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Abstract
Semantic image editing allows users to selectively change entire image attributes in a controlled manner with just a few clicks. 
Most approaches use a generative adversarial network (GAN) for this task to learn an appropriate latent space representation 
and attribute-specific transformations. Attribute entanglement has been a limiting factor for previous approaches to attribute 
manipulation. However, more recent approaches have made significant improvements in this regard using separate networks 
for attribute extraction. Iterative optimization algorithms based on backpropagation can be used to find attribute vectors 
with minimal entanglement, but this requires large amounts of GPU memory, can lead to training instability, and requires 
differentiable models. To circumvent these issues, we present a local search-based approach to latent space editing that 
achieves comparable performance to existing algorithms while avoiding the aforementioned drawbacks. We also introduce 
a new evaluation metric that is easier to interpret than previous metrics.

Keywords Semantic image editing · Latent space editing · StyleGAN · Evaluation metrics

Introduction

Semantic image editing allows users to selectively change 
entire image attributes in a controlled manner with just a 
few clicks, such as changing the age of a person in a portrait, 
the weather in a landscape image, or the color of certain 
objects in different scenes. Examples of face manipulation 
are shown in Fig. 1. Semantic image editing is a valuable 
tool for many real-world applications, including photo 

enhancement, artistic visualization, targeted data augmen-
tation, and image animation. In most cases, the goal is to 
change specific attributes of the image while preserving its 
overall content and all other attributes.

There are two main categories of state-of-the-art methods 
for semantic image editing that rely on generative adversarial 
networks (GANs) [1]. The first group, known as image-to-
image translation methods, uses GANs to map images from 
one domain to another [2–8]. However, these approaches 
are limited in that they restrict attribute changes to prede-
fined factors rather than allowing unrestricted adjustments. 
The second group of methods, called latent space editing 
methods, involves using a GAN that generates images and 
searches for directions in its latent space to enable continu-
ous semantic image editing. However, early GAN mod-
els were not optimized for a disentangled latent space, so 
modifying one attribute often led to unintended changes in 
other attributes [9]. Recent style-based approaches [9–11] 
have made significant improvements in disentangling attrib-
utes, allowing specific features to be targeted during image 
editing.

Latent space editing methods are further divided into two 
groups: supervised and unsupervised approaches. Unsuper-
vised approaches do not rely on a labeled dataset or a regres-
sor to specify the attribute to be manipulated [12, 13]. In 
contrast, supervised approaches require a labeled dataset or 

This article is part of the topical collection “Advances on 
Computational Intelligence 2022” guest edited by Joaquim Filipe, 
Kevin Warwick, Janusz Kacprzyk, Thomas Bäck, Bas van Stein, 
Christian Wagner, Jonathan Garibaldi, H. K. Lam, Marie Cottrell 
and Faiyaz Doctor.

 * Michaela Geierhos 
 michaela.geierhos@unibw.de

 Andreas Meißner 
 andreas.meissner@zitis.bund.de

 Andreas Fröhlich 
 andreas.froehlich@zitis.bund.de

1 Big Data, ZITiS, Zamdorfer Straße 88, 81677 Munich, 
Bavaria, Germany

2 Research Institute CODE, University of the Bundeswehr 
Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg, 
Bavaria, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02272-4&domain=pdf
http://orcid.org/0000-0002-8180-5606


 SN Computer Science           (2023) 4:820   820  Page 2 of 23

SN Computer Science

a regressor [14–18]. Although supervised methods have the 
advantage of defining the desired attribute for manipulation, 
the attribute vectors computed with earlier methods are often 
entangled with other attributes. Recent approaches such as 
StyleCLIP [16], StyleMC [17], and Enjoy Your Editing [18] 
aim to solve this problem by defining a loss function based 
on a deep learning model and iteratively optimizing a latent 
vector for the desired attributes using gradient descent. How-
ever, these approaches have the drawback that they require 
a significant amount of GPU memory for backpropagation, 
which can make them impractical even for high-end GPUs 
such as the Tesla-V100. For example, when trying to apply 
the approach introduced for Enjoy Your Editing [18] to the 
best model for image quality for StyleGAN3 [11], known 
as “stylegan3-r-ffhqu-1024x1024.pkl”, a batch size of 1 
requires a massive 39 GB of GPU memory, which is too 
much even for high-end GPUs like Tesla-V100. Moreover, 
only differentiable models can be used to compute the gradi-
ents, which limits the use of black-box models and increases 
the implementation overhead for models originally devel-
oped in other frameworks. We have also observed some 
instability issues when using smaller batch sizes.

Contributions: In our previous work [19], we proposed an 
iterative latent space editing method based on local search 
that achieves results comparable to those of Enjoy Your 
Editing [18] in terms of identity and attribute preservation 
while having a similar runtime. However, our approach 
requires significantly less GPU memory (only 12 GB for 
“stylegan3-r-ffhqu-1024×1024.pkl” as opposed to the 39 
GB required by their approach), making it compatible with 
a wider range of GPUs. In addition, our method solves the 
problem of numerical instability and does not require a dif-
ferentiable regressor. Our loss function is simpler and uses 
fewer hyperparameters. While sticking to the evaluation met-
ric introduced by Zhuang et al. [18], we discussed some of 
its limitations and proposed a small extension of the metric 
that allows for better comparisons of different approaches. 
This extended version of our paper includes all previous 
results to be self-contained, but also extends our previous 
work [19] in two important directions: As a first new con-
tribution, we evaluate our local search-based approach in 
StyleSpace and show that it indeed generalizes to differ-
ent latent spaces. While pointing out possible difficulties 
in the transition to more general latent space representa-
tions, we also provide a solution that comes with a deeper 

understanding of the corresponding latent space structure. 
As a second new contribution, we further investigate the 
limitations of the original evaluation metric and propose fur-
ther modifications, resulting in an easier-to-interpret evalu-
ation metric.

Related Work

Semantic image editing has a long history in computer 
vision, computer graphics, and machine learning. In recent 
years, GANs have received particular attention for enabling 
efficient image manipulation through image-to-image trans-
lation or latent space editing.

Generative Adversarial Networks

GANs [1] have achieved impressive results in image genera-
tion in recent years [9, 20–22]. However, image generation 
is not the only application. Image inpainting [23, 24], super 
resolution [25, 26], data augmentation [27], and 3D object 
generation [28] are other areas of research.

A GAN typically consists of two modules: a generator 
and a discriminator. While the generator learns to generate 
fake samples based on a random distribution as input, the 
discriminator learns to distinguish between real and fake 
samples. In this way, a generator learns to reproduce the 
distribution of the training samples but does not provide 
control over the category or semantic attributes of the gen-
erated samples. By providing the generator with labels for 
each training sample, a conditional GAN can learn to gener-
ate samples based on the class—but this requires a labeled 
dataset [29].

With large-scale GAN models such as BigGAN [21] and 
StyleGAN [9], the generation of photorealistic images has 
become a reality in recent years. BigGAN [21] is a compre-
hensive GAN model trained on ImageNet [30] that supports 
image generation in multiple categories due to its condi-
tional architecture. StyleGAN [9] is another popular GAN 
model in which the generator maps the random sampling 
distribution to an intermediate latent space, using a fully 
connected network (often referred to as a mapping net-
work). In this approach, the intermediate latent space is not 
tied to the random distribution of the input, resulting in an 

Fig. 1  Examples of semantic 
image editing related to manipu-
lating facial attributes
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automatically learned, unsupervised separation of high-level 
attributes.

