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Abstract: Self-sovereign identity (SSI) is a digital identity management model managed in a decen-
tralized manner. It allows identity owners to manage and store their digital identities in a software
wallet, for example, on a smartphone, without relying on centralized providers. This approach tries
to enhance the security and privacy of digital identities and, thereby, their owners. With the new
eIDAS regulation, elements of SSI, such as the wallet, are being pushed onto the market. However,
since the model is relatively new, the security threats are still not fully known. This is shown by a
brief security analysis of selected existing SSI wallets. In order to get a picture of the known threats,
we systematically analyze and categorize related work in the field of SSI and elements applied by SSI.
We then evaluate their application to current SSI systems and identify future work.
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1. Introduction

With the upcoming new electronic Identification, Authentication and Trust Services
(eIDAS) regulation, changes to the current eID ecosystem in Europe will be made. eIDAS as
of 2014 [1] focuses on the interoperability of identities within the member states of the Eu-
ropean Union (EU) for the use case of eGovernment. However, with the new regulation [2],
further use cases should be made possible, such as universities, health, finance, online
services, and mobility. One major change is the introduction of a wallet [3], described in
detail in the architecture and reference framework [4]. These wallets are typically utilized
within self-sovereign identities (SSI) as a place to store user credentials and further data.
With the use of wallets on a smartphone, in the cloud, or hybrid, the user (holder) can send
the user credentials to the service provider (verifier) in order to access a service. As the
user is in control of their data, this paradigm may help to promote privacy. The verifier
can verify that the credentials were actually issued by an identity provider (issuer) and
sent by the holder using cryptographic signatures. These verifiable credentials (VCs) are
a collection of claims that make statements about the holder, such as an email address
and name. Information about all these entities is typically stored decentralized, utiliz-
ing distributed ledger technologies (DLTs), such as blockchain. However, other—already
practically explored—methods could be used instead.

For eIDAS, the protocols and type of storage still remain unclear. This means that DLT
or other technologies (e. g., public key infrastructure (PKI) or European Telecommunications
Standards Institute (ETSI) trust list) could be used in conjunction with the protocols of
OpenID Connect (OIDC) [5], Self Issued OpenID Provider (SIOP) [6], OpenID for Verifiable
Presentations (OpenID4VP) [7], and OpenID Federation [8] and various standards for SSI.
Either way, interoperability with existing infrastructure and security should be provided, as
outlined by Schwalm [9]. Although blockchains have been in use for years (see Bitcoin [10]),
the application of SSI is relatively new and still evolving. Also, the security threats are not
fully explored. Despite the urgent need for security, we found almost no previous literature
on the threats to SSI.
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In order to provide a first step towards secure SSI, we briefly analyze current SSI
wallets on the market and review the scientific literature. Here, we do not solely concentrate
on SSI but take literature from neighboring areas (mainly cryptocurrencies) into account.
We then evaluate their applicability to the current SSI systems and point out future work.
The contribution is multifold: (1) a brief security analysis of current wallets; (2) a literature
survey on threats related to SSI and their elements; and (3) an evaluation of the applicability
and outline of future work.

The remainder of the article is as follows: We first provide a brief background on SSI
and define the terminology used in this article. Next, in Section 3, we motivate the survey
with a security analysis of selected SSI wallets found in the Google Play Store. In Section 4,
we outline our methodology, before we provide an overview of the literature survey in
Section 5. This is followed by an in-depth summary of the vulnerabilities, threats, and
attacks in Section 6 (blockchain applications) and Section 7 (SSI). Since we included related
work outside SSI, we evaluate the applicability in Section 8. Additionally, we identify gaps,
which lead to future work. Finally, we conclude the article.

2. Background on SSI

Allen [11] first proposed the ideas and principles that form the current design goals
of SSI. The ten principles can be summarized as existence, control, access, transparency,
persistence, portability, interoperability, consent, minimization, and protection. According
to Allen, by implementing selective disclosure, developers can facilitate data minimization
better and thereby support privacy. Due to putting the user at the center of any authentica-
tion, the users must protect their identities to avoid data breaches. Besides confidentiality
and integrity, this also includes the availability of users’ data and any associated claims.

The following sections introduce the terminology used to describe SSI systems and
components (see Section 2.1), provide an overview of common SSI architectures (see
Section 2.2), and showcase relevant implementations of SSI systems (see Section 2.3). As
the literature survey includes publications from other areas, a general outline of blockchain
and DLT is provided (see Section 2.4).

2.1. Components & Terminology

Put together, SSI implements Allen’s design goals by having the user—usually com-
bining the roles of holder and subject—in the center of all transactions and in control of
their data through a digital wallet. The wallet can be on a smartphone, in the cloud, or
both. Holders receive verifiable credentials describing specific claims from issuers, which
are usually organizations, such as government agencies, universities, insurance compa-
nies, and banks. The user can then show the verifiable credentials as proof to service
providers—acting as verifiers—to gain access to their services. Agents and hubs can be
used to provide users with persistent and always-online endpoints. Information about the
participating entities, such as decentralized identifiers (DIDs), is stored in a decentralized
manner. This could be a DLT, such as a blockchain, or any other decentralized form of
storage. Some SSI solutions may also integrate smart contracts to automate processes on
the DLT.

