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Abstract
Computer vision systems are employed in a variety of high-impact applications. 
However, making them trustworthy requires methods for the detection of poten-
tial biases in their training data, before  models learn to harm already disadvan-
taged groups in downstream applications.  Image data are typically represented via 
extracted features, which can be hand-crafted or pre-trained neural network embed-
dings. In this work, we introduce a framework for bias discovery given such features 
that is based on optimal transport theory; it uses the (quadratic) Wasserstein distance 
to quantify disparity between the feature distributions of two demographic groups 
(e.g., women vs men). In this context, we show that the Kantorovich potentials of 
the images, which are a byproduct of computing the Wasserstein distance and act as 
“transportation prices", can serve as bias scores by indicating which images might 
exhibit distinct biased characteristics. We thus introduce a visual dataset exploration 
pipeline that helps auditors identify common characteristics across high- or low-
scored images as potential sources of bias. We conduct a case study to identify pro-
spective gender biases and demonstrate theoretically-derived properties with experi-
ments on the CelebA and Biased MNIST datasets.
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1  Introduction

Computer Vision (CV) systems have widespread applications, but their performance 
depends on the quality of the training data. When these data exhibit biases, trained 
systems can harm already disadvantaged groups (e.g., racial minorities) (Buolam-
wini and Gebru 2018), for instance through spurious correlations between protected 
characteristics (e.g., skin colour or gender) and other features (e.g., hair length Bal-
akrishnan et al. 2020). Therefore, methods for detecting biases in visual datasets are 
needed to support both critical data exploration steps when building trustworthy 
CV systems1 and emerging documentation practices, such as datasheets for datasets 
(Gebru et al. 2021).

While algorithmic bias mitigation is well explored (Barocas et al. 2019; Ntoutsi 
et al. 2020; Mitchell et al. 2021; Mehrabi et al. 2021), few works tackle bias detec-
tion, especially in the CV domain. A common strategy (Fabbrizzi et  al. 2022) is 
to extract information from the visual data, arrange it into tabular form, and quan-
tify and mitigate bias on this data type (Zhao et al. 2017; Buolamwini and Gebru 
2018; Merler et al. 2019; Wang et al. 2022). However, the reduction does not nec-
essarily preserve all biased characteristics of the visual data space. An alternative 
(Kärkkäinen and Joo 2021; Steed and Caliskan 2021; Wang et al. 2022) is to extract 
lower-dimensional feature representations -either via hand-crafted features or pre-
trained deep neural networks- of visual data and measure bias for those. Unlike tab-
ular representations, feature spaces are typically endowed with metric, topological, 
or vector space structures that support richer analysis2.

In this work, we follow the last strategy and adopt the Optimal Transport (OT) 
theory as a mathematical framework for bias detection. In particular, in Sect.  3.2 
we establish that the quadratic Wasserstein distance ( W2

2
 ) captures deviations from a 

variation of demographic parity and show that its Kantorovich potentials can serve 
as a bias score for the individual images, where images with high potentials within 
a group are, on average, more distant from the other group. Hence, characteristics 
shared by many images with high or low potentials can be prospective sources of 
algorithmic bias (e.g., low-scoring images could be more likely to show hats or hel-
mets Figure 3b), as they can be learned as proxies for the entire group. Our proposed 
approach is tailored to check for selection bias (Sections 5.1, 5.2 and 5.3), but it can 
also spot framing and label biases that create embedding differences (see, Sect. 2.5 
for a definition of the different types of bias).

Inspired by the exploratory discrimination-aware data mining framework (Ber-
endt and Preibusch 2014), we integrate the Kantorovich potential scoring mecha-
nism into the bias discovery pipeline of Figure 1. There, the framework serves as a 
filter for the Mapper algorithm (Singh et al. 2007) to procure high-level descriptions 

1  Article 10 of the proposed AI Act of the European Commission prescribes “examination in view of 
possible biases” as a data governance practice for high-risk AI applications. https://​eur-​lex.​europa.​eu/​
legal-​conte​nt/​EN/​TXT/?​uri=​celex%​3A520​21PC0​206. Last visited 30.01.2023.
2  Feature extraction mechanisms can introduce additional biases, in which case -especially if they are 
complex- it can be difficult to differentiate between them and raw data biases. In this work we assess 
biases of already extracted features, irrespective of their source.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206
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of CV datasets in the form of graphs. Mapper clusters images while being aware of 
filter function values and, by studying which are the common attributes of images 
in different clusters, we obtain finer-grained information on possible causes of the 
measured bias. The proposed pipeline guides a qualitative exploration of datasets 
and allows scientists and practitioners to formulate hypotheses on the presence of 
discriminatory patterns3.

Our work presents the following contributions: 

a)	� We set up W2
2
 as a type of binary demographic disparity in feature spaces.

b)	� We recognise that Kantorovich potentials can be used as a bias score for indi-
vidual data samples/images.

c)	� We integrate these ideas into a pipeline for visual feature exploration that facili-
tates a qualitative high-level bias analysis of datasets.

The paper is organised as follows: Section  2 introduces required theory and 
reviews related approaches. Section 3 formulates the problem of quantifying biases 
of features extracted from a dataset, and provides theoretical guarantees for using OT 
as a bias detection framework. We also select and describe appropriate OT approxi-
mation (Makkuva et al. 2020) and clustering (Singh et al. 2007) algorithms that fit 
the framework. Section 4 demonstrates our bias investigation pipeline through a case 
study on gender biases in the CelebA dataset (Liu et al. 2015). Section 5 presents 
an experimental evaluation of theoretical properties. Finally, Sects. 6 and 7 provide 
a discussion on the merit and caveats of our work, as well as an outline of future 
research directions.  The reader can find our code at  https://​github.​com/​sfabb​rizzi/​
OT-​ICNN-​bias.

Fig. 1   The proposed bias detection pipeline (Section 4)

3  Discrimination has a precise legal meaning, namely disparities on the ground of non-acceptable fea-
tures. Since our work discovers many types of disparities, we describe it as bias-aware data mining. 
Practitioners should decide which disparities pertain to actual discrimination.

https://github.com/sfabbrizzi/OT-ICNN-bias
https://github.com/sfabbrizzi/OT-ICNN-bias
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2 � Background

In this section we provide theoretical concepts needed to understand our analysis, 
and overview bias exploration in CV and related attempts to apply OT in bias 
detection.

2.1 � Notation

Throughout our analysis, we work with a feature extractor F ∶ I → ℝ
d , where I  

is an image dataset of which the samples are converted to d-dimensional feature 
spaces. In these datasets, we consider a sensitive binary attribute S that assumes 
values among {s0, s1} for each data sample. We also denote the sample distri-
butions of images sharing sensitive attribute value S = s0 and S = s1 as � and � 
respectively (e.g., women and men). That is:

where Is = {x ∈ I | x ��� ��������� ��������� �����S = s} and �x is the Dirac dis-
tribution centered at x, which lets us move from integral definitions to discrete 
computations.

2.2 � Optimal transport

Given two probability measures � and � over two spaces X and Y and a (lower 
semi-continuous) cost function c ∶ X × Y → ℝ , OT theory (Villani 2003, 2008) 
searches for the minimal cost of transferring one measure into the other. In this 
work, the probability measures correspond to the distribution of samples with dif-
ferent sensitive attribute values, for example men and women, in the same image 
feature space (in that case X = Y).