Image‑to‑Image Translation

Image-to-image translation allows to transform one image 
domain into another, such as creating a drawing from a 
selfie [31, 32]. For example, pix2pix [33] learns this task 
in a supervised manner using cGANs [29]. It combines an 
adversarial loss with an L1 loss to not only fool the discrimi-
nator but also to be close to the ground truth in the L1 sense. 
The main drawback is that it requires paired data samples.

To circumvent the problem of obtaining paired data, 
unpaired image-to-image translation frameworks have been 
proposed [7, 31, 34]. CycleGAN [7] preserves key attributes 
between the input and the translated image using a cycle 
consistency loss.

However, all these methods are only able to learn the 
relationships between two different domains simultaneously. 
As a result, these approaches have limited scalability when 
processing multiple domains and cannot interpolate between 
the two domains.

Latent Space Editing

There have been many attempts to use the latent space of a 
pre-trained generator for image manipulation [35–37]. Some 
methods learn to perform end-to-end image manipulation by 
training a network that encodes a given image into a latent 
representation of the manipulated image [38–40].

Other techniques attempt to find latent paths in such a 
way that traversing them will result in the desired manipula-
tion. These are divided into two classes: 

 (i) Supervised methods use either image annotations to 
find meaningful latent paths [15], or a pre-trained 
model that classifies image attributes [16–18]. The 
latter also allows for iterative optimization.

 (ii) Unsupervised methods find reasonable directions 
without supervision, but require manual annotation 
for each direction afterwards [12, 13, 41].

In particular, the intermediate latent spaces in StyleGAN 
architectures [9–11] have been shown to facilitate many dis-
entangled and meaningful image manipulations.

Many approaches perform image manipulations in the 
W space [12, 13, 15, 18], the more disentangled interme-
diate latent space generated directly by StyleGAN’s map-
ping network [9]. The W+  space is an extension of the 
W space, where a different latent vector w is fed to each 
generator layer. While W+ was originally used to mix styles 
from different sources [9], it can also be used for semantic 
image editing [16]. StyleSpace S, the space spanned by the 

channel-wise style parameters, has also been proposed for 
latent space editing and was found to be even more disen-
tangled than W and W+ [42]. StyleSpace is also used by 
StyleCLIP [16] and StyleMC [17].

Evaluation Metrics

The evaluation of semantic image editing approaches is 
typically based on qualitative assessments through sample 
results presented in publications. However, some publica-
tions use quantitative metrics to provide a fairer comparison. 
In recent studies [43, 44], a pre-trained attribute classifier 
was used to quantify changes in the target attribute, while the 
Frechet Inception Distance (FID) [45] and Kernel Inception 
Distance (KID) [46] were used to measure unwanted attrib-
ute changes. In another publication [47], the quality of the 
attribute change was evaluated based on the match between 
a given semantic label map and the generated output. Image 
similarity was also measured using FID and Learned Per-
ceptual Image Patch Similarity (LPIPS) [48]. In addition, 
other works [49, 50] used standard image reconstruction 
measures such as mean absolute error, structural similar-
ity index measure, and LPIPS to evaluate image manipula-
tion. The use of semantic label maps as proposed metrics 
often assumes localized target attributes, which may not be 
appropriate for our approach, especially when a change in 
the target attribute affects multiple areas in the image. Fur-
thermore, metrics such as FID or KID score may give more 
weight to changes in unwanted attributes such as the back-
ground of the image, rather than changes in the identity of a 
person, where even small variations in facial keypoints can 
have a significant impact on human perception. Therefore, 
the evaluation metric proposed by [18], which uses a pre-
trained regressor to quantify changes in unwanted attributes 
and an InceptionResnet pre-trained on the VGGFace2-data-
set [51] to measure changes in identity, is more appropriate 
for our approach.

Local Search‑Based Latent Space Editing

We propose an iterative approach for controllable semantic 
image editing via latent space navigation in GANs called 
LS-StyleEdit. The process starts with a pre-trained generator 
G that receives as input a latent vector from a latent space. 
Given a target attribute, we try to find a vector in the latent 
space that, by adding it to the original latent vector, allows 
the target attribute to be changed while leaving other attrib-
utes intact.

Our approach for discovering an attribute-specific latent 
vector consists of two pre-trained networks G and R, and a 
local search component. While G and R are used to evaluate 
a given latent vector, the local search component provides an 
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iterative framework for optimization by navigating through 
the latent space.

In practice, we used StyleGAN2 for our experiments in 
Sects. “Evaluation Challenges” and “Towards a New Evalu-
ation Metric”—however, our overall approach is generic and 
not limited to this specific choice.

As discussed in Sect. “Related Work”, StyleGAN archi-
tectures have several latent spaces that can be used to modify 
an attribute. In addition to the original input space Z, three 
different intermediate latent spaces W, W+ , or S can be used: 
The Z space is normally distributed, but attributes are more 
entangled. The W space has less entanglement and, there-
fore, allows better control over a target attribute. It has been 
shown that the W+ space and the StyleSpace S are even less 
entangled [42].

Since the W  space is often used to explore the latent 
space in StyleGAN, we decided to also use the W space, 
for an initial implementation in our previous work [19] to 
provide a fair comparison between our local search-based 
approach and existing methods. However, our approach 
is not restricted to W, but can operate on any latent space. 
While the W space has 512 parameters, the S space has 9088, 
which allows us to evaluate the scalability of our approach. 
Therefore, we also evaluate our approach in the S space as 
part of this extended work. As a consequence, we also pre-
sent a more general algorithmic description of our approach 
that is independent of a specific latent space.

StyleGAN2’s generator network consists of two consecu-
tive parts: a mapping network Gmap and a synthesis network 
Gsynth . The input to Gmap is a normally distributed latent vec-
tor z from the original latent space Z, which is then mapped 
to a new latent vector w in the intermediate latent space W. 
W+ is created by stacking the W vector 18 times and follows 
the same distribution as W. Subsequently, affine transforma-
tions A are applied to map the W+ space to the StyleSpace S, 
which has a different distribution than W. Gstyle is then used 
to generate an image using s as input. Figure 2 shows the 
aforementioned architecture of StyleGAN2.

In our approach, R is a regressor network pre-trained on 
the CelebA dataset [52] and estimates 40 attributes for the 
image. Similar to Enjoy Your Editing [18], our approach is 
iterative and R is used to directly compute a loss function 

in each iteration. To facilitate comparison, we decided to 
use their regressor model [18] to optimize the attribute 
vectors. The same regressor was also used for the evalu-
ation in Sect. “Previous Evaluation Metric”. The vector 
to be optimized, d, controls the attribute change in the 
image. Adding or subtracting d will increase or decrease 
the attribute in a given image—this is evaluated by the 
loss function. Figure 3 illustrates a single iteration within 
this optimization framework. Since our goal is to present a 
versatile approach that can be used with any latent space, 
we will use the notation Z∗ as a non-specific latent space, 
such as Z, W, or S. Similarly, we will use z∗ to refer to its 
elements.

The main novelty of our approach is the use of a local 
search component to optimize d. In contrast, most other 
iterative approaches  [16–18] use backpropagation for 
their optimization. While backpropagation is a powerful 
tool for many deep learning applications, its performance 
comes at the cost of high memory consumption and com-
putational cost. Compared to other applications, such as 
training the weights of a deep learning network, our task 
is less complex, requiring only the optimization of the 
attribute vector; the weights of G and R remain unchanged. 
Local search provides a simple but efficient framework 
for this type of optimization task. Starting from an initial 
point in a search space, local search algorithms iteratively 
move to “better” points according to an objective function 
using heuristics. While local search is mainly applied to 
computationally intensive optimization problems in dis-
crete search spaces, there are also methods for real-valued 
search spaces. In particular, our local search component is 
based on the concept of random optimization [53] and is 
described in Algorithm 1.

