and the parameterization approach of Aigner et al. [25], which is based on the 

experimental data of Gentilini, it can be seen, that the momentum balance approach slightly 

underestimates the discharge coefficient cD,dB of these studies. 

 

Figure 98: Discharge coefficient 𝒄𝑫,𝒅𝑩 from momentum balance compared with literature values in 

dependency of the inverse relative gate opening 1/ε for the standard sluice gate a) works that have also 

considered inclined sluice gates and b) works that have only considered standard sluice gates 

The experiments of Fawer [14] were performed with opening heights of  

aFawer = {2 cm, 3cm, 4cm}, the experiments of Gentilini [24] were performed with opening 

heights of aGentilini =  {3 cm, 4 cm, 5 cm, 7 cm, 9 cm} and the experiments of Shivapur and 

Prakash [76] were performed with opening heights of aShivapur = 4 cm . As described in 

Section 2.3, Nago [38] for aL < 6 cm and Roth and Hager [28] for aL < 5 cm found through 

their experiments that scaling effects occur for gate openings smaller than aL. Roth and Hager 

[28] have derived a formula to account for scaling effects, see Eq. (2-36), which describes an 

increase of the discharge coefficient with decreasing gate opening a. The shown experiments 
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of Fawer [14] and Shivapur and Prakash [76] fall completely, as well as Gentilini [24] partially 

in the range in which according to Roth and Hager [28], as well as Nago [38] scaling effects 

occur. The larger values of the discharge coefficient cD,dB of Fawer [14], Gentilini [24] and 

Shivapur and Prakash [76] can be explained by the formula of Roth and Hager [28]  

(Eq. (2-36)), which takes into account the scaling effects that occur at the opening heights 

investigated by the authors mentioned before. This would also explain the deviations from the 

momentum balance, which is valid for sluice gate flows where the scaling effects have no 

significant influence. For the calculation of hydraulic structures, which are usually larger  

(a > 6 cm) and thus do not show scaling effects, the momentum balance should therefore 

provide more accurate results.  

If we further compare the discharge coefficient from the momentum balance with the 

discharge coefficients determined from experiments by Henry [27], Rouse [3], Roth et al. [28] 

and Rajaratnam [32] and with the parameterization approaches of Swamee [26] and Aigner et 

al. [25] again, the discharge coefficient from the momentum balance approach lays between the 

values of these studies, while the approach of Aigner et al. [25] overestimates all other results.  

Using the parameterization approach of Swamee [26], a smaller discharge coefficient cD,dB 

over the whole range of the inverse relative gate opening 1/ε is obtained than all other values 

shown. Smaller values in comparison to the momentum balance, can be attributed to 3D effects 

in the experiment, which occur at small channel widths B. These 3D effects reduce the discharge 

Q through the sluice gate. The influence of 3D effects on the discharge will be explained in 

more detail in chapter 8.  
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7.3 Comparison of the Calculated Discharge from the Momentum 

Balance for the Inclined Sluice Gate with Literature Values 

In Figure 99, the discharge coefficient cD,dB of the momentum balance is compared with 

the experimental work of Fawer [14], Gentilini [24] and Shivapur and Prakash [76] for the 

inclined sluice gate. For this purpose, a graph has been created for each angel of inclination α 

studied. Considering the angle of inclination α = 75° (Figure 99 a)), the discharge coefficient 

𝑐𝐷,𝑑𝐵  of the momentum balance as for the standard sluice gate (𝛼 = 90°) , shown in  

Figure 98 a), is lower than the values published in the works of Fawer [14], Gentilini [24] and 

Shivapur and Prakash [76]. The difference could be explained by the fact that the experimental 

measurements of the aforementioned authors were performed in a region where scaling effects 

occur. For the inclined sluice gate, no work is available on whether and how strong scaling 

effects occur here. However, it can be assumed that scaling effects also occur for the inclined 

sluice gate. For the angle α = 60° (Figure 99 b)) the values Fawer [14], Gentilini [24] and 

Aigner and Horlacher [25] agree well with the momentum balance. For smaller angles α = 45°, 

α = 30° and α = 15°, the discharge coefficient cD,dB calculated with the momentum balance 

for 
1

ε
< 5 also agrees very well with the literature values, see Figure 99 c), d) and e). For 

1

ε
> 5, 

the discharge coefficient calculated with the momentum balance is higher than that of 

Gentilini [24] and Aigner and Horlacher [25]. The values measured by Shivapur and 

Prakash [76] are far above the other published results and will not be considered further.  
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Figure 99: Discharge coefficient 𝒄𝑫,𝒅𝑩 from momentum balance compared with literature values in 

dependency of the inverse relative gate opening 1/ε for the inclined sluice gate a) 𝜶 = 𝟕𝟓°, b) 𝜶 = 𝟔𝟎°, c) 

𝜶 = 𝟒𝟓°, d) 𝜶 = 𝟑𝟎° and e) 𝜶 = 𝟏𝟓° 

Another way of representing the discharge coefficient is shown in Figure 100. Here the 

discharge coefficient cD,dB is plotted as a function of the angle of inclination α to illustrate this 

dependence. Figure 100 a) shows the momentum coefficient for ε = 0.5 and Figure 100 b) for 

ε = 0.25. The experimental results of Gentilini [24] and Fawer [14] were interpolated for the 

plot, since the authors did not exactly examine the relative gate openings ε=0.5 and ε=0.25. It 
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is clear how the parameterization formula of Aigner and Horlacher [25] and the momentum 

balance coincide for α ≤ 45°. For larger angles of inclination, the possible deviations due to 

scaling effects have already been explained. 

