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Abstract
It is experimentally observed that the failure in ductile metals is mainly due
to the nucleation, growth, and coalescence of micro-voids as well as micro-
shear-cracks. Furthermore, plastic anisotropy has significant role in damage and
failure behavior of ductile metals. Finite element simulations of unit cell pro-
vide a basis to understand different mechanisms on micro-scale, for example,
changes in shape and size of single voids and defects as well as localization of
plastic strains. This contribution deals with the numerical analysis of unit cell
containing spherical void subjected to symmetrical boundary conditions tak-
ing material anisotropy into account. Elastic isotropic behavior is described by
Hooke’s law while Hoffman yield criterion considering the strength-differential
effect is used to model the anisotropic plastic behavior. Generalized anisotropic
stress invariants, generalized stress triaxiality, and generalized Lode parameter
are introduced to characterize the stress state in the anisotropic ductile metal.
The effect of plastic anisotropy on the damage behavior of the aluminum alloy
ENAW-2017A is studied in detail by performing a series of numerical simulations
covering a wide range of stress triaxialites and Lode parameters. Stress triaxility
and Lode parameter are controlled and kept constant during the entire loading
process. The numerical results are then used to discuss general mechanisms of
damage and failure process in ductile metals.

1 INTRODUCTION

The numerical modeling of damage and failure behavior of materials used in engineering applications should be precise
and realistic to ensure the safety and lifetime of the engineering structures. In reality, it is difficult to have a homogeneous
material without the presence of initial voids and inclusions. Furthermore, it is well-established from the experiments,
that after loading the initial voids enlarge and they coalesce with the neighboring voids forming larger voids ultimately
resulting in the final failure of the structures. For a given constitutive damage model at the macroscale, it is imperative to
consider the micro-structural information (different micro-defects and matrix properties) and their evolution. Based on
the numerical simulations of a unit-cell containing void, the damage behavior of isotropic ductile materials was studied
in detail and the stress-state-dependent parameters of the proposed continuum damage model were identified [1, 2]. The
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determined parameters were used to numerically simulate the damage behavior using the continuum damage model and
were verified with large set of experiments under different loading conditions [3–5].
Similarly, various research groups, for example, Refs. [6–8] have performed finite element simulations of microscopic

cells to better understand the damage and failure processes in ductilemetals. It was shown that the void growth and coales-
cence depend on the microstructural and material flow properties. In addition, it was evident that the current stress-state
considerably affects damage behavior both on the micro- and macro-level. In all of these studies, the elastic–plastic mate-
rial behavior was assumed to be isotropic. However, plastic anisotropy is induced in rolled metal sheets due to different
manufacturing processes like deep drawing, rolling, or extrusion. The resulted plastic anisotropy also influences the dam-
age and failure processes [9]. Therefore, while modeling the material behavior, it is necessary to take the anisotropy into
account. The first quadratic anisotropic yield criterion was developed by Hill48 [10]. After that, different quadratic [11, 12]
and nonquadratic anisotropic yield criteria [13, 14] have been proposed. Furthermore,Hoffman [15] introduced anisotropic
yield criteria considering the strength-differential (SD) effect.
In the present work, finite element simulations of a unit cell containing a spherical void are carried out taking plastic

anisotropy into account. Numerical results then are used to discuss the effect of stress state and loading direction on the
damage and failure behavior of ductile metals.

2 CONSTITUTIVEMODELING

The phenomenological continuum damage model introduced by Brünig [16] describes the inelastic deformations and
damage behavior of ductile metals. The kinematics is based on damaged and undamaged configurations whereas, using
the second-order damage tensorA𝑑𝑎, different damagemechanisms are adequately characterized.However, plastic behav-
ior was assumed to be only isotropic. This damage model has been enhanced by including plastic anisotropy. Hoffman
yield criterion [15] is used to model the anisotropic plastic behavior, which is given as

𝑓𝑝𝑙 = C ⋅ �̄� +

√
1

2
�̄� ⋅D�̄� − 𝑐 = 0 (1)

where, �̄� is the effective Kirchhoff stress tensor and C is the second-order tensor containing the parameters to take the SD
effect into account with [

𝐶𝑖
.𝑗

]
=

⎡⎢⎢⎣
𝐶1 0 0

0 𝐶2 0

0 0 𝐶3

⎤⎥⎥⎦ .