For the system described above, we apply the terminology based on Preukschat et al. [12]
and Mühle et al. [13]:

• Verifiable Credentials: A collection of metadata and claims about an entity that can be
verified by a proofing mechanism.

• Claim: Statement about an attribute of an entity, such as age or email address.
• Proof: Data (digital signature) allowing a verifiable credential to be verified by a verifier.
• Wallet: Software to store private keys, verifiable credentials, and other documents of

an entity.
• Verifier: Allows access to a service after receiving the requested information or at-

tributes of a holder.
• Issuer: Trusted parties that verify attributes or claims of an entity.
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• Subject: The entity the claims within the verifiable credential are made about.
• Holder: Owner of the claims within a verifiable credential, stored in a wallet, and

usually the same entity as the subject.
• Agent and hub: Technical endpoints and trustees for identifiers, which enable commu-

nication between entities.
• Smart contract: A computer program or transaction protocol that is executed automat-

ically according to the terms of a contract or an agreement.

2.2. SSI Architecture

Reminiscent of the layered Open Systems Interconnection (OSI) model or transmission
control protocol (TCP)/Internet protocol (IP) architecture, the components of an SSI system
are organized in a similarly layered architecture. Most often, the architecture described
by the Hyperledger Aries project [14] is used. This architecture consists of four layers, as
shown in Figure 1. The first, bottom layer defines the technology used to store and express
credentials. In the case of the Hyperledger Aries project, this layer is implemented on
the Sovrin Ledger [14], but, in general, a variety of blockchains, distributed ledgers, or
other decentralized databases can be used. This layer is necessary for specifying identifiers
(DIDs) and associating keys to them. On top of that, the second layer adds communication
protocols to securely exchange messages between agents, wallets, and hubs.

Figure 1. Typical layers of SSI architectures adapted from [14].

Providing the technical premises, layers one and two are used as the foundation
to build organizational and human trust at layers three and four. Layer three defines
the process of creating, exchanging, and presenting verifiable credentials. Allowing those
credentials to be used in more than one specific setting is the goal of layer four. It spans a
governance structure, helping organizations to cooperate and accept each other’s credentials.

2.3. Current Examples

The SSI wallets selected for closer inspection in Section 3.1 support different im-
plementations of SSI. The most common implementation is based on the SSI protocol,
initially developed by Sovrin and continued as Hyperledger Indy and Aries by the Linux
Foundation [14]. Hyperledger Indy contains an implementation of a permissioned dis-
tributed ledger that is usually run in a consortium. This represents technology on layer one
of the architecture described in Section 2.2. This base layer is enhanced by Hyperledger
Aries, which provides tools for generating and communicating verifiable credentials. It can
be used to build applications for architecture layers two and three.
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2.4. Blockchain & DLT

Blockchain technology is closely related to SSI. Section 5 surveys the security issues of
blockchains and DLT. In general, blockchains are a subset of DLT. They are characterized by
combining transactions into blocks, which are committed to the ledger. DLT in general can
use any number of methods to implement a distributed, append only data storage system.

Common to all DLT is the need to form the consensus among all participants about
the current state of the data store. This consensus protocol is one of the main differences be-
tween blockchain implementations. Bitcoin famously uses a proof-of-work (PoW) approach,
where miners, i. e., the participants aiming to combine pending transactions together to
write an updated state, need to solve a cryptographic puzzle in the form of calculating
a hash value with specific properties [15]. The hash values can only be generated by
brute-forcing inputs until the output fulfills the needed properties. Additionally, proper-
ties can be adjusted to keep the puzzle hard or easy enough, depending on the available
processing power.

As PoW is criticized for its “useless” waste of processing power, many DLT projects are
looking for suitable replacements. Ethereum uses a proof-of-stake (PoS) approach, which
does not need the raw processing power and is seen as a replacement for PoW [16]. Non-
public DLT can use a simpler form of consensus, where the duty to update the database’s
state is deterministically decided.

Besides storing transactions, some DLTs also feature so-called smart contracts, which
are programs that are “run on the DLT” [17]. Like a transaction, every participant can
view the smart contract’s code and each invocation’s inputs to verify the output, which is
computed by the miner as part of updating the state.

3. Motivation for the SSI Wallet Survey

With SSI, the user receives self-sovereign control over their data. This data is typically
stored in a smartphone wallet. Hence, their usability, functionality, and security are
important. We first outline our methodology and then present the results.

3.1. Methodology for Evaluating SSI Wallets

To evaluate real-world SSI wallets, we used the wallets listed by the European
Blockchain Association [18]. Wallets found in the Google Play Store are installed and
tested on a smartphone Pixel 6 with the current Android operating system (OS) version 13
at the time of the study. Thereby, we obtained Lissi Wallet [19], Verimi [20], Data Wallet by
iGrant.io [21], esatus Wallet [22], VIDwallet [23], SmartWallet by Jolocom [24], and Gataca
Identity [25] (see Table 1). These are also available in Apple’s App Store. We then evaluate
the wallets in a four-step process.

