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Thermoplastics are gaining interest for various industrial applications, since they can be widely used for thermoforming and
injection moulding processes due to their thermostable material behavior. In combination with the material’s low density and
high strength to mass ratio, they are especially of interest in times where an improved environmental balance is more and more
important. Hence, why they are for example frequently used in the automotive industry to reduce the weight of automotive
components.

Semi-crystalline polymers as a subcategory of thermoplastics, partly crystallize after cool-down from the molten state.
During the thermoforming process, they are subjected to large deformations as well as thermal loads and show strong thermo-
mechanical coupling effects in addition to the influence of the evolution of the crystalline phase on the macroscopic material
behavior. Therefore, computational models are needed to predict the complex material response reliably and minimize pro-
duction errors.

This work presents a thermomechanically consistent material formulation at finite strains. In order to account for the
highly nonlinear material behavior, elasto-plastic and visco-elastic contributions are combined in the Helmholtz free energy
and a dependency on temperature as well as the degree of cristallinity (DOC) is incorporated. Special attention is devoted to
the choice of yield function and hardening behavior.

A comparison of the simulation results to experiments at varying degrees of crystallinity and temperatures is presented to
review the changes in the formulation. Therefore a special blending technique is used to ensure stable crystallinity conditions
in the test samples.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Thermoplastics are used in a variety of industry applications due to their temperature stability and their potential for cost-
effective mass production. They can be subdivided into purely amorphous and semi-crystalline materials, depending on their
microstructure. Polyamide 6 (PA 6) belongs to the category of semi-crystalline polymers due to its biphasic microstructure,
that results in a complex elasto-plastic, visco-elastic material behavior on the macro level. Hereby, for example the manu-
facturing process, thermal treatment, applied stresses and moisture act as influencing factors, which can change the material
behavior significantly [4]. Consequently, a wide range of constitutive models concerning this behavior have been established
during the last decade. In the field of semi-crystalline polymers earlier works bof Haward et al. [5] and Boyce et al. [6] using
a phenomenological approach laid the foundation for extended work in e.g. [7]. Anand et al. [2], Srivastava et al. [8] and
Wang et al. [9] have accounted for the thermal influence on PA 6, whereas the influence of strain rate has been investigated
in [10]. Finally, the influence of the degree of crystallinity has been studied in e.g. [11] and moisture was accounted for
in [12], to name a few. In some works multiple influencing factors are included, as for example temperature and strain rate
in [13] or thermal and moisture effects in [14], whereas Felder et al. [1, 15] modeled the influence of temperature, strain rate
and crystallinity. In this work, similar to [1] a phenomenological modeling approach is chosen (see Section 2), combining an
elasto-plastic and a visco-elastic contribution in parallel. The DOC in this framework serves as a constant input parameter
for the fully thermocoupled model. A tension-compression asymmetric yield surface is chosen [18] to model the material’s
yielding behavior. Finally, the constitutive equations are derived in a thermomechanical consistent manner. After the im-
plementation as a user subroutine UMAT into the commercial ABAQUS framework, the model is characterized in Section 3
using experimental results. Therefore, a staggered identification scheme is exploited using least-square optimization. Finally,
in Section 4 the results of the identification procedure are discussed and an outlook regarding further research is given.

2 Material model

2.1 Kinematics

To describe the visco-elastic elasto-plastic material behavior of PA 6 for finite strains, the deformation gradient F is introduced
alongside the right Cauchy-Green tensor C = F TF as deformation measure. In line with the works of e.g. [1, 2] two
decoupled processes are assumed (cf. Figure 1 a)), which motivate the split of the model into an elasto-plastic (index 1)
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Fig. 1: a) Schematic illustration of the constitutive model b) Multiplicative splits of the deformation gradient

and a visco-elastic (index 2) contribution. Following this assumption, the deformation gradient is decomposed into an elastic
and a plastic F = Fe1 Fp part for the elasto-plastic branch. For the viscous part, this yields a split into elastic and inelastic
contribution F = Fe2 Fi (cf. Fig. 1 b)). The corresponding intermediate configurations ic1 and ic2 are introduced according
to the aforementioned split of F , whereas the elastic right Cauchy-Green tensors and the plastic right Cauchy-Green tensor
follow to

Ce1 = F T
e1 Fe1 = F−T

p C F−1
p , Ce2 = F T

e2 Fe2 = F−T
i C F−1

i , Cp = F T
p Fp, (1)

respectively.