Similarly,D is the fourth-order tensor, which contains the anisotropic material parameters of the Hoffman yield criterion
where the components are

[
𝐷𝑖. 𝑘

.𝑗. 𝑙

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝐶4 + 𝐶5 −𝐶4 −𝐶5 0 0 0

−𝐶4 𝐶4 + 𝐶6 −𝐶6 0 0 0

−𝐶5 −𝐶6 𝐶5 + 𝐶6 0 0 0

0 0 0 𝐶7 0 0

0 0 0 0 𝐶8 0

0 0 0 0 0 𝐶9

⎤⎥⎥⎥⎥⎥⎥⎦
and 𝑐 denotes the equivalent yield stress of the undamaged material. The stress invariants are newly defined using the
Hoffman yield criterion. The determination of elastic and plastic anisotropic parameters can be found in detail in Brünig
et al. [17]. The first stress invariant is described as

𝐼𝐻
1

=
1

𝑎
𝐂 ⋅ �̄� with 𝑎 =

1

3
tr𝐂 (2)

whereas the second and the third deviatoric stress invariants are given by

𝐽𝐻
2

=
1

2
�̄� ⋅D �̄� (3)
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and

𝐽𝐻
3

= det(D �̄�). (4)

With the help of these generalized stress invariants, the Hoffman stress triaxiality

𝜂𝐻 =
𝐼𝐻
1

3
√

3𝐽𝐻
2

(5)

and the Hoffman Lode parameter

�̄�𝐻 =
−3

√
3 𝐽𝐻

3

2
(
𝐽𝐻
2

)(3∕2)
(6)

are introduced to define the stress state of anisotropic materials. The evolution of plastic strains is given by the flow rule

̇̄𝐇𝑝𝑙 = �̇��̄� (7)

where �̇� represents the equivalent plastic strain rate and �̄� is the normalized deviatoric effective stress tensor defined as

�̄� =
D �̄�‖‖D �̄�‖‖ . (8)

Similarly, the onset of damage is modeled using the damage criterion

𝑓𝑑𝑎 = 𝛼𝐼𝐻
1

+ 𝛽

√
𝐽𝐻
2

− 𝜎 = 0 (9)

where 𝐼𝐻
1
and 𝐽𝐻

2
are the generalized stress invariants defined with respect to damaged configurations and 𝜎 is the equiv-

alent damage stress. 𝛼 and 𝛽 are stress-state- and loading-direction-dependent parameters, which have been identified
using an experimental and numerical procedure as in Brünig et al. [17]. Furthermore, the evolution of the damage strains
is given by the damage rule as

Ḣ𝑑𝑎 = �̇�

(
�̃�√
3
1 + 𝛽N

)
(10)

where �̃� and 𝛽 are scalar parameters dependent on the stress-state and loading direction. 𝐍 is the normalized deviatoric
effective stress tensor with respect to damaged configuration and given as

𝐍 =
D𝐓‖D𝐓‖ (11)

where 𝐓 is the Kirchhoff stress tensor.

3 NUMERICAL SIMULATIONS OF THE UNIT CELL

A finite element model of one eighth of a representative volume element (RVE) containing a spherical void with an initial
void volume fraction of 3% is shown in Figure 1.
The numerical simulations are performed using ANSYS (2018), enhanced by user-defined material subroutine (User-

mat). Solid 185 type of elements are used with the symmetrical boundary condition considering the regular distribution
of micro-defects, while the stress triaxiality and Lode parameter are kept constant during the loading process. In previous
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F IGURE 1 (A) Boundary conditions for the unit cell and (B) cut view for one eighth of the unit cell.

