
Vol.:(0123456789)

SN Computer Science (2023) 4:820
https://doi.org/10.1007/s42979-023-02272-4

SN Computer Science

ORIGINAL RESEARCH

Keep It Simple: Evaluating Local Search‑Based Latent Space Editing

Andreas Meißner1,2 · Andreas Fröhlich1 · Michaela Geierhos2

Received: 3 May 2023 / Accepted: 23 August 2023
© The Author(s) 2023

Abstract
Semantic image editing allows users to selectively change entire image attributes in a controlled manner with just a few clicks.
Most approaches use a generative adversarial network (GAN) for this task to learn an appropriate latent space representation
and attribute-specific transformations. Attribute entanglement has been a limiting factor for previous approaches to attribute
manipulation. However, more recent approaches have made significant improvements in this regard using separate networks
for attribute extraction. Iterative optimization algorithms based on backpropagation can be used to find attribute vectors
with minimal entanglement, but this requires large amounts of GPU memory, can lead to training instability, and requires
differentiable models. To circumvent these issues, we present a local search-based approach to latent space editing that
achieves comparable performance to existing algorithms while avoiding the aforementioned drawbacks. We also introduce
a new evaluation metric that is easier to interpret than previous metrics.

Keywords Semantic image editing · Latent space editing · StyleGAN · Evaluation metrics

Introduction

Semantic image editing allows users to selectively change
entire image attributes in a controlled manner with just a
few clicks, such as changing the age of a person in a portrait,
the weather in a landscape image, or the color of certain
objects in different scenes. Examples of face manipulation
are shown in Fig. 1. Semantic image editing is a valuable
tool for many real-world applications, including photo

enhancement, artistic visualization, targeted data augmen-
tation, and image animation. In most cases, the goal is to
change specific attributes of the image while preserving its
overall content and all other attributes.

There are two main categories of state-of-the-art methods
for semantic image editing that rely on generative adversarial
networks (GANs) [1]. The first group, known as image-to-
image translation methods, uses GANs to map images from
one domain to another [2–8]. However, these approaches
are limited in that they restrict attribute changes to prede-
fined factors rather than allowing unrestricted adjustments.
The second group of methods, called latent space editing
methods, involves using a GAN that generates images and
searches for directions in its latent space to enable continu-
ous semantic image editing. However, early GAN mod-
els were not optimized for a disentangled latent space, so
modifying one attribute often led to unintended changes in
other attributes [9]. Recent style-based approaches [9–11]
have made significant improvements in disentangling attrib-
utes, allowing specific features to be targeted during image
editing.

Latent space editing methods are further divided into two
groups: supervised and unsupervised approaches. Unsuper-
vised approaches do not rely on a labeled dataset or a regres-
sor to specify the attribute to be manipulated [12, 13]. In
contrast, supervised approaches require a labeled dataset or

This article is part of the topical collection “Advances on
Computational Intelligence 2022” guest edited by Joaquim Filipe,
Kevin Warwick, Janusz Kacprzyk, Thomas Bäck, Bas van Stein,
Christian Wagner, Jonathan Garibaldi, H. K. Lam, Marie Cottrell
and Faiyaz Doctor.

 * Michaela Geierhos
 michaela.geierhos@unibw.de

 Andreas Meißner
 andreas.meissner@zitis.bund.de

 Andreas Fröhlich
 andreas.froehlich@zitis.bund.de

1 Big Data, ZITiS, Zamdorfer Straße 88, 81677 Munich,
Bavaria, Germany

2 Research Institute CODE, University of the Bundeswehr
Munich, Werner-Heisenberg-Weg 39, 85577 Neubiberg,
Bavaria, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02272-4&domain=pdf
http://orcid.org/0000-0002-8180-5606

 SN Computer Science (2023) 4:820 820 Page 2 of 23

SN Computer Science

a regressor [14–18]. Although supervised methods have the
advantage of defining the desired attribute for manipulation,
the attribute vectors computed with earlier methods are often
entangled with other attributes. Recent approaches such as
StyleCLIP [16], StyleMC [17], and Enjoy Your Editing [18]
aim to solve this problem by defining a loss function based
on a deep learning model and iteratively optimizing a latent
vector for the desired attributes using gradient descent. How-
ever, these approaches have the drawback that they require
a significant amount of GPU memory for backpropagation,
which can make them impractical even for high-end GPUs
such as the Tesla-V100. For example, when trying to apply
the approach introduced for Enjoy Your Editing [18] to the
best model for image quality for StyleGAN3 [11], known
as “stylegan3-r-ffhqu-1024x1024.pkl”, a batch size of 1
requires a massive 39 GB of GPU memory, which is too
much even for high-end GPUs like Tesla-V100. Moreover,
only differentiable models can be used to compute the gradi-
ents, which limits the use of black-box models and increases
the implementation overhead for models originally devel-
oped in other frameworks. We have also observed some
instability issues when using smaller batch sizes.

Contributions: In our previous work [19], we proposed an
iterative latent space editing method based on local search
that achieves results comparable to those of Enjoy Your
Editing [18] in terms of identity and attribute preservation
while having a similar runtime. However, our approach
requires significantly less GPU memory (only 12 GB for
“stylegan3-r-ffhqu-1024×1024.pkl” as opposed to the 39
GB required by their approach), making it compatible with
a wider range of GPUs. In addition, our method solves the
problem of numerical instability and does not require a dif-
ferentiable regressor. Our loss function is simpler and uses
fewer hyperparameters. While sticking to the evaluation met-
ric introduced by Zhuang et al. [18], we discussed some of
its limitations and proposed a small extension of the metric
that allows for better comparisons of different approaches.
This extended version of our paper includes all previous
results to be self-contained, but also extends our previous
work [19] in two important directions: As a first new con-
tribution, we evaluate our local search-based approach in
StyleSpace and show that it indeed generalizes to differ-
ent latent spaces. While pointing out possible difficulties
in the transition to more general latent space representa-
tions, we also provide a solution that comes with a deeper

understanding of the corresponding latent space structure.
As a second new contribution, we further investigate the
limitations of the original evaluation metric and propose fur-
ther modifications, resulting in an easier-to-interpret evalu-
ation metric.

Related Work

Semantic image editing has a long history in computer
vision, computer graphics, and machine learning. In recent
years, GANs have received particular attention for enabling
efficient image manipulation through image-to-image trans-
lation or latent space editing.

Generative Adversarial Networks

GANs [1] have achieved impressive results in image genera-
tion in recent years [9, 20–22]. However, image generation
is not the only application. Image inpainting [23, 24], super
resolution [25, 26], data augmentation [27], and 3D object
generation [28] are other areas of research.

A GAN typically consists of two modules: a generator
and a discriminator. While the generator learns to generate
fake samples based on a random distribution as input, the
discriminator learns to distinguish between real and fake
samples. In this way, a generator learns to reproduce the
distribution of the training samples but does not provide
control over the category or semantic attributes of the gen-
erated samples. By providing the generator with labels for
each training sample, a conditional GAN can learn to gener-
ate samples based on the class—but this requires a labeled
dataset [29].

With large-scale GAN models such as BigGAN [21] and
StyleGAN [9], the generation of photorealistic images has
become a reality in recent years. BigGAN [21] is a compre-
hensive GAN model trained on ImageNet [30] that supports
image generation in multiple categories due to its condi-
tional architecture. StyleGAN [9] is another popular GAN
model in which the generator maps the random sampling
distribution to an intermediate latent space, using a fully
connected network (often referred to as a mapping net-
work). In this approach, the intermediate latent space is not
tied to the random distribution of the input, resulting in an

Fig. 1 Examples of semantic
image editing related to manipu-
lating facial attributes

SN Computer Science (2023) 4:820 Page 3 of 23 820

SN Computer Science

automatically learned, unsupervised separation of high-level
attributes.

Image‑to‑Image Translation

Image-to-image translation allows to transform one image
domain into another, such as creating a drawing from a
selfie [31, 32]. For example, pix2pix [33] learns this task
in a supervised manner using cGANs [29]. It combines an
adversarial loss with an L1 loss to not only fool the discrimi-
nator but also to be close to the ground truth in the L1 sense.
The main drawback is that it requires paired data samples.

To circumvent the problem of obtaining paired data,
unpaired image-to-image translation frameworks have been
proposed [7, 31, 34]. CycleGAN [7] preserves key attributes
between the input and the translated image using a cycle
consistency loss.

However, all these methods are only able to learn the
relationships between two different domains simultaneously.
As a result, these approaches have limited scalability when
processing multiple domains and cannot interpolate between
the two domains.

Latent Space Editing

There have been many attempts to use the latent space of a
pre-trained generator for image manipulation [35–37]. Some
methods learn to perform end-to-end image manipulation by
training a network that encodes a given image into a latent
representation of the manipulated image [38–40].

Other techniques attempt to find latent paths in such a
way that traversing them will result in the desired manipula-
tion. These are divided into two classes:

 (i) Supervised methods use either image annotations to
find meaningful latent paths [15], or a pre-trained
model that classifies image attributes [16–18]. The
latter also allows for iterative optimization.

 (ii) Unsupervised methods find reasonable directions
without supervision, but require manual annotation
for each direction afterwards [12, 13, 41].

In particular, the intermediate latent spaces in StyleGAN
architectures [9–11] have been shown to facilitate many dis-
entangled and meaningful image manipulations.

Many approaches perform image manipulations in the
W space [12, 13, 15, 18], the more disentangled interme-
diate latent space generated directly by StyleGAN’s map-
ping network [9]. The W+ space is an extension of the
W space, where a different latent vector w is fed to each
generator layer. While W+ was originally used to mix styles
from different sources [9], it can also be used for semantic
image editing [16]. StyleSpace S, the space spanned by the

channel-wise style parameters, has also been proposed for
latent space editing and was found to be even more disen-
tangled than W and W+ [42]. StyleSpace is also used by
StyleCLIP [16] and StyleMC [17].