As an intuitive formulation for the OT theory (Villani 2003), one can imagine 
a set of mines and factories, and the respective distributions of coal production 
and demand. In this setting, solving an OT problem would mean finding the most 
cost-effective transport map of which mine should provide coal to which factory. 
This translates to the following objective, known as Monge’s problem:

where � = T#� and T# is the push-forward of � along the function T ∶ X → Y .

The condition of T being a function can be too restrictive in that it transfers 

the entire production of each mine to only one factory, thus creating a potentially 
insolvable Monge’s problem (Villani 2008). To address this theoretical concern, 
the more general Kantorovich’s problem aims to find the coupling between  two 

� =
1

|Is0 |

∑

xi∈Is0

�xi and � =
1

|Is1 |

∑

xi∈Is1

�xi

(1)inf
T∶X→Y ∫X×Y

c(x, T(x))d�
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measures � and � that allows the masses allocated on individual elements to be 
split. This is formulated per the following objective:

where Π(�, �) denotes set of couplings between � and �.
When the sets are the same d-dimensional Euclidean spaces X = Y = ℝ

d , one 
popular cost function is the quadratic Euclidean distance c(x, y) = 1

2
‖x − y‖2

2
 . Under 

these circumstances, the square root of the solution to Equation 2 is a metric in the 
space of measures (with finite second moments) over ℝd and is usually referred to 
as the 2-Wasserstein distance W2(�, �) . This property is the one that guarantees that 
Wasserstein distance is suitable for checking demographic parity (Sects. 2.3 and 
3.2).

Solving the OT problem in the space of couplings is usually difficult, but it is 
equivalent to the tractable dual form (Villani 2003):

where W2
2
  is the quadratic Wasserstein distance, Φc is the space of function pairs 

(f , g) ∈ L1(d�) × L1(d�) such that f (x) + g(y) ≤ 1

2
‖x − y‖2

2
 for d�-almost all x ∈ X 

and d�-almost all y ∈ Y  . An intuitive interpretation (Villani 2003) of the dual form 
is that, instead of minimising the transportation cost of coal from the mines to fac-
tories, it maximises the profit of an external company to which the transportation 
problem is outsourced. The values of f(x) and g(y) respectively define the company’s 
price for loading the coal at a mine x and unloading it at the factory y and are known 
as Kantorovich potentials.

We state two results (Villani 2003) that are useful in the remainder of this work. 
Given that the probability measures � and � over ℝd that exhibit finite second-order 
moments the following hold true:

Knott/Smith optimality criterion. A coupling � ∈ Π(�, �) is optimal for Equa-
tion  2 under the quadratic cost function if and only if there exists a convex 
lower semi-continuous function � such that for d�-almost all (x, y) it holds that 
y ∈ ��(x) , with �f (x) being the subgradient of f in x. Furthermore, the couple 
(�,�∗) is a solution of Equation 3, where �∗ is the convex conjugate of �.
Brenier’s theorem. If � is absolutely continuous with respect to the Lebesgue 
measure on ℝd , there exists a unique optimal coupling � = (∇�∗ × Id)#� . Fur-
thermore, ∇�∗ is the unique solution of Monge’s problem.

2.3 � Demographic parity

Fairness definitions can be categorised (Mehrabi et al. 2021) as either group, sub-
group, or individual fairness. The first two aim to balance properties of interest, such 

(2)inf
�∈Π(�,�) ∫X×Y

c(x, y)d�

(3)W2(�, �)
2 = sup

(f ,g)∈Φc
∫X

f (x)d� + ∫Y

g(y)d�
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as the percentage of positive predictions or misclassification rates, between groups 
and random subgroups respectively. Individual fairness (Dwork et al. 2012) aims to 
treat similar individuals similarly.

In this work, we capture distributional differences between two groups of images, 
which is a type of group fairness. In particular, this consideration is a form of demo-
graphic parity (Kamiran et al. 2010; Kamiran and Calders 2012; Kamishima et al. 
2012; Ntoutsi et al. 2020), which stipulates that both groups should exhibit similar 
statistical properties. Demographic parity typically involves checking for propor-
tional representation of each group in outputs of AI systems. In this work’s termi-
nology, demographic parity can be written as:

where, for this definition, F ∶ X → {0, 1} is a binary classifier. In this case, this is 
equivalent to the otherwise stronger condition4 

Contrary to other types of group fairness, such as disparate mistreatment that aims 
to create similar error rates between groups (Zafar et al. 2017), demographic parity 
can also be quantified on reference or training data by measuring the representation 
of groups in desired prediction outcomes instead. As such, it has been used to quan-
tify raw dataset biases as well (Sattigeri et al. 2019; Ding et al. 2021). 

In this work we have a similar goal of quantifying CV dataset bias, although 
we are looking to do so regardless of downstream tasks in which datasets are 
used. Thus, we adopt Equation 5 as a fairness definition with the only change that 
F ∶ X → ℝ

d is an embedding into a high dimensional Euclidean space. The metric 
properties of the Wasserstein distance ensure that it is a good way to measure demo-
graphic parity in feature spaces.

2.4 � OT and bias

OT theory has recently been used as fairness constraints to enforce variations of 
demographic parity in bias mitigation tasks (Jiang et al. 2019; Gordaliza et al. 2019; 
Zehlike et al. 2020; Chiappa et al. 2020; Chiappa and Pacchiano 2021), to measure 
and explain bias in classification or (1-dimensional) regression (Miroshnikov et al. 
2022) or generally look at the problem of bias through the lens of OT (Kwegyir-
Aggrey et al. 2021).

Most OT bias works intend to understand and mitigate model bias and are not 
suited to our data mining and bias discovery perspective. The approach closest to 
ours is the one of Kwegyir-Aggrey et al. (2021); it introduces both an individual and 
a global measure of bias, where individual bias refers to individual sample bias and 
is defined as:

(4)�(F−1(1)) = �(F−1(1))

(5)F#� = F#�

4  For binary classifiers F
#
�(1) = �(F−1(1)) = 1 − F

#
�(0) . For continuous or multi-dimensional values, 

this condition requires equal distribution between groups.
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where the cost function c is the distance d(x0, y) . Later, in Proposition 1, we show 
that the above rankings and Kantorovich potentials are equivalent when the cost 
function c is the square distance. This approach also sums all individual bias scores 
to procure a global measure of bias, which is a coarser measure than W2

2
 in that it 

does not take the transport map into account. Finally, this approach was originally 
devised to measure bias in the prediction space of tabular data, instead of the feature 
space of vision data.

2.5 � Bias in visual data

Fabbrizzi et  al. (2022) found that bias in visual data can be roughly divided into 
three categories: selection bias, framing bias, and label bias. Selection bias refers 
to “disparities or associations created as a result of the process by which subjects 
are included in a visual dataset”. Framing bias comprises “associations or dispari-
ties that convey different messages and/or can be traced back to the way in which 
the visual content has been composed”. Finally, label bias comprises “errors in the 
labelling of visual data, either with respect to some ground truth, or due to use of 
poorly defined or inappropriate semantic categories”.