 

 
Figure 100: Discharge coefficient 𝒄𝑫,𝒅𝑩 from momentum balance compared with literature values in 

dependency of the angel of inclination α for a) 𝜺 = 𝟎. 𝟓 (
𝟏

𝜺
= 𝟐) and b) 𝜺 = 𝟎. 𝟐𝟓 (

𝟏

𝜺
= 𝟒) 
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8 3D Effects on Sluice Gate Flows 

In textbooks and in numerous publications on sluice gates, as well as in the previous 

chapters, sluice gate flows are considered as two-dimensional flows. This is a very good 

approximation for wide sluice gates, as they occur in many practical applications. Nevertheless, 

3D flow effects occur, as already described in chapter 2.2. These 3D effects have significant 

influence on the flow of sluice gates with small relative gate widths ζ  (Eq. (2-16)). The 

influence of 3D effects on the pressure distributions and the momentum coefficient at the 

opening βO , is analyzed in this chapter for the relative gate widths  

ζ = {0.125, 0.25, 0.5 ,1.0 ,2.0 ,4.0 ,6.0}  using the example for the standard sluice gate  

(α = 90°) with ε = 0.25. In addition, the discharge calculation is modified using momentum 

balance to account for the 3D effect. 

For this purpose, 3D flow simulations of the sluice gates with different relative channel 

widths ζ were performed. Figure 101 shows the Q-criterion to visualize the turbulent structures. 

RANS simulations (Figure 101 a)) and DES simulations (Figure 101 b)) were performed to 

analyze the 3D effects. The different turbulence patterns are clearly visible. Using the RANS 

approach, the turbulent structures are modeled, and the eddy structures are not resolved in 

detail. Looking at the DES simulation in Figure 101 b), eddy structures are clearly visible, and 

the (large scale) turbulent structures are more detailed. To analyze the 3D effects in this chapter, 

which are mainly due to the corner vortices, DES simulations were performed. The streamlines 

are shown in Figure 102, Figure 103 and Figure 104 for different relative gate widths ζ for the 

standard sluice gate with h0 = 0.4, a = 0.1 and ε = 0.25. To generate the streamlines, a line 

seeding of the streamlines at the inlet at z = 0.5 h0, z = 0.8 h0, z = 0.9 h0, z = 0.95 h0 and 

z = 0.99 h0 was generated. 

 

Figure 101: Visualization of turbulent structures of sluice gate flows using Q-Criterion for  

𝜺 = 𝟎. 𝟐𝟓 and 𝜻 = 𝟐 a) RANS simulation and b) DES simulation 
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Figure 102: Frontal view of streamlines for different relative gate widths  

(𝒉𝟎 = 𝟎. 𝟒, 𝒂 = 𝟎. 𝟏 and 𝜺 = 𝟎. 𝟐𝟓) 

 

Figure 103: Side view of streamlines for 

different relative gate widths  

(𝒉𝟎 = 𝟎. 𝟒, 𝒂 = 𝟎. 𝟏 and 𝜺 = 𝟎. 𝟐𝟓) 

 

Figure 104: Top view of streamlines for different 

relative gate widths  

(𝒉𝟎 = 𝟎. 𝟒, 𝒂 = 𝟎. 𝟏 and 𝜺 = 𝟎. 𝟐𝟓) 
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Figure 102 shows the frontal view of the streamlines. If we look at the corner vortices 

for ζ = 4 and ζ = 6, they are very similar to each other, but they are further away from each 

other due to the broader sluice gate. This similarity can also be seen in the side view Figure 103 

and the top view Figure 104. For ζ = 2, ζ = 1 and ζ = 0.5 the corner vortices mix in the upper 

half (z > 0.5 h0) and are no longer clearly separated. This is especially clear in the top view 

(Figure 104), which shows that the separated surface vortices are clearly separated for large 

relative gate widths ζ ≥ 4 and coincide for small relative gate widths ζ > 2.  

8.1 3D Pressure Distributions 

In this section, the bottom pressure distribution pB , the pressure distribution at the 

opening pO and the pressure distribution at the sluice gate pG are considered for the 3D case. 

In the previous 2D considerations, as with all other pressure distributions analyzed in previous 

work (e. g. [28] [60] [63] [64] [65] [66] [67]), a constant pressure profile along the width of the 

sluice gate was assumed. However, due to the corner vortices and the boundary layer, deviations 

occur in the edge region near the sidewalls, with the edge region dominating for sluice gates 

with very small relative channel width ζ.  

A side view of the pressure distribution is shown in Figure 105 at several position along 

the width of the sluice gate for the example case a = 0.1 m, h0 = 0.4 m and B = 0.4 m. In the 

middle plane (Y = 0.5), the pressure distribution is nearly undisturbed and comparable to the 

2D pressure distribution. Also, in the tailwater downstream of the vena contracta, the pressure 

distribution in the middle area is hydrostatic. The strongest deviations of the pressure along the 

width are found in the intersection axis of the corner vortices at Y = 0.08 and Y = 0.92. Due 

to the larger velocities in the vortex, the pressure drops at the vortex and is lowest in the vortex 

core. In the downstream region, the pressure at the vortex core falls here even below ambient 

pressure. The water height in the downstream area is also influenced by the vortices and the 

pressure distribution is not hydrostatic. To illustrate that the pressure drop occurs around the 

corner vortices, the respective corner vortices were made visible with streamlines. In the 

upstream region at the sidewalls Y = 0 and Y = 1, a pressure decrease can also be observed in 

the surrounding of the corner vortices, but the pressure decrease is lower than in the vortex 

planes at Y = 0.08 and Y = 0.92. In the downstream region, the pressure distribution at the 

walls is also not hydrostatic and influenced by the shock waves, which are generated by the 

corner vortices. The position of the vortices depends strongly on the relative gate width ζ and 

is only valid for the shown example of the standard sluice gate with a = 0.1 m, h0 = 0.4 m and 

B = 0.4 m (ζ = 4) and should not be transferred to other cases.  
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Figure 105: Side view of pressure contour plot at several positions of 𝐘 along the width  
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The 3D pressure distribution at the gate pG and at the opening pO associated with the 

example which was also shown in Figure 105 are shown in Figure 106. The contour plot in 

Figure 106 a) shows that there are deviations in the gate pressure distribution along the 

Y-coordinate along the axis of the corner vortices. At the opening, the vortices penetrate the 

control volume boundary. The pressure in the core of the vortex is very low and deviates 

significantly from the pressure distribution in the middle region, while at the corners between 

the bottom of the channel and the sidewalls the pressure is higher than at the bottom in the 

middle of the channel. The position of the vortices at which they penetrate the opening plane is 

also shown in Figure 106 a). The distance Y from the wall for both corner vortices is equal to 

Y = 0.08, the distance from the bottom in the opening z-coordinate for the left vortex core is 

ZO = 0.59  and for the right vortex core is ZO = 0.68 . However, since this is a transient 

simulation, these quantities vary, which explains the errors in symmetry. Therefore, the shown 

3D simulations should be considered as a momentary snapshot. The geometry of the corner 

vortices will not be discussed in detail in this work, but their influence on the pressure 

distributions, which are important for the momentum balance.  