Evaluation Metrics

The evaluation of semantic image editing approaches is
typically based on qualitative assessments through sample
results presented in publications. However, some publica-
tions use quantitative metrics to provide a fairer comparison.
In recent studies [43, 44], a pre-trained attribute classifier
was used to quantify changes in the target attribute, while the
Frechet Inception Distance (FID) [45] and Kernel Inception
Distance (KID) [46] were used to measure unwanted attrib-
ute changes. In another publication [47], the quality of the
attribute change was evaluated based on the match between
a given semantic label map and the generated output. Image
similarity was also measured using FID and Learned Per-
ceptual Image Patch Similarity (LPIPS) [48]. In addition,
other works [49, 50] used standard image reconstruction
measures such as mean absolute error, structural similar-
ity index measure, and LPIPS to evaluate image manipula-
tion. The use of semantic label maps as proposed metrics
often assumes localized target attributes, which may not be
appropriate for our approach, especially when a change in
the target attribute affects multiple areas in the image. Fur-
thermore, metrics such as FID or KID score may give more
weight to changes in unwanted attributes such as the back-
ground of the image, rather than changes in the identity of a
person, where even small variations in facial keypoints can
have a significant impact on human perception. Therefore,
the evaluation metric proposed by [18], which uses a pre-
trained regressor to quantify changes in unwanted attributes
and an InceptionResnet pre-trained on the VGGFace2-data-
set [51] to measure changes in identity, is more appropriate
for our approach.

Local Search‑Based Latent Space Editing

We propose an iterative approach for controllable semantic
image editing via latent space navigation in GANs called
LS-StyleEdit. The process starts with a pre-trained generator
G that receives as input a latent vector from a latent space.
Given a target attribute, we try to find a vector in the latent
space that, by adding it to the original latent vector, allows
the target attribute to be changed while leaving other attrib-
utes intact.

Our approach for discovering an attribute-specific latent
vector consists of two pre-trained networks G and R, and a
local search component. While G and R are used to evaluate
a given latent vector, the local search component provides an

 SN Computer Science (2023) 4:820 820 Page 4 of 23

SN Computer Science

iterative framework for optimization by navigating through
the latent space.

In practice, we used StyleGAN2 for our experiments in
Sects. “Evaluation Challenges” and “Towards a New Evalu-
ation Metric”—however, our overall approach is generic and
not limited to this specific choice.

As discussed in Sect. “Related Work”, StyleGAN archi-
tectures have several latent spaces that can be used to modify
an attribute. In addition to the original input space Z, three
different intermediate latent spaces W, W+ , or S can be used:
The Z space is normally distributed, but attributes are more
entangled. The W space has less entanglement and, there-
fore, allows better control over a target attribute. It has been
shown that the W+ space and the StyleSpace S are even less
entangled [42].

Since the W space is often used to explore the latent
space in StyleGAN, we decided to also use the W space,
for an initial implementation in our previous work [19] to
provide a fair comparison between our local search-based
approach and existing methods. However, our approach
is not restricted to W, but can operate on any latent space.
While the W space has 512 parameters, the S space has 9088,
which allows us to evaluate the scalability of our approach.
Therefore, we also evaluate our approach in the S space as
part of this extended work. As a consequence, we also pre-
sent a more general algorithmic description of our approach
that is independent of a specific latent space.

StyleGAN2’s generator network consists of two consecu-
tive parts: a mapping network Gmap and a synthesis network
Gsynth . The input to Gmap is a normally distributed latent vec-
tor z from the original latent space Z, which is then mapped
to a new latent vector w in the intermediate latent space W.
W+ is created by stacking the W vector 18 times and follows
the same distribution as W. Subsequently, affine transforma-
tions A are applied to map the W+ space to the StyleSpace S,
which has a different distribution than W. Gstyle is then used
to generate an image using s as input. Figure 2 shows the
aforementioned architecture of StyleGAN2.

In our approach, R is a regressor network pre-trained on
the CelebA dataset [52] and estimates 40 attributes for the
image. Similar to Enjoy Your Editing [18], our approach is
iterative and R is used to directly compute a loss function

in each iteration. To facilitate comparison, we decided to
use their regressor model [18] to optimize the attribute
vectors. The same regressor was also used for the evalu-
ation in Sect. “Previous Evaluation Metric”. The vector
to be optimized, d, controls the attribute change in the
image. Adding or subtracting d will increase or decrease
the attribute in a given image—this is evaluated by the
loss function. Figure 3 illustrates a single iteration within
this optimization framework. Since our goal is to present a
versatile approach that can be used with any latent space,
we will use the notation Z∗ as a non-specific latent space,
such as Z, W, or S. Similarly, we will use z∗ to refer to its
elements.

The main novelty of our approach is the use of a local
search component to optimize d. In contrast, most other
iterative approaches [16–18] use backpropagation for
their optimization. While backpropagation is a powerful
tool for many deep learning applications, its performance
comes at the cost of high memory consumption and com-
putational cost. Compared to other applications, such as
training the weights of a deep learning network, our task
is less complex, requiring only the optimization of the
attribute vector; the weights of G and R remain unchanged.
Local search provides a simple but efficient framework
for this type of optimization task. Starting from an initial
point in a search space, local search algorithms iteratively
move to “better” points according to an objective function
using heuristics. While local search is mainly applied to
computationally intensive optimization problems in dis-
crete search spaces, there are also methods for real-valued
search spaces. In particular, our local search component is
based on the concept of random optimization [53] and is
described in Algorithm 1.

Fig. 2 Structure of StyleGAN2, which maps a normally distributed
input z ∈ Z to the intermediate latent spaces W and S

Fig. 3 Illustration of the steps that are performed in a single iteration
of our local search-based optimization LS-StyleEdit

SN Computer Science (2023) 4:820 Page 5 of 23 820

SN Computer Science

Algorithm 1 Local search of LS-StyleEdit
Input: sampleRadius r, maxLength L

1: d ← 0
2: for i = 0, ...,max do
3: z∗ ← ΘZ∗

4: ± ← rand{+,−}
5: α ← R(G(z∗ ± d))
6: d ← d+ r · ΣZ∗ (0, I)
7: if lZ∗(d) > L then
8: d ← d · L/lZ∗(d)
9: end if

10: α ← R(G(z∗ ± d))
11: if ±α < ±α then
12: d ← d
13: end if
14: end for

As hyperparameters, our algorithm requires a sample
radius r and a maximum length L, both of which restrict
the choice of our attribute vector d.

We initialize d to be a null vector before entering the
main loop (see line 1). In each iteration, we first sample
a new latent vector, which is the origin for the current
local search step (see line 3). Since the different latent
spaces follow different distributions, we use ΘZ∗ to denote
a general sampling function that returns a random latent
vector according to the corresponding distribution of Z∗ .
While the latent vectors in Z are normally distributed with
standard deviation � = 1 in all dimensions, the distribution
of the latent vectors in W and S is unknown. In practice,
the intermediate latent spaces are not sampled directly,
but the latent vectors for W and S are obtained by first
sampling from Z and applying the corresponding mapping
functions Gmap and A◦Gmap , respectively. Since Gmap and
A are implemented using complex networks, the distribu-
tions of Z, W, and S are expected to differ significantly.
We then sample a sign (+ or −, each with probability 0.5)
to decide whether to evaluate the attribute vector in terms
of its ability to increase or decrease the target attribute
in the current iteration (see line 4). A manipulated latent
vector is obtained by adding or subtracting d depending on
the chosen sign; G is used to generate the corresponding
manipulated image, and R provides a value � to estimate
the degree to which the target attribute is present (see line
5). The actual local search space is then sampled by add-
ing a non-uniformly scaled noise vector to d, resulting
in a new candidate attribute vector d′ (see line 6). This
differs from our original implementation [19] in that we
scale each dimension of the normally sampled vector not
only by the scalar parameter r, but also individually by

performing an element-wise multiplication ⊙ with ΣZ∗ to
account for the different distributions of the latent spaces.
In particular, we use ΣZ∗ to denote the vector of stand-
ard deviations of the corresponding dimensions of Z∗ . As
the next step in our algorithm, we compute the length of
the new candidate attribute vector d′ using lZ∗ . Similar to
sampling the noise vector, this part extends our original
implementation [19] by taking into account the distribu-
tion of the latent space Z∗ . To facilitate this, we define lZ∗
to represent the element-wise partition by ΣZ∗ followed by
the application of the L2 norm. If this length exceeds the
previously defined maximum length of L, d′ is scaled down
accordingly to avoid reaching too sparsely sampled parts
of the latent space (see lines 7–9).

To better understand the underlying intuition of scaling
the vectors as part of our refined algorithm, the standard
deviations in W and S can be observed in Fig. 4. In par-
ticular, Fig. 4a shows that the standard deviation for each
element is no longer uniformly 1 as in Z space, but instead
ranges from 0.07 to 0.48. This difference is even more pro-
nounced in StyleSpace, as shown in Fig. 4b, where the stand-
ard deviation of individual elements ranges from 0.03 up
to 8.04. In the toRGB layers, the data points near 0, e.g.,
s_index=512–1024, have comparatively small variations,
while the convolutional layers have a much higher variation
than the latent vector in W space.

In our previous work [19], we implicitly assumed a stand-
ard deviation of 1 for all dimensions when modifying the
target attribute vector d within a local search step and when
measuring its length, even though d was applied in W space.
While this approach was effective—though probably not
optimal—for W due to the relatively small gap in standard
deviations between dimensions, we realized that the strong
non-uniformity of S posed a problem for the algorithm in
its original shape. As a result, we adopted our general-
ized approach for accounting for the difference in standard
deviations over the individual elements of the latent vec-
tors by scaling the noise values and measuring the lengths
accordingly.

In the same way as � was determined for d, a new value
�′ is now calculated for d′ using G and R (see line 10). d′ is
considered better than d if (i) 𝛼′ > 𝛼 and the attribute vectors
were evaluated according to their positive direction, or (ii)
𝛼′ < 𝛼 and the attribute vectors were evaluated according to
their negative direction. If this is the case, d is updated to the
value of d′ (see lines 11–13).

