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Abstract

This work enhances the robustness of the standard displacement-based (penalty Gauss-point-to-segment) contact formulation
y applying the so-called Mixed Interpolation Point method (MIP). We consider a smooth isogeometric discretization of the
ontact surface in order to avoid various artificial discontinuities of the normal contact gap function. Like any existing MIP-
nhanced formulation in terms of implementation, the proposed MIP contact formulation only requires a minor modification
rom an existing implementation of the standard contact formulation. Nevertheless, the improvement in robustness is shown to
e quite significant, which often enables the simulation of contact problems with a larger load step size for efficiency and/or
larger penalty parameter for accuracy in the contact constraint. The formalism of the proposed MIP contact method is based

n the idea of relaxing the contact constitution at integration points. To this end, at first the contact pressure is considered as
n additional unknown apart from the displacement field, and the perturbed Lagrange multiplier potential is used to enforce
he contact constraint. The MIP method then eliminates the contact pressure unknown directly at integration points, instead of
iscretizing it as it is done in the standard mixed contact formulations. As a result, the residual vector is identical to the standard
isplacement-based contact formulation. However, the resulting tangent stiffness matrix is different, as the MIP tangent is now
ased on an extrapolation of the contact pressure iteratively over Newton iterations. Several challenging numerical examples
re presented to illustrate the accuracy, robustness and efficiency of the proposed formulation.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

This paper is dedicated to Dr. Thomas J.R. Hughes and his lifetime achievements in the field of computational
echanics. His visionary idea of isogeometric analysis has been a driving inspiration for all the authors of this

aper throughout their careers and also laid the basis for their joint work in this paper.
Concerning about the finite element method for contact problems, assuring the robustness and accuracy of the

nderlying contact algorithm is not trivial in a general contact scenario, which can involve large deformation, large
ontact sliding, geometrical and material nonlinearities, and structural and material instabilities. These factors may
irectly or indirectly lead to a divergence of a contact computation. A cause of divergence is usually rooted in the
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existence of various discontinuities within the discretized contact surface, such as discontinuities of the geometrical
contact surface itself and/or discontinuities of the contact gap (or the contact pressure) [1]. These discontinuities
can be either artificial discontinuities, e.g. at element boundaries when the contact surface is discretized by classical

agrange elements. Or they can be physical discontinuities, e.g. at the edges of contact bodies. In any case,
such discontinuities lead to a discontinuous (point-wise) contact gap function, which is often used to enforce the
impenetrability contact condition. Consequently, it may cause many divergent-related issues, such as a geometrical
locking in the context of large sliding contacts, or inaccuracy in the numerical surface integration over the contact
surface.

In recent decades, computational contact mechanics made advancements in terms of robustness mainly due to
the advent of (i) mortar methods [2] – see e.g. Puso and Laursen [3] for a pioneering work in mortar contact, and
(ii) isogeometric analysis [4] – see e.g. Lu [5], Temizer et al. [6], and De Lorenzis et al. [7] for pioneers in the
context of isogeometric contact. Both mortar methods and isogeometric contact aim at tackling the above-mentioned
discontinuities for improving robustness, but in different ways.

In mortar methods, a smoothed contact gap (or weighted contact gap) is enforced for the impenetrability contact
condition, instead of the point-wise contact gap with the above-mentioned discontinuities. In other words, the
contact constraint is reformulated in a weak sense, see e.g. [8,9]. This approach helps to overcome the geometrical
interlocking issue [10]. A shortcoming of the method, however, is the appearance of new artificial discontinuities
at the overlapping boundaries of slave and master elements of the finite element force terms acting on master
elements. Such discontinuities still appear even with the novel smooth isogeometric discretization technique and
usually require a segmentation procedure in order to resolve the numerical integration there [1]. Apart from artificial
discontinuities within a contact zone, a proper segmentation helps to resolve physical discontinuities at the edges of
contact bodies as well [11]. Despite the burden of segmentation, improvement of the robustness in mortar methods
is significant, and it becomes widely used in contact simulations [12–15].

Isogeometric contact, on the other hand, improves the robustness by providing a smooth discretization of
contact surfaces, which eliminates many issues related to artificial discontinuities of the point-wise contact gap.
Therefore, the robustness is shown – by e.g. [16,17] – to be significantly improved even with the classical constraint
enforcement techniques, like the Gauss-point-to-segment (GPTS) formulation of Fischer and Wriggers [18] – whose
summary is provided here in Appendix A. This feature is advantageous over mortar methods due to the simplicity
of GPTS contact formulations. We therefore consider this approach in the present work. Note, however, that while
isogeometric contact can remove most artificial discontinuities within the contact zone, physical discontinuities
are still present in case of an edge contact involved in simulations. In such case, a segmentation at the edge often
becomes necessary in order to provide a proper numerical integration and maintain the robustness. This is discussed
e.g. in [1,19].

It is worth mentioning that isogeometric discretization techniques help to improve the robustness of other contact
methods as well, e.g. a collocation method [20], or a combination of a mortar method and the isogeometric
discretization [7]. A comprehensive overview on the topic of isogeometric contact can be found in e.g. [21].

Apart from the isogeometric discretization, our present work is motivated by a recent advancement in the context
of Newton solution techniques with the introduction of the so-called Mixed Interpolation Point method (MIP) [22]. It
offers an improvement in the robustness of the Newton method in a displacement-based finite element formulation
for structural problems. The improved robustness is indicated by the convergence behavior of Newton iterations
given a larger load step size, and hence provides advantage in efficiency over the classical Newton method.

The idea of the MIP method in the original formulation of Magisano et al. [22] is to relax the constitutive
equations at integration points, leading to an iterative scheme for computation of tangent stiffness matrices over
the Newton iterations. The relaxation here implies that the stress variables are extrapolated at integration points,
and hence it is not required to satisfy a given stress–strain relation at every Newton iteration. Instead, the given
stress–strain relations are satisfied with convergence of a load step.

Although the MIP method modifies the tangent stiffness matrices, the residual vector resulting from MIP is
identical to that in the displacement-based formulation. Consequently, only the convergence behavior of Newton
iterations is altered, while the obtained solution is identical to the one from the displacement-based formulation.
Further, an implementation of the MIP method is a simple extension from an existing displacement-based finite
element code. Yet, the improvement of the robustness is shown to be significant in many cases, e.g. for geometrically
non-linear structural problems [22,23], nonlinear planar Kirchhoff rods [24], isogeometric geometrically-non-
linearity in solid shells [25], Koiter shells [26], Kirchhoff–Love shells [27], shell coupling [28], large rotational
2
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beam [29,30], dynamic analysis of elastic structures [31], shell buckling [32,33], as well as for beams and shells
with material nonlinearity [34].

In this contribution, we present a mixed interpolation point method in the context of frictionless contact
ormulations. To this end, we start with the perturbed Lagrange multiplier potential of Simo et al. [35] to enforce
he contact constraint over the contact surface, where the contact pressure is considered as an additional unknown
eld apart from the displacement one. As usual, a weak form is obtained from the variational principle. We then
iscretize the displacement field of the contact surface by smooth isogeometric shape functions. The contact pressure
nknown, on the other hand, is solved directly at integration points. A residual vector and its corresponding tangent
tiffness matrix are obtained from the discretized weak form and its consistent linearization, respectively. Further, we
erive a penalty procedure by eliminating the contact pressure unknown at integration points from the global system
f equations. Note that our treatment of the contact pressure here for the MIP method is distinct from Simo et al.
35] for the original perturbed Lagrange multiplier method. There, the contact pressure is considered constant over a
ontact element. I.e. the contact pressure is interpolated by a constant shape function. As a result, static condensation
f the contact pressure unknown can be obtained, but its reduced residual vector as well as the reduced tangent
tiffness matrix differ from the standard penalty formulation.

We structure the remaining sections as follows: Section 2 presents a brief geometrical description of the contact
urface. The definition of the normal contact gap and its variation and linearization are given in Section 3. The
eak form derived from the perturbed Lagrange multiplier potential is provided in Section 4. Then in Section 5,
e present the isogeometric discretization of the contact gap and related geometrical quantities. Section 6 provides
detailed derivation of the contact finite element residual and its tangent stiffness matrix, as well as the static

ondensation of the contact pressure. In Section 7, we assess the accuracy, robustness, and the efficiency of the
roposed MIP formulation via several numerical examples. Finally, Section 8 concludes the paper.