Previous findings indicate that the presence of visual data biases can indeed be 
detected early. Characteristically, Torralba and Efros (2011) showed that bench-
mark datasets for object detection tend to exhibit heavy selection biases. For exam-
ple, out of popular vision datasets that include depictions of cars, ImageNet (Deng 
et al. 2009) exhibits a strong preference for racing cars, while Caltech101 (Li et al. 
2022) for side views of cars. These biases were found by training an SVM (Cortes 
and Vapnik 1995) to distinguish the source of images. The detection accuracy of 
the model serves as a global indication of how biased the datasets were. The same 
method can check for bias within a dataset, by training the SVM to distinguish 
between groups of samples.

The confidence of SVM predictions can help us draw conclusions for individual 
samples, where high confidences indicate more biased images, i.e., which exhibit 
characteristics intrinsic to datasets or groups of samples. While this method was 
introduced as a toy experiment, it remains popular in the literature (Tommasi et al. 
2015; Panda et al. 2018; Kärkkäinen and Joo 2021; Wang et al. 2022). In Sect. 5.1, 
we employ a variation of SVM-based biased image detection as a baseline against 
which we compare our approach.

3 � Optimal transport for bias detection

In this section, we detail the process through which OT theory becomes a useful 
tool for bias detection. First, Sect. 3.1, describes the W2

2
 approximation method of 

(Makkuva et al. 2020) and why it is suited to our needs. Second, Sects. 3.2 and 3.3 

(6)u(x0) = ∫Y

c(x0, y)d�(xo, ⋅) = ∫Y

c(x0, y)d�
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show why the approximated distance and the Kantorovich potentials form an appro-
priate framework for bias-aware data analysis. Finally, Sect. 3.4 describes a cluster-
ing algorithm (Mapper by Singh et al. (2007)) that allows a finer-grained qualitative 
analysis of data based on potentials.

3.1 � Computationally tractable OT approximation

The dual formulation of the Kantorovich’s problem in Equation 3 lets us compute 
W2

2
 by approximating the Kantorovich potentials f and g with deep neural networks 

(Makkuva et al. 2020). We also follow this technique, because it works around the 
expensive computational demands of solving OT problems for high-dimensional 
data (Cuturi 2013) by considering the following reformulation of the Kantorovich 
dual problem:

Theorem 1  (Makkuva et al. 2020) Given two probability distributions � and � with 
the latter being absolutely continuous with respect to the Lebesgue measure, then

where C�,� =
1

2
(∫

X
‖x‖2

2
d� + ∫

Y
‖y‖2

2
d�), V�,� (�,�) = − ∫

X
�(x)d� − ∫

Y
⟨y,∇�(y)⟩ − �(∇�(y))d�, and 

��� represents the set of convex functions.

This reformulation enables approximation of W2
2
  by substituting ���(�) and 

���(�) with the set ����(ℝ) of scalar-valued Input Convex Neural Networks intro-
duced by Amos et al. (2016). A byproduct of solving this problem is the pair of con-
vex functions � and � , which can be used to express the Kantorovich potentials as 
f (x) =

1

2
‖x‖2

2
− �(x) and g(y) = 1

2
‖y‖2

2
− �(y) for f and g as in Kantorovich duality 

of Equation 3. Hence, we easily compute the value of f for image features and rank 
images according to the produced potentials.

3.2 � W2

2
 to quantify dataset bias

The push-forward formulation of demographic parity at the end of Sect. 2.3 is also 
applicable to high-dimensional systems, such as image feature vectors outputted by 
feature extractors. For any (Borel) subset of such feature spaces, the formulation 
imposes that the probability of sampling the feature vector of an image from such 
a subset does not depend on the demographic attribute. Note that this property is 
stronger than comparing distributions through their average. A visual demonstration 
can be found in Figure 2.

As the Wasserstein distance is a metric on the space of probability measures with 
finite second moments, we have that F#� = F#� iff W2(F#�,F#�) = 0 . Thus, we pro-
pose using W2

2
 as a measure of bias:

(7)
W2(�, �)

2 = C�,� + sup

� ∈ ���(�)

�∗ ∈ L1(�)

inf
�∈���(�)

V�,�(�,�)
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Definition 1  Consider an image dataset I  , a feature extractor F ∶ I → ℝ
d , and � 

and � the distributions of the images depicting two values of a protected attribute. 
We say that I  is F-biased if W2(F#�,F#�) ≠ 0 where F#� and F#� are the push-
forward distributions along the feature extractor F of � and � on I .

3.3 � Kantorovich potentials to score image bias

While we used W2
2
 to assess bias at the dataset level, we also explore the contribu-

tion of images with features xi ∈ I  drawn from � by capturing how far they are 
from the whole distribution � . To do this, we look at the interpretation of the dual 
Kantorovich problem in Equation  3; Kantorovich potentials f (xi) compute the 
prices for moving xi into their correspondent image sampled from � to maximise 
profit. Intuitively, the greater the distance the higher the price, at least on average. 
We theoretically express this property below:

Proposition 1  Let � =
∑n

i=0
ai�xi be a strictly positive discrete probability meas-

ure and � be an absolutely continuous probability measure. Given the Kantorovich 
potentials f and g, solutions to the problem 3, we have that for every x0, x1 ∈ X if 
f (x0) ≥ f (x1) then ∫

Y
c(x0, y)d� ≥ ∫

Y
c(x1, y)d� and vice versa.

Proof  f (x0) ≥ f (x1) implies that for every y ∈ Y  f (x0) + g(y) ≥ f (x1) + g(y) . Being 
f and g solutions to the Kantorovich dual problem in Equation 3, by Knott-Smith 
optimality criterion in Sect. 2.2, we have for all x ∈ X and for almost all y ∈ Y  that 
f (x) + g(y) = c(x, y) . Note that the property holds for all x ∈ X and not for almost all 
x ∈ X because the only measure-zero set for a strictly positive discrete measure is 
the empty set. The result follows by integrating over Y.

Vice versa, ∫
Y
c(x0, y)d� ≥ ∫

Y
c(x1, y)d� implies that 

∫
Y
f (x0) + g(y)d� ≥ ∫

Y
f (x1) + g(y)d� . Thus, f (x0) + ∫

Y
g(y)d� ≥ f (x1) + ∫

Y
g(y)d� 

which, in turn, implies f (x0) ≥ f (x1) . 	�  ◻

Fig. 2   On the left, features are distributed in their space without being affected by the attribute of interest 
(e.g, gender depicted in blue/orange). On the right, a feature extractor exhibits biases with respect to that 
attribute and some orange samples form a special sub-group (highlighted) that merits further investiga-
tion
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Given the above result, we propose using the potential function f to rank the 
images in X according to how costly they are to be transported into the distribution 
� . This can drive qualitative bias analysis that inspects higher-ranking images for 
common characteristics. This is fundamental to understanding whether the differ-
ences in the distributions of two protected attributes’ values are due to discrimina-
tory characteristics or not.

The approximation method reviewed in Sect. 3.1 works under the hypothesis of 
Brenier’s theorem, which stipulates that at least one of the two probability distribu-
tions is absolutely continuous. Since we end up with two sample feature distribu-
tions, we adjusted the algorithm’s original form presented by Makkuva et al. (2020) 
to ensure that the theorem’s requirement is met. The adjustment consists of sam-
pling from the kernel density estimation of one of the two distributions instead of 
directly parsing raw data.

3.4 � The Mapper algorithm

The Mapper algorithm (Singh et  al. 2007) is a method for reducing high-dimen-
sional data to a graph, called the nerve complex, that provides a high-level under-
standing of the topological structure of the data. We want to exploit Mapper’s prop-
erties to get a fine-grained bias analysis of the data.