 

Figure 106: 3D Pressure distribution at gate and opening for 𝐚 = 𝟎. 𝟏, 𝐡𝟎 = 𝟎. 𝟒 and 𝐁 = 𝟎. 𝟒  

a) contour plot and b) 3D view 

In Figure 101 b), the pressure distribution from the 3D CFD simulations is compared 

with the pressure distribution from the parameterization of the gate pressure distribution  

(Eq. (5-45)) and the parameterization of the opening pressure distribution (Eq. (5-25)). The 

pressure distributions largely agree, but there are deviations due to the corner vortices near the 

sidewalls. The largest deviations in the gate pressure distribution can be seen around the 

maximum pressure pGM. At the opening one recognizes the clear deviations around the vortex 
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cores. Also, the increased pressure at the bottom (z = 0) of the 3D pressure distribution near 

the sidewalls is clearly visible. The following sections show the influence of the relative gate 

width ζ on the pressure distribution qualitatively and the integrals of the pressure distributions 

appearing in the momentum balance qualitatively.  

8.1.1 3D Bottom Pressure Distribution 

Although the bottom pressure distribution is only indirectly included in the momentum 

balance at the location X = 0  at the opening, it is nevertheless shown for the sake of 

completeness, since it is often assumed by the literature to be constant along the sluice gate 

width. For the 2D case, the bottom pressure distribution runs from the upstream hydrostatic 

pressure to the downstream hydrostatic pressure as it was described in chapter 5.1. Figure 107 

shows the pressure contour plot of the 3D bottom pressure distribution for different relative 

gate widths ζ. Also shown are the streamlines to visualize the flow and the corner vortices. In 

general, the bottom pressure behaves similarly for all relative channel widths ζ investigated and 

is larger near the sidewalls than at the center of the flow. However, the influence of the sidewalls 

begins only immediately upstream of the sluice gate, where the vortices are generated. In the 

upstream region far from the sluice gate, the pressure distribution along the width is constant 

and hydrostatic (pB = ρ g h0). In the downstream region, a hydrostatic pressure distribution is 

present only in the middle region for the investigated channel length, see also Figure 107.  

In Figure 108 a) the dimensionless bottom pressure distribution for the relative channel 

width ζ = 1 and in Figure 108 b) the dimensionless bottom pressure distribution for ζ = 4 are 

shown along the dimensionless gate width Y. Also shown in Figure 108 is the parameterization 

approach (Eq. (5-13)) of the bottom pressure distribution. In the upstream region (X < 0), the 

3D bottom pressure is constant along the width and the two shown pressure distributions of the 

parameterization approach and the 3D CFD simulations agree well since the corner vortices 

arise only at the gate (X = 0) and propagate downstream. In addition, the z-distance of the 

corner vortices from the ground in the upstream region is very large, which is why the influence 

on the bottom pressure is smaller. In the downstream area it can be observed that near Y = 0 

and Y =  1, the bottom pressure has strong variations, while in the center, the bottom pressure 

is nearly constant along the dimensionless channel width Y.  
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Figure 107: 3D bottom pressure contour plot and velocity streamlines for different relative gate widths 𝛇  
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Figure 108: 3D bottom pressure profile and parameterization approach (Eq. (5-13)) for  

a) 𝛇 = 𝟏 and b) 𝛇 = 𝟒 

8.1.2 3D Opening Pressure Distribution 

The contour plots of the pressure distribution at the opening are shown in Figure 109. 

Deviations of the pressure distributions along the width are mainly visible at the side walls 

where the corner vortices penetrate the opening plane. The vortex cores are clearly visible due 

to the lower pressure in most of the cases shown. The corner vortices move upward away from 

the bottom towards the gate lip as the relative gate opening ζ becomes smaller. For very small 

relative gate widths (ζ = 0.125), they are no longer visible in the contour plot and the pressure 

distribution is nearly constant across the entire width. For larger relative gate widths ζ, the 

pressure increase at the bottom near the side walls is also clearly visible.  

 
Figure 109: Contour plot of the pressure distributions at the opening for the studied relative gate widths 𝛇 

Looking at Figure 110, where the 2D parameterization approach of the pressure 

distribution is compared with the 3D CFD simulations, there are larger deviations at the corner 

vortices on the pressure distribution for ζ = 4  (Figure 110 b)) than for the case ζ = 1  

(Figure 110 a)). Conversely, the corner vortices occupy a larger part of the opening area for  
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ζ = 1 than for ζ = 4. That means, conversely, for ζ = 4 there is a broader central region in 

which the opening pressure distribution agrees very well with the parameterization. This range 

becomes larger and larger with increasing relative gate width ζ. 

 
Figure 110: Opening pressure parameterization distribution from 3D CFD simulation and 

parameterization for 𝜺 = 𝟎. 𝟐𝟓 a) 𝜻 = 𝟏 and b) 𝜻 = 𝟒 

Looking at the normalized opening force FO/B, shown in Figure 111, i.e. the integral of 

the opening pressure distribution over the area of the opening, it can be seen that from ζ = 1 to 

ζ = 4 the normalized opening pressure force is constant, since, as in Figure 110, the deviation 

of the pressure becomes smaller with decreasing relative gate width ζ, but extends over a larger 

part of the total area of the opening. The normalized opening force FO/B is largest for the 2D 

case (ζ → ∞) , since here no pressure drop through the corner vortices is considered. For  

ζ = 0.5, the deviation is maximal and the value for FO/B assumes a minimal value. For even 

smaller relative gate widths ζ, the normalized opening pressure force increases again as the 

corner vortices become much weaker. Also for ζ > 4 the normalized opening pressure force 

increases again, because the area of the opening influenced by the corner vortices becomes 

smaller. 
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Figure 111: Normalized opening pressure force 𝑭𝑶/𝑩 depending on the relative gate width ζ for the 

standard sluice gate with 𝒂 = 𝟎. 𝟏 and 𝒉𝟎 = 𝟎. 𝟒 

 

8.1.3 3D Gate Pressure Distribution 

Since the corner vortices are formed and located in the corners between the sluice gate 

and the side walls, they also influence the pressure distribution on the sluice gate.  