. Contact surface description

This section lists essential geometrical objects that we use to describe a contact surface, which is the boundary
f a body in consideration.

At any time t , a point x in R3 on the boundary (surface) of body B, denoted by γ = ∂B, is defined by the
ne-to-one mapping from a point ξ =̂ (ξ 1 , ξ 2) in the 2D-manifold parameter space P as

x = x(ξ , t) . (1)

he tangent vectors at x ∈ γ can then be defined by

aα :=
∂x
∂ξα
= x,α , (α = 1, 2) , (2)

nd from this, the unit normal vector can be defined as

n :=
a1 × a2

∥a1 × a2∥
. (3)

ith respect to the base {a1, a2, n}, one can define the components

bαβ = n · aα,β , (4)

aαβ = aα · aβ and aαβ
= [aαβ]−1 , (5)

f the curvature and the metric tensor, respectively. The dual tangent vectors aα relate to the tangent vector (2) by1

aα
= aαβ aβ , (6)

hich satisfies aα
· aβ = δα

β .

. Contact kinematics

In this section, we define the normal contact gap, which is used to describe the impenetrability constraint for
ontact problems. The variation and linearization is also briefly discussed.

1 In this paper, the summation convention is applied for repeated Greek indices taking values from 1 to 2.
3



T.X. Duong, L. Leonetti and J. Kiendl Computer Methods in Applied Mechanics and Engineering 417 (2023) 116361
Fig. 1. Contact kinematics: definition of the point-wise and signed normal gap gn between slave surface γs and the master surface γm at
the current configuration.

Consider a contact problem of two deformable bodies in R3. In order to formulate the relative interaction between
the two contact surfaces of the two bodies at the current configuration, one of the two contact surfaces is assigned
as slave and denoted by γs, and the other is assigned as master and denoted by γm. With this, the signed normal
gap can be defined by, see Fig. 1.

gn := (xs − xp) · np , (7)

where xp ∈ γm denotes the closest projection point from a slave point xs ∈ γs onto the master surface γm, and np is
the master surface normal at xp. The sign of the normal gap gn helps in distinction between the cases of penetration
(gn < 0) and separation (gn > 0) of the two contact surfaces.

The variation of gn follows from (7) as

δgn = (δxs − δxp) · np , (8)

where we have used the identity (xs − xp) · δnp = gn np · δnp = 0, following from np · np = 1.
Similarly, for linearization of gn, one gets

∆gn = (∆xs −∆xp) · np , (9)

where ∆ denotes an increment. Further, linearization of δgn is

∆δgn := ∆np ·
(
δxs − δxp

)
− np · δap

α ∆ξα . (10)

4. Weak form for the contact constraint

The contact surface γs generally includes the active contact zone, denoted γ A
s , and the inactive contact zone γ I

s ,
that is γs = γ A

s ∪ γ I
s . Physically, one observes the contact pressure λ vanished in γ I

s , and there is no contact gap
seen in γ A

s . These can mathematically be expressed in the form of the Karush–Kuhn–Tucker conditions as

gn = 0, and λ > 0 for ∀ x ∈ γ A
s ,

gn > 0, and λ = 0 for ∀ x ∈ γ I
s .

(11)

These equations can be combined into the equality constraint

λ gn = 0 for ∀ x ∈ γs . (12)

Here, we consider that the zero contact pressure condition within γ I
s is done by an active-set strategy (see

Remark 6.4). This effectively requires only the impenetrability constraint gn = 0 within γ A
s , which is enforced

here by the perturbed Lagrange multiplier potential [35]

Πc(x, λ) =
∫

λ gn dS −
1

∫
1

λ2 dS , (13)

Γs 2 Γs ϵ

4
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d

where Γs is chosen as the slave surface at the reference configuration, λ is the Lagrange multiplier and represents
the apparent contact pressure, and ϵ > 0 denotes the penalty parameter. Requiring the vanishing of δΠc, the contact
virtual work thus reads

δΠc(x, λ) =
∫
Γs

λ δgn dS +
∫
Γs

ḡn δλ dS = 0 (14)

where

ḡn := gn −
λ

ϵ
(15)

enotes the relaxed contact gap for the variation of contact pressure λ. Since δgn(x) and δλ are considered to
be independent variables, the vanishing of δΠc implies the two integral terms in (14) to be zero. The first term
corresponds to the Lagrange multiplier virtual work, which enforces the impenetrability constraint gn = 0, while
the second term implies the local (point-wise) contact constitution

λ = ϵ gn. (16)

If inserting this contact constitution into the first term of (14) and considering Eq. (8), one in turn gets the penalty
(pure displacement-based) contact formulation of Fischer and Wriggers [18] as

δΠc(x) =
∫
Γs

Tc · (δxs − δxp) dS = 0 , with Tc := gn np . (17)

For the sake of convenient comparisons in subsequent sections, Appendix A summarizes the contact finite element
forces and contact stiffness matrices resulting from Eq. (17), and we refer to this formulation as the standard penalty
(displacement-based) contact formulation, or STD in short.

Remark 4.1. In Section 6, we will employ the so-called mixed interpolation point method (MIP) of Magisano et al.
[22] in order to relax the contact constitution (16) by providing an extrapolation of contact pressure λ at integration
points. Note, that this approach is distinct from the treatment of Simo et al. [35]. There, the contact constitution
(16) is also relaxed, but it is done by introducing a suitable interpolation of λ in a contact element. The treatment
of Simo et al. [35] results in a so-called mixed contact formulation.

5. Isogeometric discretization of contact surfaces

For smooth slave and master contact surfaces, we consider the isogeometric discretization [4]

xs = Ne xe ,

δxs = Ne δxe ,

δas
α = δxs,α = Ne,α δxe ,

xm = Nê xê ,

δxm = Nê δxê ,

(18)

where N denotes the element shape function array, x is an array containing position vectors of control points, and
the indices e and ê denote the element index of the slave and master element, respectively.

Applying (18) to Eq. (8) gives the discretized form of δgn as

δgn = np ·

[
Ne(ξ s) δxe − Nê(ξ p) δxê

]
. (19)

Similarly for Eq. (9), we have the discretized form of ∆gn as

∆gn = np ·

[
Ne(ξ s)∆xe − Nê(ξ p)∆xê

]
. (20)

Further, for linearization of ∆δgn from Eq. (10), it should be noted that np = n(ξ p) is a complicated function

np = np
(
xs, ξ p(x, xê), gn(xs, xp)

)
. (21)

The linearization of np can be found, e.g. in [36] as

∆np =
∂np

∆xe +
∂np

∆xê , (22)

∂xe ∂xê

5
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where
∂np

∂xe
=

1
gn

(I − np ⊗ np − cαβ
p ap

α ⊗ ap
β) Ne ,

∂np

∂xê
= −

1
gn

(I − np ⊗ np − cαβ
p ap

α ⊗ ap
β) Nê − cαβ

p ap
α ⊗ np Nê,β ,

(23)

with cαβ
p := [ap

αβ − gn bp
αβ]−1. Furthermore, one has [36]

∆ξα
=

∂ξα

∂xe
∆xe +

∂ξα

∂xê
∆xê , (24)

here
∂ξα

∂xe
= cαβ

p ap
β Ne ,

∂ξα

∂xê
= −cαβ

p

(
ap

β Nê − gn np Nê,β

)
.

(25)

Inserting expressions (22) and (24) into Eq. (10) we find

∆δgn = δxe ·

(
NT

e
∂np

∂xe
∆xe + NT

e
∂np

∂xê
∆xê

)
− δxê ·

(
NT

ê
∂np

∂xe
+ NT

ê,α np ⊗
∂ξα

∂xe

)
∆xe

− δxê ·

(
NT

ê
∂np

∂xê
+ NT

ê,α np ⊗
∂ξα

∂xê

)
∆xê .

(26)

. Mixed interpolation point method for contact (MIP)

In this section, we apply the mixed interpolation point method of Magisano et al. [22] to a discretized expression
f contact virtual work (14). Accordingly, the residual vector and corresponding stiffness matrix are derived.