2.2 Helmholtz free energy

The total Helmholtz free energy is represented by the sum of an elasto-plastic ψ1, a visco-elastic ψ2 and a caloric energy
contribution ψc related to the temperature-dependent specific heat

ψ = ψ1 + ψ2 + ψc. (2)

Here, the free energy associated with elastoplasticity

ψ1 = ψe1(Ce1, χ, θ) + ψp(Cp, χ, θ), (3)

contains an elastic term

ψe1 =
µ1

2
(tr(Ce1)− 3)− µ1ln (Je1) +

Λ1

4
(det(Ce1)− 1− 2 ln(Je1))− 3K1αT (θ − θ0) ln(Je1), (4)

based on a Neo-Hookean energy with the two Lamé constants µ1(θ, χ) and Λ1(θ, χ), extended with a term related to the
elastic thermal expansion with the coefficient of thermal expansion αT (θ) the reference temperature θ0 and the elasto-plastic
bulk modulus K1. The second term, represents a nonlinear plastic defect energy of Arruda-Boyce type

ψp = µ∗
5∑

i=1

ci

λ2i−1
m

(Ii1p − 3i), ci =

{
1

2
,

1

20
,

11

1050
,

19

7000
,

519

673760

}
, (5)

depending on the two material parameters λm(θ, χ) and µ∗(θ, χ) (see e.g. [16]), where I1p = tr(Cp) is the first invariant of
the plastic right Cauchy-Green tensor. For the free energy of the visco-elastic part, a Neo-Hookean energy is chosen as well

ψ2 =
µ2

2
(tr(Ce2)− 3)− µ2 ln(Je2) +

Λ2

4
(det(Ce2)− 1− 2 ln(Je2))− 3K2αT (θ − θ0)ln(Je2), (6)

depending on the viscous Lamé constants µ2(θ, χ) and Λ2(θ, χ) and the determinant of the inelastic deformation gradient
Je2 = det(Fe2). Here, K2 is the visco-elastic bulk modulus. For a better understanding of the framework and corresponding
Helmholtz free energies, a schematic illustration by means of a rheological model is provided in Fig. 1 a).

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Function Parameter at: 23 ◦C 50 ◦C 120 ◦C

E1 = χE1,0(θ) E1,0 [MPa] 7392.6 3016.9 798.26
E2 = E2(θ) E2 [MPa] 677 639.23 183.6
ν1 = ν2 ν1 [-] 0.35 0.35 0.35
σt = χσt,0(θ) σt,0 [MPa] 71 49 30
σc = χσc,0(θ) σc,0 [MPa] 284 53.9 30
µ∗ = χµ∗

0(θ) µ∗
0 [MPa] 72 110 114

λm = λm(θ) λm [-] 3.6 1.5 2.1
τ = τ(θ) τ [s] 156 71 48

Table 1: Temperature dependent mechanical parameters.

λT [W/mK] cT [mJ/gK] ρ0 [g/mm3] αT [1/K]
0.27 1470000 71 8.76 · 10−5

Table 2: Thermal material parameters.

2.3 Derivation based on the Clausius-Duhem inequality

In order to derive thermodynamically consistent constitutive equations and ensure positive dissipation, the Clausius-Duhem
inequality

S :
1

2
Ċ − ρ0(ψ̇ + ηθ̇)− 1

θ
q0 · Grad(θ) ≥ 0, (7)

dependent on the density ρ0, is exploited. Therefore the time derivative of the general Helmholtz free energies (3) and (6) is
inserted in (7), yielding

S :
1

2
Ċ − ρ0

(
∂ψ

∂Ce1
: Ċe1 +

∂ψ

∂Cp
: Ċp +

∂ψ

∂Ce2
: Ċe2

)
− ρ0

(
∂ψ

∂θ
+ η

)
θ̇ − 1

θ
q0 · Grad(θ) ≥ 0. (8)

Using the plastic velocity gradient Lp = ḞpF
−1
p , the expression can be reformulated, leading to the definition of several

stress quantities in line with [3, 17]. The second Piola-Kirchhoff stress tensors S1 and S2, corresponding to the elastoplastic
and viscous model contributions, respectively, are introduced as

S1 = 2ρ0F
−1
p

∂ψe1

∂Ce1
F−T
p , S2 = 2ρ0F

−1
i

∂ψe2

∂Ce2
F−T
i . (9)

Whereas the Mandel stress tensors M1 and M2 in the plastic and inelastic intermediate configuration, respectively, follow to

M1 = 2ρ0Ce1
∂ψe1

∂Ce1
, M2 = 2ρ0Ce2

∂ψe2

∂Ce2
. (10)

Finally, the back stress X related to kinematic hardening is given as

X = 2ρ0Fp
∂ψp

∂Cp
F T
p . (11)

Inserting the above stated stress measures back into (8) and exploting S = S1 +S2, yields the reduced form of the Claudius-
Duhem inequality

(M1 −X) : Dp +M2 : Di ≥ 0. (12)

Here, the relation D(∗) = sym (L(∗)) for the symmetric part of the corresponding velocity gradient is used. In terms of the
thermal contributions, the entropy is defined as η = −∂ψ/∂θ and Fouriers’s law

q0 = −J λT C−1 Grad(θ) (13)

is used with J = detF and λT (θ) denoting the temperature dependent heat conductivity.