Figure 112 a) shows the pressure contour plot for different relative gate widths ζ. For relative 

gate widths ζ ≥ 0.5, it can be seen, that the gate pressure is reduced near the side walls. This 

reduction occurs in the area of the corner vortices which are shown in Figure 112 b), using 

streamlines. Also shown in Figure 112 b) is the pressure contour plot. The pressure reduction 

coincides with the location of the corner vortices and can be explained by the higher velocities 

and hence an increase in dynamic pressure at the vortices. For relative gate widths ζ < 0.5, the 

pressure is more uniform along the width, because the gate pressure is influenced by the corner 

vortices over the entire width. 
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Figure 112: a) Gate pressure contour plot and b) gate pressure contour plot with streamlines for different 

relative gate widths 𝜻 

However, the parameterization of the pressure distribution derived in the previous 

sections is compared with the CFD pressure distribution including 3D effects in Figure 113. 

For the dimensionless gate width ζ = 1  (Figure 113 a)) and for ζ = 4  (Figure 113 b)) the 

pressure distribution of the parameterization and the CFD simulations agree well in the middle 

part of the gate near Y ≈ 0.5. At the sides, near Y ≈ 0 and Y ≈ 1, the pressure distribution from 

the parameterization does overestimate the actual 3D pressure distribution, because the 

parametrization does not take into account the dynamic pressure increases and hence the 

decreases in static pressure through the corner vortices. The middle part in which the pressure 

distributions from parameterization and CFD simulations coincide is larger for large relative 

gate widths ζ  than for small relative gate widths, as in the case of the opening pressure 

distribution. 
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Figure 113: Comparison of gate pressure parameterization with 3D CFD pressure distribution for  

𝛆 = 𝟎. 𝟐𝟓 a) 𝛇 = 𝟏 and b) 𝛇 = 𝟒 

Comparing the pressure integral of the gate pressure distribution for the 2D case with 

the 3D CFD simulations based on the nondimensionalized pressure force Π for different realtive 

gate widths ζ, see Figure 114, a very good agreement can be seen for large relative gate widths. 

From ζ ≤ 2, the nondimensionalized pressure force decreases slightly and then more and more. 

The decrease can be explained by the fact that for sluice gates with small channel widths the 

gate is influenced by the corner vortices over the entire width and thus the pressure decreases.  

 
Figure 114: Dimensionless gate force 𝚷 depending on relative gate opening 𝛇 for the standard sluice gate 

with 𝐚 = 𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 
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8.2 3D Momentum Coefficient at the Opening  

The momentum coefficient at the opening βO describes the non-uniformity (deviation 

from block profile) of the velocity in x-direction. Due to the corner vortices, this  

non-uniformity, increases through the vortex cores. This is clearly visible in the velocity 

contour plot, see Figure 115. With decreasing relative gate width ζ the strength of the corner 

vortices decreases, but the relative area covered by the corner vortices increases. The boundary 

layer of the side walls has a further influence on the velocity field in the three-dimensional 

consideration and thus on the momentum coefficient. The influence of the boundary layer of 

the side walls on the momentum coefficient at the opening βO  becomes more and more 

important with decreasing relative gate opening ζ. 

 

Figure 115: x-velocity contour plot at opening plane for different relative gate widths 𝛇 

The momentum coefficient at the opening βO determined from the velocity profile is 

shown in Figure 116. The momentum coefficient βO is significantly larger for the 3D case than 

for the 2D case (ζ → ∞), but still small. Like the pressure integral at the opening FO , the 

momentum coefficient deviates maximally from the 2D case at ζ = 0.5. This is due to the same 

reasons as for the pressure integral at opening FO. Since the corner vortices become weaker but 

affect a larger part of the area of the opening, the momentum coefficient increases evenly. For 

smaller relative gate widths ζ = 0.25 the momentum coefficient decreases at first but increases 

again slightly due to the increasing influence of the side walls, see Figure 116 at ζ = 0.125. 

The pressure integral at the opening, however, is not directly influenced by the boundary layer. 
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Figure 116: Momentum coefficient at opening 𝛃𝐎 in dependency of relative gate width 𝛇 for the standard 

sluice gate with 𝐚 = 𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 

8.3 Momentum Balance with 3D Effects 

The calculation of the discharge using the integral momentum balance was carried out 

in chapter 7 for the 2D case, which theoretically corresponds to an infinitely wide sluice gate 

(ζ → ∞) and has also become a standard assumption in the literature. But as shown in the 

previous sections, the width of the channel has an influence on the pressure integrals at the 

opening FO and at the gate FG, as well as on the momentum coefficient at the opening βO and 

thus also on the discharge Q. To show the dependence of the discharge on the channel width, 

the discharge coefficient cD,dB, calculated from CFD, for various relative channel widths ζ is 

shown in Figure 117. The values shown here were again calculated for the standard sluice gate 

with h0 = 0.4 , a = 0.1  and ε = 0.25 . For ζ ≥ 2  the discharge coefficient cD,dB  shows no 

significant dependency on the relative channel width ζ , while for ζ < 2  the discharge 

coefficient drops with decreasing ζ. 