Fig. 2  Structure of StyleGAN2, which maps a normally distributed 
input z ∈ Z to the intermediate latent spaces W and S 

Fig. 3  Illustration of the steps that are performed in a single iteration 
of our local search-based optimization LS-StyleEdit
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Algorithm 1 Local search of LS-StyleEdit
Input: sampleRadius r, maxLength L

1: d ← 0
2: for i = 0, ...,max do
3: z∗ ← ΘZ∗

4: ± ← rand{+,−}
5: α ← R(G(z∗ ± d))
6: d ← d+ r · ΣZ∗ (0, I)
7: if lZ∗(d ) > L then
8: d ← d · L/lZ∗(d )
9: end if

10: α ← R(G(z∗ ± d ))
11: if ±α < ±α then
12: d ← d
13: end if
14: end for

As hyperparameters, our algorithm requires a sample 
radius r and a maximum length L, both of which restrict 
the choice of our attribute vector d.

We initialize d to be a null vector before entering the 
main loop (see line 1). In each iteration, we first sample 
a new latent vector, which is the origin for the current 
local search step (see line 3). Since the different latent 
spaces follow different distributions, we use ΘZ∗ to denote 
a general sampling function that returns a random latent 
vector according to the corresponding distribution of Z∗ . 
While the latent vectors in Z are normally distributed with 
standard deviation � = 1 in all dimensions, the distribution 
of the latent vectors in W and S is unknown. In practice, 
the intermediate latent spaces are not sampled directly, 
but the latent vectors for W and S are obtained by first 
sampling from Z and applying the corresponding mapping 
functions Gmap and A◦Gmap , respectively. Since Gmap and 
A are implemented using complex networks, the distribu-
tions of Z, W, and S are expected to differ significantly. 
We then sample a sign ( + or −, each with probability 0.5) 
to decide whether to evaluate the attribute vector in terms 
of its ability to increase or decrease the target attribute 
in the current iteration (see line 4). A manipulated latent 
vector is obtained by adding or subtracting d depending on 
the chosen sign; G is used to generate the corresponding 
manipulated image, and R provides a value � to estimate 
the degree to which the target attribute is present (see line 
5). The actual local search space is then sampled by add-
ing a non-uniformly scaled noise vector to d, resulting 
in a new candidate attribute vector d′ (see line 6). This 
differs from our original implementation [19] in that we 
scale each dimension of the normally sampled vector not 
only by the scalar parameter r, but also individually by 

performing an element-wise multiplication ⊙ with ΣZ∗ to 
account for the different distributions of the latent spaces. 
In particular, we use ΣZ∗ to denote the vector of stand-
ard deviations of the corresponding dimensions of Z∗ . As 
the next step in our algorithm, we compute the length of 
the new candidate attribute vector d′ using lZ∗ . Similar to 
sampling the noise vector, this part extends our original 
implementation [19] by taking into account the distribu-
tion of the latent space Z∗ . To facilitate this, we define lZ∗ 
to represent the element-wise partition by ΣZ∗ followed by 
the application of the L2 norm. If this length exceeds the 
previously defined maximum length of L, d′ is scaled down 
accordingly to avoid reaching too sparsely sampled parts 
of the latent space (see lines 7–9).

To better understand the underlying intuition of scaling 
the vectors as part of our refined algorithm, the standard 
deviations in W and S can be observed in Fig. 4. In par-
ticular, Fig. 4a shows that the standard deviation for each 
element is no longer uniformly 1 as in Z space, but instead 
ranges from 0.07 to 0.48. This difference is even more pro-
nounced in StyleSpace, as shown in Fig. 4b, where the stand-
ard deviation of individual elements ranges from 0.03 up 
to 8.04. In the toRGB layers, the data points near 0, e.g., 
s_index=512–1024, have comparatively small variations, 
while the convolutional layers have a much higher variation 
than the latent vector in W space.

In our previous work [19], we implicitly assumed a stand-
ard deviation of 1 for all dimensions when modifying the 
target attribute vector d within a local search step and when 
measuring its length, even though d was applied in W space. 
While this approach was effective—though probably not 
optimal—for W due to the relatively small gap in standard 
deviations between dimensions, we realized that the strong 
non-uniformity of S posed a problem for the algorithm in 
its original shape. As a result, we adopted our general-
ized approach for accounting for the difference in standard 
deviations over the individual elements of the latent vec-
tors by scaling the noise values and measuring the lengths 
accordingly.

In the same way as � was determined for d, a new value 
�′ is now calculated for d′ using G and R (see line 10). d′ is 
considered better than d if (i) 𝛼′ > 𝛼 and the attribute vectors 
were evaluated according to their positive direction, or (ii) 
𝛼′ < 𝛼 and the attribute vectors were evaluated according to 
their negative direction. If this is the case, d is updated to the 
value of d′ (see lines 11–13).

We decided to keep our optimization criterion as simple 
as possible. We used only � and �′ to evaluate the attrib-
ute vectors d and d′ , respectively. Therefore, our objec-
tive function can be computed using only a regressor loss. 
In contrast, StyleCLIP [16] uses a loss term based on the 
CLIP model [54], L2 distance between latent vectors, and 
an identity loss based on a pre-trained ArcFace model [55]. 
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Similarly, Enjoy Your Editing [18] uses a regressor loss, a 
content loss based on a VGG model [56], and an additional 
discriminator loss. The discriminator loss is intended to 
measure the quality of the generated images. Since Style-
CLIP [16] has no visible artifacts and contains no discrim-
inator loss, we assume that the latter is not necessary to 
produce realistic images. We also expect that content loss, 
identity loss, and L2 distance mainly limit the maximum 
length of the attribute vector during optimization. This leads 
to the hypothesis that a vector of predefined length, which 
is then optimized to modify a target attribute as much as 
possible, will automatically preserve the remaining attrib-
utes and the identity of the person due to the disentangle-
ment properties of the underlying latent space. The length of 

the attribute vector can be interpreted as a hyperparameter. 
Since StyleGAN2 produces high-quality images near the 
center of the input distribution, a sufficiently small length 
limits the amount of artifacts. Both, StyleCLIP [16] and 
Enjoy Your Editing [18], use three hyperparameters in their 
respective loss functions, which requires careful balancing.

Evaluation Challenges

Since Zhuang et al. [18] proposed the method that is most 
similar to our approach, we initially decided to use their 
work as a baseline for evaluating the performance of LS-
StyleEdit. In this section, we present the evaluation setup as 

Fig. 4  Comparison of the stand-
ard deviations of the latent vec-
tor dimensions in the W space 
and in the StyleSpace S 
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used in our previous work [19] and point out the challenges 
that we faced in trying to facilitate a fair comparison.

Reimplementation of Enjoy Your Editing

Unfortunately, we encountered some strange behavior while 
testing their StyleGAN2 implementation.1We observed 
some sporadic runtime errors due to a compatibility issue 
between CUDNN and the NVIDIA driver version, as well as 
significant variations in the output results. When using the 
same input multiple times with constant noise, the output 
images sometimes differed. While most output images were 
nearly identical, average pixel differences of up to 9.06 were 
occasionally observed in a 0–255 image. This pixel differ-
ence resulted in prediction differences of up to 14.4% from 
the regressor, which severely limited our ability to consist-
ently reproduce the results. As a result, we reimplemented 
their approach using NVIDIA’s official StyleGAN2-ADA-
PyTorch implementation.2 While the StyleGAN2 implemen-
tation of Enjoy Your Editing generates images with a size of 
256x256 pixels, we used StyleGAN’s FFHQ model, which 
provides a resolution of 1024x1024 pixels, since most appli-
cations use the best possible image quality.