We decided to keep our optimization criterion as simple
as possible. We used only � and �′ to evaluate the attrib-
ute vectors d and d′ , respectively. Therefore, our objec-
tive function can be computed using only a regressor loss.
In contrast, StyleCLIP [16] uses a loss term based on the
CLIP model [54], L2 distance between latent vectors, and
an identity loss based on a pre-trained ArcFace model [55].

 SN Computer Science (2023) 4:820 820 Page 6 of 23

SN Computer Science

Similarly, Enjoy Your Editing [18] uses a regressor loss, a
content loss based on a VGG model [56], and an additional
discriminator loss. The discriminator loss is intended to
measure the quality of the generated images. Since Style-
CLIP [16] has no visible artifacts and contains no discrim-
inator loss, we assume that the latter is not necessary to
produce realistic images. We also expect that content loss,
identity loss, and L2 distance mainly limit the maximum
length of the attribute vector during optimization. This leads
to the hypothesis that a vector of predefined length, which
is then optimized to modify a target attribute as much as
possible, will automatically preserve the remaining attrib-
utes and the identity of the person due to the disentangle-
ment properties of the underlying latent space. The length of

the attribute vector can be interpreted as a hyperparameter.
Since StyleGAN2 produces high-quality images near the
center of the input distribution, a sufficiently small length
limits the amount of artifacts. Both, StyleCLIP [16] and
Enjoy Your Editing [18], use three hyperparameters in their
respective loss functions, which requires careful balancing.

Evaluation Challenges

Since Zhuang et al. [18] proposed the method that is most
similar to our approach, we initially decided to use their
work as a baseline for evaluating the performance of LS-
StyleEdit. In this section, we present the evaluation setup as

Fig. 4 Comparison of the stand-
ard deviations of the latent vec-
tor dimensions in the W space
and in the StyleSpace S

SN Computer Science (2023) 4:820 Page 7 of 23 820

SN Computer Science

used in our previous work [19] and point out the challenges
that we faced in trying to facilitate a fair comparison.

Reimplementation of Enjoy Your Editing

Unfortunately, we encountered some strange behavior while
testing their StyleGAN2 implementation.1We observed
some sporadic runtime errors due to a compatibility issue
between CUDNN and the NVIDIA driver version, as well as
significant variations in the output results. When using the
same input multiple times with constant noise, the output
images sometimes differed. While most output images were
nearly identical, average pixel differences of up to 9.06 were
occasionally observed in a 0–255 image. This pixel differ-
ence resulted in prediction differences of up to 14.4% from
the regressor, which severely limited our ability to consist-
ently reproduce the results. As a result, we reimplemented
their approach using NVIDIA’s official StyleGAN2-ADA-
PyTorch implementation.2 While the StyleGAN2 implemen-
tation of Enjoy Your Editing generates images with a size of
256x256 pixels, we used StyleGAN’s FFHQ model, which
provides a resolution of 1024x1024 pixels, since most appli-
cations use the best possible image quality.

For all experiments in our previous work [19], which
are also presented in Table 2 and Sect. “Quantifying Insta-
bilities of Enjoy Your Editing” of this extended paper, we
used the settings r = 3 ⋅ 10−4 and L = 0.8 for our algorithm.
As already mentioned in Sect. “Local Search-based Latent
Space Editing”, in our initial implementation we did not take
into account the difference in standard deviations between
latent vector dimensions, i.e., instead of ΣZ∗ we used I for
sampling possible attribute vectors d during local search
(cf. Algorithm 1). As suggested by Zhuang et al. [18], we
used the regressor loss coefficient �1 = 10 , the content loss
coefficient �2 = 0.05 , and the discriminator loss coefficient
�3 = 0.05 for our reimplementation of Enjoy Your Editing.
For optimization, an Adam optimizer with a learning rate
of 10−4 was used.

Both, the initial implementation of our local search-based
algorithm and the reimplementation of Enjoy Your Editing,
are available in our GitHub repository.3 It also contains the
evaluation scripts used in our experiments.

Quantifying Instabilities of Enjoy Your Editing

In the original implementation of Enjoy Your Editing [18],
StyleGAN2 images have a resolution of 256x256 pixels,
which allows the use of larger batch sizes compared to
1024x1024 models. Larger models, such as those used by

StyleGAN3 [11], require even more GPU memory, further
limiting the viable batch size. To investigate the impact of
using smaller batch sizes on training stability, we ran our
reimplementation of Enjoy your Editing for 20,000 itera-
tions with 10 different random seeds and checked how often
numerical instabilities (i.e., NaN values in the attribute vec-
tor) occurred.

1. In the first experiment, we performed 10 runs for Style-
GAN3, using its largest model “stylegan3-r-ffhqu-
1024x1024.pkl” with a batch size of 1 and a learning
rate of 10−4 . All 10 runs ended up with numerical insta-
bilities.

2. In the second experiment, we investigated the influence
of batch size on the stability of Enjoy Your Editing.
Since “stylegan3-r-ffhqu-1024×1024.pkl” requires 39
GB of GPU memory at a batch size of 1, we decided
to use StyleGAN2’s 1024×1024-ffhq-model—which
we used in all subsequent experiments—to test larger
batch sizes. For a batch size of 1 and a learning rate of
10−4 , 7/10 runs ended in numerical instability. For batch
sizes of 2, 4, and 8, 2/10 runs also ended in numerical
instability. Thus, while training stability improved with
batch sizes larger than 1, numerical instabilities were
still observed for a batch size of 8. Since instabilities
occurred with both StyleGAN2 and StyleGAN3, this
suggests that the instability problem is not a model-
specific effect, but is caused by the underlying approach.

3. In the third experiment, we examined the influence of
the learning rate. While 7/10 runs ended in numerical
instability at a learning rate of 10−4 , only 4/10 runs did
so at a learning rate of 10−5.

We traced the cause of the numerical instabilities to the
regressor loss, which uses a binary cross-entropy (BCE)
function:

If �′ is close to 0 and 1, the terms log(��) and log(1 − ��) take
on very large values, respectively. These terms often can-
not be compensated by �̂�′ and (1 − �̂��) . This high loss leads
to large gradients, which can be traced back to the output
layer of StyleGAN2, where the first NaN values appear. We
observed that switching from BCE to a mean squared error
(MSE) function seems to be a possible way to avoid these
instabilities. When using an MSE-based loss, no NaN values
occurred in our experiments and the visual quality of the
edited images remained the same. However, this was just a
first impression and we did not perform a full experimental
evaluation using MSE-based loss, as this was outside the
scope of our work. While inspecting the GitHub implemen-
tation of Enjoy Your Editing, we found some differences

(1)Lreg = �[−�̂�� log 𝛼� − (1 − �̂�
�) log (1 − 𝛼

�)].

1 https:// github. com/ Keles tZ/ Laten t2im.
2 https:// github. com/ NVlabs/ style gan2- ada- pytor ch.
3 https:// github. com/ meiss nerA/ Local Searc hLSpa ceE.

https://github.com/KelestZ/Latent2im
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/meissnerA/LocalSearchLSpaceE

 SN Computer Science (2023) 4:820 820 Page 8 of 23

SN Computer Science

compared to the pseudocode provided in their paper [18]. In
particular, one difference relates to the sampling of a random
value � , which is then used to compute �′ for their BCE loss.
While we decided to base our reimplementation on their offi-
cial paper, it is possible that using the sampling distribution
from their GitHub implementation would also reduce insta-
bilities. However, both of these possible solutions highlight
the well-known fact that backpropagation is sensitive to the
careful choice of many hyperparameters, such as the loss
function and learning rate. Moreover, even without numeri-
cal instabilities, backpropagation-based approaches still have
the disadvantage of requiring differentiable models and large
amounts of GPU memory. Local search can provide a simple
framework to circumvent these difficulties in the context of
latent space editing.

Previous Evaluation Metric

To evaluate the attribute values, we originally used the eval-
uation metric by Zhuang et al. [18] to show that our local
search-based approach can compete with other methods on
an already established evaluation metric and not just by cus-
tomizing a new evaluation metric to our advantage [19]. We
generated 1,000 original images, produced 10,000 edited
images with different levels of editing, and calculated the
difference in the target attribute between the original images
and their respective edited images. Depending on the degree
of change in the target attribute, an image pair is stored in
one of the three buckets ((0, 0.3], (0.3, 0.6], or (0.6, 0.9]).
Two different metrics are calculated for each bucket:

 (i) Identity preservation is computed using the popular
image identity recognition model VGGFace2, which
is pre-trained on the VGGface2 dataset [57]. When
VGGFace2 is applied to a face image, it outputs a
feature vector. Identity preservation is the cosine sim-
ilarity between the face feature vector of the original
image and the edited image averaged over all image
pairs.

 (ii) The attribute preservation metric is computed by
averaging over a set of facial attributes estimated by
a regressor network. In particular, we initially used
the same pre-trained regressor network that was used
to estimate the target attribute [52]. We computed the
40 attribute predictions for all original images and all
edited images. Ideally, editing only changes the tar-
get attribute and all other attributes remain the same.
Therefore, the average change in all attributes except
the target attribute is used. The attribute preservation
metric is the average attribute difference across all
image pairs.

Unfortunately, we encountered a problem with the described
metric: Short attribute vectors tend to give significantly bet-
ter results than longer ones. This is not surprising, since
the length of the attribute vector directly affects the dis-
tance between the latent vectors for the original image and
the manipulated image. For example, using a null vector
does not change the image at all. As a result, a null vector
achieves perfect identity and attribute preservation scores.
A similar effect can be observed for any sufficiently short
non-zero vector.