In particular, assume a dataset D lying in a topological space X and a continu-
ous function f ∶ X → ℝ that quantifies a certain property of the data to be studied. 
Given a covering U of ℝ , Mapper stipulates that a covering of X is obtained from the 
pre-image V = {V ⊆ f −1(U) connected components} . Thus, it defines the nerve com-
plex graph N(V) of the covering by considering as nodes the connected components 
of the sets V = f −1(U) and forming edges between Vi and Vj only if Vi ∩ Vj ≠ �.

To mimic this graph construction process on a dataset D, whose discrete data sam-
ple nature prevents the identification of connected components, Mapper performs 
a clustering step on the pre-image space of each Ui ∈ U along f |D ∶ D ⊆ X → ℝ . 
Thus, the clusters play the role of connected components.

Mapper works with any clustering algorithm. This way, we obtain a clustering 
of D and the relative nerve complex N(V|D) . Depending on the filter function f, the 
clustering captures different information that we can use for exploratory data analy-
sis. This makes Mapper a suitable choice for our framework as it allows clustering 
the data using the Kantorovich potentials introduced in Sect. 2.2 as a filter function.

4 � A case study on CelebA gender bias

This section presents an application of our framework on CV data bias explora-
tion. This case study fleshes out the pipeline of Figure 1 with predetermined feature 
extractors, but can be also used in combination with other extractors or datasets. The 
pipeline’s usefulness is verified both empirically and with the aid of a user study. 
Refer to Appendix B for implementation details.
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4.1 � Data and feature extraction

Our study is conducted on the well-known benchmark CelebA dataset (Liu et  al. 
2015). This contains 202,600 face images, each of which is supplied with 40 differ-
ent attributes. The dataset is derived from the benchmark CelebFaces+ (Sun et al. 
2014) by annotating the latter with the help of a professional data annotation com-
pany. The annotation includes information about the gender of subjects depicted in 
each image.

We follow the pipeline outlined in Figure  1, that aims to detect bias after fea-
ture extraction, but before training any system. In principle, our OT results could be 
applied to any kind of feature spaces, as long as these are endowed with a metric. 
However, the adopted approximation method of Makkuva et al. (2020) (Sect. 3.1) is 
tailored to Euclidean spaces only and, thereon, deep-neural network features.

Our approach admits any (Euclidean) feature extractor and we explore three 
popular ones: a) ResNet (He et al. 2016) is a well-known convolutional neural net-
work architecture used for a variety of vision tasks (e.g., object classification, object 
recognition, segmentation). We use its PyTorch implementation5 with the default 
weights pre-trained on ImageNet (Deng et al. 2009) as a feature extractor by cutting 
out its fully connected output layer. b) Autoencoder features trained with a CNN-
based encoder and decoder to minimise the reconstruction loss of CelebA dataset. c) 
FaceNet (Schroff et al. 2015) is an embedding framework used for facial recognition 
and face images clustering. We used a Pytorch implementation6 with default weights 
pre-trained on VGG Faces 2 (Cao et al. 2018).

4.2 � Dimensionality reduction (optional)

Clustering methods in the last step of our pipeline are often affected negatively by 
high-dimensionality. Here, we support that step by preemptively performing dimen-
sionality reduction. This step is not always necessary, and may (should) be omit-
ted for exploration of low-dimensional features, where it risks impacting the image 
ranking induced by Kantorovich potentials. Hence, it is important to select a dimen-
sionality reduction approach (e.g., among popular ones) that mostly preserves rank-
ing order. We show what this selection entails in Sect. 5.4, which leads us to reduce 
the extracted 512-dimensional features to 3 dimensions with PCA. This reduction 
mostly preserves image ranks produced by the next step while also creating cluster-
ing-friendly image representations.

4.3 � Compute Kantorovich potentials

To score -and ultimately rank- images based on their contribution to demographic 
disparity, we approximate W2

2
  in the way described in Sect. 3.1, which produces 

5  https://​pytor​ch.​org/​vision/​main/​models/​gener​ated/​torch​vision.​models.​resne​t18.​html. last visited 
05.12.2022.
6  https://​github.​com/​times​ler/​facen​et-​pytor​ch. Last visited 05.12.2022.

https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
https://github.com/timesler/facenet-pytorch
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Kantorovich potentials as a computational byproduct. We obtain the following 
approximations to serve as bias scores for different feature extractors: 20.97 for 
ResNet, 29.88 for the autoencoder, and 0.06 for FaceNet. If embedding spaces 
are the same (e.g., are all ℝ512 ), such scores become comparable. If some feature 
extractor shrinks the space (for example, FaceNet features are normalised), we 
are going to obtain smaller bias scores, without this necessarily implying lesser 
bias.

As stipulated in Sect. 3.2, we retain the Kantorovich potentials during computa-
tions and use them to rank women in the dataset. Then, in Figure 3, we show the 
images of women with the top and bottom 18 potentials for each of the feature 
extraction methods. The most common attribute among the top images for ResNet18 

Fig. 3   Images of women in CelebA with the top (left) and bottom (right) 18 Kantorovich potentials for 
ResNet18, autoencoder, and FaceNet features
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and autoencoder is having long hair, while women in the bottom images either have 
their hair tied up or shorter hair, or wear some sort of headgear. This indicates that 
hair length could be a discriminative factor when correlated with predictive tasks 
and should therefore be kept in mind when using the first two types of features to 
produce new systems. To make matters worse, the ranking for the autoencoder fea-
ture seems to also be correlated with skin colour and this warrants additional investi-
gation. On the contrary, a visual inspection of the most extreme ranking for FaceNet 
features does not highlight apparent prospective sources of discrimination for these.

4.4 � Mapper visualisation

We finally conduct a finer-grained analysis throughout the available data. To do this, 
we follow the methodology suggested in Sect. 3.4 and apply the Mapper algorithm 
using the Kantorovich potential functions as filters; the resulting nerve complex 
guides our bias investigation. To run the algorithm, we enlist K-Means as its cluster-
ing component and select a number of clusters for each of its layers by applying the 
elbow technique on the clustering inertia measure (Cui et al. 2020). This retains a 
homogeneous level of Kantorovich potentials within each cluster.

Figure 4 shows the nerve graph for ResNet18 features produced by Mapper. We 
uniformly sample images from the clusters that compose the shortest path between 
two clusters in the first and last layers. As hypothesised from the ranking inspection, 
women in the lower-layer clusters (purple/blue nodes in the nerve graph) have their 
hair covered and at intermediate layers have progressively longer and less covered 
hair, until the end-result is more pronounced in the top layers (yellow nodes). This 
particular path visually corroborates the previous step’s hypothesis that hair length 
and obfuscation is a characteristic captured by ResNet18, and hence should be kept 
in mind as a potential source of bias.

Similar behaviour is exhibited by the autoencoder’s features, where once again 
hair length increases as we move from the lower layer to the higher ones. The full 
exploration can be found in Appendix C. Previous work (Balakrishnan et al. 2020) 
points out that the hair length characteristic might be correlated with skin colour and 
would turn an apparently innocuous bias into something potentially discriminatory. 
As for the FaceNet features, the Mapper analysis does not provide any additional 
interesting information about possible biases.

