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This work provides the fundament for a gesture-based interaction system between cargo-han-
dling unmanned aerial vehicles (UAVs) and ground personnel. It enables novice operators to
visually communicate commands with higher abstractions through a minimum number of
necessary gestures. The interaction concept intends to transfer two goal-directed control
techniques to a cargo-handling use case: Selecting objects via deictic pointing communicates
intention and a single proxy manipulation gesture controls the UAV’s flight. A visual processing
pipeline built around an RGB-D sensor is presented and its subordinate components like
lightweight object detectors and human pose estimation methods are benchmarked on the
UAV-Human dataset. The results provide an overview of suitable methods for 3D gesture-based
human drone interaction. A first unoptimized model ensemble runs with 7 Hz on a Jetson Orin
AGX Developer Kit.
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1. Introduction

Unmanned aerial vehicles (UAVs) have shown the potential for high impact in the
field of distribution logistics. Their use cases range from covering short gaps between
ships in vertical replenishment [1] to long range delivery of medical goods [2] like
blood supplies [3]. The global navigation satellite system (GNSS) provides a reliable
way of navigating large distances but last mile deliveries [4] and unloading cargo in
the wild remains a complex problem to fully automate [5]. A recent UAV navigation
literature review [6] found that only 16% of GNSS-independent [7] UAV navigation
research contributes solutions attempting fully autonomous navigation rather than
working on required subordinate functionalities. A delivery zone in the wild can seem
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suitable topology-wise but in reality, be dangerous due to dynamic obstacles or
restricted for UAVs to land on. Additionally, heavier payloads might neither allow
being dropped onto a predetermined zone [8] nor even be detachable without a
human in the loop. Other ambiguous examples include for example a firefighter’s
driveway, a frozen lake, when the assigned landing zone is occupied or the only safe
flight path to the drop zone is blocked. In cases where no safe landing zone can be
determined by the UAV itself, guidance by an operator is required. Otherwise, the
mission has to be aborted, since draining battery levels while searching could lead to
an emergency landing in unknown terrain. Even for fully automated solutions it is
likely that due to safety concerns the ability to understand utterances by a human
will remain one of the required functionalities. At least until UAV navigation
methods are able to develop a comprehensive scene understanding and their motion
planning has acceptable error rates across a variety of more complex scenarios in the
wild. With rising levels of automation, it can however still be expected that there is
going to be a gradual role shift of UAV operators to collaborators. Instead of mon-
itoring the aircrafts constantly, they are increasingly going to be taking supervisory
functions for multiple drones and interact with companion-like UAVs [9]. The
resulting reduction in mental workload could significantly increase the safety and
efficiency of cargo handling. Although visual signaling during complex landing
procedures with cargo requires training of specialized personnel [10], it has already
become an established technique [11] of aircraft pilots and landing signal personnel.
A gesture-based human-drone interaction interface could serve as a similar method
for guiding cargo UAVs near ground level and determining a suitable landing zone in
the wild. It also has the potential of eliminating the need for additional remote
controls and datalinks between operator and aircraft. Remotely operating an UAV
requires expert knowledge and a stable communication link with low latency which
cannot always be guaranteed for longer distances. Since situational assessments are
also more accurate on-site, it is suggested that the UAV uses a gesture-based in-
terface which can be used by non-expert ground personnel at the delivery zone.
According to [12], the main issues for integrating aerial cargo deliveries into existing
infrastructures are not only technical challenges but also safety and privacy con-
cerns. Enabling UAVs to understand simple hand gestures of non-expert operators
and bystanders can help building the public’s trust to aerial delivery systems and
reduce the required training time to use them.

This work aims to contribute the foundations for a visual processing submodule
that can be attached to multi-rotor UAVs and unmanned helicopters. The sub-
module is intended to be used in the process of navigating a landing zone near
ground-level within Very-Low-Level airspace (VLL) below 150 m. All processing will
be handled onboard the UAV with an embedded computing device running a marker
less, gesture-based interface with access to higher-level functions relevant to a cargo
transportation task. It maintains a compact input gesture vocabulary for first-time
users through the use of interaction metaphors. Additionally, a visual processing
pipeline for the system is suggested along with first fundamental evaluations of
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required components like object localization, human pose estimation and gesture
classification. It will give human operators the ability to interrupt the UAVs current
task, give higher level commands and control its position manually when unloading
cargo in dynamic and non-ideal landing zones.