In Table 1, both preservation metrics are computed for
an attribute vector found by our approach and a downscaled
version of it. The downscaled version appears to perform
better than the original attribute vector when no additional
criterion is used for evaluation. In practice, a good attrib-
ute vector must preserve the image content while changing
the target attribute as much as possible, both at the same
time. This trade-off is strongly influenced by the length of
the vector. In particular, downscaling not only improves the
preservation metrics, but also reduces the manipulation of
the target attribute. As a result, evaluating only the preserva-
tion component turns out to be insufficient. To address this
shortcoming, we also include the bucket distribution in our
evaluation. The bucket distribution is an indication of the
degree of change with respect to the target attribute.

Table 1 Influence of the vector
length on the evaluation metric
for the target attribute “Smiling”
(taken from [19])

The rows show results for the vector computed by our approach and a scaled version of it. In terms of pres-
ervation metrics, the short vector performs better than the original one. However, the manipulation of target
attributes is reduced

Smiling Attribute preservation Identity preservation Buckets

(0, 0.3] (0.3, 0.6] (0.6, 0.9] (0, 0.3] (0.3, 0.6] (0.6, 0.9] (0,
0.3]

(0.3,
0.6]

(0.6,
0.9]

‖d‖ 0.0268

±0.0671

0.0669

±0.1336

0.0980

±0.1866

0.9990

±0.0022

0.9976

±0.0032

0.9964

±0.0039

5442 1370 2309

d/5 0.0114

±0.0333

0.0405

±0.0968

0.0599

±0.1396

0.9998

±0.0005

0.9995

±0.0008

0.9993

±0.0007
9563 410 27

SN Computer Science (2023) 4:820 Page 9 of 23 820

SN Computer Science

While highlighting an important aspect, the bucket distri-
bution does not automatically allow for a direct ranking of
different algorithms. Due to the strong negative correlation
between target attribute change and preservation metrics,
approaches tend to be better at one or the other. A naive
attempt to overcome this limitation could be to normalize the
attribute vectors before evaluation. Unfortunately, this turns
out to be insufficient. Even small variations in an algorithm,
e.g., a different random seed or a different batch size, lead to
different latent vectors. As part of our evaluation, we found
that different attribute vectors require different lengths for
the same degree of attribute editing. This is not surprising
since W does not follow a known distribution. To solve this
problem, we proposed to scale attribute vectors so that they
change the target attribute by the same amount.

However, the target attribute change is influenced by sev-
eral aspects and there is no simple measure. As a result, we
initially decided to approximate the target attribute change
by the number of samples with an attribute change of at most
0.3, which roughly corresponds to the samples in bucket
(0, 0.3]. When implementing the scaling of the vector, we
wondered what range we should use as the measure of attrib-
ute change. Values greater than 0.9 are not represented in the
buckets, but an attribute vector that changes the target attrib-
ute by more than 0.9 should be considered when determining
the scaling factor. Therefore, we decided to scale the vectors
so that the number of samples with an attribute change of at

most 0.3 is within ±1% . This means that the number of sam-
ples with an attribute change of more than 0.3 is also within
±1% . In total, we ran our reimplementation of Enjoy Your
Editing with a batch size of 1 for 20,000 iterations, resulting
in a bucket distribution of [5416, 1418, 2320] for the attribute
“Smiling”, and scaled all latent vectors in our experiments
for the same attribute so that bucket (0, 0.3] = 5416 ± 54 .
The results of this evaluation, which correspond to the main
results of our previous work [19], are shown in Table 2.

To have comparable runtimes, we also used this run
as a reference, which took 4105 s on a NVIDIA Quadro
GV100, and stopped each run after that time. In the original
implementation of Enjoy Your Editing, d is initialized with
a random distribution. However, this random initialization
affects the performance of the computed attribute vector. For
reasons of reproducibility, we have initialized the attribute
vector in Enjoy Your Editing with a null vector. Since the
loss networks use pre-trained weights, this does not nega-
tively affect performance.

Towards a New Evaluation Metric

The primary focus of our previous work [19] was to introduce
a local search-based algorithm for latent space editing. We
explicitly tried to avoid any changes to any components that
were not specific to our approach. In particular, we stuck to

Table 2 Comparison (taken from [19]) of attribute preservation (a
lower score is better) and identity preservation (a higher score is bet-
ter) for the algorithm by [15] (Shen), our reimplementation of Enjoy

your Editing (Zhuang), and our local search-based approach (with
batch size=1 and batch size=8) after scaling the vectors to cause the
same degree of target attribute change

While the bucket distribution is similar after scaling, the resulting length of the attribute vectors can be different. The first four rows show met-
rics for the “Smiling” attribute, the last four rows show metrics for the “Hair color” attribute

Attribute Preservation Identity Preservation Buckets d

(0, 0.3] (0.3, 0.6] (0.6, 0.9] (0, 0.3] (0.3, 0.6] (0.6, 0.9] (0, 0.3] (0.3, 0.6] (0.6, 0.9]

Smiling
 Shen 0.0264

±0.0659

0.0657

±0.1319

0.0977

±0.1875

0.9988

±0.0027

0.9974

±0.0034

0.9956

±0.0047

5429 1330 2307 1.31

 Zhuang 0.0300

±0.0739

0.0718

±0.1393

0.1020

±0.1887

0.9991

±0.0020

0.9979

±0.0026

0.9966

±0.0038

5416 1418 2320 1.32

 Ours bs=1 0.0268

±0.0671

0.0669

±0.1336

0.0980

±0.1866

0.9990

±0.0022

0.9976

±0.0032

0.9964

±0.0039

5442 1370 2309 1.40

 Ours bs=8 0.0252

±0.0628

0.0641

±0.1300

0.0958

±0.1855

0.9990

±0.0022

0.9976

±0.0034

0.9963

±0.0039

5426 1338 2315 1.30

Hair color
 Shen 0.0429

±0.1008

0.0789

±0.1372

0.0988

±0.1744

0.9851

±0.0229

0.9542

±0.0346

0.9370

±0.0430
5428 1122 1520 2.44

 Zhuang 0.0399

±0.0967

0.0745

±0.1317

0.0936

±0.1700

0.9869

±0.0197

0.9543

±0.0347

0.9357

±0.0431

5395 1279 1689 2.01

 Ours bs=1 0.0447

±0.1003

0.0880

±0.1461

0.1093

±0.1829

0.9814

±0.0283

0.9409

±0.0449

0.9201

±0.0531
5380 1134 1447 3.20

 Ours bs=8 0.0452

±0.1047

0.0842

±0.1479

0.1030

±0.1800

0.9849

±0.0233

0.9538

±0.0358

0.9396

±0.0412

5345 1129 1536 2.79

 SN Computer Science (2023) 4:820 820 Page 10 of 23

SN Computer Science

the evaluation metric defined by Zhuang et al. [18] and also
used their regressor model for estimating facial attributes to
ensure a fair comparison and eliminate any potential bias that
might favor our method. Having shown that our approach
can indeed compete with existing algorithms, we can lift the
self-imposed restriction for the extensions presented here.

As the main novelty within this section, we propose a
new evaluation metric for facial attribute manipulation that
addresses several challenges currently present in attribute vector
evaluation while aiming to be easier to interpret. Similar to the
metric introduced by Zhuang et al. [18], a pre-trained regressor
model will still be part of the backbone of our metric. However,
since we were missing some crucial details about how their
regressor was trained, we decided to train our own regressor
for attribute classification. To minimize the influence of JPEG
compression artifacts, we trained our model using a ResNet50
on the PNG images of the CelebA dataset [52]. We trained our
model for five epochs and obtained an accuracy of 0.92. The
details of our hyperparameters and preprocessing steps during
training are available in our GitHub repository.4 The regressor
is used in all experiments related to the new evaluation metric.
However, we made a conscious decision not to use the regressor
to compute the attribute vectors. Instead, we used the regressor
provided by Zhuang et al. [18]. It was deemed inappropriate to
optimize the attribute vectors on the same model that they are
evaluated on, since StyleMC [17] uses a CLIP model to com-
pute the attribute values, which would give an unfair advantage
to the other algorithms.

Influence of the Initial Image

Although normalizing the vector length based on one bucket
is a step toward normalization, it may not be the best solu-
tion. Comparing two attribute vectors that differ significantly
in the other two buckets is not a straightforward process and
leaves room for interpretation as to which attribute vector
might be better. To have a metric with less room for interpre-
tation, we propose to normalize the attribute vectors so that
they produce the same average change in the target attrib-
ute over a given number of images. Furthermore, instead of
calculating attribute and identity preservation for each of
the three buckets, we calculate the average over all samples.
This approach provides a standardized attribute and identity
preservation metric that allows us to compare our results
using only two numbers instead of the previous six plus the
bucket distribution. Depending on the specific use case,
these two metrics could even be combined into a weighted
sum that reflects the relative importance of preserving iden-
tity or avoiding unwanted attribute changes.

However, there is an open question that needs to be dis-
cussed: What is the appropriate amount by which the target
attribute should change, on average, to allow for a fair com-
parison? To establish a predetermined range of values, it
may be advantageous to use a sigmoid function for the target
attribute change. However, because the slope of the sigmoid
decreases as the value moves away from 0, we hypothesized
that the same attribute vector might have different manipula-
tion strengths depending on the source attribute value.

To test our hypothesis, we generated 10,000 random
images and used our regressor to determine the attribute
value of each image. We then calculated the corresponding
sigmoid for each image. These images were then divided
into buckets ranging from 0.0−0.1 to 0.9−1.0 based on their
sigmoid values. For the purposes of this experiment, we
chose “Smiling” as the target attribute. Since the generated
images had a bias towards high values of smiling, the major-
ity of the images fell into the 0.9−1.0 bucket. To ensure
that the standard deviations were not biased by the differ-
ent number of samples within each bucket, we randomly
selected 226 samples from each bucket to match the number
of samples in the smallest bucket.

For each image, we added a given attribute vector for the
attribute “Smiling” and computed the difference between
the initial output of the regressor and the adjusted attribute
value. We also calculated the attribute change in the nega-
tive direction of the attribute vector. Based on the attribute
changes, we calculated the minimum and maximum attrib-
ute change for each bucket, as well as the average attrib-
ute change and standard deviation, which are presented in
Table 3. When examining the minimum and maximum val-
ues, we observed a large possible range across all buckets.