For all experiments in our previous work [19], which 
are also presented in Table 2 and Sect. “Quantifying Insta-
bilities of Enjoy Your Editing” of this extended paper, we 
used the settings r = 3 ⋅ 10−4 and L = 0.8 for our algorithm. 
As already mentioned in Sect. “Local Search-based Latent 
Space Editing”, in our initial implementation we did not take 
into account the difference in standard deviations between 
latent vector dimensions, i.e., instead of ΣZ∗ we used I for 
sampling possible attribute vectors d during local search 
(cf. Algorithm 1). As suggested by Zhuang et al. [18], we 
used the regressor loss coefficient �1 = 10 , the content loss 
coefficient �2 = 0.05 , and the discriminator loss coefficient 
�3 = 0.05 for our reimplementation of Enjoy Your Editing. 
For optimization, an Adam optimizer with a learning rate 
of 10−4 was used.

Both, the initial implementation of our local search-based 
algorithm and the reimplementation of Enjoy Your Editing, 
are available in our GitHub repository.3 It also contains the 
evaluation scripts used in our experiments.

Quantifying Instabilities of Enjoy Your Editing

In the original implementation of Enjoy Your Editing [18], 
StyleGAN2 images have a resolution of 256x256 pixels, 
which allows the use of larger batch sizes compared to 
1024x1024 models. Larger models, such as those used by 

StyleGAN3 [11], require even more GPU memory, further 
limiting the viable batch size. To investigate the impact of 
using smaller batch sizes on training stability, we ran our 
reimplementation of Enjoy your Editing for 20,000 itera-
tions with 10 different random seeds and checked how often 
numerical instabilities (i.e., NaN values in the attribute vec-
tor) occurred. 

1. In the first experiment, we performed 10 runs for Style-
GAN3, using its largest model “stylegan3-r-ffhqu-
1024x1024.pkl” with a batch size of 1 and a learning 
rate of 10−4 . All 10 runs ended up with numerical insta-
bilities.

2. In the second experiment, we investigated the influence 
of batch size on the stability of Enjoy Your Editing. 
Since “stylegan3-r-ffhqu-1024×1024.pkl” requires 39 
GB of GPU memory at a batch size of 1, we decided 
to use StyleGAN2’s 1024×1024-ffhq-model—which 
we used in all subsequent experiments—to test larger 
batch sizes. For a batch size of 1 and a learning rate of 
10−4 , 7/10 runs ended in numerical instability. For batch 
sizes of 2, 4, and 8, 2/10 runs also ended in numerical 
instability. Thus, while training stability improved with 
batch sizes larger than 1, numerical instabilities were 
still observed for a batch size of 8. Since instabilities 
occurred with both StyleGAN2 and StyleGAN3, this 
suggests that the instability problem is not a model-
specific effect, but is caused by the underlying approach.

3. In the third experiment, we examined the influence of 
the learning rate. While 7/10 runs ended in numerical 
instability at a learning rate of 10−4 , only 4/10 runs did 
so at a learning rate of 10−5.

We traced the cause of the numerical instabilities to the 
regressor loss, which uses a binary cross-entropy (BCE) 
function:

If �′ is close to 0 and 1, the terms log(��) and log(1 − ��) take 
on very large values, respectively. These terms often can-
not be compensated by �̂�′ and ( 1 − �̂��) . This high loss leads 
to large gradients, which can be traced back to the output 
layer of StyleGAN2, where the first NaN values appear. We 
observed that switching from BCE to a mean squared error 
(MSE) function seems to be a possible way to avoid these 
instabilities. When using an MSE-based loss, no NaN values 
occurred in our experiments and the visual quality of the 
edited images remained the same. However, this was just a 
first impression and we did not perform a full experimental 
evaluation using MSE-based loss, as this was outside the 
scope of our work. While inspecting the GitHub implemen-
tation of Enjoy Your Editing, we found some differences 

(1)Lreg = �[−�̂�� log 𝛼� − (1 − �̂�
�) log (1 − 𝛼

�)].

1 https:// github. com/ Keles tZ/ Laten t2im.
2 https:// github. com/ NVlabs/ style gan2- ada- pytor ch.
3 https:// github. com/ meiss nerA/ Local Searc hLSpa ceE.

https://github.com/KelestZ/Latent2im
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/meissnerA/LocalSearchLSpaceE
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compared to the pseudocode provided in their paper [18]. In 
particular, one difference relates to the sampling of a random 
value � , which is then used to compute �′ for their BCE loss. 
While we decided to base our reimplementation on their offi-
cial paper, it is possible that using the sampling distribution 
from their GitHub implementation would also reduce insta-
bilities. However, both of these possible solutions highlight 
the well-known fact that backpropagation is sensitive to the 
careful choice of many hyperparameters, such as the loss 
function and learning rate. Moreover, even without numeri-
cal instabilities, backpropagation-based approaches still have 
the disadvantage of requiring differentiable models and large 
amounts of GPU memory. Local search can provide a simple 
framework to circumvent these difficulties in the context of 
latent space editing.

Previous Evaluation Metric

To evaluate the attribute values, we originally used the eval-
uation metric by Zhuang et al. [18] to show that our local 
search-based approach can compete with other methods on 
an already established evaluation metric and not just by cus-
tomizing a new evaluation metric to our advantage [19]. We 
generated 1,000 original images, produced 10,000 edited 
images with different levels of editing, and calculated the 
difference in the target attribute between the original images 
and their respective edited images. Depending on the degree 
of change in the target attribute, an image pair is stored in 
one of the three buckets ((0, 0.3], (0.3, 0.6], or (0.6, 0.9]). 
Two different metrics are calculated for each bucket: 

 (i) Identity preservation is computed using the popular 
image identity recognition model VGGFace2, which 
is pre-trained on the VGGface2 dataset [57]. When 
VGGFace2 is applied to a face image, it outputs a 
feature vector. Identity preservation is the cosine sim-
ilarity between the face feature vector of the original 
image and the edited image averaged over all image 
pairs.

 (ii) The attribute preservation metric is computed by 
averaging over a set of facial attributes estimated by 
a regressor network. In particular, we initially used 
the same pre-trained regressor network that was used 
to estimate the target attribute [52]. We computed the 
40 attribute predictions for all original images and all 
edited images. Ideally, editing only changes the tar-
get attribute and all other attributes remain the same. 
Therefore, the average change in all attributes except 
the target attribute is used. The attribute preservation 
metric is the average attribute difference across all 
image pairs.

Unfortunately, we encountered a problem with the described 
metric: Short attribute vectors tend to give significantly bet-
ter results than longer ones. This is not surprising, since 
the length of the attribute vector directly affects the dis-
tance between the latent vectors for the original image and 
the manipulated image. For example, using a null vector 
does not change the image at all. As a result, a null vector 
achieves perfect identity and attribute preservation scores. 
A similar effect can be observed for any sufficiently short 
non-zero vector.