4.5 � User study

To address potential confirmation biases during the above investigation, we also 
set up a complementary user study. This aims to check whether other people can 
also discover prospective biases in CelebA images by following our approach 
compared to randomised dataset exploration. The study gathered responses by 25 
participants from the authors’ research groups, which viewed image batches and 
were asked to answer questions pertaining to bias insights they revealed about the 
data. 13 of the participants were randomly assigned as a control group and were 
shown uniformly sampled images, whereas the rest were shown batches produced 
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with our methodology. Further details on the questions and their analysis can be 
found in Appendix D. Overall, we found that participants in the experiment group 
would be able to find a variety of biases in the batches we showed them and, in 
particular, to find a different representation of women between the images rank-
ing high with respect to the Kantorovich potentials and those ranking low. On 
the contrary, the participants in the control group were prone to find biases that 
are very prominent in CelebA (e.g., majority of white women) and when asked 
to compare two batches they would be less confident in describing one of them 

Fig. 4   A path in the nerve complex constructed by Mapper for the three-dimensional ResNet18. In pur-
ple we have the bottom scoring images (layer 1), in yellow the top scoring ones (layer 6)
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as more biased. Generally, we draw the conclusion that, while there is some pos-
sibilities to fall into some confirmation bias, our method is useful to formulate 
hypotheses about possible biases in the data.

5 � Experiments

The previous section showcases how our framework can discover biased visual 
features in the CelebA dataset. In this section, we provide experimental evidence 
to back theoretical claims supporting our pipeline. To begin with, in Sect.  5.1, 
we compare W2

2
  with two baselines. Then, in Sects. 5.2 and 5.3, we assert that 

we can capture bias both for whole datasets and for individual images. Finally, in 
Sect. 5.4, we assess the impact of dimensionality reduction on W2

2
 and the image 

ranking based on Kantorovich potentials; we show that several reduction tech-
niques retain minimal impact and therefore can be used as part of Sect. 4’s pipe-
line to facilitate the usage of Mapper. A discussion on our findings is conducted 
in Sect. 6. Refer to Appendix B for implementation details.

5.1 � Baseline comparison

Goal. The notion of statistical parity led us to select W2
2
 as a measure of disparity. 

We investigate whether this choice can quantify dataset bias as well as alterna-
tives, like the popular SVM-based approach of Torralba and Efros (2011) and the 
measures proposed by Kwegyir-Aggrey et al. (2021).

Torralba and Efros (2011) measure how separable two datasets or groups of 
samples are. Analogously to our approach, they set SVM accuracy as a global 
measure of bias, and classification confidence for each image as a bias contri-
bution score. To make a fair comparison between this approach and our use of 
W2

2
  , we replace accuracy (which suffers from the limitation of being bounded 

in [0, 1]) with the average quadratic distance of points from the SVM’s decision 
boundary B:

This way, the distance d(p,B) replaces the (lack of) classifier confidence.
We also consider a variation of this methodology that replaces the SVM with a 

fully connected neural network. Computing the distance from the latter’s decision 
boundary is not as straightforward, and we approximate it by repurposing the LIME 
algorithm (Ribeiro et al. 2016):

(8)
1

|X|+|Y|

∑

p∈X⊔Y

1

2
d(p,B)2
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Algorithm 1 Approximate distance from the decision boundary.
Input: Model f , point x ∈ X, Kernel function K.
Output: Approximated d(x,Bf ) or 1

2 · d(x,Bf )2.
1: Sample Y ∼ N (x,Σ)
2: Compute the predictions f(Y )
3: Weight the points in Y according to the kernel function K
4: Train a weighted linear SVM g on (Y, f(Y ))
5: Return d(x,Bg) or 1

2 · d(x,Bg)2

Kwegyir-Aggrey et  al. (2021) instead propose a linear individual bias measure 
that depends on averaging over pairwise sample distances, as shown in Equation 6. 
To make this comparable to our approach, we create an adjusted variation that uses 
the same squared distance formulation as W2

2
 , i.e., c(x0, y) =

1

2
d(x0, y)

2 . As a global 
bias measure, this approach uses the sum of individual biases, which depends on the 
number of samples. We again make this comparable to our approach by averaging 
individual biases.

Setup. To show that there are cases in which W2
2
 is more expressive than model-

based baselines in quantifying bias, we crafted two non-linearly-separable synthetic 
datasets, for which SVMs tend to exhibit diminishing learning power. According to 
Proposition 1 the approach of Kwegyir-Aggrey et al. (2021) would create the same 
ranking as the Kantorovich potentials, but the global bias measure would be coarser 
due to averaging all transportation costs instead of taking into account the OT map.

We create the datasets by uniformly sampling points from two concentric cir-
cles in a two-dimensional feature space, where each circle corresponds to a differ-
ent sensitive attribute value. In the first dataset, the circles are perfectly concentric 
with radii 10 and 7.5. In the second case, we added points to the inner circle sam-
pled from a Gaussian distribution centred in (−4, 4) and covariance matrix 0.5 ⋅ I2 . 
In these settings, the distance from SVM decision boundaries does not provide any 
information about the two distributions; but even a more versatile learning model, 
like a neural network, could leave some biases undetected.

Results. For the first synthetic dataset, we compare a) W2
2
  , b) the measure pro-

posed by Kwegyir-Aggrey et al. (2021), and the quadratic distance from the deci-
sion boundary of both a c) linear SVM and d) our variation with a 10-layer neural 

Fig. 5   (a) Decision boundary of a 10-layer neural network with perfect accuracy. (b) The distance from 
the boundary of the outer circle’s points, which does not depend in the inner distribution. (c) Individual 
bias score as presented in Kwegyir-Aggrey et al. (2021) (d) Kantorovich potentials for the outer circle, 
which are lower near the inner Gaussian
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network classifier. For these approaches, we respectively obtained dataset bias scores 
of 1.98, 82.0, 21.05, and 1.22.

For the second synthetic dataset, we compute the distance from the decision 
boundary of a deep neural network with the Kantorovich potentials on the data-
set’s outer circle. Figure 5 demonstrates that, even for a perfectly accurate decision 
boundary, the distance is evenly distributed across the outer circle and can there-
fore be a misleading indication of individual bias. On the other hand, Kantorovich 
potentials exhibit higher values on the side opposite to the Gaussian blob, and there-
fore correctly identify that points on that side differ more from the inner distribution 
than those near the blob. We also verify that the result for Kwegyir-Aggrey et  al. 
(2021) is nearly-identical to the Kantorovich potentials, up to the goodness of our 
approximation.

5.2 � W2

2
 captures total dataset bias

Goal. We now investigate the ability of W2
2
 to capture different degrees of data bias 

under the same feature extractors.
Setup. We experiment with two datasets: CelebA and Biased MNIST (Shrestha 

et al. 2022). We construct splits of CelebA with different degrees of selection bias, 
that is, we sample four sub-datasets ensuring that respectively 90%, 60%, 30%, and 
10% of the samples have a positive value for a specified binary attribute (e.g, wear-
ing ties, hats, or eyeglasses). W2

2
  is computed on the 12 datasets that combine dif-

ferent attributes and selection biases, as well as for a -this time- uniformly sampled 
dataset of the same size of 9K images (in the latter, 7% of people wore ties, 7% wore 
glasses, and 4% wore hats). In Biased MNIST, we compare its training splits (50K 
images) for available bias levels (0.1, 0.5, 0.75, 0.9, 0.95, and 0.99) with the data-
set’s test split (10K images), which is unbiased. For both datasets, we experiment 
with the ResNet18 feature extractor.