2. Related Works

In the field of human drone-interaction (HDI) gesture-based interfaces to control the
attitude of UAVs have been extensively researched in the last decade [13]. The
majority of reviewed approaches concentrate on using body [14] or hand gesture
inputs [15] as an alternative flight control method to remote control (RC) joysticks.
Typically, the UAV’s six degrees of freedom are mapped to six gestures in order to
enable gesture-based piloting. Whenever a system can perform additional com-
mands, user-centered researchers commonly apply strategies like gesture elicitation
[16] where users are asked to suggest gestures for a given function and the final input
vocabulary is selected on the base of agreement scores [17]. Alternatively, gestures
can be designed by experts based on known visual signals [18] like the NATOPS [11]
aircraft signals or sign language. Although intuitive user-defined gestures can de-
crease mental workload for operators, they do not necessarily improve task perfor-
mance [19] or result in a coherent vocabulary [20]. This should be evaluated by
providing a simulated model for the UAV which can react to user inputs. It can be
achieved through Wizard of Oz methodology [21] as a first step, then further de-
veloped with virtual environments build with engines like Unity [22]. When it comes
to flight control with gestures, the UAV’s flight dynamics should be modeled and
additionally fed into the simulation to get a preliminary impression on how the UAV
will behave when conducting real flight experiments [23]. Conventional gesture
interfaces for UAV flight control typically require eight gestures for roll, yaw, pitch
and horizontal rotation. Adapting these one-to-one mappings to tasks that require
additional commands can lead to the gesture vocabulary exceeding reasonable
dimensions and mixing of multiple control metaphors. This expansion not only
sacrifices the initial ease-of-use of a gesture interface but also increases cognitive load
[24] for operators compromising flight safety. It induces higher risk of false-positive
detections and human error compared to RCs that rely on a single control metaphor.
Until recently [14], gesture-controlled interfaces commonly did not give the pilot
control of the UAVs velocity due to safety concerns. Although this may decrease the
risk of accidents, it can render tasks tedious and inflate their duration. There appears
to be a gap between current HDI research and practical interfaces for professional
drone pilots, in particular for use cases other than aerial photography.
One-to-many gesture mappings using metaphors could be a solution to the
problem of growing gesture vocabularies, as their coherent structure improves
memorability [20]. Deictic pointing gestures [25] have been used frequently in HDI to
direct attention towards a target object [26]. They can be easily performed and
understood from a young age [27] while serving as a flexible tool to select areas or
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objects of interest [28]. When using an inertial-measurement-unit (IMU) wearable
sensor armband, pointing gestures can be used to direct UAVs to a location and
select them in a multi-drone scenario [29]. For close distances up to six meters, small
drones can even move to a pointed target location with less delay and flight route
variance [30] compared to joystick control. In [31], a firefighter can point towards the
windows of a burning building which the UAV should enter to inspect the selected
room. This is achieved by extracting skeleton points from the image and detecting
intersections of the pointing arm vector with detected objects in the image. Since the
UAV needs to distinguish vertically aligned windows, a form of depth estimation is
required as well. The authors of [32] achieved this by using the sparse point cloud of a
Simultaneous Localization and Mapping (SLAM) method. Known target objects can
then be selected via a pointing arm vector directly within image space. This ability
can unlock new interaction contexts without increasing the amount of necessary
gesture inputs. Pointing a cargo UAV to objects and locations of interest can be a
useful interaction method but certain transportation tasks additionally require
precise landing procedures if no visual markers on the ground are available. There-
fore, a second gesture control strategy is required which additionally lets the user
pilot the UAV without sacrificing safety compared to remote controls.

Overall, the technical challenges of deploying a gesture-based interface onboard of
cargo UAVs with limited power supply, payload weight and computational resources
become apparent: (1) The embedded computing device onboard needs to be capable
of running object detection, human pose estimation and a form of depth estimation
simultaneously with low response times. (2) Input commands via gestures are prone
to inaccuracies from all three methods as well as human error. (3) In order to select
objects in image space, the UAV needs a wide field of view to cover the scene but
sufficiently high resolution in regions of interest (ROI) to detect landmarks.

Comparison to the conference version

This work is an extension of [33] and improves the preliminary publication by the
following two additions:

e The benchmark on the UAV-Human Dataset is extended by nine new variants of
light-weight object detectors and one vision-transformer method for human body
key point estimation which requires a bounding box as a prior. Provided the new
results and deeper analysis, common components of the highest performing
architectures are pointed out and additional visualization is provided for better
overview.

e For direct flight control and pointing, accurate 3D key points are required,
therefore we compare the positional and angular error of three body key point
lifting methods to the inside-out tracking of two Oculus Rift S controllers which
represent the ground truth.
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3. Method
3.1. Concept description

Assuming the cargo UAV has already navigated to a delivery area via GNSS, it has
to search for suitable landing zones to deliver the cargo. As soon as the UAV is
descending close to ground level, it needs to be able to monitor its surroundings to
maintain safety distances. It can automatically enforce the 1:1 rule for example
which states that as a safety requirement, the UAV should keep a lateral distance of
at least its own flight height in meters to any person on the ground. Although it is
possible to detect and track dynamic objects, the risk of causing damage might be
too high for the UAV to land alone. It should then try to detect an operator and
constantly monitor battery levels in case there is no guidance for a landing available
immediately. Once a person is walking towards the UAV, it should turn the camera
towards them and check whether or not they are trying to request authentication.
Once an operator was successfully verified, it should be able to follow given hand
signals for guidance until it can drop the cargo safely. Afterwards it can be guided
towards the next cargo package for pick up. If it is equipped with a pick-and-release
mechanism or aerial manipulation tools like robotic arms [34], it can pick up the
cargo autonomously. Otherwise, it tries to land close to the cargo and the ground
personnel can attach a new payload. Despite monitoring its surroundings, the UAV’s
sensors should not lose track of the operator when ascending.

3.2. Visual processing pipeline

Monitoring the surrounding environment with an onboard multi-camera-system
brings additional weight, bandwidth and power requirements onto the already
limited UAV platform. A small dual fisheye camera could be an efficient solution to
achieve surrounding vision, since there are already commercial off-the-shelf sensors
available with automatic in-camera stitching of image borders and perspective
transformation into a panoramic view. Due to the 360° field of view (FOV), the
number of pixels per degree is significantly lower both vertically and horizontally
compared to a sensor of equal resolution that has a smaller FOV. Especially near
image borders with higher distortion, low resolution in regions of interest degrades
human pose estimation performance [35] at larger distances significantly. The ma-
jority of heatmap-based approaches suffer both from low resolution and joint
quantization error [36]. Therefore, this submodule builds on a peripheral-vision
camera setup inspired by [37] where the omnidirectional camera is combined with a
gimbal supported high-resolution camera featuring a tele lens to classify aircraft
threats. Since this use case is close to ground level, the latter camera is replaced with
a passive high-resolution stereo depth sensor. The chosen device has a focal length of
4 mm and a baseline of 12 cm, an integrated IMU and a polarizing filter to reduce the
glare of sunlight. Although stereo depth error grows quadratically with increasing
distance, it is hypothesized that the accuracy could be sufficient to distinguish
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relative depths between objects within a range of 40 m and maintain safety distances
to surrounding bystanders in proximity. For larger distances, a gimbal camera with
controllable optical zoom has to be used. Stereo RGB-D was chosen over a LIDAR
sensor to keep weight, cost and power usage low. At the same time, it provides
semantic information that can be easily matched and synchronized with depth
estimates. Feedback-wise, the gimbal supported sensor can also serve as an indica-
tion of the UAV’s focus of attention. For example, when the UAV is commanded to
relocate, it turns the main sensor in the corresponding direction in anticipation
before actuating the rotors. It can also turn towards target objects to give feedback
on the object selection without losing track of the operator. This way, the operator
can recognize undesired behavior early and prevent it with a gesture. Additionally, a
LED matrix attached to the UAV can display the current interaction context [23].
Both sensors are connected to an embedded computing device — here a NVIDIA
Jetson Orin AGX developer kit is intended to be used — for processing inputs. Since
the perception framework needs to communicate with the flight control system of the
UAYV platform, the robot operating system (ROS) is chosen for intra-process com-
munication. The system receives camera images, IMU and GNSS data as an input
and sends a command with flight parameters according to the protocol of the flight
control system as an output. Analogue to the camera setup, the visual processing
pipeline can be subdivided into central and peripheral vision processing (compare
Fig. 1). The peripheral image stream of the omnidirectional camera is used to keep
track of the UAV’s movement as well as to detect surrounding objects. On the
central vision stream the landmarks from objects of interest and their depth esti-
mates are acquired. This is similar to human vision, where peripheral vision appears
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Fig. 1. The proposed onboard system architecture consisting of a peripheral-vision camera setup con-
nected to an onboard embedded system on module (SOM) which takes care of visual processing. The
pipeline is split into two branches of peripheral and central vision processing.
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to be more useful for the perception of self-motion and central vision tends to be used
for analyzing patterns and detecting the motion of objects [38]. If the cargo payloads,
landing zone markings and other relevant entities like pedestrians are known a-
priori, a single-stage object detector can be trained to extract the coordinates of the
corresponding bounding boxes from the peripheral image stream. If more accurate
segmentation masks are required, the detector could also be extended with a se-
mantic segmentation method that returns fine-grained per-pixel segmentation
masks.