In Table 1, both preservation metrics are computed for 
an attribute vector found by our approach and a downscaled 
version of it. The downscaled version appears to perform 
better than the original attribute vector when no additional 
criterion is used for evaluation. In practice, a good attrib-
ute vector must preserve the image content while changing 
the target attribute as much as possible, both at the same 
time. This trade-off is strongly influenced by the length of 
the vector. In particular, downscaling not only improves the 
preservation metrics, but also reduces the manipulation of 
the target attribute. As a result, evaluating only the preserva-
tion component turns out to be insufficient. To address this 
shortcoming, we also include the bucket distribution in our 
evaluation. The bucket distribution is an indication of the 
degree of change with respect to the target attribute.

Table 1  Influence of the vector 
length on the evaluation metric 
for the target attribute “Smiling” 
(taken from [19])

The rows show results for the vector computed by our approach and a scaled version of it. In terms of pres-
ervation metrics, the short vector performs better than the original one. However, the manipulation of target 
attributes is reduced

Smiling Attribute preservation Identity preservation Buckets

(0, 0.3] (0.3, 0.6] (0.6, 0.9] (0, 0.3] (0.3, 0.6] (0.6, 0.9] (0, 
0.3]

(0.3, 
0.6]

(0.6, 
0.9]

‖d‖ 0.0268

±0.0671

0.0669

±0.1336

0.0980

±0.1866

0.9990

±0.0022

0.9976

±0.0032

0.9964

±0.0039

5442 1370 2309

d/5 0.0114

±0.0333

0.0405

±0.0968

0.0599

±0.1396

0.9998

±0.0005

0.9995

±0.0008

0.9993

±0.0007
9563 410 27
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While highlighting an important aspect, the bucket distri-
bution does not automatically allow for a direct ranking of 
different algorithms. Due to the strong negative correlation 
between target attribute change and preservation metrics, 
approaches tend to be better at one or the other. A naive 
attempt to overcome this limitation could be to normalize the 
attribute vectors before evaluation. Unfortunately, this turns 
out to be insufficient. Even small variations in an algorithm, 
e.g., a different random seed or a different batch size, lead to 
different latent vectors. As part of our evaluation, we found 
that different attribute vectors require different lengths for 
the same degree of attribute editing. This is not surprising 
since W does not follow a known distribution. To solve this 
problem, we proposed to scale attribute vectors so that they 
change the target attribute by the same amount.

However, the target attribute change is influenced by sev-
eral aspects and there is no simple measure. As a result, we 
initially decided to approximate the target attribute change 
by the number of samples with an attribute change of at most 
0.3, which roughly corresponds to the samples in bucket 
(0, 0.3]. When implementing the scaling of the vector, we 
wondered what range we should use as the measure of attrib-
ute change. Values greater than 0.9 are not represented in the 
buckets, but an attribute vector that changes the target attrib-
ute by more than 0.9 should be considered when determining 
the scaling factor. Therefore, we decided to scale the vectors 
so that the number of samples with an attribute change of at 

most 0.3 is within ±1% . This means that the number of sam-
ples with an attribute change of more than 0.3 is also within 
±1% . In total, we ran our reimplementation of Enjoy Your 
Editing with a batch size of 1 for 20,000 iterations, resulting 
in a bucket distribution of [5416, 1418, 2320] for the attribute 
“Smiling”, and scaled all latent vectors in our experiments 
for the same attribute so that bucket (0, 0.3] = 5416 ± 54 . 
The results of this evaluation, which correspond to the main 
results of our previous work [19], are shown in Table 2.

To have comparable runtimes, we also used this run 
as a reference, which took 4105 s on a NVIDIA Quadro 
GV100, and stopped each run after that time. In the original 
implementation of Enjoy Your Editing, d is initialized with 
a random distribution. However, this random initialization 
affects the performance of the computed attribute vector. For 
reasons of reproducibility, we have initialized the attribute 
vector in Enjoy Your Editing with a null vector. Since the 
loss networks use pre-trained weights, this does not nega-
tively affect performance.

Towards a New Evaluation Metric

The primary focus of our previous work [19] was to introduce 
a local search-based algorithm for latent space editing. We 
explicitly tried to avoid any changes to any components that 
were not specific to our approach. In particular, we stuck to 

Table 2  Comparison (taken from [19]) of attribute preservation (a 
lower score is better) and identity preservation (a higher score is bet-
ter) for the algorithm by [15] (Shen), our reimplementation of Enjoy 

your Editing (Zhuang), and our local search-based approach (with 
batch size=1 and batch size=8) after scaling the vectors to cause the 
same degree of target attribute change

While the bucket distribution is similar after scaling, the resulting length of the attribute vectors can be different. The first four rows show met-
rics for the “Smiling” attribute, the last four rows show metrics for the “Hair color” attribute

Attribute Preservation Identity Preservation Buckets d

(0, 0.3] (0.3, 0.6] (0.6, 0.9] (0, 0.3] (0.3, 0.6] (0.6, 0.9] (0, 0.3] (0.3, 0.6] (0.6, 0.9]

Smiling
 Shen 0.0264

±0.0659

0.0657

±0.1319

0.0977

±0.1875

0.9988

±0.0027

0.9974

±0.0034

0.9956

±0.0047

5429 1330 2307 1.31

 Zhuang 0.0300

±0.0739

0.0718

±0.1393

0.1020

±0.1887

0.9991

±0.0020

0.9979

±0.0026

0.9966

±0.0038

5416 1418 2320 1.32

 Ours bs=1 0.0268

±0.0671

0.0669

±0.1336

0.0980

±0.1866

0.9990

±0.0022

0.9976

±0.0032

0.9964

±0.0039

5442 1370 2309 1.40

 Ours bs=8 0.0252

±0.0628

0.0641

±0.1300

0.0958

±0.1855

0.9990

±0.0022

0.9976

±0.0034

0.9963

±0.0039

5426 1338 2315 1.30

Hair color
 Shen 0.0429

±0.1008

0.0789

±0.1372

0.0988

±0.1744

0.9851

±0.0229

0.9542

±0.0346

0.9370

±0.0430
5428 1122 1520 2.44

 Zhuang 0.0399

±0.0967

0.0745

±0.1317

0.0936

±0.1700

0.9869

±0.0197

0.9543

±0.0347

0.9357

±0.0431

5395 1279 1689 2.01

 Ours bs=1 0.0447

±0.1003

0.0880

±0.1461

0.1093

±0.1829

0.9814

±0.0283

0.9409

±0.0449

0.9201

±0.0531
5380 1134 1447 3.20

 Ours bs=8 0.0452

±0.1047

0.0842

±0.1479

0.1030

±0.1800

0.9849

±0.0233

0.9538

±0.0358

0.9396

±0.0412

5345 1129 1536 2.79
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the evaluation metric defined by Zhuang et al. [18] and also 
used their regressor model for estimating facial attributes to 
ensure a fair comparison and eliminate any potential bias that 
might favor our method. Having shown that our approach 
can indeed compete with existing algorithms, we can lift the 
self-imposed restriction for the extensions presented here.

As the main novelty within this section, we propose a 
new evaluation metric for facial attribute manipulation that 
addresses several challenges currently present in attribute vector 
evaluation while aiming to be easier to interpret. Similar to the 
metric introduced by Zhuang et al. [18], a pre-trained regressor 
model will still be part of the backbone of our metric. However, 
since we were missing some crucial details about how their 
regressor was trained, we decided to train our own regressor 
for attribute classification. To minimize the influence of JPEG 
compression artifacts, we trained our model using a ResNet50 
on the PNG images of the CelebA dataset [52]. We trained our 
model for five epochs and obtained an accuracy of 0.92. The 
details of our hyperparameters and preprocessing steps during 
training are available in our GitHub repository.4 The regressor 
is used in all experiments related to the new evaluation metric. 
However, we made a conscious decision not to use the regressor 
to compute the attribute vectors. Instead, we used the regressor 
provided by Zhuang et al. [18]. It was deemed inappropriate to 
optimize the attribute vectors on the same model that they are 
evaluated on, since StyleMC [17] uses a CLIP model to com-
pute the attribute values, which would give an unfair advantage 
to the other algorithms.