studies [1, 2], different shape and size of voids with different initial porosity were numerically studied in detail. It was
shown that spherical-shaped void with 3% initial porosity lead to the good approximation for the determination of the
state-state-dependent parameters �̃� and 𝛽. Therefore, in this study, only a spherical void with 3% initial void volume frac-
tion is considered. Symmetrical boundary conditions are used as shown in Figure 1A, where the yz-surface, xz-surface,
and xy-surface of the unit cell containing an initial void, asmarkedwith different colors are fixed in x-, y-, and z-directions,
respectively. The deformation behavior ofmatrixmaterial is describedwith the constitutivemodeling as given in Section 2,
where only elastic–plastic deformations take place. The changes in size and shape of the spherical void give us the damage
strains. According to the considered kinematics of the continuum damage model, the total strain rate tensor Ḣ𝑅𝑉𝐸 in the
principal directions (𝑖) is additively decomposed into the elastic Ḣ𝑒𝑙, the effective plastic ̇̄𝐇𝑝𝑙 and the damage part Ḣ𝑑𝑎 as

�̇�𝑅𝑉𝐸
(𝑖)

= �̇�𝑒𝑙
(𝑖)

+ ̇̄𝐻
𝑝𝑙

(𝑖)
+ �̇�𝑑𝑎

(𝑖)
. (12)

Furthermore, the macroscopic elastic–plastic strain rates are given as

Ḣ𝑒𝑝 = Ḣ𝑒𝑙 + Ḣ𝑝𝑙 =
1

𝑉 ∫
𝑉𝑚𝑎𝑡𝑟𝑖𝑥

(�̇�𝑒𝑙 + �̇�𝑝𝑙) 𝑑𝑣 (13)

where �̇�𝑒𝑙 and �̇�𝑝𝑙 are the elastic and plastic strain rates of the matrix material on the micro-level, 𝑉 represents the cur-
rent volume of the unit cell, and 𝑉𝑚𝑎𝑡𝑟𝑖𝑥 indicates the current volume of the matrix material (solid elements). Using
Equations (12) and (13), the principal values of the damage strain rate tensor in the macro-level are given by

�̇�𝑑𝑎
(𝑖)

= �̇�𝑅𝑉𝐸
(𝑖)

− �̇�
𝑒𝑝

(𝑖)
. (14)

This leads to the principal components of the damage strain tensor as

𝐴𝑑𝑎
(𝑖)

= ∫ �̇�𝑑𝑎
(𝑖)

𝑑𝑡. (15)

The void volume fraction 𝑓 is determined using

𝑓 =
𝑉 − 𝑉𝑚𝑎𝑡𝑟𝑖𝑥

𝑉
. (16)

In addition, the equivalent strain rate is defined as

�̇�𝑒𝑞 =

√
2

3
Ḣ ⋅ Ḣ (17)

which is then used to calculate the equivalent strain given by

𝜀𝑒𝑞 = ∫ �̇�𝑒𝑞 𝑑𝑡. (18)
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F IGURE 2 (A) Evolution of the damage strain tensor for 𝜂𝐻 = 0.75 and 𝐿𝐻 = 0.23, (B) evolution of void volume fraction for 𝜂𝐻 = 0.75
and 𝐿𝐻 = 0.23.

F IGURE 3 Distribution of equivalent strain on one half of the unit cell for 𝜂𝐻 = 0.75 and 𝐿𝐻 = 0.23.