Since the same attribute vector resulted in significantly dif-
ferent attribute changes, our first conclusion is that an evalua-
tion metric must average over a sufficient number of samples.

Shifting the focus to the averages reveals a second trend,
where the average attribute change in the positive direction
decreases steadily starting from the third row (0.7389). This
can also be observed in the negative direction, where the
average attribute change decreases from −0.7173 to −0.0306.
Since the sigmoid function limits the output to the range
from 0.0 to 1.0, it is evident that an initial attribute value of
0.7, for example, limits the attribute change to a maximum
of 0.3 in the positive direction. Our second conclusion is that
an evaluation metric can benefit from changing an attribute
in a positive direction for initial attribute values between
0.0 and 0.5, and in a negative direction for initial attribute
vectors between 0.5 and 1.0.

The third notable observation is that buckets 0.0−0.1
and 0.9−1.0 are different from the others in that they have
a higher standard deviation compared to the average attrib-
ute change. Although all other buckets show a consistently
decreasing average attribute change in the positive direction, 4 https:// github. com/ meiss nerA/ Local Searc hLSpa ceE2.

https://github.com/meissnerA/LocalSearchLSpaceE2

SN Computer Science (2023) 4:820 Page 11 of 23 820

SN Computer Science

the 0.0−0.1 bucket has a smaller value than the 0.1−0.2
bucket, and in the negative direction, the −0.2693 attrib-
ute change is smaller than the −0.7173 attribute change.
We found it particularly interesting that a positive attrib-
ute manipulation resulted in a negative attribute change for
the 0.9−1.0 bucket, and in the negative direction there were
positive attribute changes (0.003 and 0.0001) in the first and
last buckets, respectively. Therefore, we conclude that the
ranges between 0.0−0.1 and 0.9−1.0 may pose a challenge
for a reliable evaluation metric.

Influence of the Attribute Manipulation Strength

After observing the strange behavior of the sigmoid ranges
between 0.0−0.1 and 0.9−1.0 with respect to attribute
changes, we decided to investigate this behavior further.
We created 1000 images and added our smile attribute vec-
tor scaled by a factor of l_vec_coeff ∈ [−6,… , 6] . Since the
sigmoid function squeezes the range of values, we used the
logit (the regressor output before applying the sigmoid) of
the regressor output. Figure 5a shows the regressor logit over
the manipulation strength, where the blue dots represent the

average of all 1000 images and the orange dots represent
the regressor logit of one sample. We notice that the regres-
sor logit continuously increases until l_vec_coeff reaches a
value of about 2, and from there the regressor power slowly
decreases. We conclude that the smiling attribute increases
in a natural way from 0 to 2. Figure 5b shows the image that
reached the maximum regressor output at l_vec_coeff=2.04.
However, if the attribute vector tries to increase the smile
beyond that, the logit decreases because the regressor has
not seen such extreme cases in the training data. The exam-
ple for l_vec_coeff = 6.0 is shown in Fig. 5c. In fact, such
examples may seem unnatural to a human observer and are
not present in significant numbers in the CelebA dataset.

Our observation also clarifies the reason for the negative
attribute change in the positive direction of Table 1 and a
positive attribute change in the negative direction. Therefore,
we recommend to refrain from evaluating in these extreme
areas where the regressor has not been properly trained and
limit the length of the attribute vector accordingly. Even if
we limit the length of the attribute vector to a reasonable
amount, the direction of the attribute vector is important.
If the initial random image is already smiling and we try to
increase the attribute further, we might as well end up in the
“unnatural region” as shown in Fig. 5c. Thus, when evaluat-
ing the influence of an attribute vector, we suggest that it is
beneficial to first compute the regressor output of the initial
image. If the logit value is < 0 , change the attribute in the
positive direction, otherwise in the negative direction.

An appropriate evaluation metric must not only include
the change in the target attribute, but also quantify how much
any undesired features have changed. In the case of facial
images, changing one attribute, such as smiling, should
change as little as possible all other attributes. To achieve
this, we use the attribute preservation metric introduced by
Zhuang et al. [18]. Since the attributes alone are not enough
to fully represent a person’s identity, we additionally meas-
ure the degree of identity preservation by calculating the
cosine distance between the embeddings of the original and
modified images computed using VGGFace2.

As before, we created 1,000 images and added the attrib-
ute vector for smiling scaled by l_vec_coeff ∈ [−6,… , 6] .
We plotted the attribute and identity preservation in Fig. 6.
Both graphs are monotonically increasing with increasing
distance from 0. Although the identity preservation shows
almost linear behavior, the attribute preservation does not.
Therefore, we cannot rely on a fixed coefficient between
attribute modification and attribute preservation, and we
must evaluate different amounts of attribute modification.

New Evaluation Metric

As previously stated, an attribute vector should only be
scaled to remain within the range where the regressor has

Table 3 Influence of the attribute prediction origin on the attribute
change for the attribute “Smiling”

The left column shows the value of the attribute prediction origin.
In the second and third columns the attribute was changed in a posi-
tive direction, in the last two columns the negative attribute vector
was used. The min/max columns show the minimum and maximum
attribute change, mean and std show the average attribute change and
standard deviation

Attr. value Positive direction Negative direction

min

max

mean

std

min

max

mean

std

0.0–0.1 0.0010

0.9390

0.4404

0.3047

−0.0948

0.0030

−0.0306

0.0249

0.1–0.2 0.1834

0.8912

0.7389

0.1199

−0.1913

−0.0725

−0.1268

0.0274

0.2–0.3 0.3406

0.7940

0.6892

0.0795

−0.2871

−0.1492

−0.2234

0.0308

0.3–0.4 0.3987

0.6934

0.6110

0.0530

−0.3885

−0.1986

−0.3165

0.0358

0.4–0.5 0.2478

0.5978

0.5195

0.0482

−0.4831

−0.2887

−0.4033

0.0432

0.5–0.6 0.3253

0.4968

0.4340

0.0365

−0.5846

−0.2956

−0.4932

0.0501

0.6–0.7 0.2415

0.3967

0.3350

0.0310

−0.6823

−0.3264

−0.5739

0.0625

0.7–0.8 0.1675

0.2977

0.2418

0.0296

−0.7777

−0.3510

−0.6565

0.0756

0.8–0.9 0.0733

0.1993

0.1431

0.0309

−0.8769

−0.2817

−0.7173

0.1106

0.9–1.0 −0.0004

0.0905

0.0120

0.0213

−0.9459

0.0001

−0.2693

0.3172

 SN Computer Science (2023) 4:820 820 Page 12 of 23

SN Computer Science

been appropriately trained. The precise scaling factor may
vary depending on the attribute and regressor used; how-
ever, it is reasonable to assume that a regressor is more
reliable in the range of 0.1–0.9 than values close to 0 or 1.
In this range, identity and attribute preservation also tend

to behave more predictable. Furthermore, considering the
argument presented earlier, if the prediction is less than
0.5, the attribute should be increased; otherwise, it should
be decreased. Consequently, we aim to scale the attribute
vector in such a way that it changes the attribute by an

Fig. 5 Impact of overmodulat-
ing an attribute in areas where
the regressor was not trained

Fig. 6 Attribute and iden-
tity preservation by scaling
the latent vector for smiling.
l_vec_coeff is sampled from [−
6,...,6] with a step size of 0.04.
The preservation values are
averaged over 1000 images

SN Computer Science (2023) 4:820 Page 13 of 23 820

SN Computer Science

average of ±0.4 . Several methods can be used to rescale
the attribute vector to achieve the desired attribute change,
and one possible approach is presented in Algorithm 2.
This algorithm iteratively tries to find a scaling factor that
achieves the given target attribute change on average over
N representative images. To account for outliers, we must
iterate over a sufficient number of images, as described in
the previous parts of this section. � determines the accepta-
ble difference between the desired average attribute change
and the calculated average attribute change for the current
scaling factor. Additionally, to avoid an infinite loop, the
optimization is limited to a maximum of max iterations.

Algorithm 2 Get scaling factor
Input: scaling factor, d, goal attr change, N,

stepsize
1: scaling direction flag ← 0
2: for i = 0, ...,max do
3: α list = []
4: for random seed = 0, ..., N do
5: z∗ ← ΘZ∗

6: αorig ← R(G(z∗))
7: if αorig > 0 then
8: αdelta ← αorig −R(G(z∗ − scaling factor · d))
9: else

10: αdelta ← R(G(z∗ + scaling factor · d))− αorig

11: end if
12: α list.append(αdelta)
13: end for
14: if α list.mean()− goal attr change < then
15: return scaling factor
16: end if
17: if α list.mean() < goal attr change then
18: scaling factor ← scaling factor + stepsize
19: if scaling direction flag == −1 then
20: stepsize ← stepsize/2
21: end if
22: scaling direction flag ← 1
23: else
24: scaling factor ← scaling factor− stepsize
25: if scaling direction flag == 1 then
26: stepsize ← stepsize/2
27: end if
28: scaling direction flag ← −1
29: end if
30: end for
31: return scaling factor

Within the main loop, we iteratively generate N images,
calculate their attribute changes in lines 5–13, and store
them in a list. If the average attribute change is less than
the specified goal, the optimization is complete (lines
14–16). Otherwise, if the attribute change is too small, we
increase the scaling factor by stepsize (lines 18–19); if it
is too large, we decrease the scaling factor (lines 24–25).
For faster convergence to the optimization minimum, we
halve the stepsize each time we change the optimization
direction (lines 20–23 and 26–29). Since the optimization
time scales linearly with N, we can speed up the process

by first calculating the scaling factor for a smaller N and
using that scaling factor as a starting point for a larger N.