 

Figure 117: Discharge coefficient 𝐜𝐃,𝐝𝐁 in dependency of relative gate width 𝛇 for the standard sluice gate 
with 𝐚 = 𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 
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Using the forces and flux of momentum determined from the 3D CFD simulations, the 

integral momentum balance is now calculated using Eq. (3-9). In Table 12, the sum of the forces 

on the right hand side of Eq. (3-9) and the flux of momentum, on the left hand side of Eq. (3-

9) are calculated for the different relative gate widths. Considering the case ζ → ∞ (2D case), 

it can be seen that the sum of the forces and the flux of momentum agree well and there is only 

a very small deviation of about 0.3 %. For the 3D cases studied, the deviations are much larger, 

and these deviations increase significantly with decreasing relative gate width ζ . These 

differences between the flux of momentum and the pressure forces are the viscous forces 

F⃗ viscous, that were neglected in the first approach, because they are low for large relative gate 

widths ζ as it can be seen for the 2D case ( ζ → ∞) in Table 12.  

Table 12: Flux of momentum, pressure forces and viscous forces for 𝐚 = 𝟎. 𝟏 𝐦, 𝐡𝟎 = 𝟎. 𝟒 𝐦 and 

𝛆 =  𝟎. 𝟐𝟓 from 3D CFD simulations for CV I 

 Flux of Momentum Pressure Forces Viscous Forces 

𝛇 =
𝐁

𝐚
 

𝛃𝐎𝐀𝐎 �̅�𝐎
𝟐 −𝛃∅𝐀∅ �̅�∅

𝟐

𝐁
  

𝐅∅ − 𝐅𝐆 𝐜𝐨𝐬 (𝛂) − 𝐅𝐎
𝐁

 
𝐅𝐯𝐢𝐬𝐜𝐨𝐮𝐬
𝐁

 

∞ 189.30 189.88 -0.58 

6 190.65 194.61 -3.96 

4 190.68 195.31 -4.63 

2 191.21 196.69 -5.48 

1 190.43 198.72 -8.29 

0,5 188.29 204.87 -16.58 

0,25 184.55 213.48 -28.92 

0,125 176.87 232.71 -55.84 

A graphical representation of the viscous forces 𝐹 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 in dependency of the relative 

gate width 𝜁 is shown in Figure 118. With increasing relative gate width 𝜁 the viscous forces 

𝐹 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 relative to the channel width B are decreasing, as it can be seen in Figure 118, while 

for decreasing relative gate widths 𝜁 the viscous forces are increasing rapidly. For 3D flows, 

the viscous forces are composed of the viscous forces of the two side walls and the bottom. 

Since the area of the side walls does not change with decreasing relative channel width 𝜁, the 

viscous forces on the side walls become dominant for small relative channel widths. A more 

detailed investigation of the viscous forces and the wall shear stress can be found in 

Appendix A. 
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Figure 118: Normalized viscous forces in dependency of the relative gate width 𝜻 for the standard sluice 

gate with 𝐚 = 𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 

To determine the exact discharge 𝑄 from the integral momentum balance, also when 3D 

effects are relevant, all the shown changes in forces and momentum coefficients must be 

considered by the integral momentum balance approach. The initially neglected viscous forces 

𝐹 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 must also be considered. To take these into account for practical applications, a 3D 

coefficient  is therefore introduced which considers the aforementioned 3D influences. This 

3D coefficient  is defined in Eq. (8-1). 

 =
βO,∞ −

a
h0

βO,3D −
a
h0

(
F∅ − FGx,3D − FO,3D − FViscous

F∅ − FGx,∞ − FO,∞
) − 1 (8-1) 

Using the 3D coefficient  from Eq. (8-1), the discharge 𝑄 , see Eq. (8-2), can be 

calculated precisely also for sluice gates with a small relative gate width 𝜁. The x-component 

of the pressure force on the sluice gate 𝐹𝐺𝑥  appearing in Eq. (8-2) can be calculated using  

Eq. (5-53), the opening pressure force 𝐹𝑂  can be determined using Eq. (5-30) and the 

momentum coefficient at the opening 𝛽𝑂 is determined using Eq. (6-8). The 3D coefficient  

depends on the relative gate width 𝜁 and it must consider for the case 𝜁 → ∞ that  = 0. For 

this case then, Eq. (8-2) reduces to Eq. (3-15). 

Q = √
(F∅ − FG,x  − FO) (1 + )

ρ
B (
 
βO
a
−
β∅
h0
) 

 (8-2) 

In order to determine the 3D coefficient, it is first determined for the investigated 

relative gate widths using Eq. (8-1) from the values calculated in the CFD simulations. These 

are shown in Figure 119. For ζ ≥ 2 the 3D coefficent is  ≈ 0, since the relative channel width 
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ζ has no significant influence on the discharge, see Figure 117. For ζ < 2 the 3D coefficient 

decreases significantly with decreasing relative gate width ζ.  

 

Figure 119: 3D coefficient  in dependency of relative gate width 𝛇 for the standard sluice gate with  

𝐚 = 𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 

The function shown in Eq. (8-3) can be used to parameterize the 3D coefficient: 

(ζ) = −
k
ζ

 (8-3)  

For the investigated standard sluice gate with h0 = 0.4, a = 0.1 and ε = 0.25, the 3D 

coefficient was determined using the non-linear least square method with  

k,ε=0.25 = 0.01026 ≈ 0.01 . For k,ε=0.25 = 0.01 , the errors were calculated with  

SSE = 1.598 ∙ 10−5 and RMSE = 1.632 ∙ 10−3. A graphical comparison of the CFD calculated 

3D coefficient and the 3D coefficient from the new parameterization can be seen in Figure 119. 

The plot was validated only for relative channel widths of ζ ≥ 0.125. In practice, such small 

values are not relevant anyway. These were only shown for academic reasons and for the sake 

of completeness.  