.1. Contact residual vector

In order to obtain the residual vector from the contact virtual work (14), one discretizes Eq. (14) in the
lement-wise manner as

δΠc(xs, xm, λ) =
nel∑

e=1

δΠ e
c (xe, xê, λ) = 0 , (27)

here xs and xm denote the arrays of position vectors of all slave and master control points, respectively, nel is the
otal number of slave elements, and

δΠ e
c (xe, xê, λ) =

∫
Γ e

s

λ δgn dS +
∫
Γ e

s

ḡn δλ dS . (28)

Further, we employ the mixed interpolation point method of Magisano et al. [22] over each slave element e, which
ims to solve the contact equilibrium for unknown λ directly at integration points apart from nodal displacement
nknowns. That is, inserting Eq. (19) into Eq. (27) and applying a quadrature rule gives

δΠc(xs, xm, λ) =
a∑

i=1

δxi
e · N

T
e (ξ s

i ) t i
c wi −

a∑
i=1

δxi
ê · N

T
ê (ξ p

i ) t i
c wi +

a∑
i=1

(wi ḡi
n) δλi

= δxs · rs + δxm · rm +

a∑
i=1

g̃i
n δλi .

(29)

ere, a and i denote the total number of (active) integration points and their (global) index over the slave surface Γs,
respectively. Arrays δxi

e and δxi
ê are variations of control-point positions of slave and master elements associated

p
with integration point i , respectively. Vector ξ i ∈ Pm denotes the closest projection point from corresponding

6
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integration point ξ s
i ∈ Ps. The scalar wi ∈ Γs is the referential area element, related to the parametric area element

d□i := dξ 1
i dξ 2

i ∈ Ps as

wi = J□ d□i , with J□ :=
√

det[Aαβ] , (30)

here Aαβ are metric components of the slave surface at the reference configuration, and J□ is the area stretch
from Ps to Γ e

s .2

Further in Eq. (29), we have defined the weighted-relaxed gaps at integration point i

g̃i
n := wi ḡi

n , (31)

nd the contact residual vectors on slave and master control points as

rs :=

a∑
i=1

A
e

NT
e (ξ s

i ) t i
c wi , rm := −

a∑
i=1

Â
e

NT
ê (ξ p

i ) t i
c wi , with t i

c := λi np , (32)

here t i
c is the apparent contact traction at integration point i , and A denotes the assembly operator.

Furthermore, in view of Eq. (29), we can define the so-called global generalized vector of unknowns as

u :=
[
xT

s , xT
m , λ1 , λ2 , . . . , λa

]T
. (33)

ith this, Eq. (27) can be expressed as

δΠc(u) = δu · rc(u) = 0 , for ∀δu ∈ Vh , (34)

here Vh denotes the set of kinematically admissible variations for the control points and pressure at integration
oints, and

rc(u) =
[
rT

s , rT
m , g̃1

n , g̃2
n , . . . , g̃a

n

]T (35)

s the global contact residual vector.

emark 6.1. It should be noted in Eq. (29), that no interpolation of the contact pressure λ has been made from
ntegration point to integration point. This corresponds to an application of the Dirac delta function to the fields λ

nd δλ from the continuum equation (28), which somewhat resembles the point collocation method and allows for
n elimination of contact pressure unknowns (i.e. a static condensation) from the global system of equation, see
ection 6.2.2. This is, however, different from the pure collocation scheme, where the contact pressure is collocated

n order to directly enforce the contact impenetrability condition gn = 0. Instead, the collocation here is to enforce
nly the constitutive equation (16) (or equivalently ḡn = 0) discretely at integration points for the second term of
q. (28).

emark 6.2. Instead of the element-wise integration as is used here, a patch-wise integration can also be used for
he contact virtual work (27). In such case, the element index e in our presented formulation here and henceforth
s simply replaced by a patch index, and the element shape function array N is replaced by the B-Spline shape
unctions of the patch.

.2. Contact stiffness matrices

In this section, we derive the contact stiffness matrices following from the MIP-discretized virtual work (29)
or the Newton–Raphson method. Note, that the contact pressure λi at integration points is unknown and thus
ontributes to additional degrees of freedom in the global system of equations. The tangent matrix resulting from
his is referred to as the full contact stiffness matrices. We then perform a static condensation of the stiffness matrix
y elimination of the unknowns λi at integration points.

2 Note that for the Gaussian quadrature rule and the parametric domain P being the square of area 4, the parametric element area d□i
is identical to the Gauss-point weight.
7
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6.2.1. Full contact stiffness matrices

To obtain the contact stiffness matrices, we start with the linearization of δΠc in Eq. (27) as

∆δΠc =

∫
Γs

∆δgn λ dS +
∫
Γs

δgn ∆λ dS +
∫
Γs

δλ∆gn dS −
∫
Γs

1
ϵ

δλ∆λ dS . (36)

nserting approximations (19), (20), (26), and the mixed interpolation for the pressure field λ with the same

uadrature rule used in Eq. (29) into Eq. (36), we find

∆δΠc =

a∑
i

δxi
e · k

i i
ee ∆xi

e +

a∑
i

δxi
e · k

i i
eê ∆xi

ê +

a∑
i

δxi
e · k

i i
eg ∆λi

+

a∑
i

δxi
ê · k

i i
êe ∆xi

e +

a∑
i

δxi
ê · k

i i
êê ∆xi

ê +

a∑
i

δxi
ê · k

i i
êg ∆λi

+

a∑
i

δλi · ki i
ge ∆xi

e +

a∑
i

δλi · ki i
gê ∆xi

ê +

a∑
i

δλi · ki i
gg ∆λi ,

(37)

where we have defined the elemental stiffness matrix at integration point i as

ki i
ee := Mee wi λi , ki i

eê := Meê wi λi ,

ki i
êe := −Mêe wi λi , ki i

êê := −Mêê wi λi ,

ki i
eg := Ge wi , ki i

ge := (ki i
eg)T ,

ki i
êg := −Gê wi , ki i

gê := (ki i
êg)T ,

ki i
gg := −

1
ϵ

wi ,

(38)

ith

Mee
:= NT

e
∂np

∂xe
,

Meê
:= NT

e
∂np

∂xê
,

Mêe
:= NT

ê
∂np

∂xe
+ NT

ê,α np ⊗
∂ξα

∂xe
,

Mêê
:= NT

ê
∂np

∂xê
+ NT

ê,α np ⊗
∂ξα

∂xê
,

Ge := NT
e (ξ s) np ,

Gê := NT
ê (ξ p) np .

(39)

o obtain a global stiffness matrix compatible with unknown list (33), rewriting Eq. (37) gives

∆δΠc = δxs · kss ∆xs + δxs · ksm ∆xm + δxs ·

a∑
i

k.i
sg ∆λi

+ δxm · kms ∆xs + δxm · kmm ∆xm + δxm ·

a∑
i

k.i
mg ∆λi

+

( a∑
δλi · ki.

gs

)
∆xs +

( a∑
δλi · ki.

gm

)
∆xm +

a∑
δλi · ki i

gg ∆λi ,

(40)
i i i

8
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where we have grouped (assembled) the contribution of all control points on the slave and master surfaces. With
these, we have defined

kss =

a∑
i=1

A
e

A
e

ki i
ee , ksm =

a∑
i=1

A
e

Â
e

ki i
eê , kms =

a∑
i=1

Â
e

A
e

ki i
êe , kmm =

a∑
i=1

Â
e

Â
e

ki i
êê

k.k
sg =

a∑
i=1

A
e

kik
eg , kk.

gs =

a∑
i=1

A
e

kki
ge , k.k

mg =

a∑
i=1

Â
e

kik
êg , kk.

gm =

a∑
i=1

Â
e

kki
gê .

(41)

Eq. (40) can be expressed in the matrix form

∆δΠc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δxs

δxm

δλ1

δλ2

.

.

.

δλa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

δu

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kss ksm k1
sg k2

sg ... ka
sg

kms kmm k1
mg k2

mg ... ka
mg

k1
gs k1

gm k11
gg k12

gg ... k1a
gg

k2
gs k2

gm k21
gg k22

gg ... k2a
gg

. . . . .

. . . . .

. . . . .

ka
gs ka

gm ka1
gg ka2

gg ... kaa
gg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

=:Kc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆xs

∆xm

∆λ1

∆λ2

.