Twelve required functions for a transportation use case are defined: taking off,
landing, returning to launch, authenticating the current user, transfer flight control,
stop any activity, follow the operator, follow a person, move to a location, move in a
direction, pick up an object, drop the current object, transport an object to a location
and negating a command. Any detected person can perform a greeting gesture by
raising their hand above head level in order to request authentication. To classify this
gesture, their pose represented by skeleton joints is acquired through human pose
estimation. Generally, human pose estimation can be performed either bottom-up by
detecting body key points in the image and organizing them into distinct skeletons or
top-down by first detecting the bounding box of a person and then estimating the
position in pixels of all key points inside that region. Once they are available, waving
at the UAV on ground level can already be detected by a simple fuzzy logic check of
the hand joint coordinates. The greeting gesture triggers the rotation of the central
vision camera (CVC) towards the operator. The new gimbal angle is based on the
coordinates in the image space of the omnidirectional view. For verification of
identity, the UAV can scan a fiducial marker on a card or use facial recognition with
a database of known operators. After successful authentication, each person is
tracked with SORT [39] and the operator is additionally distinguished by color
histogram matching. For any detected object in the CVC’s image view, depth value
samples from the point cloud can be accessed to estimate its distance to the camera.
The two-dimensional body key points of the operator’s skeleton are already sufficient
to classify gestures but not to enable direct flight control via proxy manipulation.
Determining which object an operator is trying to select when multiple potential
candidates intersect with the pointing line, also poses a problem.

Acquiring the z-depth of skeleton joints can now be achieved by one of the fol-
lowing three lifting methods: First, using the pixel locations of the joints in the
image, the depth values from the RGB-D sensor can be accessed. Second, the 2D key
points can be compared to a library of 3D poses via proximity search. Thirdly, a deep
neural network can learn to regress the 3D key points from a 2D key point input with
an accurately labeled dataset. Each method heavily relies on accurate 2D key points
as a prior and needs to be compared to a ground truth in order achieve an optimal
trade-off between precision and latency. Which method is preferable will depend on
the background noise as well as the distance between camera and operator. The
acquired body key points can be encoded with a distance map and used as a feature
vector for a support-vector machine classifier.
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3.3. Gesture vocabulary

The proposed gesture vocabulary (Fig. 2) is chosen with a transportation task near
ground-level in mind where an operator can either directly control the UAVs flight or
give highly abstracted commands [40]. The combination of all possible commands for
a transportation task into one metaphor is not feasible, therefore two flexible
and intuitive metaphors that can be mapped to multiple commands were chosen.
The two core concepts for interacting with the UAV are deictic pointing gestures to
select task-relevant objects and a proxy manipulation gesture for direct flight control
(DFC). Apart from answering permission requests and flight control, all highly ab-
stracted commands are executed via a pointing gesture. At any moment the operator
and bystanders can raise both hands above head-level to interrupt the current
command in case of undesired behaviors. Allowance to perform a maneuver is given
by not performing a stop gesture within and remaining neutral for a predetermined
duration once the UAV has displayed the requested command. Once it is verified
that the system is sufficiently accurate and an operator is more experienced, this
duration can be reduced since stopping the UAV is possible at any given point in
time. Apart from stopping the UAV, all commands can only be given by a person
who was already authenticated as an operator. Requesting authorization via a ges-
ture is only possible while there is no other operator detected. The overall design is
determined by the interaction contexts, ergonomics and the system’s gesture rec-
ognition performance. Even though this is the first expert-led iteration of the gesture
vocabulary, cognitive attributes like discoverability, intuitiveness and learnability
for the end user need to be kept in mind [41]. Therefore, a minimum number of
gestures in a coherent structure are used, where each of the three contexts has its own
mental model of gesture-based interaction. This way, each gesture can allow more
variations without creating overlaps with other commands.