2.4 Evolution equations

Within the elasto-plastic model contribution a Tschoegl-type yield criterion [18, 19]

Φp = 3J2 + (m− 1)σtI1 −mσ2
t ≤ 0 (14)
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4 of 6 Section 6: Material modelling in solid mechanics

is used. Including the first I1 = tr(M1 − X) and second J2 = 1/2 tr(dev(M1 − X) · dev(M1 − X)) invariant and thus
accounting for the effects of hydrostatic pressure on the yielding behavior [20]. A tension-compression flow asymmetry is
accounted for via the ratio m

m =
σc(χ, θ)

σt(χ, θ)
, (15)

which comprises the yield stresses in tension σt and compression σc, both dependent on temperature and the degree of
crystallinity. With the assumption of associative plasticity, the evolution equation for the plastic part follows to

Dp = λ̇p
∂Φp

∂M1
= λ̇p

(
3dev(M1 −X) + (m− 1)σt I

)
, (16)

where λ̇p denotes the plastic mutiplier. Finally, the Karush-Kuhn-Tucker conditions are stated as

λ̇p ≥ 0, Φp ≤ 0, λ̇p Φp = 0. (17)

For the viscous model, the evolution equation dependent on the bulk modulus K2(θ) as well as the shear modulus µ2(θ), is
taken from [17] as

Di =
1

2τµ2
dev(M2) +

1

9τK2
tr(M2)I. (18)

Here, the relaxation time τ is assumed to be constant.

2.5 Thermocoupling

To account for heat generation due to dissipation, the local form of the energy balance is considered to derive the heat
generation terms using the definition for the entropy from section 2.3 (see [1]). Here, along the introduction of a caloric
energy contribution ψc, the specific heat capacity cT is approximated to be constant, following [21]. Since the parameter
identification procedure is done for the isothermal model, the thermocoupling is not explained in more detail, the interested
reader is referred to [1].

3 Parameter identification

To identify the model parameters, a staggered identification scheme for the isothermal model based on experiments from [15]
is used. Firstly, the elastic properties Eges and νges are taken directly from the experimental results for a stretch rate of
λ̇x ≈ 0.0005s−1. The assumption of a parallel arrangement of elastoplastic and viscous model contributions suggests the
use of a constant Poisson’s ratio, νges = ν1 = ν2, which is taken from digital image correlation (DIC) data (see [15]). In
the same manner , regarding the Young’s moduli E1 and E2 for the elasto-plastic and visco-elastic part, respectively, are
chosen additively as Etot = χE1,0 + E2. Here, as a simplification in line with [1] the visco-elastic material parameters
are chosen indepent of the degree of crystallinity. After the determination of the elastic parameters, the parameters related
to plastic effects are determined via a multifitting procedure utilizing the Genetic as well as Downhill-Simplex algorithm
in combination with experimental monotonic tension tests. In this way, a parameter set for each temperature is derived,
which is simultaneously valid for all degrees of crystallinities. For 23◦C, 50◦C and 120◦C, the results of the identification
procedure and the agreement with the experimental results can be seen in Fig. 2. It can be concluded, that the model works
best for temperatures over the glass transition temperature, whereas for example at room temperature the yieling behavior
is not captured accurately. Temperatures in between the experimentally tested cases, can be interpolated via cubic spline
interpolation [1]. Finally, the parameters for the viscous model part are taken directly from [15] under the assumption of
a constant relaxation time τ . The corresponding parameter sets can be found in Tab. 1 and 2. Note here, that the thermal
parameters in Tab. 2 are assumed to be independet of temperature and DOC and therefore valid for all simulations.

4 Conclusion and outlook

In this work a constitutive model for polyamide 6 at large strains was derived. After a brief introduction to the modeling of
polymers, the corresponding model equations for the elastoplastic as well as viscous model parts were derived in a thermody-
namically consistent manner. Here, a fully thermo-coupled set of equations was established, where the degree of crystallinity
served as a constant input parameter. In the elastoplastic part, a Tschoegl-type yield criterion was chosen to account for the
tension-compression flow asymmetry of the material as well as to allow for the influence of hydrostatic pressure on the yield-
ing behavior. In a final step, after the implementation as a UMAT in the commercial FEM software Abaqus, the model has

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 2: Monotonic, uniaxial extension: Comparison of experimental data and corresponding model response for 23% and 28% degree of
crystallinity at λ̇x = 0.0005 s−1 loading rate.

been characterized using experimental results. Therefore, a staggered parameter identification scheme was exploited to suc-
cessively identify all needed material parameters. As a result, a parameter set for each individual temperature was found, by
taking into account two degrees of crystallinities at the same time. In the future, a model identification with a more extensive
experimental study is planned, where a wider range of degrees of crystallinities (approx. 20 − 40%) will be accounted for at
temperatures between 23 to 150◦C. In addition, a function for the relaxation time will be found and compressive tests will be
carried out, to identfiy the yield surface fully experimentally. Lastly, the newly characterized material model will be validated
with cyclic and structural examples.
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