.

.

∆λa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

∆u

(42)

where we have defined the global contact stiffness matrix Kc.3

On the other hand, to solve Eq. (34) by the Newton–Raphson method, applying Taylor series to Eq. (34) and
taking Eq. (42) into account, gives

δΠc(u+∆u) = δΠc(u)+∆δΠc ≈ 0
= δu · rc + δu ·Kc ∆u ≈ 0 for ∀δu ∈ Vh .

(43)

Since δu is arbitrary, the last equation yields the system of equation

Kc ∆u = −rc , (44)

whose matrix form reads⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kss ksm k1
sg k2

sg ... ka
sg

kms kmm k1
mg k2

mg ... ka
mg

k1
gs k1

gm k11
gg k12

gg ... k1a
gg

k2
gs k2

gm k21
gg k22

gg ... k2a
gg

. . . . .

. . . . .

. . . . .

ka
gs ka

gm ka1
gg ka2

gg ... kaa
gg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆xs

∆xm

∆λ1

∆λ2

.

.

.

∆λa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rs

rm

g̃1
n

g̃2
n

.

.

.

g̃a
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(45)

where the increments ∆xs, ∆xm, and ∆λi are unknown to be solved for at the global level.

3 In Eq. (42), the scalars with light gray color imply zeros, while the arrays colored in green, blue, and red imply that their matrix
multiplication (or dot product) is associated with degrees of freedom at slave control points, master control points, and integration points,
respectively.
9
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u

w

6.2.2. Condensed residual vector and stiffness matrices
Since unknowns ∆λi are only associated with integration points, a static condensation is possible. To this end,

sing Eq. (38), (41), and (31) eliminates ∆λi from (45) as

∆λi = −
1

ki i
gg

(
ki

gs · ∆xs + ki
gm · ∆xm + g̃i

n

)
= ϵ

(
Ge · ∆xi

e −Gê · ∆xi
ê + ḡi

n

)
.

(46)

The second expression in Eq. (46) follows from inserting Eq. (41) with (38), and considering that only the
elements e and ê that are associated with integration point i are assembled for ki

gs and ki
gm, respectively. Note, that

∆xi
e and ∆xi

ê are global (assembled) quantities. With (46), rearranging Eq. (45) gives the (global) reduced system
of equation to be solved for only displacement DOFs as[

k̄ss k̄sm

k̄ms k̄mm

]
  

K̄c

[
∆xs

∆xm

]
  

∆ū

= −

[
r̄s

r̄m

]
  

f̄c

,
(47)

here

k̄ss =

a∑
i=1

A
e

A
e

(
Mee wi λi + ϵ GT

e wi Ge

)
,

k̄sm =

a∑
i=1

A
e

Â
e

(
Meê wi λi − ϵ GT

e wi Gê

)
,

k̄ms = −

a∑
i=1

Â
e

A
e

(
Mêe wi λi + ϵ GT

ê wi Ge

)
,

k̄mm = −

a∑
i=1

Â
e

Â
e

(
Mêê wi λi + ϵ GT

ê wi Gê

)
(48)

are the contact stiffness matrices evaluated at the integration point level. Further, the residual is reduced to

r̄s :=

a∑
i=1

A
e

NT
e t̄c wi , r̄m := −

a∑
i=1

Â
e

NT
ê t̄c wi , with t̄c := ϵ gn np . (49)

Remark 6.3. In comparison with the standard penalty formulation (STD) of Fischer and Wriggers [18] – see
also Appendix A – the reduced residual resulting from the proposed MIP method is identical to that of the STD
formulation as the Eqs. (49) and (54) show. However, the stiffness matrices (48) resulting from MIP are now
computed based on the extrapolation of the contact pressure λi from Eq. (46). Meanwhile, the STD stiffness matrices
are computed with the requirement λi = ϵ gn for every iteration. This is seen from Eq. (56).

Remark 6.4. Although we start with the perturbed Lagrange multiplier potential (13), from Eq. (49) we conclude
that the MIP contact formulation is eventually a pure displacement-based (penalty type) formulation and it allows for
a small violation of the impenetrability constraint. This is useful in the application of the simple active-set strategy,
that is purely based on the sign of the contact gap, in order to determine the interface between the active contact
zone γ A

s and the inactive contact zone γ I
s . Note that a convergence of this active-set strategy is not guaranteed,

since no linearization is extracted from its non-linearity. However we observe for the smooth contact surface as
adopted here, that a convergence is usually obtained within few iterations, without any further adhoc treatment (like
freezing the active-set). See e.g. Fig. 8 in the example 7.3 below.

6.3. MIP contact algorithm

As mentioned in Remark 6.3 in Section 6.2.2, since the MIP residual vector is identical to the standard

(displacement-based) penalty contact formulation, the implementation is a simple modification of the existing code

10
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Table 1
A finite element contact algorithm for the proposed MIP formulation. Here, items marked with blue color imply additional tasks w.r.t. the
standard penalty (displacement-based) contact formulation.

1. Loading loop:

• apply load increment or time step

• provide initial guess for the nodal displacements or the current configuration.

2. Contact active-set loop:

• provide initial guess for the contact active-set: e.g. from previous load step.

• provide initial guess for the contact pressure λi at contact quadrature points i .

3. Global Newton–Raphson loop:

4. Loop over the bulk elements:

• loop over quadrature points: compute internal FE forces & tangent matrices.

• assemble the FE forces & tangent matrices into the global matrices.

5. Loop over the slave contact elements e = 1 ... nel:

6. Loop over the contact quadrature point ξ s
i over an element:

• determine current position xs ∈ γs of the quadrature point.

• from xs, find the closest projection point xp(ξ i
p) in master element ê.

• evaluate normal gap gn (Eq. (7)) and geometrical quantities in Section 2

• evaluate the contact active-set.

• If contact quadrature point i is active, then:

◦ extrapolate contact pressure λi ← λi +∆λi , see Eq. (46).

◦ compute contact FE forces and stiffness from Eqs. (49) and (48).

◦ assemble contact FE forces ((49)b) & stiffness ((48)b-d) for master elements
into global matrices f̄c and K̄c, respectively.

◦ store arrays Ge , Gê , and ḡi
n – from Eq. (39)(e-f) and Eq. (15), respectively.

• assemble contact FE forces ((49)a) & stiffness ((48)a) for slave elements
into global matrices f̄c and K̄c, respectively.

• apply boundary conditions.

• solve the global linear system of equations for the increment ∆x of nodal positions.

• update nodal displacements, current configuration, and evaluate error norm.

• compute the pressure increment ∆λi at contact quadrature points from Eq. (46)

• check for the convergence of the global Newton–Raphson loop.

• repeat the global Newton–Raphson loop #3 if the contact active-set has changed.

for the computation of the stiffness matrix. Table 1 provides an algorithm for the MIP contact formulation presented
above.
11
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Fig. 2. Hertz contact: initial mesh using (a.) NURBS-enriched finite elements (Q1N2) of Corbett and Sauer [16], and (b.) IGA with a single
quadratic NURBS patch per body. The Q1N2 mesh consists of linear Lagrangian elements (L) for the bulk and transition elements (E) on
the smooth boundary. The extraction of exemplar elements together with their nodes/control points are depicted in (c.). The symmetry in
the x-direction is exploited in simulations, i.e. only half of the geometry is modeled and all nodes/control points along the symmetry line
X = 0 are fixed in the x-direction.

7. Numerical examples

In this section, several numerical examples are presented to demonstrate the accuracy, the robustness and
the efficiency of the proposed MIP contact in comparison with the standard (STD) displacement-based contact
formulation. Both 2D and 3D contact problems are considered.

For the unit normalization in the examples, we choose a reference length L0, and a reference stress E0 with the
nit [force/length2]. Based on these, the unit of reaction forces and penalty parameter are thus E0 L2

0 and E0/L0,
espectively.

.1. Hertz contact problem

The first example is the well-known Hertz’s contact problem. We consider the contact between two half of
ylinders of the same radius R = 8 L0, see Fig. 2. The plane strain Neo-Hookean model (see e.g. [37]) is used with

E = 200 E0 and ν = 0.3. With the lower cylinder fixed at its lower edge, the upper cylinder is pressed down by
he application of a distributed load with resultant force P on the upper edge.