3.3.1. Object selection via deictic pointing

As soon as a pointing gesture is detected, the interaction context is switched to
“Selection”, where no gestures apart from pointing and the “STOP” gesture are
recognized. Detected cargo goods, landing zones, humans and the UAV itself can
now be selected by the operator via a pointing gesture. The selection is based on a
pointing ray originating from the operator’s head and passing through the pointing
hand. Alternatively, it can originate in the shoulder or be a mix of both vectors [26]
but a more sophisticated solution requires further experimentation for aerial sce-
narios. The target is then selected based on a ray cast hit return value, its distance to
the operator and whether it fits the interaction context. It needs to be determined
whether absolute or relative ray casting via the arms is a sufficiently accurate se-
lection method for aerial perspectives and how it can be improved through heuristics.
Pointing can trigger five possible behaviors, the first one is simply selecting an object
by pointing for a time ¢ at the object. The object is added to a set representing the
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neutral lgreet

DFC

Fig. 2. The initial simplistic gesture vocabulary with five main gestures.

selection. If there is only one object in the selection, the UAV will simply give
information about direction and color of the selected object to ensure the operator
selected the right one. As soon as two or more unique objects are in the set, the UAV
can suggest a command to the operator based on the selection. For example, if the
UAYV itself and a cargo payload are in the set, the UAV will ask the operator if it
should pick up the selected object. Abstract commands like “Transport this object to
that location” can be given with a selection of {UAV, OBJECT, LOCATION}.
Because the action space in this use case is rather limited, each action can be mapped
to a unique selection set. Performing a stop gesture, clears the selection set and
reverts the interaction context back to “Idle”. Taking off is activated by selecting the
UAV while it stands on the ground and then confirming the take off.

3.3.2. Direct flight control utilizing proxy manipulation

The DFC context is initialized if the operator holds both hands in front of them at
the same height with a gap of about one elbow length. Now the operator can control
the UAV’s attitude by turning, pushing and pulling an imaginary proxy between
both hands. The proxy manipulation relies on receiving viable 3D joint positions of
both hands. If the DFC gesture is held for three seconds, the midpoint between the
hands is used as an initial reference point. As long as the gesture is active, any
deviation of the hand midpoint from the reference point along the z, y and z-axis will
result in the UAV moving in the same direction, relative to the operator’s viewpoint
(Figs. 2(a) and 2(b)). The magnitude of the vector from the initial reference point to
the current hand midpoint is then deemed proportional to the UAVs acceleration
in the corresponding direction, limited by a maximum threshold. An initial line from
the right to the left hand which is orthogonal to the facing direction of the operator is
used to manipulate the yaw angle rotation of the UAV. The angular deviation
from the initial line when moving the hands then determines the yaw angle gain
(Fig. 2(c)). With proxy manipulation, the translation, yaw attitude and velocity can
be controlled using only a single gesture. If the operator tries to move the UAV
downwards while its height falls under a predefined threshold, it suggests landing at
that position. The lateral movement changes to the side can be easily observed by the
operator but movement speed forwards and backwards as well as up and down can be
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indicated by a 2D animation on the LED display. To get a first impression on the
basic functionality of the interaction model, it was implemented in a virtual envi-
ronment (VE) using Unreal Engine and a head-mounted display (HMD) with two
hand controllers. A simple ray cast function to select an object was implemented as
well as the proxy manipulation of a 3D multi-rotor UAV model based on the HMD
and hand controller transforms in the scene. Switching between direct flight control
and pointing gestures worked seamlessly in the VE.

4. First Experimental Results

Outside virtual environments the precision of controlling the UAV’s flight with 3D
gestures is affected by the CVC’s depth error which needs to be evaluated for long
distances of up to 40 m. It needs to be ensured that via ray casting from the arm
joints, objects can be selected by the operator within the CVC’s point cloud. To
detect objects in the panoramic image stream, a fast detection method with high
recall for detecting humans in particular is required. A light-weight human pose
estimation method with reasonable joint localization error needs to be determined,
ideally with the ability to lift the resulting body key points to 3D. Finally, the overall
system architecture for the complete process of gesture recognition must be precise
and lightweight enough to be deployed on the embedded system. In previous work
[33] the mean absolute error of the CVC depth map for a resolution of 2208 x 1242
was determined by placing a checkerboard of size 60 x 80 cm and with a square width
of 10 cm at varying positions at a distance between 1.5 and 40 meters. The distance
estimation was then compared to measurements of a 650 nm laser range finder with
an error of 1.5 mm. Outdoors the mean absolute depth error for a distance of 1.5 to
35m was 1.2m with standard deviation of 1.25 m. The overall results were in line
with the manufacturer’s claim of less than 2.1 m of depth error below 30 m. It can be
expected that up to 15m, depth error remains under 50 cm. For object selection via
ray casting in this range, the precision can be accepted as long as objects are not
placed closely together. For larger distances, the depth values can only roughly be
used to order objects relative to each other and depth estimation has to rely on
monocular cues like textures or known object dimensions.

4.1. Body key point localization on the UAV-human dataset

While the number of datasets with aerial imagery and annotations for object de-
tection has increased recently, the process of acquiring ground truth labels for human
pose estimation is time-consuming, especially for three dimensional joints. But even
for body key points in image space, there is a lack of datasets with annotations that
were recorded with elevated viewing angles while flying. Current datasets often only
feature a small number of unique poses determined by a predefined number of ges-
tures [42] or lack variety regarding location, distance, height and lighting conditions
[43]. Therefore, it was decided to use the challenging UAV-Human [44] dataset for a
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preliminary benchmark of available off-the-shelf object detectors and human pose
estimation approaches. The dataset contains labels for action recognition, human
pose estimation, attribute recognition and person re-identification. It was recorded
with a UAV flying at varying speeds and heights from two to ten meters and contains
22476 frames that were labelled for human pose estimation by 15 volunteers. Its
backgrounds are rich in variation featuring indoor and outdoor scenery in urban and
rural areas which is either lit by various intensities of sunlight or artificial lighting.
For this benchmark, all evaluated approaches were selected based on low inference
time, their reported average precision on the COCO [45] 2017 validation test-set as
well as on their ability to deal with low resolution images. The used COCO AP
metric considers objects small when their area in pixels is 32*32 or smaller, medium if
their area is between 322 and 96% and large if their area is larger than 967 pixels. Since
UAV-Human has a resolution of 1920 x 1080 pixels instead of 640 x 480, the object
size category thresholds used here were scaled accordingly. After scaling, 4.2% of
samples contain small patches of humans, 80.13% medium and 15.67% large sized
ones. Inference times were computed for passing forward a single batch on a NVIDIA
RTX Mobile A3000 GPU averaged over 20.000 iterations. The time needed for pre-
processing, loading the model and visualization is not included. Since the top-down
human pose estimation approaches require bounding boxes and one method is not
applicable for multi-person samples, the first benchmark is for testing object detec-
tors in their ability to detect humans on the UAV-Human Benchmark without any

Table 1. Human detection on the UAV-Human dataset.