Algorithm 3 Evaluate attribute vector
Input: d, attr idx

1: for seed = 0, ...,max do
2: z∗ ← ΘZ∗

3: imgorig ← G(z∗)
4: αorig ← R(imgorig)
5: vggForig ← V GGFace2(imgorig)
6: if αorig[attr idx] > 0 then
7: imgd ← (G(z∗ − d · U(0, 1, seed))
8: else
9: imgd ← (G(z∗ + d · U(0, 1, seed))

10: end if
11: αd ← R(imgd)
12: vggFd ← V GGFace2(imgd)
13: vggF dist[seed] ← cos dist(vggForig, vggFd)
14: attr pres[seed] αd[= attr idx]− αorig[= attr idx]
15: attr change[seed] αd[attr idx]− αorig[attr idx]
16: end for
17: return attr change.mean(), attr pres.mean(), vggF dist.mean()

Algorithm 3 is used to compare two attribute vectors.
It computes the mean attribute change of the target attrib-
ute, the mean attribute change of all other attributes, and
the mean distance between the VGGFace2 embeddings
of the original images and the modified images. Since
each attribute vector is normalized to a predefined attrib-
ute change in Algorithm 2, the attr_change.mean() values
should be approximately the same. However, attribute
preservation and attribute change do not behave linearly,
as shown in Figs. 5a and 6a. Therefore, the evaluation
should examine different manipulation strengths, limited
to an upper bound of ±0.4 , obtained by multiplying the
normalized attribute vector by a scaling factor randomly
sampled from a uniform distribution in lines 7 and 9. This
approach facilitates the comparison of attribute vectors
from multiple methods by comparing only two values, the
attr_pres.mean() and embedding_distance.mean() of each
approach. Depending on the needs of a particular use case,
the two metrics can be weighted differently to select the
most appropriate method.

Results

We used our evaluation metric to compare several algorithms
and to investigate the influence of different latent spaces in
Table 4. Similar to our previous work [19], we selected the
approach by Shen et al. [15], our reimplementation of Enjoy
Your Editing [18], and LS-StyleEdit, as being state-of-the-
art algorithms that operate on W space and to allow compar-
ing results of our new metric with those in Sect. “Previous
Evaluation Metric”. Additionally, we evaluate the approach
by Larsen et al. [14], representing an earlier approach that
might be more entangled, allowing to observe how this is

 SN Computer Science (2023) 4:820 820 Page 14 of 23

SN Computer Science

shown in our metric. Finally, we include StyleMC [17] to
provide another algorithm, next to LS-StyleEdit, that also
operates on S space.

We performed an evaluation of Larsen et al. [14] in both
Z space and W space to demonstrate the effect of the selected
latent space. As shown in Table 4, it performs significantly
worse in Z space than in W space. This improvement
obtained by changing the latent space provides evidence that
Z space indeed has a larger number of attribute entangle-
ments. Similarly, the evaluation of LS-StyleEdit shows the
benefit of changing the latent space from W to S.

Moreover, it seems that the performance of different
methods is also influenced by the attribute being manipu-
lated. For instance, for the attribute “Smiling”, our approach
(S) has the best attribute distance, while for “Hair color”,
our approach (S) is on par with Shen et al. [15] and Zhuang
et al. [18]. Since our claim was that our approach works
in all latent spaces, we used the same hyperparameters
L = 20 , r = 0.006 and a batch size of 1 for “Smiling” and
“Hair color” in both W space and S space. We computed the
attribute vectors for StyleMC [17] using the queries “a photo
of a face with blond hair” and “a photo of a smiling face”.

Comparing the results for the algorithm by Shen
et al. [15], our reimplementation of Enjoy Your Editing [18],
StyleMC [17], and our LS-StyleEdit approach shows that
there is no clear winner. Considering the evaluation metric
as well as the comparison of edited images in the appen-
dix, all four approaches seem to perform on the same level.

StyleMC clearly performs worst on “Smiling” but very well
on “Hair color”. In contrast, the quantitative evaluation by
Zhuang et al. [18] claims a significantly worse performance
for the algorithm by Shen et al. [15].

While showing comparable performance of our approach,
we were able to achieve those results without using a large
number of hyperparameters. In particular, we do not use
any hyperparameter in our objective function. As discussed
in Sect. “Local Search-based Latent Space Editing”, the
maximum vector length L takes a role similar to those of
hyperparameters within the loss functions of Enjoy Your
Editing [16] and StyleCLIP [16]—however, both approaches
require three hyperparameters instead of just a single one.
Although we define the sample radius r as another hyper-
parameter, it mainly affects the way the search space is
traversed. As a result, it is more closely related to other
hyperparameters, such as the learning rate during backprop-
agation. Both, Enjoy Your Editing [18] and StyleCLIP [16]
use the Adam optimizer, which comes with further hyper-
parameters in addition to the existing ones.

We have studied the different latent space distributions
and scale the noise used in the local search according to
the standard deviation of the corresponding latent space.
This allows our approach to be agnostic and applicable to all
latent spaces of StyleGAN2. Our newly proposed evaluation
metric calculates the average attribute and VGGFace2 dis-
tance for a predefined average target attribute change. This
allows for easier comparison between different approaches
since only two numbers need to be compared.

Conclusion

We propose an effective local search-based approach
LS-StyleEdit to semantically manipulate images based
on a given target attribute. Our method enables con-
tinuous image manipulation on par with state-of-the-art
approaches, while being latent space agnostic. At the same
time, it requires significantly less GPU memory than exist-
ing iterative methods based on backpropagation. Since we
do not rely on backpropagation, our method is applicable
to non-differentiable black-box models for both the gen-
erator and the regressor, and does not suffer from insta-
bilities. Furthermore, our approach has fewer hyperparam-
eters, which allows for more efficient tuning. We have also
emphasized the importance of comparing vectors that have
similar levels of attribute change. The amount of attribute
change is not only determined by the size of the vector, but
also by the initial attribute value. Moreover, even with the
same attribute value, different samples may respond dif-
ferently to the same attribute vector. Therefore, evaluation
metrics must be averaged over a large enough number of

Table 4 We compared our approach to three other approaches in the
W space and to StyleMC in the S space using the newly introduced
evaluation metric

Z∗ Target change Attr. dist. VGGFace2
dist.

Smiling
 Larsen et al. [14] Z 1.0400 0.2765 77.95e−4
 Larsen et al. [14] W 1.0378 0.2216 9.76e−4
 Shen et al. [15] W 1.0417 0.1759 8.02e−4
 Zhuang et al. [18] W 1.0476 0.1851 2.24e−4
 LS-StyleEdit W 1.0476 0.1850 9.77e−4
 Kocasarı et al.

[17]
S 1.0361 0.2624 48.22e−4

 LS-StyleEdit S 1.0422 0.1639 6.46e−4
Hair color
 Larsen et al. [14] Z 0.9659 0.5292 0.0136
 Larsen et al. [14] W 0.9609 0.4538 0.0120
 Shen et al. [15] W 0.9560 0.2343 0.0124
 Zhuang et al. [18] W 0.9650 0.2226 0.0082
 LS-StyleEdit W 0.9618 0.2961 0.0147
 Kocasarı et al.

[17]
S 0.9432 0.1942 0.0137

 LS-StyleEdit S 0.9571 0.2380 0.0105

SN Computer Science (2023) 4:820 Page 15 of 23 820

SN Computer Science

samples. The accuracy of the attribute preservation met-
ric depends heavily on the reliability of the regressor pre-
diction. It has been shown that the regressor can produce
unreliable predictions for extreme cases that are rare in the
training set. Therefore, it is recommended that the evalua-
tion of the metric be performed within a reasonable range.
Thus, we have explored the requirements for appropriate
evaluation metrics and proposed our own metric that is
easier to interpret than the existing ones. A possible direc-
tion for future work could be the use of more sophisticated

local search algorithms, e.g., by adopting heuristics that
have proven successful in other local search domains.

Appendix A: Attribute Manipulation
Examples

See Figs. 7, 8, 9, 10, 11, 12.

Fig. 7 Comparison of Smil-
ing: Shen et al. (first row),
Zhuang et al. (second row),
Kocasarı et al. (third row), and
our approach (fourth row) for
image seed=0. Left column:
less smiling, middle column:
original image, right column:
more smiling. This figure is
taken from [19]

 SN Computer Science (2023) 4:820 820 Page 16 of 23

SN Computer Science

Fig. 8 Comparison of Smil-
ing: Shen et al. (first row),
Zhuang et al. (second row),
Kocasarı et al. (third row), and
our approach (fourth row) for
image seed=1. Left column:
less smiling, middle column:
original image, right column:
more smiling. This figure is
taken from [19]

SN Computer Science (2023) 4:820 Page 17 of 23 820

SN Computer Science

Fig. 9 Comparison of Smil-
ing: Shen et al. (first row),
Zhuang et al. (second row),
Kocasarı et al. (third row), and
our approach (fourth row) for
image seed=2. Left column:
less smiling, middle column:
original image, right column:
more smiling. This figure is
taken from [19]

 SN Computer Science (2023) 4:820 820 Page 18 of 23

SN Computer Science

Fig. 10 Comparison of hair
color: Shen et al. (first row),
Zhuang et al. (second row),
Kocasarı et al. (third row), and
our approach (fourth row) for
image seed=0. Left column:
darker hair, middle column:
original image, right column:
lighter hair. This figure is taken
from [19]

SN Computer Science (2023) 4:820 Page 19 of 23 820

SN Computer Science

Fig. 11 Comparison of hair
color: Shen et al. (first row),
Zhuang et al. (second row),
Kocasarı et al. (third row), and
our approach (fourth row) for
image seed=1. Left column:
darker hair, middle column:
original image, right column:
lighter hair. This figure is taken
from [19]

 SN Computer Science (2023) 4:820 820 Page 20 of 23

SN Computer Science

Fig. 12 Comparison of hair
color: Shen et al. (first row),
Zhuang et al. (second row),
Kocasarı et al. (third row), and
our approach (fourth row) for
image seed=2. Left column:
darker hair, middle column:
original image, right column:
lighter hair. This figure is taken
from [19]

SN Computer Science (2023) 4:820 Page 21 of 23 820

SN Computer Science

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y. Generative adversarial nets. In:
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing
Systems, vol. 27. Curran Associates, Inc., Morehouse Lane Red
Hook NY, United States 2014. https:// proce edings. neuri ps. cc/
paper/ 2014/ file/ 5ca3e 9b122 f61f8 f0649 4c97b 1afcc f3- Paper. pdf.
Accessed 13 Oct 2023

 2. Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J. Stargan: Unified
generative adversarial networks for multi-domain image-to-image
translation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2018.