Results. Figure 6 shows that W2
2
 monotonically reflects the degree of artificially 

injected bias in most cases, except for the smiling attribute.

5.3 � Kantorovich potentials capture image bias

5.3.1 � Goal

 We next investigate whether Kantorovich potentials capture the contribution of 
images to the total dataset bias. To this end, we assess whether the distribution of 
potentials computed on biased samples is skewed towards higher values for images 
with attribute values capturing biased characteristics.

5.3.2 � Setup

 We follow the same setup as in the previous experiment.
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5.3.3 � Results

 A two-sample Kolmogorov-Smirnov (KS) test checks whether images with the 
artificially biased attribute (e.g, Wearing_Necktie) exhibit higher Kantorovich 
potentials than others for every cumulative distribution threshold of the potentials. 
Tables 1 and 2 show test outcomes across several rates of selection bias.

The high p values in Table 1 indicate that the cumulative function distribution 
of Kantorovich potentials for the images with the attributes in the first column are 
higher than the same distributions for images without the selected attributes in 

Fig. 6   Changes in the approximate W2

2
 over the increment of selection bias across (a) four CelebA attrib-

utes and (b) the Biased MNIST dataset

Table 1   KS p values rounded to 
three decimal places for CelebA

Attribute 10% 30% 60% 90%

Wearing_Necktie 0.953 1 1 1
Eyeglasses 1 1 1 1
Wearing_Hat 1 1 1 1
Smiling 0 0 0.001 0.997

Table 2   KS p values rounded to 
three decimal places for the digit 
4 in Biased MNIST

Selection bias 10% 50% 75% 90% 95% 99%

digit_color_ix 0.268 0.318 0.234 0.018 0.568 0.568
digit_position_ix 0.052 0.828 0.264 0.860 0.689 0.649
digit_scale_ix 0.052 0.828 0.264 0.860 0.689 0.649
letter_color_ix 0.503 0.806 0.632 0.332 0.042 0.471
letter_ix 0.619 0.653 0.342 0.118 0.064 0.621
texture_color_ix 0.337 0.902 0.222 0.162 0.297 0.456
texture_ix 0.291 0.942 0.422 0.465 0.735 0.882
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CelebA. On the other hand, worse confidences are exhibited in Table 2, which leave 
us uncertain with regards to our hypothesis.

To get a sense of what confident bias assessment entails, in Figure 7 we show dif-
ferences in Kantorovich potential distributions as more selection bias is introduced 
for the Wearing_Necktie attribute in CelebA images. Similar figures can be found 
for other explored attributes of this dataset in Appendix E. As already indicated by 
the KS test, differences between the distribution of the Kantorovich potentials with 
respect to the attribute of interest grow more pronounced for more biased data (this 
is the desired behaviour). Furthermore, distributions are mostly skewed towards 
higher values for the images with the attribute. Overall, we confirm a general trend 
for Kantorovich potentials to capture the artificially injected data bias.

For Biased MNIST, W2
2
  captures the overall increment of bias pretty well (Fig-

ure 6b); however, if we compute the distribution of Kantorovich potentials for each 
digit with respect to the attributes that are correlated  with that digit, we do not 
observe the same trend. See, for example, Figure 7. This is a surprising behaviour 
that certainly needs further exploration.

5.4 � Impact of dimensionality reduction

5.4.1 � Goal

 When dealing with image data in the context of our framework, the high dimen-
sion of the extracted features can negatively impact the clustering required to run 
the Mapper algorithm. Here, we investigate the impact of dimensionality reduction 
techniques on our approach in terms of: a) to what extent such techniques affect 
the approximation of the quadratic Wasserstein distance, and b) whether the ranking 
defined by Kantorovich potentials changes after dimensionality reduction.

5.4.2 � Setup

 We experiment with four popular dimensionality reduction techniques; PCA (Hotel-
ling 1933), Isomap (Tenenbaum et al. 2000), Spectral Embedding (SE by Belkin and 

Fig. 7   Kantorovich potential box plots for the CelebA attribute Wearing_Necktie (left) and for the Biased 
MNIST digit 4 (right) with different degrees of selection bias
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Niyogi (2003)), and t-SNE (Van der Maaten and Hinton 2008). We extract ResNet18 
features of four CelebA splits composed by joining the uniform sample and the sam-
ple with 10%, 30%, 60% and 90% of people wearing hats as described in Sect. 5.2. 
Then, we apply each reduction technique to reduce every dataset to 3, 50, and 150 
dimensions. For t-SNE, we computed only 3-dimensional reduction because it was 
too expensive to compute the others.

5.4.3 � Results

 Table 3 shows the estimated W2
2
 to check whether it would still capture the increas-

ing bias after the reduction. Furthermore, we tested whether the image ranking order 
of the Kantorovich potentials is maintained compared to the ranking induced by the 
original features by computing the Spearman correlation between the two types of 
ranking.

Apart from SE, dimensionality reduction techniques successfully capture the 
selection bias in data. Nonetheless, the results tend to be different between tech-
niques; Isomap and t-SNE tend  to exacerbate bias while PCA reduces it slightly. 
Similarly, apart from SE, dimensionality reduction tends to preserve the rankings 
quite well, as shown by the high Spearman correlation before and after reduction. 
Isomap has the best score, especially for highly biased data (30% or more of the peo-
ple wearing hats in the biased sample). But, it is PCA that best preserves the order of 
Kantorovich potentials.

Table 3   W2

2
 , and the Spearman correlation r between Kantorovich potentials computed before and after 

reduction for different percentages of people wearing hats in the biased sample. All p values are less than 
10

−39

 Best correlation in bold

Wearing hats 10% 30% 60% 90%

W
2

2
  r W

2

2
  r W

2

2
  r W

2

2
  r

PCA 3 0.067 0.535 2.244 0.959 8.615 0.966 18.378 0.930
PCA 50 0.651 0.559 4.039 0.973 13.509 0.989 27.048 0.984
PCA 150 2.196 0.615 6.000 0.967 16.550 0.994 31.129 0.993
Isomap 3 2.256 0.371 47.547 0.847 169.607 0.887 349.713 0.807
Isomap 50 6.269 0.355 86.104 0.890 299.818 0.921 603.285 0.852
Isomap 150 32.744 0.408 138.202 0.909 403.700 0.939 779.033 0.878
SE 3 1.192 -0.139 1.197 -0.404 1.187 0.679 1.211 0.243
SE 50 0.029 -0.404 0.029 -0.402 0.029 -0.390 0.029 -0.376
SE 150 0.080 -0.478 0.080 -0.475 0.080 -0.389 0.080 -0.310
t-SNE 3 1.791 0.331 32.032 0.853 131.591 0.869 250.732 0.733
Not reduced 2.894 1 7.785 1 18.818 1 34.127 1
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6 � Discussion

Both the considerations in Sect. 5.1 and the theoretical guarantees in Sects. 3.2 and 
3.3 present our method as a valid alternative to existing baselines. For the model-
based baseline (Torralba and Efros 2011), we only showed that there exist cases 
in which it fails and not that we always outperform it. Nonetheless, the underlying 
principles of OT theory ensure that our method intrinsically overcomes issues that 
would arise from heuristics. We also showed an equivalence to the image ranks of 
Kwegyir-Aggrey et al. (2021), but the use of W2

2
 is a better global bias measure com-

pared to more naive aggregation of individual sample bias.
Overall, we experimentally demonstrated that W2

2
  can capture (selection) data 

biases quite well. The distribution and corresponding order of the Kantorovich 
potentials adequately represents image bias at least for the CelebA splits. Biased 
MNIST revealed itself as a more difficult dataset to analyse using the Kantorovich 
potentials, this might be due to strong correlations between the different attributes 
that causes the biases for the various digits but needs further exploration. Finally, 
appropriate dimensionality reduction methods do not significantly affect the ranks 
order of Kantorovich potentials and -ultimately- the applicability of our pipeline.