Influence of the Initial Image

Although normalizing the vector length based on one bucket 
is a step toward normalization, it may not be the best solu-
tion. Comparing two attribute vectors that differ significantly 
in the other two buckets is not a straightforward process and 
leaves room for interpretation as to which attribute vector 
might be better. To have a metric with less room for interpre-
tation, we propose to normalize the attribute vectors so that 
they produce the same average change in the target attrib-
ute over a given number of images. Furthermore, instead of 
calculating attribute and identity preservation for each of 
the three buckets, we calculate the average over all samples. 
This approach provides a standardized attribute and identity 
preservation metric that allows us to compare our results 
using only two numbers instead of the previous six plus the 
bucket distribution. Depending on the specific use case, 
these two metrics could even be combined into a weighted 
sum that reflects the relative importance of preserving iden-
tity or avoiding unwanted attribute changes.

However, there is an open question that needs to be dis-
cussed: What is the appropriate amount by which the target 
attribute should change, on average, to allow for a fair com-
parison? To establish a predetermined range of values, it 
may be advantageous to use a sigmoid function for the target 
attribute change. However, because the slope of the sigmoid 
decreases as the value moves away from 0, we hypothesized 
that the same attribute vector might have different manipula-
tion strengths depending on the source attribute value.

To test our hypothesis, we generated 10,000 random 
images and used our regressor to determine the attribute 
value of each image. We then calculated the corresponding 
sigmoid for each image. These images were then divided 
into buckets ranging from 0.0−0.1 to 0.9−1.0 based on their 
sigmoid values. For the purposes of this experiment, we 
chose “Smiling” as the target attribute. Since the generated 
images had a bias towards high values of smiling, the major-
ity of the images fell into the 0.9−1.0 bucket. To ensure 
that the standard deviations were not biased by the differ-
ent number of samples within each bucket, we randomly 
selected 226 samples from each bucket to match the number 
of samples in the smallest bucket.

For each image, we added a given attribute vector for the 
attribute “Smiling” and computed the difference between 
the initial output of the regressor and the adjusted attribute 
value. We also calculated the attribute change in the nega-
tive direction of the attribute vector. Based on the attribute 
changes, we calculated the minimum and maximum attrib-
ute change for each bucket, as well as the average attrib-
ute change and standard deviation, which are presented in 
Table 3. When examining the minimum and maximum val-
ues, we observed a large possible range across all buckets.

Since the same attribute vector resulted in significantly dif-
ferent attribute changes, our first conclusion is that an evalua-
tion metric must average over a sufficient number of samples.

Shifting the focus to the averages reveals a second trend, 
where the average attribute change in the positive direction 
decreases steadily starting from the third row (0.7389). This 
can also be observed in the negative direction, where the 
average attribute change decreases from −0.7173 to −0.0306. 
Since the sigmoid function limits the output to the range 
from 0.0 to 1.0, it is evident that an initial attribute value of 
0.7, for example, limits the attribute change to a maximum 
of 0.3 in the positive direction. Our second conclusion is that 
an evaluation metric can benefit from changing an attribute 
in a positive direction for initial attribute values between 
0.0 and 0.5, and in a negative direction for initial attribute 
vectors between 0.5 and 1.0.

The third notable observation is that buckets 0.0−0.1 
and 0.9−1.0 are different from the others in that they have 
a higher standard deviation compared to the average attrib-
ute change. Although all other buckets show a consistently 
decreasing average attribute change in the positive direction, 4 https:// github. com/ meiss nerA/ Local Searc hLSpa ceE2.

https://github.com/meissnerA/LocalSearchLSpaceE2
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the 0.0−0.1 bucket has a smaller value than the 0.1−0.2 
bucket, and in the negative direction, the −0.2693 attrib-
ute change is smaller than the −0.7173 attribute change. 
We found it particularly interesting that a positive attrib-
ute manipulation resulted in a negative attribute change for 
the 0.9−1.0 bucket, and in the negative direction there were 
positive attribute changes (0.003 and 0.0001) in the first and 
last buckets, respectively. Therefore, we conclude that the 
ranges between 0.0−0.1 and 0.9−1.0 may pose a challenge 
for a reliable evaluation metric.

Influence of the Attribute Manipulation Strength

After observing the strange behavior of the sigmoid ranges 
between 0.0−0.1 and 0.9−1.0 with respect to attribute 
changes, we decided to investigate this behavior further. 
We created 1000 images and added our smile attribute vec-
tor scaled by a factor of l_vec_coeff ∈ [−6,… , 6] . Since the 
sigmoid function squeezes the range of values, we used the 
logit (the regressor output before applying the sigmoid) of 
the regressor output. Figure 5a shows the regressor logit over 
the manipulation strength, where the blue dots represent the 

average of all 1000 images and the orange dots represent 
the regressor logit of one sample. We notice that the regres-
sor logit continuously increases until l_vec_coeff reaches a 
value of about 2, and from there the regressor power slowly 
decreases. We conclude that the smiling attribute increases 
in a natural way from 0 to 2. Figure 5b shows the image that 
reached the maximum regressor output at l_vec_coeff=2.04. 
However, if the attribute vector tries to increase the smile 
beyond that, the logit decreases because the regressor has 
not seen such extreme cases in the training data. The exam-
ple for l_vec_coeff = 6.0 is shown in Fig. 5c. In fact, such 
examples may seem unnatural to a human observer and are 
not present in significant numbers in the CelebA dataset.

Our observation also clarifies the reason for the negative 
attribute change in the positive direction of Table 1 and a 
positive attribute change in the negative direction. Therefore, 
we recommend to refrain from evaluating in these extreme 
areas where the regressor has not been properly trained and 
limit the length of the attribute vector accordingly. Even if 
we limit the length of the attribute vector to a reasonable 
amount, the direction of the attribute vector is important. 
If the initial random image is already smiling and we try to 
increase the attribute further, we might as well end up in the 
“unnatural region” as shown in Fig. 5c. Thus, when evaluat-
ing the influence of an attribute vector, we suggest that it is 
beneficial to first compute the regressor output of the initial 
image. If the logit value is < 0 , change the attribute in the 
positive direction, otherwise in the negative direction.

An appropriate evaluation metric must not only include 
the change in the target attribute, but also quantify how much 
any undesired features have changed. In the case of facial 
images, changing one attribute, such as smiling, should 
change as little as possible all other attributes. To achieve 
this, we use the attribute preservation metric introduced by 
Zhuang et al. [18]. Since the attributes alone are not enough 
to fully represent a person’s identity, we additionally meas-
ure the degree of identity preservation by calculating the 
cosine distance between the embeddings of the original and 
modified images computed using VGGFace2.

As before, we created 1,000 images and added the attrib-
ute vector for smiling scaled by l_vec_coeff ∈ [−6,… , 6] . 
We plotted the attribute and identity preservation in Fig. 6. 
Both graphs are monotonically increasing with increasing 
distance from 0. Although the identity preservation shows 
almost linear behavior, the attribute preservation does not. 
Therefore, we cannot rely on a fixed coefficient between 
attribute modification and attribute preservation, and we 
must evaluate different amounts of attribute modification.