Params Input mAP mAP50 mAR Mean Latency
Architecture Ref. (M) size (px) (%) (%) (%) 10U (ms)
EfficientDet Lite 0 [46] 3.2 320 42.2 78.1 19.9 0.60 12.9
YOLOX-Nano [47] 0.9 416 47.1 75.7 28.9 0.62 7.1
Efficient-Det 0 [46] 3.9 512 52.8 75.3 38.0 0.61 154
NanoDet+-m-1.5x  [48] 24 320 57.8 88.9 46.8 0.71 8.4
YOLOX-Tiny [47] 5.1 416 59.0 88.5 41.7  0.70 7.3
YOLOX-S [47] 9.0 640 59.9 89.5 42.3 0.71 7.8
NanoDet+-m 48] 1.2 416 61.6 93.9 477 0.74 8.3
NanoDet+-m-1.5x  [48] 2.4 416 62.4 94.7 49.1 0.75 8.6
RTMDET [49] 4.8 640 63.2 83.8 38.7  0.69 14.5
YOLOR-CSP [50] 52.9 640 63.9 83.1 38.2 0.71 49.6
KAPAO-S (36] 12.6 1280 64.0 88.7 434  0.72 8.6
YOLOv? [51]  36.9 640 657 853 415 071 224
YOLOR-CSP-X* [50] 52.9 640 66.1 84.9 40.9 0.71 32.0
DAMO-YOLOT* [52] 8.5 640 69.0 90.4 48.9 0.75 10.7
YOLOR P6 [50] 37 1280 69.1 89.4 475 0.75 57.7
DAMO-YOLOS* [52] 16.3 640 69.9 91.2 50.4 0.76 13.0

Notes: The columns from left to right refer to the method’s variant name, the authors, the number
of parameters in millions, the input image width in pixels, the mean average precision across all 10
IOU thresholds, the mean average precision for IOU g= 0.5, the mean average recall across all 10
IOU thresholds, the mean intersection over union values compared to the ground truth bounding
boxes and finally the latency for the used setup in milliseconds.
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Fig. 3. Human detection on the UAV-Human Dataset. The y-axis shows the mean average precision
across the 10 COCO intersection over union thresholds. On the left, the precision is compared to the
throughput in processed frames per second on a RTX A3000 Mobile GPU while on the right the x-axis
displays the mean average recall. For the embedded plattform NVIDIA Jetson Orin AGX usually about
half the throughput can be expected based on two implemented comparisons so far.

prior training on the dataset itself. Mainly computationally lightweight object
detectors are compared regarding precision and recall because all the consecutive
processing steps depend on accurate localization of humans in image space. Simul-
taneously a low latency is required as the detector has to predict bounding boxes over
the full omnidirectional view in a reasonable resolution.

Human detection is evaluated via the intersection over union metric (IOU) where
the area of intersection between the ground truth and the predicted bounding box is
divided by their area of union. The provided skeleton joint position labels of the
dataset were used to create bounding boxes as a ground truth for human detection.
Using the minimum and maximum joint positions in z- and y-direction results fre-
quently in a tight box omitting the arms or feet, therefore all bounding boxes were
increased by 20% in width and 15% in height to wrap tightly around the whole
person. The COCO average precision and recall metric is the mean over ten IOU
thresholds in the interval {0.5,0.55,...,0.9,0.95}. Every object detector was allowed
a maximum of 10 detections while the lowest accepted confidence was set to 50%.
The results indicate that the new addition of DAMO-YOLO-S [52] is currently the
most efficient trade-off for human detection on UAV-Human. Not only did it reach
the highest precision and recall over the large-scale YOLOR P6 [50] but it also has a
competitive latency of only 13 miliseconds (ms) on the used setup. YOLOX-Nano
[47] has the lowest latency with 7.2 ms but its precision is second to worst due to a
lack of complexity in order to learn more generalizable representations. While the
nanodet+m-1.5x variant outputs less precise bounding boxes, it still has a solid recall
score of 49% at a processing speed of only 8.6 ms. The RTMDet [49] architecture
achieved state of the art precision on two major datasets for aerial object detection,
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Fig. 4. Qualitative side-by-side comparison of KAPAO-S (left) and NanoDet-m-1.5x detection bounding
boxes on the TinyPeople Dataset. KAPAO-S achieves precise localization despite low confidence.

but it has high latency in relation to methods with comparable precision for this
dataset. Generally, the top-ranking architectures in this benchmark (Table. 1, visu-
alized in Fig. 3) all incorporate their own feature pyramid technique where the learned
representations are fused efficiently across multiple scales to achieve better results on
low resolution images without sacrificing inference speed. The small KAPAO [36]
architecture variant achieves a mAP of 64% and has the advantage that multi-person
body key point estimation is already included in the inference time. It stacks multiple
object detectors and formulates key points as objects inside the first detected bounding
box which was used for this first evaluation. From a few qualitative comparisons,
KAPAO-S even generalizes well to datasets like TinyPeople which was recorded from
far higher altitudes, without additional training. When lowering the accepted confi-
dence threshold to 5% for detections, its low confidence predictions are still precise in
localization (see Fig. 4) compared to other architectures like Nanodet-m-1.5x. The next
human pose estimation benchmark was conducted to determine how precise legs,
torso and arms of a person can be localized in image space. For two methods that
require bounding boxes as a prior, the detection results of KAPAO-S and DAMO-
YOLO were used as an initial region of interest.