Before closing this work, we point out that the experiments in Sects. 5.2 and 5.3, 
as well as the case study in Sect. 4 yield purely observational results, which is in 
part inevitable for a methodology that aims to assist qualitative data analysis. It is 
indeed not possible to assess whether chosen attributes (e.g., Waring_Hat, Wear-
ing_Necktie, Eyeglasses, and Smiling for CelebA) are the causes of  the measured 
bias; other causes could be correlated to such attributes and may not be immediately 
apparent to visual inspection.

We also remark that the user study in Sect. 4.5 presents some weaknesses. Indeed, 
it is performed on a very small set of participants from a small number of research 
groups. Nonetheless, we believe that it gives a clear idea of how our work can sup-
port bias detection and on the extent to which it is subject to confirmation bias.

Finally, for the sake of computational tractability, we employ a non-exact 
method to compute W2

2
  and the Kantorovich potentials. Nonetheless, the approach 

we employ can be considered as state-of-the-art (Korotin et al. 2021). During this 
approximation, the efficacy of ICNNs in Sect. 3.1 depends on the hyperparameter 
choices (e.g., the optimiser) and therefore these need to be tuned anew for each data-
set being explored.

7 � Conclusions

In this work, we introduced a framework for bias detection based on OT theory. Its 
strong theoretical guarantees and ability to be incorporated into various data min-
ing pipelines makes it a valid option for bias detection. We also conducted a case 
study that others can replicate to integrate our proposed approach into bias-aware 
data mining pipelines to derive hypothesis on possible biases similar to the ones we 
reveal for the CelebA dataset.
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Analysis that uses our framework would not be final but rather serve as a prima 
facie evidence of the presence of bias in the data. Further investigation should either 
confirm or disprove our method’s findings. There are few methods in the literature 
that help make such hypotheses, and we try to fill this gap.

Future work can be devoted to the refinement of our method, for example through 
further development of accurate OT approximation algorithms. Finally, our frame-
work could be integrated in other bias discovery pipelines, and motivate new pre-
processing approaches for bias mitigation.

Appendix A Mathematical background

In this appendix, we provide the reader with mathematical background that helps 
gain a more in-depth understanding of Sects. 2.2, 3.4, and 3.2.

A.1 Optimal transport details

We provide some standard definitions of metric space and measure theory, and the 
reader can refer to Salamon (2016) and Villani (2008) for further details.

Definition 2  (Metric space) Given a set X, a function d ∶ X × X → ℝ≥0 is called a 
distance or a metric if the following conditions hold:

•	 d(x, y) = 0 iff x = y ∀x, y ∈ X

•	 d(x, y) = d(y, x) ∀x, y ∈ X

•	 d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X

The couple (X, d) is called a metric space.
Definition 3  (Measurable space) Given a set X, a collection A of subsets of X is 
called �-algebra if: 

1.	 X ∈ A

2.	 if A ∈ A then X ⧵ A ∈ A

3.	 Every countable union of subsets in A is in A

The couple (X,A) is called a measurable space.
Definition 4  (Measurable function Salamon 2016) A function f ∶ (X,A) → (Y ,B) 
between measurable spaces is said to be measurable if for every B ∈ B then 
f −1(B) ∈ A.

Definition 5  (Measure) Given a measurable space (X,A , we call measure a function

such that 

� ∶ A → [0,+∞]
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1.	 � is �-additive, i.e., given a a sequence of pairwise disjoint union of sets in A then 

2.	 There exist a measurable set A ∈ A such that 𝜇(A) < ∞

The triple (X,A,�) is called a measure space.
Definition 6  (Push-forward measure) Given a measure space (X,A,�) and a map 
f ∶ X → Y , then we define the push-forward measure f#� ∶ f#A → [0,+∞] such that

where f#A is the �-algebra {B ⊆ Y|f −1(B) ∈ A} . Note that when Y is endowed with 
the �-algebra f#A , f is automatically a measurable function.

Definition 7  (Coupling of two measures) Given two measure spaces (X,A,�) 
and (Y ,B, �) , we say that a measure � on the product space X × Y  is a coupling if 
(pX)#� = � and (pY )#� = � where pX and pY are the standard projections onto X and 
Y, respectively. We, alternatively, say that pi has marginals � and � . We indicate the 
set of couplings for � and � as Π(�, �).

Definition 8  (Polish Space) A metric space (X, dX) is called Polish if it is complete 
and separable with respect to the topology induced by the dX.

A.2 Mapper details

To gain a better understanding of Mapper, we revise some basic notions of topology 
(Munkres 2000).

Definition 9  Given a set X and a collection of subsets T = {Ui ⊆ X} such that: 

1.	 � ∈ T

2.	 Any arbitrary union of elements of T is in T
3.	 Any finite intersection of elements of T is in T

The subsets in T are called open sets, T is called a topology on X, and X is called a 
topological space.

The above definition enables the development of the entire theory of topology 
and the study in a very precise way of the shape of spaces. In particular, it enables 
the definition of  what constitutes a continuous function. Intuitively, the latter is a 
function that maps a space into another without “ripping” it.

Definition 10  A function f ∶ (X, TX) → (Y , TY ) between topological spaces is called 
continuous if the pre-image f −1(U) ∶= {x ∈ X|f (x) ∈ U} of < n open set U ∈ TY is 
in turn an open set in TX.

�(

∞⋃

i=0

Ai) =

∞∑

i=0

�(Ai)

f#�(B) = �(f −1(B))
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Definition 11  A set of open sets U = {Ui} ⊆ TY is called an open covering of Y 
if 
⋃

Ui = Y  . Note that the pre-image of the sets in U along a continuous function 
f ∶ (X, TX) → (Y , TY ) is a covering of X. Given a covering U , we can construct a 
graph N(U) called the nerve complex in the following way: each open U ∈ U corre-
sponds to a node and two nodes are linked by an edge if and only if the intersection 
between the respective open sets is non-empty.

Finally, a topological space (X, T) is called disconnected if there exist at least two 
non-empty open sets V ,U ∈ T  such that X = V ∪ U and V ∩ U = � . In such a case, 
U and V are called connected components of the space X.

Appendix B Implementation details

In this appendix, we provide the reader with the details about the implementation of 
the Kantorovich potential approximation.

B.1 Case study

For each of the three feature spaces, we trained two 4-layers ICNN � and � with 
512 neurons per layer and input dimension equal to 3. Both the networks have Leaky 
ReLU activation functions. They adopt the regularised objective presented by Mak-
kuva et al. (2020) and use a lambda of 0.5. Both networks are trained over 25 epochs 
using an RMSProp optimiser with hyperparameters � = 0.99 , momentum 0.5, and 
learning rate 0.0001 which is further halved after 20 epochs.