4 NUMERICAL RESULTS

Numerical simulations are carried out for different loading ratios 𝐹𝑥∕𝐹𝑦∕𝐹𝑧, which result in different stress-states of
the RVE. Furthermore, the RVE is loaded in different directions, namely in rolling direction (RD), diagonal direction
(DD), and transverse direction (TD), with respect to the RD. Hence, taking material anisotropy into account, the damage
behavior of unit cell covering wide range of stress triaxialities is analyzed in detail. But, in this work, only the results for
two loading ratios are discussed. The evolution of damage strains for the loading ratio 𝐹𝑥∕𝐹𝑦∕𝐹𝑧 = 1/0.63/0.27 is shown
in Figure 2A. All of the damage strains increase, 𝑥-components of damage strain for all RDs are higher as compared to 𝑦

and 𝑧-components. 𝐴𝑑𝑎
𝑥 for RD reaches to 0.065 while all of the 𝐴𝑑𝑎

𝑧 components are nearly equal to 1%. There is only a
slight difference in the evolution of damage strains after 𝜀𝑒𝑞 attains 35%. The Hoffman stress triaxiality 𝜂𝐻 = 0.75 and the
Hoffman Lode parameter 𝐿𝐻 = 0.23, indicating the presence of high hydrostatic stress state where the damage process
is governed mainly by void growth and coalescence. This phenomenon can be seen in Brünig et al. [9], where for the
similar stress state, pictures of fracture surface were taken using scanning electronmicroscopy. Similarly, the void volume
fraction in Figure 2B increases rapidly for all loading directions while only a minimum difference is seen in 𝑓 once when
𝜀𝑒𝑞 equals 40%. The local distribution of 𝜀𝑒𝑞 on the elements is given in Figure 3. The initial spherical void deforms to
become ellipsoid and there are no significant differences in the value of 𝜀𝑒𝑞 among the three different loading directions.
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F IGURE 4 (A) Evolution of damage strain tensor for 𝜂𝐻 = 0.65 and 𝐿𝐻 = 1, (B) evolution of void volume fraction for 𝜂𝐻 = 0.65 and
𝐿𝐻 = 1.

F IGURE 5 Distribution of equivalent strain on one half of the unit cell for 𝜂𝐻 = 0.65 and 𝐿𝐻 = 1.

Furthermore, for the loading ratio 𝐹𝑥∕𝐹𝑦∕𝐹𝑧 = 1/1/0.25, damage strain formation is shown in Figure 4A. The stress-
state parameters 𝜂𝐻 and 𝐿𝐻 are 0.65 and 1, respectively. 𝐴𝑑𝑎

𝑥 for RD, DD, and TD is almost equal and goes up to 0.0582
while 𝐴𝑑𝑎

𝑧 for all loading directions reaches up to 0.00552. In addition, in Figure 4B, the porosity at the beginning for all
the three loading directions is similar, but varies slightly once the 𝜀𝑒𝑞 becomes around 35%. The distribution of equivalent
strain is depicted in Figure 5. The spherical void does not changes in shape but does change in size. Again, only small but
no remarkable differences can be seen in 𝜀𝑒𝑞 value amid the loading directions.

5 CONCLUSIONS

In this paper, finite element analysis to identify the effect of plastic anisotropy on damage evolution on the micro-level
is performed. For that purpose, numerical simulations using unit cell containing a spherical void located at the center of
the RVE have been performed, especially for high stress triaxialities. Assuming that the material displays a regular porous
microstructure, symmetrical boundary conditions are used and the stress triaxiality and Lode parameter are enforced to be
constant during the loading. Hoffman yield criterion is used to model the plastic anisotropic behavior. Generalized stress
invariants for the anisotropic ductile metal based on the Hoffman yield criterion are used to characterize the stress state.
After certain equivalent strain, small differences can be seen in the evolution of damage strains between RD, DD, and TD.
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Similar trend can be observed for the void volume fraction. Equivalent plastic strain distribution on the element level is
also not the same for three different loading directions. Therefore, the effect of the stress state and the loading direction
on damage behavior has to be considered in continuum damage model. Also, it is difficult to experimentally study the
damage and failure processes on the micro-level, for example, a RVE containing voids and inclusions, and their effect on
themacro-level. Performing the numerical simulations forwide range of stress triaxiality, different damage parameters can
be identified for the proposed damage rule. Therefore, the numerical simulations performed using RVE in this work can
be considered as quasi-experimental and the results can be used to validate the proposed phenomenological continuum
damage model.
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