New Evaluation Metric

As previously stated, an attribute vector should only be 
scaled to remain within the range where the regressor has 

Table 3  Influence of the attribute prediction origin on the attribute 
change for the attribute “Smiling”

The left column shows the value of the attribute prediction origin. 
In the second and third columns the attribute was changed in a posi-
tive direction, in the last two columns the negative attribute vector 
was used. The min/max columns show the minimum and maximum 
attribute change, mean and std show the average attribute change and 
standard deviation

Attr. value Positive direction Negative direction

min

max

mean

std

min

max

mean

std

0.0–0.1 0.0010

0.9390

0.4404

0.3047

−0.0948

0.0030

−0.0306

0.0249

0.1–0.2 0.1834

0.8912

0.7389

0.1199

−0.1913

−0.0725

−0.1268

0.0274

0.2–0.3 0.3406

0.7940

0.6892

0.0795

−0.2871

−0.1492

−0.2234

0.0308

0.3–0.4 0.3987

0.6934

0.6110

0.0530

−0.3885

−0.1986

−0.3165

0.0358

0.4–0.5 0.2478

0.5978

0.5195

0.0482

−0.4831

−0.2887

−0.4033

0.0432

0.5–0.6 0.3253

0.4968

0.4340

0.0365

−0.5846

−0.2956

−0.4932

0.0501

0.6–0.7 0.2415

0.3967

0.3350

0.0310

−0.6823

−0.3264

−0.5739

0.0625

0.7–0.8 0.1675

0.2977

0.2418

0.0296

−0.7777

−0.3510

−0.6565

0.0756

0.8–0.9 0.0733

0.1993

0.1431

0.0309

−0.8769

−0.2817

−0.7173

0.1106

0.9–1.0 −0.0004

0.0905

0.0120

0.0213

−0.9459

0.0001

−0.2693

0.3172
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been appropriately trained. The precise scaling factor may 
vary depending on the attribute and regressor used; how-
ever, it is reasonable to assume that a regressor is more 
reliable in the range of 0.1–0.9 than values close to 0 or 1. 
In this range, identity and attribute preservation also tend 

to behave more predictable. Furthermore, considering the 
argument presented earlier, if the prediction is less than 
0.5, the attribute should be increased; otherwise, it should 
be decreased. Consequently, we aim to scale the attribute 
vector in such a way that it changes the attribute by an 

Fig. 5  Impact of overmodulat-
ing an attribute in areas where 
the regressor was not trained

Fig. 6  Attribute and iden-
tity preservation by scaling 
the latent vector for smiling. 
l_vec_coeff is sampled from [− 
6,...,6] with a step size of 0.04. 
The preservation values are 
averaged over 1000 images
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average of ±0.4 . Several methods can be used to rescale 
the attribute vector to achieve the desired attribute change, 
and one possible approach is presented in Algorithm 2. 
This algorithm iteratively tries to find a scaling factor that 
achieves the given target attribute change on average over 
N representative images. To account for outliers, we must 
iterate over a sufficient number of images, as described in 
the previous parts of this section. � determines the accepta-
ble difference between the desired average attribute change 
and the calculated average attribute change for the current 
scaling factor. Additionally, to avoid an infinite loop, the 
optimization is limited to a maximum of max iterations.

Algorithm 2 Get scaling factor
Input: scaling factor, d, goal attr change, N,

stepsize
1: scaling direction flag ← 0
2: for i = 0, ...,max do
3: α list = []
4: for random seed = 0, ..., N do
5: z∗ ← ΘZ∗

6: αorig ← R(G(z∗))
7: if αorig > 0 then
8: αdelta ← αorig −R(G(z∗ − scaling factor · d))
9: else

10: αdelta ← R(G(z∗ + scaling factor · d))− αorig

11: end if
12: α list.append(αdelta)
13: end for
14: if α list.mean()− goal attr change < then
15: return scaling factor
16: end if
17: if α list.mean() < goal attr change then
18: scaling factor ← scaling factor + stepsize
19: if scaling direction flag == −1 then
20: stepsize ← stepsize/2
21: end if
22: scaling direction flag ← 1
23: else
24: scaling factor ← scaling factor− stepsize
25: if scaling direction flag == 1 then
26: stepsize ← stepsize/2
27: end if
28: scaling direction flag ← −1
29: end if
30: end for
31: return scaling factor

Within the main loop, we iteratively generate N images, 
calculate their attribute changes in lines 5–13, and store 
them in a list. If the average attribute change is less than 
the specified goal, the optimization is complete (lines 
14–16). Otherwise, if the attribute change is too small, we 
increase the scaling factor by stepsize (lines 18–19); if it 
is too large, we decrease the scaling factor (lines 24–25). 
For faster convergence to the optimization minimum, we 
halve the stepsize each time we change the optimization 
direction (lines 20–23 and 26–29). Since the optimization 
time scales linearly with N, we can speed up the process 

by first calculating the scaling factor for a smaller N and 
using that scaling factor as a starting point for a larger N.

Algorithm 3 Evaluate attribute vector
Input: d, attr idx

1: for seed = 0, ...,max do
2: z∗ ← ΘZ∗

3: imgorig ← G(z∗)
4: αorig ← R(imgorig)
5: vggForig ← V GGFace2(imgorig)
6: if αorig[attr idx] > 0 then
7: imgd ← (G(z∗ − d · U(0, 1, seed))
8: else
9: imgd ← (G(z∗ + d · U(0, 1, seed))

10: end if
11: αd ← R(imgd)
12: vggFd ← V GGFace2(imgd)
13: vggF dist[seed] ← cos dist(vggForig, vggFd)
14: attr pres[seed] αd[= attr idx]− αorig[= attr idx]
15: attr change[seed] αd[attr idx]− αorig[attr idx]
16: end for
17: return attr change.mean(), attr pres.mean(), vggF dist.mean()

Algorithm 3 is used to compare two attribute vectors. 
It computes the mean attribute change of the target attrib-
ute, the mean attribute change of all other attributes, and 
the mean distance between the VGGFace2 embeddings 
of the original images and the modified images. Since 
each attribute vector is normalized to a predefined attrib-
ute change in Algorithm 2, the attr_change.mean() values 
should be approximately the same. However, attribute 
preservation and attribute change do not behave linearly, 
as shown in Figs. 5a and 6a. Therefore, the evaluation 
should examine different manipulation strengths, limited 
to an upper bound of ±0.4 , obtained by multiplying the 
normalized attribute vector by a scaling factor randomly 
sampled from a uniform distribution in lines 7 and 9. This 
approach facilitates the comparison of attribute vectors 
from multiple methods by comparing only two values, the 
attr_pres.mean() and embedding_distance.mean() of each 
approach. Depending on the needs of a particular use case, 
the two metrics can be weighted differently to select the 
most appropriate method.

Results

We used our evaluation metric to compare several algorithms 
and to investigate the influence of different latent spaces in 
Table 4. Similar to our previous work [19], we selected the 
approach by Shen et al. [15], our reimplementation of Enjoy 
Your Editing [18], and LS-StyleEdit, as being state-of-the-
art algorithms that operate on W space and to allow compar-
ing results of our new metric with those in Sect. “Previous 
Evaluation Metric”. Additionally, we evaluate the approach 
by Larsen et al. [14], representing an earlier approach that 
might be more entangled, allowing to observe how this is 
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shown in our metric. Finally, we include StyleMC [17] to 
provide another algorithm, next to LS-StyleEdit, that also 
operates on S space.