We consider two types of smooth discretization schemes for contact surfaces, including the NURBS-enriched
nite elements (Q1N2) of Corbett and Sauer [16] and quadratic IGA elements as seen in Fig. 2a and b, respectively.
oth meshes provide a smooth surface of the cylinders, but in the former mesh linear Lagrange elements (L) are
sed for the interior bulk.

In particular to the IGA mesh in Fig. 2b, we employ a modified half-cylinder with the hole of radius 0.3 L0. To
eep the contact response at the contact interface unaffected by this modification, we constrain all control points
n the upper edges, such that they have the same position y in the solution. This is done here by the coupling
echnique of del Toro Llorens and Kiendl [38], where a control point is assigned as master and all other control
oints as slave, which follow motion of the master control point in the y-direction. The desired external force is
hen applied on the master control point.

For the subsequent computations, a penalty parameter ϵ = 2×104 E0/L0 is used, and we consider either a small
oad case (P = 2.5 E0 L2

0) or a large load case (with P = 10 E0 L2
0).

Fig. 3a–b. plot the deformed configuration for the large load case. As can be seen, the stress distribution around
ontact zone with the two meshes is almost identical, regardless of the mesh differences in the far field. A zoom
nto the contact area is provided in Fig. 3c–d, which shows that the contact constraint is enforced to a high accuracy
ith the considered penalty parameter.
12
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Fig. 3. Numerical solution of the Hertz contact problem: deformed configuration colored with the first stress invariant for (a.) Q1N2 mesh,
and (b.) IGA mesh. A zoom in to the contact zone is also shown in (c–d.) for the two meshes at the refinement level of 192-Q1N2/128-IGA
contact elements, respectively. Here for visualization, the full model is obtained from reflection of the computed symmetry model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4a–b depicts the distribution of the true contact pressure (i.e. λ/Js where Js :=
√

det[aαβ]/
√

det[Aαβ] denotes
he contact surface stretch) including the comparison to the analytical solution (see, e.g. [39]). As the figure shows,
he solutions for both Q1N2 and IGA meshes are in good agreement with the analytical solution. For coarse mesh,
owever, some oscillation in the contact pressure is observed as seen in Fig. 4a, but it becomes smooth with mesh
efinement as Fig. 4b shows. It can also be seen from Fig. 5a that, due to the assumption of small contact area used
n the Hertz solution, the computed contact pressure is closer to the analytical solution in the small load case than
n the larger one.

Fig. 5b shows the convergence of the peak contact pressure over mesh refinement. The error here is measured
ith respect to solutions with a fine mesh. With this, the convergence rate of around 2 and 1.6 is observed for the
uadratic IGA mesh and Q1N2 mesh, respectively.

emark 7.1. It should be noted that the obtained solutions in this example for MIP and STD are identical, which
s to be expected since the formulations are identical for the residual vector.

emark 7.2. The NURBS-enriched finite element (Q1N2) of Corbett and Sauer [16], see element (E) in Fig. 2c.,
hould not be confused with the so-called NURBS-enhanced finite element, see e.g. [40]. The Q1N2 element here

rovides a transition from the bulk toward the smooth NURBS surface. Its shape functions Ne(ξ ) are constructed

13
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Fig. 4. Hertz contact: true contact pressure at integration points for (a.) coarse mesh (96-Q1N2/64-IGA contact elements) and (b.) fine mesh
(384-Q1N2/256-IGA contact elements), considering the two discretization schemes and the two load levels.

Fig. 5. Hertz contact: mesh convergence of the peak (true) contact pressure with respect to (a.) the Hertz’s analytical solution and (b.) the
numerical solution with the fine mesh (around 1.3 million dofs in the symmetry model, or 1536 contact elements on the slave surface).

consistently from the partition of unity condition and are able to interpolate any quantities, e.g position x, in the same
anner as Lagrangian elements (L), like x = Ne(ξ ) xe, where xe denote elemental nodal/control point positions.

.2. Contact patch test

The second example further investigates the accuracy aspect of the MIP contact formulation via the so-called
ontact patch test. Since the contact residual vector of MIP contact is identical to the STD contact, it is expected
ere that the MIP contact formulation also passes all the contact patch tests like in STD.

To confirm this, we consider the three test cases as shown in Fig. 6a–c. To test our contact formulation for
arious element types, the upper bodies are described by the NURBS-enriched (Q1N2) finite elements of Corbett
nd Sauer [16], see Remark 7.2. The lower bodies are discretized by isogeometric elements with quadratic NURBS.
he plane strain Neo-Hookean model (see e.g. [37]) is used with E = 2 E0 and ν = 0.3. The penalty parameter for
ontact is ϵ = 102 E0/L0. A distributed external force p = −p n, with pressure p = E0 L0 per current area and n
eing the edge normal vector, is applied to the (free) upper edges of the contact bodies.

Here, test case #1 shown in Fig. 6a is to check if the MIP formulation is able to transfer stress from one body
o the other exactly through the contact interface. Test cases #2 and #3 additionally account for errors in numerical

ntegration resolving the artificial discontinuities within the contact zone (Fig. 6b.) and the physical discontinuities

14
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Fig. 6. Contact patch tests of MIP contact considering (a.) case #1: conforming mesh, (b.) case #2: non-conforming mesh, and (c.) case
3: generalized contact at the initial configuration. Here, the red and black bullets denote the nodes or control points of the upper and
ower bodies, respectively. The nodes or control points at X = 0 and Y = 0 are fixed in the x-direction and in the y-direction, respectively.
urther, the deformed configurations for test cases #1–3. are shown in (d–f.), respectively. The coloring shows the error in the vertical (true)
tress. In (e–f.), the green crosses mark the intersecting points from the segmentation procedure for numerical integration with 5 Gauss
oints per segment. Case #2 is further tested with (g.) 5 Gauss points, (h.) 20 Gauss points, and (i.) 2 × 104 Gauss points per elements..
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

t the partial contact element (Fig. 6c), respectively. Like in mortar methods, e.g. [3], such discontinuities appear
n the residual vector on the master surface Eq. ((49).2). Therefore, a proper numerical integration is required here
n order to pass the tests to machine precision.
15
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Fig. 6d–f. shows the testing results of the three test cases for the MIP contact, where a segmentation procedure
with 5 Gauss point per segment) is employed for the test cases #2–3. As seen, all the tests are passed to machine
recision.

We further note that, since a smooth discretization for the contact surfaces is used in the test, the artificial
discontinuities within the contact zone from Eq. ((49).2) are of the weak type. This implies that instead of the
segmentation, many integration points can be used as an alternative in order to pass the patch test #2. This is
demonstrated in Fig. 6g–i. where error in stress goes to machine precision with 2× 104 Gauss points per element.

On the other hand at the edge contact like in case #3, where the upper contact surface is assigned as master, the
many integration point approach is well-known to be ineffective due to the strong physical discontinuities there. In
many contact simulations, one can bypass such discontinuities simply by switching the slave–master role in order
to avoid an edge projection (see e.g. in the subsequent examples 7.5 and 7.6). In general, however, a consistent
segmentation procedure is required there in order to ensure the robustness of contact simulations in general contact
scenario.

7.3. Ironing in 2D: assessment of robustness of the MIP contact formulation

This section assesses robustness of the proposed MIP contact formulation in comparison with the STD contact
formulation of Fischer and Wriggers [18] by considering the ironing example of a cylinder on a slab as shown in
Fig. 7. Here, we will use the success flag – i.e. indication of a simulation completed without any convergence issue
– as a robustness measure for the two considered contact methods.

Fig. 7a shows the initial (stress-free) configuration before contact is activated, where the cylinder with radius
R = L0 is pre-penetrated4 by 0.01 L0 into the slab of dimensions 5 × 1 L2

0. By employing the so-called NURBS-
enriched finite elements of Corbett and Sauer [16,17], the contact surfaces are discretized by quadratic NURBS,
while linear elements are used for the bulk. Since we aim at characterizing the robustness from the initial contact
phase with a relatively small contact area, 20 Gauss points per element are used in our contact simulations. The
plane strain Neo-Hookean model (see e.g. [37]) is used for both the cylinder (E = 10 E0 , ν = 0.3) and the slab
(E = 2 E0 , ν = 0.3).