With Eq. (8-3) the discharge can now be calculated in dependency of the relative gate 

width ζ using Eq. (8-2). The specific discharge 𝑞 = 𝑄/𝐵  calculated with the momentum 

balance in dependence of the relative channel width ζ is shown in Figure 120. Also shown in 

Figure 120 is the specific discharge q calculated in the CFD simulations. The values generally 

agree very well, although a minimally larger specific discharge was calculated in the CFD.  
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Figure 120: Specific discharge q from CFD and Momentum Balance in dependency of relative gate width 

𝛇 for the standard sluice gate with 𝐚 = 𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 

Looking at the discharge coefficient cD,dB, shown in Figure 121, the momentum balance 

and CFD values also agree very well. As with the specific discharge q, the discharge coefficient 

calculated by momentum balance is somewhat smaller than that calculated by CFD. 

 

Figure 121: Discharge coefficient 𝐜𝐃,𝐝𝐁 from CFD and Momentum Balance in dependency of relative gate 

width 𝛇 for the standard sluice gate with 𝐚 = 𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 

As shown in the example, the momentum balance can be further modified, e.g. to take 

into account 3D effects in sluice gates with a small relative channel width ζ. It is also possible 

to consider scaling effects and other influencing factors in the momentum balance.  
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9 Summary 

In this work, the calculation of the discharge for standard and inclined sluice gates based 

on the conservation of mass and momentum was worked out. The approach was first worked 

out for an infinitely wide sluice gate i.e. the 2D case. This 2D approach has become established 

and is also used as standard in the literature, since it is suitable for most practical applications. 

To determine the pressure forces required for the momentum balance, the pressure distributions 

at the bottom, at the opening and at the gate were first parameterized based on CFD simulations. 

The parameterization was carried out for both the standard and the inclined sluice gate, i.e., the 

respective pressure distributions can be calculated as a function of the angle of inclination α. 

Previous work, on the other hand, has only dealt with the standard sluice gate. In addition, the 

dependence on the relative gate opening ε was always considered in the new approaches. The 

new parameterization approaches can be found in the following equations: 

- Bottom pressure at opening PBO:  Eq. (5-9).  

- Upstream bottom pressure PBU:  Eq. (5-18) 

- Opening pressure distribution PO: Eq. (5-27) 

- Gate pressure distribution PG:  Eq. (5-45) 

By integrating the parameterized pressure distributions, it was then possible to derive 

formulas for calculating the pressure forces at the gate and at the opening. These formulas are 

valid for both the standard sluice gate and the inclined sluice gate, while the previous 

approaches were limited to the standard sluice gate. The equations are listed below: 

- Opening pressure force FO:  Eq. (5-30) 

- Gate pressure force FGx:   Eq. (5-53) 

The course of the momentum coefficient was also analyzed in this work and a 

parameterization of the momentum coefficient at the opening was performed. The 

parameterization formula for the momentum coefficient at the opening 𝛽𝑂  can be found in 

Eq. (6-8). 

With the equations above, the discharge Q can be calculated using the momentum 

balance Eq. (3-15) for CV I, shown in Figure 27. The results were presented as a function of 

the relative gate openings ε and the angles of inclination α. The discharge calculated by  

Eq. (3-15) could be confirmed with relevant literature values. 
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It was also shown, how the momentum balance can be extended to include 3D effects, 

whereby also sluice gates with small width can be calculated. For this purpose, DES simulations 

were performed in CFD and the influence of the 3D effects on the pressure distributions, 

pressure forces and momentum coefficient were shown. Previous work has always assumed the 

pressure distribution to be constant along the width. In this work, however, it was shown that 

significant deviations can be observed, especially around the corner vortices. In addition, the 

pressure forces and the momentum coefficients also depend on the channel width. Based on an 

example case, the influence of 3D effects on the sluice gate discharge was shown in detail. In 

addition, the influence of 3D effects on the gate pressure distribution, the gate pressure force, 

the opening pressure distribution, the opening pressure force and on the opening momentum 

coefficient was shown.  

The approach can be extended to include other factors such as scaling effects, other 

designs, and submerged flows. By making appropriate adjustments to the parameterization 

formula for the pressure distributions and the momentum coefficient, all these effects can be 

captured with the integral momentum balance approach. 

In addition, a formula for calculating the maximum momentum coefficient βmax,90°  

(Eq. (6-4)) for the vertical sluice gate was developed, with which the maximum momentum 

coefficient immediately in front of the opening can be calculated as a function of the relative 

gate opening 𝜀. Furthermore, the course of the momentum coefficient in front and behind the 

sluice gate was analyzed for different angles of inclination α and relative gate openings 𝜀. 

Moreover, the detailed 3D simulations showed the influence of the gate width B on the 

vortex structures. It was shown that the corner vortices interact more strongly for small than for 

large relative gate widths 𝜁. Thus, for the first time, the influence of the corner voritces on the 

pressure distributions at the sluice gate and at the opening can be shown in dependency of the 

relative gate width 𝜁. Likewise, the 3D velocity profile at the opening was shown and analyzed 

in dependency of the relative gate width 𝜁. A dependence of the viscous forces on the side walls 

and the bottom wall in an area around the sluice gate as a function of the relative gate width 𝜁 

was also shown and the influence of the corner vortices on the wall shear stress was shown and 

analyzed. 
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With the momentum balance approach shown in this work, the discharge of standard 

and inclined sluice gates can be calculated accurately and fast. The discharge can be determined, 

for example, with the MATLAB program shown on p. 115, without interpolating discharge 

coefficients from graphs, which not only brings the described advantages from an academic 

point of view, but also a practical time saving for engineers. In the future, this approach can be 

extended for the submerged sluice gate and other sluice gate designs, such as those shown in 

chapter 2.1.3. Likewise, from the knowledge gained in this work, it can be said with a fair 

degree of certainty that the integral momentum balance can also be used to accurately calculate 

other hydraulic structures such as weirs, which is also a topic for future research. For other fluid 

mechanics problems such as the outflow of vessels [77] or the calculation of sudden 

contractions and sudden expansions [78], great progress has recently been made with the 

integral momentum balance. For the future, it is also conceivable that the integral momentum 

balance approach will be applied for more and more fluid mechanic problems. A possible 

example could be the calculation of the lift of airfoils in aerodynamics. 
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APPENDIX A: 3D Shear Stress and Shear Force 

In this appendix, the shear forces, and stresses of the side and bottom walls, of a sluice 

gate with geometric dimensions a = 0.1 m, h0 = 0.4 m and α = 90° are analyzed for different 

relative gate widths from ζ = 0.125 to ζ = 6 based on CFD simulations. The investigations 

were carried out in the range of the dimensionless x-coordinate from X = −10 to X = 3. The 

viscous forces at the bottom relative to the channel width B are shown below in Figure 122. For 

the relative gate widths ζ = 1 and ζ = 2, the normalized bottom shear force FV,B/B is largest 

and decreases slightly with increasing ζ. For relative gate widths ζ < 1, the normalized bottom 

shear force FVs,B/B drops suddenly, although in terms of magnitude the decrease is moderate. 