 3. Choi Y, Uh Y, Yoo J, Ha J-W. Stargan v2: Diverse image synthesis
for multiple domains. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) 2020.

 4. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation
with conditional adversarial networks. In: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2017;5967–5976. https:// doi. org/ 10. 1109/ CVPR. 2017. 632

 5. Lee H-Y, Tseng H-Y, Mao Q, Huang J-B, Lu Y-D, Singh MK,
Yang M-H. Drit++: diverse image-to-image translation viadis-
entangled representations. Int J Comput Vis. 2020;128:2402–17.

 6. Wu P-W, Lin Y-J, Chang C-H, Chang EY, Liao S-W. Relgan:
Multi-domain image-to-image translation via relative attributes.
2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019;5913–5921.

 7. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: 2017
IEEE International Conference on Computer Vision (ICCV),
2017;2242–2251. https:// doi. org/ 10. 1109/ ICCV. 2017. 244

 8. Zhu J-Y, Zhang R, Pathak D, Darrell T, Efros AA, Wang O,
Shechtman E. Toward multimodal image-to-image translation.
In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 30. Curran Associates, Inc.,
Morehouse Lane Red Hook NY, United States 2017. https:// proce
edings. neuri ps. cc/ paper/ 2017/ file/ 819f4 6e52c 25763 a55cc 64242
26443 17- Paper. pdf. Accessed 13 Oct 2023

 9. Karras T, Laine S, Aila T. A style-based generator architecture for
generative adversarial networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
2019.

 10. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T.
Analyzing and improving the image quality of stylegan. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp.
8107–8116. Computer Vision Foundation / IEEE, 29 Chase Rd
Scarsdale, NY 10583, USA 2020. https:// doi. org/ 10. 1109/ CVPR4
2600. 2020. 00813

 11. Karras T, Aittala M, Laine S, Härkönen E, Hellsten J, Lehtinen
J, Aila T. Alias-free generative adversarial networks. In: Beygel-
zimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances
in Neural Information Processing Systems 2021. https:// openr
eview. net/ forum? id= Owggn utk6lE. Accessed 13 Oct 2023

 12. Voynov A, Babenko A. Unsupervised discovery of interpretable
directions in the GAN latent space. In: III, H.D., Singh, A. (eds.)
Proceedings of the 37th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 119,
9786–9796. PMLR, 29 Great Smith Street, Westminster, Lon-
don 2020. https:// proce edings. mlr. press/ v119/ voyno v20a. html.
Accessed 13 Oct 2023

 13. Härkönen E, Hertzmann A, Lehtinen J, Paris S. Ganspace: Dis-
covering interpretable gan controls. In: Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural
Information Processing Systems, vol. 33, 9841–9850. Curran
Associates, Inc, Morehouse Lane Red Hook NY, United States
2020. https:// proce edings. neuri ps. cc/ paper/ 2020/ file/ 6fe43
26996 7adbb 64ec6 14985 2b5cc 3e- Paper. pdf. Accessed 13 Oct
2023

 14. Larsen ABL, Sønderby SK, Larochelle H, Winther O. Autoen-
coding beyond pixels using a learned similarity metric. In: Bal-
can, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd
International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 48, pp. 1558–1566. PMLR,
New York, USA 2016. https:// proce edings. mlr. press/ v48/ larse
n16. html. Accessed 13 Oct 2023

 15. Shen Y, Gu J, Tang X, Zhou B. Interpreting the latent space of
gans for semantic face editing. In: CVPR 2020.

 16. Patashnik O, Wu Z, Shechtman E, Cohen-Or D, Lischinski D.
Styleclip: Text-driven manipulation of stylegan imagery. In:
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021;2085–2094

 17. Kocasarı U, Dirik A, Tiftikci M, Yanardag P. Stylemc: Multi-
channel based fast text-guided image generation and manipula-
tion. 2022 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2022;3441–3450

 18. Zhuang P, Koyejo OO, Schwing A. Enjoy your editing: Controlla-
ble GANs for image editing via latent space navigation. In: Inter-
national Conference on Learning Representations 2021. https://
openr eview. net/ forum? id= HOFxe CutxZR. Accessed 13 Oct 2023

 19. Meißner A, Fröhlich A, Geierhos M. Keep it simple: Local search-
based latent space editing. In: Bäck, T., van Stein, B., Wagner,
C., Garibaldi, J.M., Lam, H.K., Cottrell, M., Doctor, F., Filipe, J.,
Warwick, K., Kacprzyk, J. (eds.) Proceedings of the 14th Inter-
national Joint Conference on Computational Intelligence, IJCCI
2022, Valletta, Malta, October 24-26, 2022, pp. 273–283. SCITE-
PRESS, Av. D. Manuel I, 27A - 2 Dir, Setubal, Portugal 2022.
https:// doi. org/ 10. 5220/ 00115 24700 003332

 20. Radford A, Metz L, Chintala S. Unsupervised representation
learning with deep convolutional generative adversarial networks.
In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico,

http://creativecommons.org/licenses/by/4.0/
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/ICCV.2017.244
https://proceedings.neurips.cc/paper/2017/file/819f46e52c25763a55cc642422644317-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/819f46e52c25763a55cc642422644317-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/819f46e52c25763a55cc642422644317-Paper.pdf
https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1109/CVPR42600.2020.00813
https://openreview.net/forum?id=Owggnutk6lE
https://openreview.net/forum?id=Owggnutk6lE
https://proceedings.mlr.press/v119/voynov20a.html
https://proceedings.neurips.cc/paper/2020/file/6fe43269967adbb64ec6149852b5cc3e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6fe43269967adbb64ec6149852b5cc3e-Paper.pdf
https://proceedings.mlr.press/v48/larsen16.html
https://proceedings.mlr.press/v48/larsen16.html
https://openreview.net/forum?id=HOFxeCutxZR
https://openreview.net/forum?id=HOFxeCutxZR
https://doi.org/10.5220/0011524700003332

 SN Computer Science (2023) 4:820 820 Page 22 of 23

SN Computer Science

May 2-4, 2016, Conference Track Proceedings 2016. arXiv: 1511.
06434

 21. Brock A, Donahue J, Simonyan K. Large scale GAN training for
high fidelity natural image synthesis. In: 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019 2019. https:// openr eview. net/ forum? id=
B1xsq j09Fm. Accessed 13 Oct 2023

 22. Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of
GANs for improved quality, stability, and variation. In: Inter-
national Conference on Learning Representations 2018. https://
openr eview. net/ forum? id= Hk99z CeAb. Accessed 13 Oct 2023

 23. Yu J, Lin Z, Yang J, Shen X, Lu X, Huang TS. Generative image
inpainting with contextual attention. In: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 5505–
5514;2018. https:// doi. org/ 10. 1109/ CVPR. 2018. 00577

 24. Demir U, Ünal GB. Patch-based image inpainting with generative
adversarial networks. CoRR abs/1803.07422 2018 arXiv: 1803.
07422

 25. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta
A, Aitken AP, Tejani A, Totz J, Wang Z, Shi W. Photo-realistic
single image super-resolution using a generative adversarial net-
work. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pp. 105–114. IEEE Computer Society, 2001 L Street N.W., Suite
700 Washington, USA 2017. https:// doi. org/ 10. 1109/ CVPR. 2017.
19.

 26. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Loy CC. Esr-
gan: Enhanced super-resolution generative adversarial networks.
In: Leal-Taixé L, Roth S, editors. Computer Vision - ECCV 2018
Workshops. Cham: Springer; 2019. p. 63–79.

 27. dos Santos Tanaka FHK, Aranha C. Data augmentation using
gans. CoRR abs/1904.09135 2019 arXiv: 1904. 09135

 28. Gadelha M, Maji S, Wang R. 3d shape induction from 2d views of
multiple objects. In: 2017 International Conference on 3D Vision,
3DV 2017, Qingdao, China, October 10-12, 2017, pp. 402–411.
IEEE Computer Society, 2001 L Street N.W., Suite 700 Washing-
ton, USA 2017. https:// doi. org/ 10. 1109/ 3DV. 2017. 00053

 29. Mirza M, Osindero S. Conditional generative adversarial nets.
CoRR abs/1411.1784 2014 arXiv: 1411. 1784

 30. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. Imagenet: A
large-scale hierarchical image database. In: 2009 IEEE Computer
Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp.
248–255. IEEE Computer Society, 2001 L Street N.W., Suite 700
Washington, USA 2009. https:// doi. org/ 10. 1109/ CVPR. 2009.
52068 48

 31. Kim T, Cha M, Kim H, Lee JK, Kim J. Learning to discover cross-
domain relations with generative adversarial networks. In: Precup,
D., Teh, Y.W. (eds.) Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017. Proceedings of Machine Learning Research,
vol. 70, 1857–1865. PMLR, 29 Great Smith Street, Westminster,
London 2017. http:// proce edings. mlr. press/ v70/ kim17a. html.
Accessed 13 Oct 2023

 32. Zhu J, Park T, Isola P, Efros AA. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: IEEE
International Conference on Computer Vision, ICCV 2017, Ven-
ice, Italy, October 22-29, 2017, pp. 2242–2251. IEEE Computer
Society, 2001 L Street N.W., Suite 700 Washington, USA 2017.
https:// doi. org/ 10. 1109/ ICCV. 2017. 244

 33. Isola P, Zhu J, Zhou T, Efros AA. Image-to-image translation with
conditional adversarial networks. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Hono-
lulu, HI, USA, July 21-26, 2017, 5967–5976. IEEE Computer
Society, 2001 L Street N.W., Suite 700 Washington, USA 2017.
https:// doi. org/ 10. 1109/ CVPR. 2017. 632.