We consider the contact problem for various load step sizes and penalty parameters at the three distinct phases:

• Initial contact, see Fig. 7b: From the initial configuration, the cylinder is further pressed into the slab by applying
a vertical displacement u0

y in a single load increment to the top control points (and nodes) of the cylinder. This phase
is characterized by a small contact zone with relatively few integration points involved in contact. The numerical
integration is usually inaccurate and thus induces difficulty in convergence of Newton iterations. Here we simulate
this phase for various displacements u0

y and penalty parameters.

• Pressing phase, see Fig. 7c: this phase starts from a configuration converged at the end of the initial contact phase
with u0

y = −0.005 L0 and ϵ = 500 E0/L0.5 The cylinder is further displaced downward by u y = 0.5 L0 for various
load step sizes and penalty parameters, see Fig. 7c. Therefore, the contact zone is expanding and the active-set is
expected to be updated frequently over the deformation.

• Sliding phase, see Fig. 7d: the simulation starts from a configuration converged at the end of the pressing phase
with ϵ = 500 E0/L0. This phase aims at testing the contact formulation for large sliding contact. To this end, the
cylinder is now displaced horizontally by ux = L0, also for various step sizes and penalty parameters. The applied
displacement is also prescribed to the top control points (and nodes) of the cylinder.

Fig. 8a. shows that the load–displacement curves resulting from STD and MIP are identical. This is due to the
fact that the two formulations have the same residual, as noted in Remark 6.3. Given a load increment with the
same load step size, the convergence rate of the Newton-iterations for MIP and STD are almost identical as Fig. 8b
shows.

Fig. 9 plots the success flag of the simulations for the standard penalty (displacement-based) contact formulation
(STD) versus the presented MIP contact formulation at the three contact phases. At the initial contact phase, MIP is
slightly more robust than STD at larger penalty parameter zone, while no improvement is observed at the pressing
phase. This is shown in Fig. 9a–b, respectively.

4 The pre-penetration here is merely to provide an initial guess for contact simulations once it is activated at the first load step.
5 I.e. the initial contact simulation with the given u0 and ϵ becomes the first part of pressing phase loading.
y
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Fig. 7. Ironing of a cylinder block: a. Initial configuration with the pre-penetration 0.01 L0 before contact is activated, and deformed
onfigurations at the end of b. initial contact phase, c. pressing phase, and d. sliding phase. The color shows the first stress invariant. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Ironing of a cylinder block: a. load–displacement curves at the pressing and sliding phases and b. convergence of Newton iterations
at the initial contact phase for STD versus MIP formulation with load step size −0.0255 L0. Here, ϵ = 500 E0/L0.

However, as Fig. 9c shows at the sliding phase, MIP significantly improves robustness of the contact simulation
ver STD for both larger load step sizes and larger penalty parameters. This implies that MIP offers more efficiency
since we can use larger step size), and more accurate constraint enforcement (since larger penalty parameters can
e used).

emark 7.3. The similarity of the convergence rate in STD and MIP shown Fig. 8b implies that numbers of
terations over the load increment of the two methods are more or less equal. However, MIP is still more efficient
han STD since the improved robustness allows MIP for using a larger load step size. It also should be noted that

IP improves the robustness more significantly at the sliding phase than the initial contact and the pressing phase,
s is seen from Fig. 9. Therefore, an adaptive load-stepping scheme usually improves the overall robustness and
17
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Fig. 9. Ironing of a cylinder block: successful flag of simulations using the standard penalty (displacement-based) contact formulation (STD)
in comparison with the presented mixed interpolation point contact formulation (MIP) for various load-step sizes and penalty parameters at
a. initial contact phase, b. pressing phase, and c. sliding phase.
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Fig. 10. Disc in a disc contact: Configurations at vertical displacements a. 0 L0, b. 0.5156 L0, and c. 1.125 L0. d. Load–displacement curve
for STD versus MIP contact. Here, ϵ = 5× 106 E0/L0 and 25 load increments are used. The STD formulation failed to converge at load
tep #12, while the proposed MIP finished simulation without convergence issue.

fficiency in sliding-dominated simulations. In this case, MIP contact often requires less number of load steps, or
quivalently, requires less total number of Newton iterations over simulation. We will demonstrate the effectiveness
f an adaptive load-stepping scheme in the examples 7.6 and 7.7.

.4. Disc in a disc contact

The next example simulates the 2D contact of a disc in a disc as shown in Fig. 10. A 3D version of this example
as discussed in [3] to test a contact formulation for large deformation at the contact interface. The radius of the

olid disc is taken as r = 0.6 L0, while ri = 0.7 L0, and ro = 2 L0 for the inner and outer radius of the hollow disc,
espectively. We apply the plane strain Neo-Hookean material for both the solid disc (Es = 2000 E0 , νs = 0.3)
nd the hollow disc (Eh = 1000 E0 , νh = 0.0). With the NURBS-enriched finite elements [16,17], the contact
nterfaces and the bulk are discretized by quadratic NURBS elements and linear Lagrange elements, respectively.
he master surface is assigned to the boundary surface of the solid disc.

All control points at the outer boundary of the hollow disc are fixed. Starting from the initial configuration
hown in Fig. 10a, the total displacement u y = −1.125 L0 is prescribed on the vertical degrees of freedom of all
ontrol points (and nodes) of the solid disc, while their horizontal degrees of freedom are kept free. Here, 25 load
ncrements are used for the prescribed displacement.

We use a penalty parameter ϵ = 5× 106 E0/L0 and 20 Gauss points per element for the contact surface. With
hese parameters, MIP contact finished the simulation successfully, while STD contact fails to converge at load step

12.
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Fig. 11. Ironing of a square block: a. Initial configuration, b–c. deformed configurations at u = (−1.5, 0) L0 and u = (−1.5, 3) L0,
espectively. The color shows the first stress invariant. d. load–displacement curve considering STD (standard) and MIP contact formulations
or penalty parameter ϵ = 400E0/L0 and load step size 0.0043 L0. Here, STD failed to converge at load #553, while MIP completed
imulation without convergent issue. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

Fig. 10a–c plot several snapshots of the discs during the deformation. As seen from Fig. 10c at the area with
he maximum contact pressure, the contact constraint is enforced quite accurately with the proposed MIP contact
ormulation, given that the solid disc undergoes large deformation there. Further, the large change in the contact
rea of the hollow disc results in a significant dissimilarity in mesh size between the slave and master meshes. The
oad–displacement curves are further plotted in Fig. 10d.

.5. Ironing of a square block

The fifth example considers the sliding of a square block pressed and slid on a slab surface as shown in Fig. 11.
his problem is challenging for contact formulations due to the stress singularity at the corners of the block.

The dimensions of the block and the slab are 1×1 L2
0 and 9×4 L2

0, respectively. The block and slab are discretized
y quadratic NURBS elements for both the bulk and contact surfaces. We assume the Neo-Hookean visco-
yperelastic material for the block (Eb = 5 E0 , νb = 0.3 , ηb = 1) and the slab (Es = E0 , νs = 0.3 , ηs = 1).
ig. 11a shows the initial configuration.

All the control points at the bottom of the slab are fixed. The displacement is applied at the control points on the
op edge of the block. The block is first pressed into the slab by the vertical displacement u y = −1.5 L0 with 250
oad increments. It is then slid horizontally up to a displacement ux = 3 L0 with 700 load increments. The penalty
arameter ϵ = 400 E0/L0 is taken for the contact.

With the above parameters, MIP contact can finish the simulation successfully, while STD contact failed to
onverge at load step #553. Fig. 11b–c. show the configurations at the end of the pressing step and the sliding
tep, respectively. As seen, although the contact surface of the slab is stretched significantly (inducing a significant

issimilarity in mesh size), the contact constraint is still fulfilled quite accurately. During the sliding, the reaction
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force is oscillating as shown in Fig. 11d. The picks of the oscillation can be seen to be corresponding to the contact
of the block corners crossing over the contact element boundaries of the slab.