To explain this behavior, the wall shear stress magnitude at the bottom of the channel was 

plotted on a contour plot in Figure 123. 

 

Figure 122: Normalized bottom shear force in dependency of the relative gate width for the standard 

sluice gate with  𝐚 =  𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 between 𝐗 = −𝟏𝟎 and 𝐗 = 𝟑 

Upstream (X < 0), the wall shear stress profile is similar for all investigated relative 

gate widths ζ, whereas downstream, significant differences are evident in the sidewall area. 

These differences are due to the corner vortices, which are shown in Figure 124 together with 

the bottom and sidewall wall shear stress. For ζ ≥ 1 large values of wall shear stress can be 

seen around the corner vortices. The shear forces at the bottom FV,B correspond to the integral 

of the wall shear stress over the bottom surface. As the relative gate width ζ increases, the area 

influenced by the corner vortices with large wall shear stress values becomes smaller, the shear 

force also gradually decreases. For ζ < 1, the wall shear stress is not so strongly influenced by 

the corner vortices, which means that the maximum values of the wall shear stress are smaller 

for these relative gate widths, see Figure 123. As a result, the shear force FV,B, as shown in 

Figure 122, also becomes smaller with decreasing relative gate width ζ. 
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Figure 123: Bottom wall shear stress contour plot for different relative gate widths 𝜻 
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Figure 124: Streamlines and wall shear stress at the bottom and sidewall to demonstrate the influence of 

corner vortices on wall shear stress 

The shear forces of the two sidewalls 𝐹𝑉,𝑆𝑊 are shown in Figure 125. The shear forces 

of the side walls generally increase with decreasing 𝜁. Influenced mainly by the transient corner 

vortices and other 3D effects, the values of the right and left sidewall shear forces fluctuate, 

which explains the small differences between the left and right sidewalls despite the same 

relative gate width 𝜁. Since the area of the side walls does not change with the channel width 𝐵, 

the shear force of the side walls was not normalized in the figure.  

  

Figure 125: Side wall shear force in dependency of the relative gate width for the standard sluice gate with  

𝐚 = 𝟎. 𝟏 and 𝐡𝟎 = 𝟎. 𝟒 between 𝐗 = −𝟏𝟎 and 𝐗 = 𝟑 

Figure 126 shows the shear stress contour plot of the sidewalls for the different relative 

gate widths ζ investigated. As with the wall shear stress at the bottom, it can be seen that in the 

downstream area, the corner vortices have an influence on the side wall shear stress, which can 

also be seen in Figure 124. For small relative gate widths ζ this influence becomes smaller. If 

we look at the values of the downstream shear force FV,SWD, we see that for small relative gate 

widths ζ, the influences of the corner vortices on the viscous forces FV,SWD are smaller than for 

large relative gate widths ζ. These fluctuations tend to contradict the course of the viscous force 

FV,SW on the side wall shown in Figure 125. In terms of magnitude, however, these deviations 

from FV,SWD are relatively small and are overlaid by the larger deviations of the viscous forces 
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in the upstream region FV,SWU. These are larger for small relative gate widths ζ and decrease 

with increasing relative gate with ζ.  

   

Figure 126: Side wall shear stress contour plot for different relative gate widths 𝜻 

Since this behavior is not evident from the curves shown in Figure 126, the wall shear 

stress contour plot of the upstream region in the range between 0 𝑃𝑎 and 2 𝑃𝑎 is shown again 

in Figure 127 as an exemplary case for 𝜁 = 0.125  and 𝜁 = 4 . Figure 127 shows that for  

𝜁 = 0.125 the wall shear stress is greater in the area far upstream of the gate opening than at 

𝜁 = 4. Although the wall shear stress is locally increased near the gate opening due to the corner 

vortices for 𝜁 = 4, since the viscous forces represent the integral over the surface and the 

surface influenced by the corner vortices in the upstream region is relatively small, the sum of 

the viscous forces is also greater for small relative gate widths 𝜁.  
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Figure 127: Upstream side wall shear stress contour plot (small pressure range) 

Figure 128 shows the normalized shear force of the bottom and the normalized shear 

force of the sidewalls, as well as the sum of the total shear force as a function of the relative 

gate width 𝜁. It is clearly visible that for small relative gate widths 𝜁, the proportion of the shear 

force of the sidewalls assumes a large proportion of the total forces. For 𝜁 = 2, the shear forces 

of the sidewalls and the bottom are approximately equal, while for 𝜁 > 2, the proportion of the 

bottom on the total force is greater than that of the sidewalls.  

 
Figure 128: Normalized bottom shear force and side wall shear force in dependency of the relative gate 

width for the standard sluice gate with 𝒂 = 𝟎. 𝟏 and 𝒉𝟎 = 𝟎. 𝟒 between 𝑿 = −𝟏𝟎 and 𝑿 = 𝟑 

This analysis on the wall shear stress of sluice gates is limited to the investigated case 

a = 0.1 m, h0 = 0.4 m and α = 90° and valid in the range between X = −10 to X = 3. For 

other cases and ranges of X, the values may shift somewhat, but these were not investigated, as 

the investigation of wall shear stress is not the main subject of this research work. Nevertheless, 

the analysis gives an impression of how the viscous forces of the side walls and the bottom 

change depending on the relative gate width ζ and how the corner vortices influence the wall 

shear stress. 
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APPENDIX B: Fitting Error Calculation - SSE and RMSE 

For the quantitative evaluation of a model function, the sum of squared errors (SSE) and 

the root mean squared error (RMSE) were used in this work. These sum of squared errors (SSE) 

and the root mean squared error (RMSE) are introduced in the following and an example is 

shown, how the SSE and the RMSE is calculated. 