We performed an evaluation of Larsen et al. [14] in both 
Z space and W space to demonstrate the effect of the selected 
latent space. As shown in Table 4, it performs significantly 
worse in Z  space than in W  space. This improvement 
obtained by changing the latent space provides evidence that 
Z space indeed has a larger number of attribute entangle-
ments. Similarly, the evaluation of LS-StyleEdit shows the 
benefit of changing the latent space from W to S.

Moreover, it seems that the performance of different 
methods is also influenced by the attribute being manipu-
lated. For instance, for the attribute “Smiling”, our approach 
(S) has the best attribute distance, while for “Hair color”, 
our approach (S) is on par with Shen et al. [15] and Zhuang 
et al. [18]. Since our claim was that our approach works 
in all latent spaces, we used the same hyperparameters 
L = 20 , r = 0.006 and a batch size of 1 for “Smiling” and 
“Hair color” in both W space and S space. We computed the 
attribute vectors for StyleMC [17] using the queries “a photo 
of a face with blond hair” and “a photo of a smiling face”.

Comparing the results for the algorithm by Shen 
et al. [15], our reimplementation of Enjoy Your Editing [18], 
StyleMC [17], and our LS-StyleEdit approach shows that 
there is no clear winner. Considering the evaluation metric 
as well as the comparison of edited images in the appen-
dix, all four approaches seem to perform on the same level. 

StyleMC clearly performs worst on “Smiling” but very well 
on “Hair color”. In contrast, the quantitative evaluation by 
Zhuang et al. [18] claims a significantly worse performance 
for the algorithm by Shen et al. [15].

While showing comparable performance of our approach, 
we were able to achieve those results without using a large 
number of hyperparameters. In particular, we do not use 
any hyperparameter in our objective function. As discussed 
in Sect. “Local Search-based Latent Space Editing”, the 
maximum vector length L takes a role similar to those of 
hyperparameters within the loss functions of Enjoy Your 
Editing [16] and StyleCLIP [16]—however, both approaches 
require three hyperparameters instead of just a single one. 
Although we define the sample radius r as another hyper-
parameter, it mainly affects the way the search space is 
traversed. As a result, it is more closely related to other 
hyperparameters, such as the learning rate during backprop-
agation. Both, Enjoy Your Editing [18] and StyleCLIP [16] 
use the Adam optimizer, which comes with further hyper-
parameters in addition to the existing ones.

We have studied the different latent space distributions 
and scale the noise used in the local search according to 
the standard deviation of the corresponding latent space. 
This allows our approach to be agnostic and applicable to all 
latent spaces of StyleGAN2. Our newly proposed evaluation 
metric calculates the average attribute and VGGFace2 dis-
tance for a predefined average target attribute change. This 
allows for easier comparison between different approaches 
since only two numbers need to be compared.

Conclusion

We propose an effective local search-based approach 
LS-StyleEdit to semantically manipulate images based 
on a given target attribute. Our method enables con-
tinuous image manipulation on par with state-of-the-art 
approaches, while being latent space agnostic. At the same 
time, it requires significantly less GPU memory than exist-
ing iterative methods based on backpropagation. Since we 
do not rely on backpropagation, our method is applicable 
to non-differentiable black-box models for both the gen-
erator and the regressor, and does not suffer from insta-
bilities. Furthermore, our approach has fewer hyperparam-
eters, which allows for more efficient tuning. We have also 
emphasized the importance of comparing vectors that have 
similar levels of attribute change. The amount of attribute 
change is not only determined by the size of the vector, but 
also by the initial attribute value. Moreover, even with the 
same attribute value, different samples may respond dif-
ferently to the same attribute vector. Therefore, evaluation 
metrics must be averaged over a large enough number of 

Table 4  We compared our approach to three other approaches in the 
W  space and to StyleMC in the S  space using the newly introduced 
evaluation metric

Z∗ Target change Attr. dist. VGGFace2 
dist.

Smiling
 Larsen et al. [14] Z 1.0400 0.2765 77.95e−4
 Larsen et al. [14] W 1.0378 0.2216 9.76e−4
 Shen et al. [15] W 1.0417 0.1759 8.02e−4
 Zhuang et al. [18] W 1.0476 0.1851 2.24e−4
 LS-StyleEdit W 1.0476 0.1850 9.77e−4
 Kocasarı et al. 

[17]
S 1.0361 0.2624 48.22e−4

 LS-StyleEdit S 1.0422 0.1639 6.46e−4
Hair color
 Larsen et al. [14] Z 0.9659 0.5292 0.0136
 Larsen et al. [14] W 0.9609 0.4538 0.0120
 Shen et al. [15] W 0.9560 0.2343 0.0124
 Zhuang et al. [18] W 0.9650 0.2226 0.0082
 LS-StyleEdit W 0.9618 0.2961 0.0147
 Kocasarı et al. 

[17]
S 0.9432 0.1942 0.0137

 LS-StyleEdit S 0.9571 0.2380 0.0105
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samples. The accuracy of the attribute preservation met-
ric depends heavily on the reliability of the regressor pre-
diction. It has been shown that the regressor can produce 
unreliable predictions for extreme cases that are rare in the 
training set. Therefore, it is recommended that the evalua-
tion of the metric be performed within a reasonable range. 
Thus, we have explored the requirements for appropriate 
evaluation metrics and proposed our own metric that is 
easier to interpret than the existing ones. A possible direc-
tion for future work could be the use of more sophisticated 

local search algorithms, e.g., by adopting heuristics that 
have proven successful in other local search domains.

Appendix A: Attribute Manipulation 
Examples

See Figs. 7, 8, 9, 10, 11, 12. 

Fig. 7  Comparison of Smil-
ing: Shen et al. (first row), 
Zhuang et al. (second row), 
Kocasarı et al. (third row), and 
our approach (fourth row) for 
image seed=0. Left column: 
less smiling, middle column: 
original image, right column: 
more smiling. This figure is 
taken from [19]
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Fig. 8  Comparison of Smil-
ing: Shen et al. (first row), 
Zhuang et al. (second row), 
Kocasarı et al. (third row), and 
our approach (fourth row) for 
image seed=1. Left column: 
less smiling, middle column: 
original image, right column: 
more smiling. This figure is 
taken from [19]
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Fig. 9  Comparison of Smil-
ing: Shen et al. (first row), 
Zhuang et al. (second row), 
Kocasarı et al. (third row), and 
our approach (fourth row) for 
image seed=2. Left column: 
less smiling, middle column: 
original image, right column: 
more smiling. This figure is 
taken from [19]
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Fig. 10  Comparison of hair 
color: Shen et al. (first row), 
Zhuang et al. (second row), 
Kocasarı et al. (third row), and 
our approach (fourth row) for 
image seed=0. Left column: 
darker hair, middle column: 
original image, right column: 
lighter hair. This figure is taken 
from [19]
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Fig. 11  Comparison of hair 
color: Shen et al. (first row), 
Zhuang et al. (second row), 
Kocasarı et al. (third row), and 
our approach (fourth row) for 
image seed=1. Left column: 
darker hair, middle column: 
original image, right column: 
lighter hair. This figure is taken 
from [19]
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Fig. 12  Comparison of hair 
color: Shen et al. (first row), 
Zhuang et al. (second row), 
Kocasarı et al. (third row), and 
our approach (fourth row) for 
image seed=2. Left column: 
darker hair, middle column: 
original image, right column: 
lighter hair. This figure is taken 
from [19]
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