Human pose estimation is evaluated for 2D key points, using the COCO [45]
mean average precision (AP) metric with Object-Keypoint-Similarity (OKS). A
singular key-point similarity ks(ﬂg )79(19 )) is computed by passing the Euclidean
distance between the ground truth key point position 95” ) and the predicted key
point position éﬁ”) in image space into an unnormalized gaussian with standard
deviation sk;. The object scale s is the square root of the object area in pixels and the
constant k; = 20 is the falloff determined separately for each of the 17 key point types
(nose, arm, shoulder, knee, etc.). The reasoning behind this being that an absolute
error of 5 pixels for a knee key point should decrease ks less than for a nose key point

because the surface area of the knee is larger.
o (P _g(P)
187 -0y,

ks, 0%) = T (1)

ZikS(A 7917) (v; > 0)
>2i0(v; > 0) '

OKS(0P) o) =




Int. J. Semantic Computing Downloaded from www.worldscientific.com

by UNIVERSITAT DER BUNDESWEHR MUNCHEN-UNIVERSITATSBIBLIOTHEK on 09/26/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

14 M. Brenner & P. Stiitz

Table 2. Human pose estimation on the UAV-Human dataset.

Params Input mAP  mAP50 Latency
Architecture Ref. (M) size (px) (%) (%) meanOKS (ms)
KAPAO-S+ BlazePose [53] 25.3 256 26.9 46.2 0.45 21.7
OpenPifPaf (MNetV3-L)  [54] 5.4 224 408 488 0.50 23.2
KAPAO-S [36] 12.6 1280 50.4 61.0 0.54 8.56
KAPAO-M [36] 35.7 1280 51.7 61.5 0.58 19.5
Higher-HRnet [55] 28.6 512 56.5 — — 89.1
AlphaPose [56] 49.2 512 56.9 — — 59.4
YOLOvT7-Pose [51] 36.9 640 57.3 69.5 0.64 224
DAMO+ViTPose-B [57] 96.5 256 68.2 82.1 0.75 20.5

Notes: Table 2 lists the same columns as Table 1, but the mAP is now based on OKS. The +-operator
indicates that the first architecture supplied the prior bounding box while the second one was used to
detect the body key point positions within that region.

The key point similarities are averaged only over labeled key points that are
visible (v; > 0) to calculate the overall OKS for one person. Again, to determine the
COCO average precision and recall, the results over 10 OKS thresholds in the in-
terval {0.5,0.55,...,0.9,0.95} are averaged. The visibility index d(v; > 0) is not
included in the dataset.

The authors of UAV-Human provided human pose estimation results for
AlphaPose and Higher-HRnet but without the details of AP50, AP75 and mean
OKS. For comparison, one bottom-up heatmap regression method named Open-
PifPaf (MobileNet-V3-Large backbone) and two detector-based methods namely
KAPAO-S and YOLOvVT7-Pose are evaluated. BlazePose is a standalone single-person
method which is trained with key point heatmaps but during inference time only uses
a regression branch which is supervised by the learned heatmaps during training.
UAV-Human occasionally features labels for two humans that both stand in the
foreground, therefore the images for BlazePose were split in half at a centered line
between the two human’s hip joints. Afterwards the method was run separately on
each image half but due to relying on an initial face detection, it only achieved 23.1%
mAP. One reason for this result is that the faces in the UAV-Human dataset are not
always visible or recognizable in lower light situations. Secondly, the method was
trained for real-time inference on mobile devices and intended only to be used from a
small distance with the person occupying a large fraction of the frame. Despite this
fact, the standalone method has a latency of only 7.3 ms and can return segmentation
masks and 3D key points through GHUM model fitting. As a consequence, it was
attempted to use it on bounding boxes of KAPAO-S which increased its mAP to
26.9% but without replacing the face detector at the start of the model architecture,
it is unable to further improve its result. In order to compare the light-weight
architectures to the current state-of-the-art in human pose estimation on the COCO
dataset, one vision-transformer based architecture called ViTPose [57] was added to
the benchmark (Fig. 5). When predicting key points inside the detection results of
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Fig. 5. (Color online) Human pose estimation on the UAV-Human Dataset. Left: A comparison of methods,
where the x-axis displays the throughput in processed frames per second on a RTX A3000 Mobile GPU. The y-
axis shows the mean average precision across the 10 OKS thresholds. Right: Example image from the UAV-
Human with groundtruth joint positions in green and predicted joint positions by OpenPifPaf in red.

DAMO-YOLO, the ViTPose Transformer also achieved the highest mAP by a
margin of 11.2 percentage points on UAV-Human. But with the major drawback of
the ViTPose-B transformer being its latency of 113 ms, it mainly serves as a com-
parison. Its new lighter variant ViTPose+-S reaches 84 ms but was not evaluated as
it is also not going to be feasible with all the remaining computation on the target
embedded system yet. This can be expected to change in the near future,
since ViTPose is only a first baseline and vision transformers for body key
point detections are still at an early stage of research. Aside from the vision trans-
former, YOLOv7-Pose reached the highest average precision of 57% but KAPAO-S
can still be considered the best trade-off between accuracy and latency for embedded
systems.

4.2. Body key point lifting to 3D

The two core components of the proposed interaction method also demand depth
information for the joints. 3D key points are not only useful to classify gestures more
accurately from extreme viewing angles but also necessary in order to realize the
proxy manipulation gesture and to be able to point at objects in the point cloud of
the stereo depth sensor. Since motion capture systems like Vicon cannot be easily
setup in multiple locations, the inside-out positional tracking of an Oculus Rift S is
used as a ground truth. The head mounted display (HMD) utilizes multiple wide-
angle cameras attached to the headset and controllers with an infrared ring and
integrated IMUs [58] to track their position in relation to the headset. In comparison
to a Vicon motion capture system, the controller movement tracking can achieve a
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translational accuracy of 4.36 & 2.91 mm and a rotational accuracy of 1.13 + 1.23°
[59]. The HMD can easily be setup at varying distances and works outdoors without
occluding the body to a degree where the key points can no longer reliably be esti-
mated in image space. Although the global world frame position of the two con-
trollers’ changes for each start of the headset, it was decided to track their relative
change in position compared to the head. The Oculus Rift S is calibrated once with a
square area of 2 x 2m? and an HMD height of 1.85m, it returns the HMD and
controller positions in centimeters. The coordinate frame of the headset has the
x-axis point towards the front of the headset, the z-axis notes height differences and
the y-axis points to the right of the headset to track lateral changes. Since the
position estimation of the controllers is determined by accelerometers and tracking of
visual markers it is important not to remain fully still in between position changes as
the position of the controllers will start to drift away after 2—3 s until they are moved
again. For this first experimental setup indoors, one workstation with Unreal Engine
was connected to the Oculus Rift S in order to record the timestamped tracking
results. Then a laptop connected to the CVC on a two meters high tripod is setup at
a distance of five, ten and fifteen meters to observe changes in error across these
distances.