The sum of squared errors (SSE) is defined in Eq. (B-1) [79]. 

SSE =∑(yi − ŷi)
2

n

i=1

 (B-1) 

Where yi it the ith value of the variable to be modeled and ŷi is the predicted value of 

yi from the model equation. A small value of the SSE means that the deviations of the model 

from the data to be modeled are small. This means that the smaller the SSE the better the model 

is suited to model the data set. 

The mean squared error (MSE) is defined as the sum of squared errors divided by the 

residual degree of freedom v and is shown in Eq. (B-2) [79]. 

MSE =
SSE

v
 (B-2) 

Where the residual degrees of freedom v is equal to the number of data points n minus 

the number of coefficients of the model equation m, see Eq. (B-3).  

v = n −m (B-3) 

From the mean squared error (MSE) the root mean squared error (RMSE) can be 

determined as shown in Eq. (B-4). 

RMSE = √MSE = √
SSE

v
 (B-4) 

The RMSE can also be referred to as the standard error of the fit and is an estimate of 

the standard deviation of the random component in the data. As with the SSE, the closer the 

value of the MSE or RMSE is to zero, the better is the model function suited to predict the 

data [79]. In the following, an example for the calculation of the sum of squared errors and the 

root mean squared error is shown.  
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Example  

The following example is based on the parameterization of the coefficient for the 

opening pressure distribution kO by using Eq. (5-26) and is intended to show the calculation of 

the RMSE and the SSE. The parameter kO shall be modeled by Eq. (5-26). The numerical 

values of the parameter kO to be modeled for the different relative gate openings are shown in 

Table 13. A graphical representation of the parameter kO  to be modeled can be seen in  

Figure 129 (red diamonds). 

kO(ε) = kO
∗  (1 − (

1

ε
)
kO
∗

) (5-26) 

The constant kO
∗  occurring in Eq. (5-26) was determined using the non-linear least 

square method, as kO
∗ = −0.6172 , based on the data of kO  shown in Table 13. Using  

Eq. (5-26), kO(ε)  can now be determined. This is also shown in Table 13 as well as in  

Figure 129. 

Table 13: Example of error calculation using the opening pressure distribution parameter 𝒌𝑶 

i 1/ε kO kO(ε) from Eq. (5-26) (k0 − k0(ε))
2

 

1 2 -0.209288695 -0.21483 3.06587 ∙ 10−5  

2 3 -0.295136018 -0.30391 7.69809 ∙ 10−5 

3 4 -0.348206835 -0.35488 4.45062 ∙ 10−5 

4 5 -0.385784606 -0.38863 8.08907 ∙ 10−6 

5 6 -0.411376119 -0.41296 2.49356 ∙ 10−6 

6 7 -0.43154402 -0.43149 2.74157 ∙ 10−9 

7 8 -0.447213047 -0.44618 1.06059 ∙ 10−6 

8 10 -0.470386347 -0.46819 4.83978 ∙ 10−6 

9 12 -0.493222143 -0.48405 8.42074 ∙ 10−5 

10 14 -0.498733646 -0.49613 6.77774 ∙ 10−6 

11 16 -0.509081743 -0.50571 1.13810 ∙ 10−5 

12 18 -0.515612463 -0.51353 4.35519 ∙ 10−6 

13 20 -0.519191321 -0.52005 7.42178 ∙ 10−7 

     

From the values for k0 and k0(ε) in Table 13, the squared error is now calculated for 

each row using the formula (k0 − k0(ε))
2
. The squared error is also shown in Table 13. The 

sum of squared erros can be calculated by adding up the 13 rows as follows: 

SSE = ∑ (k0 − k0(ε))
2

n=13

i=1

= 2.761 ∙ 10−4 
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Figure 129: Parameter 𝐤𝐎 and model function 𝐤𝐎(𝛆) with 𝐤𝐎
∗ = −𝟎. 𝟔𝟏𝟕𝟐 

To calculate the root mean squared error (RMSE), the residual degrees of freedom v 

must first be determined. This is the difference of the number of data points n = 13 minus the 

number of coefficients of the model equation m = 1 (one parameter kO
∗  in the model equation). 

 

v = n −m = 13 − 1 = 12 
 

The root mean squared error RMSE can then be determined from the sum of squared 

error SSE and the residual degrees of freedom v as follows: 

 

RMSE = √
SSE

v
= √

2.761 ∙ 10−4

12
= 4.797 ∙ 10−3 (B-5) 

 

 

 

Figure 130 also shows the SSE and RMSE for other values of the constant kO
∗ . It is 

obvious that the SSE and RMSE are smallest for kO
∗ = −0.6172, which was ensured by non-

linear least square method. 
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Figure 130: Sum of squared errors and root mean squared error for different values of 𝐤𝐎
∗  

Figure 131 also shows the model equation (Eq. (5-26)) graphically for the values  

kO
∗ = 0.6  and kO

∗ = 0.65 , where for kO
∗ = 0.6  the errors 𝑆𝑆𝐸 = 4.3756 ∙ 10−3  and  

𝑅𝑀𝑆𝐸 = 1.9095 ∙ 10−2  were calculated and for kO
∗ = 0.65 the errors 𝑆𝑆𝐸 = 1.5372 ∙ 10−2 

and 𝑅𝑀𝑆𝐸 = 3,5791 ∙ 10−2 were calculated. Comparing the curves of the model function with 

different constants kO
∗  with the data kO to be parameterized in Figure 131, it is clear that the 

model function with kO
∗ = −0.65 shows the largest deviations from the data. Figure 124 also 

shows that the best agreement is obtained with kO
∗ = −0.6172, where the errors are also the 

smallest. 

 
Figure 131: Model function 𝐤𝐎(𝜺) (Eq. (5-26)) for different fitting constants 𝐤𝐎

∗  
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