7.6. Ironing in 3D of a cylinder on a block

This example considers the ironing problem in 3D of a cylinder on a block, which was discussed in [3] for
ortar methods. Using the adaptive load-stepping scheme in Appendix B, we further demonstrate the efficiency of

he proposed MIP contact, which benefits from its enhanced robustness as discussed in Section 7.3.
The considered example is similar to the 2D example in Section 7.3 but we model the cylinder now with the

irchhoff–Love shell element of Kiendl et al. [41] as shown in Fig. 12. Here, both the cylinder and the block are
iscretized by the quadratic NURBS elements. We consider three different meshes as seen in Fig. 12a.

The model parameters are taken from Puso and Laursen [3]. That is, the dimensions of the cylinder is R = 3 L0,
T = 0.3 L0 thick, and L = 5.3 L0 long, and its material parameters are (Ec = 1000 E0 , νc = 0.3) for
the shell model. The dimensions of the slab is 9 × 4 × 3 L2

0, its material is Neo-Hookean hyperelasticity with
Eb = 1 E0 , νb = 0.3). The master surface is assigned for the cylinder.

The bottom-most control points of the block are fixed in all directions. The cylinder is pressed downward by
rescribing the vertical displacement ūz = 1.4 L0 on its topmost control points. It is then slid horizontally by
rescribing the displacement ūx = 4 L0 (also on the topmost control points) in the x-direction. Various penalty
arameters ϵ = {500, 1000, 1500, 2000}E0/L0 are used. We further employ the adaptive load-stepping scheme
escribed in Appendix B in order to maximize the benefit from the robustness advantage of the MIP contact
ethod, see also Remark 7.3. We take the load-stepping parameters: ∆ūmin

z = 0.01 L0, ∆ūmax
z = 0.035 L0,

ūsuggested
z = 0.01 L0, ∆ūmin

x = 0.02 L0, ∆ūmax
x = 0.0667 L0, ∆ūsuggested

x = 0.02 L0. The expected number of
teration per load step is Ne = 9 for the pressing phase, and Ne = 10 for the sliding phase, accounting for active-set
pdate iterations.

Fig. 12b–c. shows several snapshots of the converged configurations for the three meshes. As Fig. 12d. shows,
he contact constraint as well as the deformation at the contact area are seen to be quite accurate even for a very
oarse mesh. Also, the load–displacement curve is plotted in Fig. 13a, which shows a smooth behavior of contact.
his reflects the effectiveness of the isogeometric discretization.

In order to measure the efficiency of the considered contact formulations using the adaptive load-stepping scheme,
e use the accumulated number of Newton iterations over the simulation. Such iteration count is plotted Fig. 13b

or the standard penalty-based (STD) contact versus the proposed MIP contact method, considering various penalty
arameters. As can be seen, the iteration count for STD contact and MIP contact is of the same order at the pressing
hase. But at the sliding phase, MIP needs much fewer iterations than STD, corresponding to higher efficiency of
he algorithm. This is due to larger load step sizes allowed (and thus less number of load steps required) for MIP,
lthough the rate of convergence of Newton iteration per load step is almost unchanged with respect to STD. This
gure once more confirms the assessment in Section 7.3.

emark 7.4. It should be noted that if the master surface is assigned to the block instead of the cylinder here, a
ivergence of Newton iterations is expected since a projection on the edges of the block appears in this case. As
iscussed in [1], in principle a segmentation at boundaries of the contact zone is required to resolve the numerical
ntegration there. E.g. a so-called refined boundary quadrature techniques (RBQ) proposed by Duong and Sauer
19] can be employed for this purpose.

.7. Inflated balloon in elastic tube

This section presents the last example testing the contact formulations with inflating a balloon inside an elastic
ube, which is inspired from angioplasty. We also investigate the efficiency gain of MIP over STD formulation with
he adaptive load-stepping scheme in Appendix B.

The initial configurations of both the balloon and the tube are in the cylindrical shape, which are discretized
y quadratic NURBS elements as shown in Fig. 14a-d. Their radii and (overall) lengths are Rballoon = 0.5 L0,

Lballoon = 5.5 L0, Rtube = L0, L tube = 24 L0. The balloon is initially positioned at the distance 13.7 L0 from the

ight end of the tube. The left end of the balloon is closed with the hemisphere of radius 0.5 L0.
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Fig. 12. Ironing of a 3D cylinder: rows a–c. plot configurations in a 3D view at prescribed displacement u = (0, 0) L0, u = (−1.4, 2.03) L0
nd u = (−1.4, 4) L0, respectively, considering three different meshes (from left to right): mesh #1 (280 elements), mesh #2 (1984 elements),
nd mesh #3 (6408 elements). Row d. plots configuration in a side view at u = (−1.4, 4) L0 for the considered meshes. Here, the penalty
arameter is ϵ = 1000E0/L0.

The balloon inflation is done here by constraining the enclosed volume of the balloon, denoted by V , using the
urface potential as, see [42]

Πv = p (V − Vprescribed) , (50)

here p is the Lagrange multiplier (additional unknown) with the physical meaning of the internal pressure acting
n the balloon wall, and Vprescribed denotes the externally prescribed volume, corresponding to a desired volume of
ir filled into the balloon.

In the example, the balloon and the tube are modeled by the Kirchhoff–Love shell [43] with the membrane and
ending responses

τ αβ
= µ

(
Aαβ
−

aαβ

J 2

)
+

1
2
Λ (J 2

− 1) aαβ ,

Mαβ

0 = c Aαγ (bγ δ − Bγ δ) Aδβ ,

(51)

of Sauer et al. [42] and Zimmermann et al. [44], respectively. Here, aαβ and bαβ are the components of the membrane
or shell) surface metric and the surface curvature tensors, respectively, while Aαβ and B denote the corresponding
αβ
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Fig. 13. Ironing of a 3D cylinder: a. load–displacement curves for different meshes with ϵ = 1000E0/L0. b. Comparison of Newton iteration
ounts for the standard penalty-based contact (STD) and proposed MIP contact. Here, we use mesh #1 (280 elements) with the adaptive
oad stepping scheme in Appendix B for various penalty parameters ϵ.

Fig. 14. Inflated balloon in elastic tube: Initial mesh showing (a.) the balloon inside the tube. (b.) zoom in the left-side view of (a.) with
the control points represented by blue dots, (c.) front view and (d.) 3D view of the balloon. The tube is meshed with a single NURBS
patch, while the balloon is meshed with two NURBS patches for its cylindrical body and the hemispherical cap, respectively. For both the
balloon and the tube, C1-continuity is ensured along their circumferences.

quantities in the reference configuration. J denotes the surface stretch, and µ, Λ, and c are material parameters.
In the example, we set µ = 1 E0/L0, Λ = 1 E0/L0 for both the balloon and the tube, while cballoon = 0 (i.e. no

ending stiffness) and ctube = 0.1 E0 L0.
For simulations, the left end of the tube is fixed in all directions, while its right end is fixed in the radial directions

eaving the axial direction free. We use 3 × 3 Gauss points per either a contact or a membrane/shell element.
he simulation starts with inflating the balloon within a pseudo time unit by applying Vprescribed = ᾱv V0, with
¯v = 40 and V0 being the initial volume. During the inflation, the right end of the balloon is fixed in all directions.

ithin another pseudo time unit, the inflated balloon is then slid on the tube wall by prescribing the displacement
¯ x = 11.5 L0 on the right end of the balloon in the axial direction. The adaptive load-stepping parameters for the
nflation phase are ∆ᾱmin

v = ᾱv/500, ∆ᾱmax
v = ᾱv/15, ∆ᾱ

suggested
v = ᾱv/150. For the sliding phase, the load-stepping

min max suggested
arameters are ∆ūx = ūx/500 L0, ∆ūx = ūx/25 L0, and ∆ūx = ūx/350 L0.
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Fig. 15a–f show several snapshots of the simulation. The internal pressure on the balloon wall (i.e. the Lagrange
ultiplier from the volume constraint) over time is plotted in Fig. 16a. As expected, identical results are obtained

rom STD and MIP.
Further, in order to investigate the influence of the adaptive load stepping scheme on the efficiency of simulations,

e define a so-called efficiency gain of MIP emip as

emip :=
nstd

iters − nmip
iters

nstd
iters

× 100% , (52)

here n•iters denotes the accumulated number of Newton iterations. Fig. 16b plots the efficiency gain considering
arious penalty parameters and various adaptive load-stepping parameters Ne, the expected numbers of iterations.
t should be noted that the parameter Ne is a user-defined parameter that controls the “sensitivity” of the adaptive
oad-stepping algorithm to alter the load step size for the current load step. It is simply based on a relative difference
etween the given parameter Ne and the actual number of iterations in the previous load step, see Eq. (58).