KAPAO-S is used to extract 2D key point positions of the head and both hands
which are utilized as an input for two lifting methods to get the z-depth: For one, the
coordinates are used to acquire the corresponding points from the point cloud in the
CVC(’s coordinate frame which is set to a scaling in meters. For the other one, all key
point coordinates are regressed by a two-stage feed-forward neural network [60]
trained on the Human 3.6 dataset [61]. The dataset contains 3.6 million different 3D
poses of 17 different scenarios like talking on a phone, discussing and pointing. The

Table 3. Body key point lifting from 2D to 3D.

Lifting method Dist. (m) X Y Z mDC yaw pitch
BlazePose-GHUM 5 0.264 0.507 0.297 0.193 8.32 5.94
[62] 10 0.237 0.535 0.298 0.223 12.65 10.98
Latency: 7.3ms 15 0.233 0.376 0.237 0.267 13.15 9.75
Mean 0.245 0.473 0.277 0.227 11.37 8.89

Simple-Baseline 5 0.242 0.472 0.308 0.177 8.76 8.33
[60] 10 0.197 0.407 0.282 0.257 6.31 10.05
Latency: 2.3 ms 15 0.172 0.341 0.245 0.213 6.82 6.83
Mean 0.204 0.407 0.278 0.216 7.29 8.40

Stereo Depth* 5 0.155 0.447 0.302 0.242 7.03 6.29
Latency: 3.2ms 10 0.175 0.414 0.834 0.302 7.41 11.50
15 0.171 0.340 0.793 0.197 8.03 10.98

Mean 0.167 0.400 0.643 0.247 7.53 9.59

Notes: The reported errors are the average root mean square errors of both recorded hands in meters
for z-, y- and z-direction compared to the Oculus Rift S controllers. The yaw and pitch angle errors
are reported in degrees. ¥*For the z- and y-directions of the Stereo Depth method, the normalized
pixel coordinates of KAPAO-S were used as a comparison, therefore this error has no unit but was
still provided for comparison.
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Fig. 6. Relative position change of the left hand on the y-axis in meters for a distance of 5m.

method returns root-relative joint positions in millimeters and reached a testing error
of 62.9mm when lifting 2D key points that were supplied beforehand by a stacked
hourglass network. As a third option — although its key point localization for large
distances was not sufficient — it was decided to additionally evaluate how precise
the GHUM model-fitting [62] of BlazePose is when the face detector does return a
detection based on the bounding boxes by KAPAO-S. It also returns root-relative
key point coordinates in meters where the hip joint sits at the origin. The positions of
the HMD and both controllers acquired by all methods are transformed by sub-
tracting the HMD position, so that the head sits at the origin and the axis outputs of
each method is aligned to the coordinate system of the Rift. Firstly, the absolute
angular error in degrees of horizontal and vertical rotations (yaw and pitch) of the
arms are determined by calculating the differences in degrees between each estima-
tion method and the oculus controller ground truth. Second, the root mean square
error for the hand key point position compared to the ground truth is determined for
a distance of 5, 10 and 15 m between camera and person. For each of the three
recordings, an identical sequence of movements is performed where the arms are first
rotated up and down, then left and right. Afterwards the DFC gesture is used and
both hands are moved along z-, y- and z-axis in sequence. Although the procedure is
repeated three times in about the same speed for 30 s, the movements are not
identical and cause variation for each repetition influencing the overall error.
Because the laptop only reached 15 Hz running all three methods simultaneously,
1.350 samples were evaluated for each method, 450 for each distance.

Due to the noise of the stereo depth and occasional outliers in the estimates of
BlazePose, these two methods are median filtered with a filter length of five. Since
absolute distances on average do not indicate well how the relative movements
compare to the ground truth and each method contributes nonlinear noise to the
positions, the mean distance correlation (mDC) according to [63] is also reported for
all three axes. Before computing mDC, each vector of positions is standardized by
subtracting the mean and dividing by the standard deviation. Each distance corre-
lation is calculated by subdividing the distance covariance of both vectors by the
product of their respective distance standard deviations. The result is a non-negative
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Fig. 7. Left: Confusion matrix of the validation sequence using a SVC with C = 10 and radial basis
function kernel. Right: The camera was placed 16 m away from the observed person and at a height of 7 m.

value between zero and one, whereas a result of zero indicates that both vectors are
independent, and a one signals that they are either identical or variations of one
another. Although only a distance up to 15 m was evaluated, all three methods
already have a significant positional error of 17-83 cm. As can be somewhat expected
for this range, relying on 2D key points by KAPAO and extending them with depth
values by the stereo sensor achieved the lowest average positional error for z- and
y-direction, even though the distance correlation of 0.247 still has to be improved by
additional filtering. For the pointing gestures, the angular error is most important
which surprisingly on average was the lowest for the simple baseline approach at 7.8
degrees. In y-direction the error is slightly higher compared to the other two axis
which is expected since each method detects the head joint instead of the HMD
position in the image. For the z-depth, BlazePose had the lowest positional error on
average with 27.7 cm, closely followed by the Simple Baseline method with 27.8 cm.