 34. Liu M-Y, Breuel T, Kautz J. Unsupervised image-to-image transla-
tion networks. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 30. Curran Associ-
ates, Inc., Morehouse Lane Red Hook NY, United States 2017.
https:// proce edings. neuri ps. cc/ paper_ files/ paper/ 2017/ file/ dc6a6
48964 0ca02 b0d42 dabeb 8e46b b7- Paper. pdf. Accessed 13 Oct
2023

 35. Collins E, Bala R, Price B, Süsstrunk S. Editing in style: Uncov-
ering the local semantics of gans. In: 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pp. 5770–5779. Computer
Vision Foundation / IEEE, 29 Chase Rd Scarsdale, NY 10583,
USA 2020. https:// doi. org/ 10. 1109/ CVPR4 2600. 2020. 00581

 36. Tov O, Alaluf Y, Nitzan Y, Patashnik O, Cohen-Or D. Designing
an encoder for stylegan image manipulation. ACM Trans Graph.
2021. https:// doi. org/ 10. 1145/ 34506 26. 34598 38.

 37. Zhang Y, Wu Z, Wu Z, Meng D. Resilient observer-based event-
triggered control for cyber-physical systems under asynchronous
denial-of-service attacks. Sci China Inf Sci. 2022. https:// doi. org/
10. 1007/ s11432- 020- 3190-2.

 38. Nitzan Y, Bermano A, Li Y, Cohen-Or D. Face identity dis-
entanglement via latent space mapping. ACM Trans Graph.
2020;39(6):225–122514. https:// doi. org/ 10. 1145/ 34146 85. 34178
26.

 39. Richardson E, Alaluf Y, Patashnik O, Nitzan Y, Azar Y, Shap-
iro S, Cohen-Or D. Encoding in style: A stylegan encoder for
image-to-image translation. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, Virtual, June 19-25,
2021, pp. 2287–2296. Computer Vision Foundation / IEEE, 29
Chase Rd Scarsdale, NY 10583, USA 2021. https:// opena ccess.
thecvf. com/ conte nt/ CVPR2 021/ html/ Richa rdson_ Encod ing_ in_
Style_A_ Style GAN_ Encod er_ for_ Image- to- Image_ Trans lation_
CVPR_ 2021_ paper. html. Accessed 13 Oct 2023

 40. Alaluf Y, Patashnik O, Cohen-Or D. Only a matter of style: age
transformation using a style-based regression model. ACM Trans
Graph. 2021;40(4):45–14512. https:// doi. org/ 10. 1145/ 34506 26.
34598 05.

 41. Shen Y, Zhou B. Closed-form factorization of latent semantics in
gans. In: CVPR 2021.

 42. Wu Z, Lischinski D, Shechtman E. Stylespace analysis: Disen-
tangled controls for stylegan image generation. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2021,
Virtual, June 19-25, 2021, 12863–12872. Computer Vision Foun-
dation / IEEE, 29 Chase Rd Scarsdale, NY 10583, USA 2021.
https:// opena ccess. thecvf. com/ conte nt/ CVPR2 021/ html/ Wu_ Style
Space_ Analy sis_ Disen tangl ed_ Contr ols_ for_ Style GAN_ Image_
Gener ation_ CVPR_ 2021_ paper. html. Accessed 13 Oct 2023

 43. Ling H, Kreis K, Li D, Kim SW, Torralba A, Fidler S. Editgan:
High-precision semantic image editing. In: Advances in Neural
Information Processing Systems (NeurIPS) 2021.

 44. Lee C-H, Liu Z, Lingyun,W, Luo P. Maskgan: Towards diverse
and interactive facial image manipulation, 2020;5548–5557.
https:// doi. org/ 10. 1109/ CVPR4 2600. 2020. 00559

 45. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter
S. Gans trained by a two time-scale update rule converge to a
local nash equilibrium. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 30.
Curran Associates, Inc., Morehouse Lane Red Hook NY, United
States 2017. https:// proce edings. neuri ps. cc/ paper_ files/ paper/
2017/ file/ 8a1d6 94707 eb0fe fe658 71369 07492 6d- Paper. pdf.
Accessed 13 Oct 2023

 46. Bińkowski M, Sutherland DJ, Arbel M, Gretton A. Demystify-
ing MMD GANs. In: International Conference on Learning

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://doi.org/10.1109/CVPR.2018.00577
http://arxiv.org/abs/1803.07422
http://arxiv.org/abs/1803.07422
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1109/CVPR.2017.19
http://arxiv.org/abs/1904.09135
https://doi.org/10.1109/3DV.2017.00053
http://arxiv.org/abs/1411.1784
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://proceedings.mlr.press/v70/kim17a.html
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/CVPR.2017.632
https://proceedings.neurips.cc/paper_files/paper/2017/file/dc6a6489640ca02b0d42dabeb8e46bb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/dc6a6489640ca02b0d42dabeb8e46bb7-Paper.pdf
https://doi.org/10.1109/CVPR42600.2020.00581
https://doi.org/10.1145/3450626.3459838
https://doi.org/10.1007/s11432-020-3190-2
https://doi.org/10.1007/s11432-020-3190-2
https://doi.org/10.1145/3414685.3417826
https://doi.org/10.1145/3414685.3417826
https://openaccess.thecvf.com/content/CVPR2021/html/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.html
https://doi.org/10.1145/3450626.3459805
https://doi.org/10.1145/3450626.3459805
https://openaccess.thecvf.com/content/CVPR2021/html/Wu_StyleSpace_Analysis_Disentangled_Controls_for_StyleGAN_Image_Generation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wu_StyleSpace_Analysis_Disentangled_Controls_for_StyleGAN_Image_Generation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wu_StyleSpace_Analysis_Disentangled_Controls_for_StyleGAN_Image_Generation_CVPR_2021_paper.html
https://doi.org/10.1109/CVPR42600.2020.00559
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf

SN Computer Science (2023) 4:820 Page 23 of 23 820

SN Computer Science

Representations 2018. https:// openr eview. net/ forum? id= r1lUO
zWCW. Accessed 13 Oct 2023

 47. Luo W, Yang S, Wang H, Long B, Zhang W. Context-consistent
semantic image editing with style-preserved modulation. In:
Avidan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T.
(eds.) Computer Vision - ECCV 2022 - 17th European Confer-
ence, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part
XVII. Lecture Notes in Computer Science, vol. 13677, pp. 561–
578. Springer, 11 West 42nd Street, Manhattan, New York, USA
2022. https:// doi. org/ 10. 1007/ 978-3- 031- 19790-1_ 34

 48. Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unrea-
sonable effectiveness of deep features as a perceptual metric. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2018.

 49. Zhang Z, He H, Plummer BA, Liao Z, Wang H. Semantic Image
Manipulation with Background-guided Internal Learning 2023.
https:// openr eview. net/ forum? id= 1z9VT rxCgf. Accessed 13 Oct
2023

 50. Dhamo H, Farshad A, Laina I, Navab N, Hager GD, Tombari F,
Rupprecht C. Semantic image manipulation using scene graphs.
In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020;5213–5222

 51. Github implementation of vgg_face2. https:// github. com/ ox- vgg/
vgg_ face2. Accessed 04 Apr 2023

 52. Liu Z, Luo P, Wang X, Tang X. Deep learning face attributes
in the wild. 2015 IEEE International Conference on Computer
Vision (ICCV), 2015;3730–3738

 53. Matyas J. Random optimization. Autom Remote Contr.
1965;26(2):246–53.

 54. Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S,
Sastry G, Askell A, Mishkin P, Clark J, Krueger G, Sutskever
I. Learning transferable visual models from natural language
supervision. In: Meila, M., Zhang, T. (eds.) Proceedings of the
38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event. Proceedings of Machine Learn-
ing Research, vol. 139, pp. 8748–8763. PMLR, 29 Great Smith
Street, Westminster, London 2021. http:// proce edings. mlr. press/
v139/ radfo rd21a. html. Accessed 13 Oct 2023

 55. Deng J, Guo J, Xue N, Zafeiriou S. Arcface: Additive angular
margin loss for deep face recognition. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, 4690–4699. Computer Vision
Foundation / IEEE, 29 Chase Rd Scarsdale, NY 10583, USA
2019. https:// doi. org/ 10. 1109/ CVPR. 2019. 00482

 56. Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.)
3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings 2015. arxiv: 1409. 1556

 57. Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A. Vggface2: A
dataset for recognising faces across pose and age. In: 13th IEEE
International Conference on Automatic Face & Gesture Recogni-
tion, FG 2018, Xi’an, China, May 15-19, 2018, pp. 67–74. IEEE
Computer Society, 2001 L Street N.W., Suite 700 Washington,
USA 2018. https:// doi. org/ 10. 1109/ FG. 2018. 00020

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://openreview.net/forum?id=r1lUOzWCW
https://openreview.net/forum?id=r1lUOzWCW
https://doi.org/10.1007/978-3-031-19790-1_34
https://openreview.net/forum?id=1z9VTrxCgf
https://github.com/ox-vgg/vgg_face2
https://github.com/ox-vgg/vgg_face2
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1109/CVPR.2019.00482
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/FG.2018.00020

	Keep It Simple: Evaluating Local Search-Based Latent Space Editing
	Abstract
	Introduction
	Related Work
	Generative Adversarial Networks
	Image-to-Image Translation
	Latent Space Editing
	Evaluation Metrics

	Local Search-Based Latent Space Editing
	Evaluation Challenges
	Reimplementation of Enjoy Your Editing
	Quantifying Instabilities of Enjoy Your Editing
	Previous Evaluation Metric

	Towards a New Evaluation Metric
	Influence of the Initial Image
	Influence of the Attribute Manipulation Strength
	New Evaluation Metric
	Results

	Conclusion
	Appendix A: Attribute Manipulation Examples
	References