As Fig. 16b shows, there exists an optimal value of penalty parameter that maximizes the efficiency of MIP for
ach parameter Ne. In particular for the low parameter Ne = 6, the efficiency gain of MIP is below 20%. It can also
e seen that at the range of high penalty parameters e.g. ϵ = 600 E0/L0, MIP can lose the efficiency by about 20%
ith Ne = 11. However, in most of the cases, MIP has a clear efficiency gain and for Ne = 13 with ϵ = 600 E0/L0,

he efficiency gain is about 45% in the presented example, i.e. the total number of iterations is reduced to almost
ne half.

Fig. 17a–b show more details in the development of the accumulated number of iterations over time for several
enalty parameters with a fixed Ne and for several adaptive load-stepping parameters Ne with a fixed penalty
arameter, respectively. As seen from the figure, the efficiency of MIP has gained mainly from the sliding phase,
hich again confirms the assessment in Section 7.3.

. Conclusion

In this work, we propose an application of the mixed interpolation point method (MIP) [22] to a displacement-
ased frictionless contact formulation in order to enhance its robustness and efficiency. We employ a smooth
sogeometric discretization of contact surfaces to deal with the issues related to artificial discontinuities of the
ormal contact gap. The proposed MIP contact formulation is derived by first considering the contact pressure as
n additional unknown field apart from the displacement field and a perturbed Lagrange multiplier potential enforces
he contact constraint. While the displacement field is discretized as usual, the contact pressure is then solved directly
t quadrature points by static condensation. Such treatment results in a reduced residual vector, which is identical
o the standard penalty formulation. But the difference lies in the corresponding (reduced) tangent stiffness matrix,
hich is now required to extrapolate the contact pressure λ for each iteration. The extrapolation here stems from

he relaxation of the contact constitution λ = ϵ gn (Eq. (16)) during iterations, but it is then satisfied at convergence.
he properties of the MIP stiffness matrix, like symmetry and band width, are identical to those of the STD stiffness
atrix.
As only few changes are required for the tangent matrices, an implementation of the proposed MIP contact

ormulation can be obtained by a minor modification from an existing code for the standard penalty formulation.
he change turns out to improve the robustness over the standard penalty formulation quite significantly, as is
emonstrated by the examples in Section 7. It is particularly effective during the sliding phase of contact problems
s discussed in Section 7.3. The upgraded contact algorithm improves both efficiency and accuracy aspects of
ontact simulations, since it is usually shown to converge for a larger load step size and a larger penalty parameter
n comparison with the standard penalty formulation. Consequently, an adaptive-load stepping scheme can facilitate
he overall robustness and efficiency of simulations as demonstrated in the examples 7.6 and 7.7.

The presented MIP contact method, in principle, can be extended to a penalty-based mortar method, which
nforces a weakened contact constraint function. Frictional contact problems – which can be treated similarly to an
lasto-plasticity formulation – would be another important extension of the present work. These are left for future

tudies.
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Fig. 15. Inflated balloon in elastic tube: configurations colored by the first stress invariant I1 = trsσ at various pseudo times t . Here, the
penalty parameter ϵ = 600 E0/L0 is used. (For interpretation of the references to color in this figure legend, the reader is referred to the

eb version of this article.)

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon
020 research and innovation program (grant agreement No 864482) and from the Departments of Excellence project
f the Italian Ministry of University and Research, which is gratefully acknowledged.
25



T.X. Duong, L. Leonetti and J. Kiendl Computer Methods in Applied Mechanics and Engineering 417 (2023) 116361

a

A

d
f
t
p
A
m
s

d

Fig. 16. Inflated balloon in elastic tube: a. internal pressure acting on the balloon wall over time. b. efficiency gain emip (Eq. (52)) for
various penalty parameters ϵ and various adaptive load-stepping parameters Ne.

Fig. 17. Inflated balloon in elastic tube: accumulated number of Newton iterations over time for a. several penalty parameters ϵ at Ne = 13,
nd b. several adaptive load-stepping parameters Ne at ϵ = 600 E0/L0.

ppendix A. The standard penalty GPTS contact formulation

This appendix summarizes the finite element contact forces and the stiffness matrices of the penalty (pure
isplacement-based) contact formulation of Fischer and Wriggers [18]. According to De Lorenzis et al. [7], the
ormulation of Fischer and Wriggers [18] falls into the category of Gauss-point-to-segment (GPTS) methods since
he contact constraint is enforced at each integration point. This is to distinguish from the mortar contact method
roposed by Puso and Laursen [3], where the contact constraint is enforced weakly with a smoothed gap function.
s discussed in Duong et al. [1] (cf. Sec. 3.4), the GPTS formulation of Fischer and Wriggers [18] and the mortar
ethod of Puso and Laursen [3] can be unified in a so-called generalized mortar method, where different mortar

hape functions with various degrees of weakness in the contact constraint enforcement can be employed.
The finite element contact residual according to Fischer and Wriggers [18] follows from Eq. (17) considering

iscretization (18) and (19) as

δΠc(u) = δu · rc(u) =

[
δxs

δxm

]
   ·

[
rs

rm

]
   = 0 , for ∀δu ∈ Vh ,

(53)
δu rc
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w

where Vh is now the kinematically admissible variations of the control points, and

rs :=

a∑
i=1

A
e

NT
e Tc wi , rm := −

a∑
i=1

Â
e

NT
ê Tc wi , and Tc := ϵ gn np , (54)

are the finite element contact forces acting on slave and master control points, and the (apparent) contact traction
at integration point, respectively. The contact stiffness matrices can be obtained from the linearization of Eq. (53)
and then rearranged as

∆δΠc(u) =

[
δxs

δxm

]
  

δu

·

[
kss ksm

kms kmm

]
  

Kc

[
∆xs

∆xm

]
  

∆u

(55)

here

kss =

a∑
i=1

A
e

A
e

(
Mee wi ϵ gn + ϵ GT

e wi Ge

)
,

ksm =

a∑
i=1

A
e

Â
e

(
Meê wi ϵ gn − ϵ GT

e wi Gê

)
,

kms = −

a∑
i=1

Â
e

A
e

(
Mêe wi ϵ gn + ϵ GT

ê wi Ge

)
,

kmm = −

a∑
i=1

Â
e

Â
e

(
Mêê wi ϵ gn + ϵ GT

ê wi Gê

)
(56)

denote the consistent contact stiffness matrices with matrices M•• and G• defined by Eq. (39).

Appendix B. Adaptive load stepping scheme

In this appendix, an adaptive load stepping scheme used in the 3D numerical examples is described in detail. A
prescribed displacement (or an applied external load) is applied incrementally, where in general the load increment
– denoted by ∆ū – at a load step k is adaptively adjusted based on the Newton iteration count from the previous
load step. That is

∆ūk
= αk ∆ūk−1 , with ∆ūk

∈ [∆ūmin , ∆ūmax] , (57)

where ∆ūmin and ∆ūmax are user-defined bounds for load increments. Parameter α denotes the step size factor.
Accordingly to Magisano et al. [22], it can be defined, for example, as

αk
= 1−

1
2

Nk−1 − Ne

Nk−1 + Ne
. (58)

Here Nk−1 is the number of Newton iterations at the previous load step (k−1), and Ne is a user-defined parameter,
representing the expected (i.e. desired, see cf. [22]) number of Newton iterations per load step.

If increment ∆ūk follows from Eq. (57) exceeds the given bounds, we then take the closest bound (∆ūmin or
∆ūmax) for the current load step. At the first load step, i.e. k = 1, the increment ∆ūk is given by a user-defined
suggested value ∆ūsuggested.

On top of the adaptive increment Eq. (57), in case of divergence of Newton iterations at a load step k, the
computation is retried (max. 5 times) with 30% of ∆ūk from the previous (failed) attempt. This is to prevent a
termination of the simulation due to a too large increment.
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