4.3. Gesture recognition from elevated viewpoints
with a support-vector machine classifier

For the gesture classification, a small outdoor dataset is collected, where the CVC
was placed on four different levels of the 21 m high fire ladder of a building. It records
a participant performing five different gestures in random order and from different
angles while walking away from the camera. This procedure is repeated four times
and the height of the camera is changed from 1.5 to 3, to 6 and then to 12m. The
distance between the observed person and the camera varied between 10 and 27 m.
The dataset consists of 3500 frames and is split 1:9 into test and training data,
numerical labels are used for the five gesture classes “DFC”, “greet”, “neutral”,
“pointing” and “stop”. Because dynamic gestures performed over multiple seconds
are slower, have more overlaps and higher complexity due to the temporal dimension,
in this approach only static gestures are recognized. Since the sensor will be gimbal
stabilized later, depth error and motion blur caused by vibration of the UAV is not
considered for this evaluation yet. For each image, KAPAO-S is used to detect the



Int. J. Semantic Computing Downloaded from www.worldscientific.com

by UNIVERSITAT DER BUNDESWEHR MUNCHEN-UNIVERSITATSBIBLIOTHEK on 09/26/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Towards Gesture-Based Cooperation with Cargo Handling UAVs 19

participant’s location in the image and based on the bounding box, BlazePose is
utilized to extract 2D and 3D body key points. From the joint data, two feature
vectors consisting of all Euclidean distances between the joints are created, one in 2D
and one in 3D. All joints are transformed into a coordinate system where the root
joint is the origin and are then scaled by the torso height in pixels. Since the majority
of poses are linearly separable, a one-versus-all support-vector machine classifier
(SVC) with radial basis function kernel is used as a classifier with balanced class
weights. K10-Fold cross validation was performed repeatedly with a regularization
parameter of C' in the range of {0.001, 0.01, 0.1, 1, 2, 5, 10, 50, 100, 500}. Finally, a C
of 10 was used for its highest mean weighted F1-score of 93% for the model-fitted 3D
joints and 90% for the 2D joint feature vector. Additionally, a one-minute-long vali-
dation video was recorded from 7 m of height and with a distance to the person of 16 m.

All gestures are here performed in a quicker succession like in a real interaction
scenario. The UAV was first greeted, pointed towards different locations, and then
controlled with the DFC gesture. At multiple occasions, the stop gesture was used in
between to cover the transitions from each gesture to the stopping gesture. While the 3D
feature vector still achieved a precision of 89%, a recall of 85% and a F1 score of 86%, the
2D feature vector only reached 49% precision, 64% recall and a F1 score of 54%. The
confusion matrix of the gestures classified with the 3D feature vector is shown in Fig. 7.

5. Discussion

Using an RGB-D sensor as the main sensor appears to be a lean and versatile option
for human drone interaction although it remains uncertain if the depth error of a
purely vision-based approach is sufficient to realize the proposed gesture metaphors
for object selection and direct flight control. First evaluations of the necessary sub-
components for the proposed visual processing pipeline have resulted in multiple
possible options for how to approach the realization of the interaction method. Since
the operator needs to be able to point at cargo objects like containers, those need to
be detected on both the peripheral and central vision image stream. Nanodet-m is a
fast and lightweight detector that can be retrained for this purpose because although
it had slightly lower accuracy than KAPAO-S on UAV-Human, it can be expected
that its precision will improve once it is trained only for one cargo object class and
finetuned on a dataset that features greater heights. In terms of detecting and
extracting key points of humans in image space, detector-based top-down human
pose estimation methods like KAPAO-S seem to be the best balance regarding lo-
calization precision, recall and latency. Although the Nanodet variants have slightly
higher recall in this evaluation, KAPAO-S is more robust for detecting humans at
larger distances and can precisely localize them in the image even when the confi-
dence of the prediction is lower than 10%. Simultaneously, it can detect 2D key
points eliminating the need for additional body key point estimation methods.
Lifting the skeleton joints of the operator up to 3D remains a challenging problem
for real-time applications like gesture-based UAV flight control. 2D-to-3D-keypoint-
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lifting techniques heavily rely on accurate priors which are still difficult to acquire
with low latency on embedded systems. Due the quadratically increasing depth error
of the stereo point cloud at distances above 10 m, the model-based lifting approaches
seem to deviate less from the ground truth along the z-axis despite less accurate key
point priors. One possible solution could be to switch the z-depth acquisition from
RGB-D values to a model-based approach once the stereo depth error of the CVC
exceeds a threshold that is not acceptable any longer. Additionally, the model-based
body key points have to be reliably filtered, since both BlazePose and the Simple
Baseline method have high noise and tend to overcompensate slow movements of the
hands. While it is possible to improve the object selection process via pointing ges-
tures through heuristics, the proxy manipulation that directly controls the UAV’s
flight does not allow high positional error. If the tracking in z-direction is not stable
after filtering, an alternative gesture which does not compromise the overall gesture
metaphor simplicity might be necessary.

The gesture classification performance of the support-vector machine classifier
was deemed acceptable for now at 90% because generating additional training data
with more variance in viewing angles can still improve the robustness. Any wrong
action can be stopped immediately, and safety critical commands still need further
additional confirmation. Furthermore, it can be expected that the false-positive-rate
decreases when adding a threshold of multiple frames that have to be classified as the
same gesture in sequence to trigger the corresponding function.

A preliminary test model ensemble where KAPAO-S and NanoDet-m detect
humans and objects every frame while BlazePose extracts 3D joints of one bounding
box was implemented on a NVIDIA Jetson Orin AGX Developer Kit. For RGB-D
images from the CVC with 1920 x 1080 resolution, the model ensemble could run
with 7Hz and took around 3.972 of GPU memory. This indicates that the runtime
latencies still need to be further improved, for example by reducing the frequency of
cargo object detections through tracking.

6. Outlook

An interaction method for gesture-based interaction with cargo-handling UAVs has
been presented along with a visual processing pipeline. It relies on an omnidirectional
dual-fisheye camera for peripheral vision of its surroundings and uses a gimbal-
supported high-resolution stereo RGB-D sensor as a main sensor. The proposed
gesture vocabulary is compact and relies on two core metaphors which are deictic
pointing and proxy manipulation. With pointing gestures, an operator can select
task-relevant objects to give highly abstracted commands like following a person or
transporting an object from point A to B. If necessary, the UAV’s position can be
adjusted via a proxy manipulation gesture which is useful for landing zones without
infrastructure and difficult terrain. Three methods for 3D human pose estimation
and object detection have been selected based on evaluations on the UAV-Human
Dataset. The overall system’s main two limitations needing further research are: (1)
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the precision of selecting objects with a 3D pointing gesture ray cast technique at
longer distances, (2) a control function for mapping proxy manipulation hand
movements to the UAV’s acceleration.
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