The network � was trained 5 times per iteration of � . While � is fed with batches 
sampled directly from a set of data points X (i.e., we consider � =

∑
xi∈X

�xi ), Breni-
er’s theorem (described in Sect.  2.2) requires the distribution � to be absolutely 
continuous. Hence, we sample the batches from a sum of Gaussians centred in the 
points of Y. In practice, we sample a batch (x1, ..., xn) from Y and for every xi we re-
sample a point from N(xi,Σi) . In our experiments, Σi = 0.001 ⋅ I3 for every i, where 
I3 is the 3 × 3 identity matrix.

B.2 Experiments

For the baseline comparison experiments on both synthetic datasets, the two 4-lay-
ers ICNNs � and � were trained with similar settings as in the case study. In particu-
lar, they were trained for 25 epochs using an RMSProp optimiser with learning rate 
of 0.0001 which is further cut by after 20 epochs. Again, � was trained 5 times per 
iteration of � . Since samples were already obtained from continuous distributions, 
this time we did not re-sample Y from the sum of Gaussians.

During experimentation to assert the ability of W2
2
 and Kantorovich potentials in cap-

turing global and data sample bias respectively, we used the same exact configuration as 
in the case study. The only difference was that the input feature dimensions were 512.



1 3

Studying bias in visual features...

Dimensionality reduction experiments, also use the same configuration as in the 
case study, apart for the input dimension. This time, RMSProp did not converge for 
the spaces reduced with SE, and in those cases we used Stochastic Gradient Descent 
with the same learning rate and momentum.

Appendix C Additional mapper analysis

Here we show the results of the Mapper analysis for the Autoencoder and FaceNet fea-
ture presented in Sect. 4 (Figs. 8, 9).

Fig. 8   A path in the nerve complex constructed by Mapper for the three-dimensional Autoencoder fea-
tures
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Appendix D User study

To corroborate our observations in Sect. 4.4 concerning the ability of our approach 
to produce helpful visualizations, we conducted a case study. In this, 30 partici-
pants were gathered on a voluntary basis from the research groups of the authors. 
We divided them into experiment and control groups. Participants joined the study 
at different times -essentially based on their research group- and we stratified the 
separation between batches with a clustered randomisation procedure; every time a 
group of users joined the study, we sampled half of them without replacement and 
assigned them to the experiment group and left the rest to the control. Of the 30 

Fig. 9   A path in the nerve complex constructed by Mapper for the three-dimensional FaceNet features
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participants, only 25 completed the survey, of which 12 were assigned to the experi-
ment group and 13 to the control group.

The experiment group was shown a total of six batches with 40 images each sam-
pled from the top and bottom 1% of images ranked according to the Kantorovich 
potentials for ResNet, Autoencoder and FaceNet features (Reduced to dimension 3 
with PCA) of the CelebA dataset. The control group was shown the same number of 
images and with the same visual organisation, though uniformly sampled from the 
whole dataset.

Irrespective of which group they belong to, each participant ended up being asked 
to answer the following questions for three different image batches: 

Q1)	Look at the first batch of 40 images (sampled from the top 1% for the first group, 
sampled uniformly for the other group). Can you find any patterns in the images?

Q2)	If so, describe the patterns you detected.
Q3)	Look at the second batch of 40 images (sampled from the bottom 1% for the first 

group, sampled uniformly for the other group). Can you find any patterns in the 
images?

Q4)	If so, describe the patterns you detected.
Q5)	Compare the two batches, does one of the two show a more biased representation 

of the subjects?
Q6)	If so, elaborate.
Q7)	Rate from 1 (absent) to 7 (extremely high) the amount of bias found.

Table  4 summarises the answers to quantitative questions (Q1, Q3, Q5, and Q7). 
To begin with, all participants were more prone to spot bias in the first batch (with 
the exception of the third pair of batches for the control group). Nonetheless, the 
experiment group was more likely to respond that one of the two batches had a 
more biased representation of women. By extension, for (Q7) the experiment group 
responded with higher score on average and lower standard deviation, where the lat-
ter indicates a general consensus among participants.

Table  5 summarises the answers to qualitative questions (Q2 and Q4). We 
report the patterns identified by more than one participant sorted by the num-
ber of participants that detected such pattern. The control group always reported 

Table 4   Answers to the quantitative questions in the survey

Ranking Q1 Q3 Q5 Q7 (mean) Q7 (std)

ResNet18 75% Yes 58.3% Yes 91.7 % Yes 5.75 1.16
Autoencoder 91.7 % Yes 66.7 Yes 91.7 % Yes 5.92 1.32
FaceNet 91.7 % Yes 58.3 % Yes 91.7 % Yes 6.0 1.0
Random control 1 76.9 % Yes 69.2 % Yes 53.8 % Yes 4.15 1.61
Random control 2 84.6 % Yes 53.8 % Yes 53.8 % Yes 4.31 1.94
Random control 3 61.5 % Yes 69.2 % Yes 69.2 % Yes 3.62 1.86
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the same patterns, which are very prominent in CelebA and extremely common 
among its images labelled as female. Whereas the experiment group detected 
a variety of patterns that are very different between images with high and low 
potentials. Table 6 summarises the answer to (Q6). Similarly to (Q7), the experi-
ment group was more likely to identify biases between the two batches. None-
theless, different patterns among the random samples were occasionally identi-
fied by people in the control group, too. Therefore, we cannot entirely exclude 
the possibility to fall into confirmation bias when analysing a dataset with our 
method. 

Table 5   Answers to (Q2) and (Q3) sorted by the number of participants that indentified respective pat-
terns. We report only patterns identified by at least two participants

Batch Patterns

Top 1% ResNet18 long-hair, white people, no black people, young, attractive, filtered, make up, 
others

Bottom 1% ResNet18 short or tied hair, head gears, people from minorities, glasses, athlets, others
Top 1% Autoeconder dark hair, long hair, attractive, young, frontal pose, white people, make up, 

others
Bottom 1% Autoencoder lighter hair, others
Top 1% FaceNet attractive, make-up, young, frontal pose, others
Bottom 1% FaceNet older, possible mislabbelling, others
Random control 1.1 make-up, white people, smiling, young, long-hair, no black people, attractive, 

others
Random control 1.2 white people, smiling, young, make-up, long-hair, no black people, others
Random control 2.1 white people, make-up, young, long-hair, dark-hair, smiling, others
Random control 2.2 white people, young, make-up, long-hair, smiling, others
Random control 3.1 white people, smiling, young, make-up, long-hair, others
Random control 3.2 white people, smiling, blonde, make-up, long-hair, young, others

Table 6   Summary of the answers to (Q6). We report only patterns identified by at least two participants

Batches Patterns

ResNet18 The 2nd batch shows more diversity with respect to skin colour and age, 1st 
batch shows more (conventionally) attractive women, others

Autoeconder The 2nd batch shows more diversity in terms of skin colour, facial charac-
teristics, profession, hairstyle, and pose, others

FaceNet The 2nd batch is more diverse with respect to skin colour and age, others
Random control 1.1 vs 1.2 The 1st batch shows only white women, others
Random control 2.1 vs 2.2 The 1st batch shows more conventionally attractive women, the 1st batch 

shows more (conventionally attractive) women, others
Random control 3.1 vs. 3.2 1st batch is more diverse, others
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Appendix E Additional experiment results

Here we show the results of some additional experiments Fig. 10. 
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