Table 1. Android SSI wallets and versions.

Wallet Organization Version SSI Flavor

DataWallet iGrant.io 3.4.1 W3C, X.509
esatus Wallet esatus 1.13 W3C
Gataca Identity Gataca 1.14.1 W3C
Lissi Wallet Lissi 1.8.1. Lissi
SmartWallet Jolocom 2.6.0 W3C
Verimi Verimi 2.7.0 Verimi
VIDwallet ValidatedID 1.7.19 W3C

1. We first install the apps, instantiate individual wallets, and summarize the first impression.
2. Each of the organizations offers at least one demo workflow, which we used to play

with the wallets. Here, we focus on usability and functionality.
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3. Based on Allen’s [11] principle of transparency, the algorithm should be open source.
We assume that this is also true for the wallet software. Hence, we search for code
repositories, which are likely located on GitHub, and take a look at the source code.

4. Additionally, we analyze the Android packages (APKs) with (1) Android Studio [26],
(2) APKHunt [27], and (3) manually with the criteria provided by Uddin et al. [28].
If the wallet is not working properly on the smartphone, we additionally evaluate it
with a virtual device in Android Studio [29]. If the app requires secure elements, this
step may fail.

Background Android applications are distributed as APK files, which are basically ZIP
files similar to the Java archive (JAR) files used to package Java libraries. An APK file
contains the app code in Dalvic executable format (DEX), native libraries, resources, assets,
and an Android manifest in binary extensible markup language (XML). The APKs are
typically signed.

Limitations We note suspicious behavior while using the wallets and analyze the
wallets statically with the help of tools and specific terms. Hence, we present the early
results of the security analysis of the wallets. A more thorough analysis could include more
terms and dynamic analysis, among others. In addition, our analysis was conducted with
the versions noted. We did not verify that the issues exist in versions published after the
analysis. Lastly, we did not consider apps in the Apple App Store, such as Apple Wallet or
Verimi ID-Wallet for iOS.

3.2. Results of the Evaluation

In the following, we present our results step by step.

3.2.1. Installation, Instantiation, and First Impression

We installed all apps and managed to instantiate individual wallets on all except two:
Verimi Wallet and Gataca Identity. We observed similar design elements and workflows
throughout the wallets. For example, scanning a new quick response (QR) code to receive
or send credentials is possible via a button with the corresponding function mostly in the
middle of the bar menu. The user can go through the received VCs by swiping or clicking.
Almost all apps use a personal identification number (PIN) with four to six numbers for the
first authentication; biometric authentication is typically available afterward. The exception
is the Data Wallet, which does not require any authentication.

3.2.2. Wallet Usage

When receiving claims, the user can either accept or decline the attempt. In one
case (VIDwallet), QR codes cannot be scanned twice. If one workflow does not work,
then this will stop the user from proceeding. We shortly summarized the findings during
wallet usage in [30]. Few wallets allow self-asserted claims (VIDwallet and SmartWallet).
However, the requests may fail nonetheless in the case of the VIDwallet. The amount of
information on the issuer and verifier varies from wallet to wallet. Some only display a
logo and basic information (esatus Wallet and SmartWallet), whereas others provide a long
list (Data Wallet) or visual signs that the entity is verified (Lissi Wallet). The three examples
of the Lissi Wallet (see Figure 2a), the esatus Wallet (see Figure 2b), and the SmartWallet
(see Figure 2c) are shown in Figure 2.

In the case of the Data Wallet, the data on claims is blurred similar to passwords. This
can enhance the perspective that the data is as important as passwords. However, this
could also lead to sharing data without thinking. The difference between the Data Wallet
(see Figure 3b,c) and another wallet, the Lissi Wallet (see Figure 3a), is shown in Figure 3.
In the Data Wallet, users can unblur the claims by clicking on the eye button. However, this
is not mandatory. On the contrary, most wallets, such as Lissi Wallet, show all information
in clear text, which can also be critical.
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(a) (b) (c)
Figure 2. Screenshots of selected wallets found in the Google Play Store 1/3. (a) Lissi Wallet receiving
a request. (b) esatus Wallet receiving an information request [30]. (c) SmartWallet with an incoming
request [30].

(a) (b) (c)
Figure 3. Screenshots of selected wallets found in the Google Play Store 2/3. (a) Lissi Wallet receiving
an information request [30]. (b) iGrant.io Data Wallet receiving blurred claims [30]. (c) iGrant.io Data
Wallet receiving a blurred information request.

In the case of the esatus Wallet, the issuer or verifier can be set to automatically accept
(see Figure 4a). On the one hand, this may reduce the number of notifications for the user,
so they can pay attention to those that appear. On the other hand, the entity may change its
behavior to a malicious one without the user being notified. The default setting is being
asked next time. However, if the user decides not to be asked again, then the default
setting is to receive no notifications about interactions. Default notifications may provide
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a higher degree of transparency. In addition, we missed information about redirects and
other actions in the VIDwallet (see Figure 4b). The VIDwallet is one of the few wallets
that accept self-issued credentials. However, it is debatable how qualitative they are, as
shown in Figure 4c. Here, we used a throwaway email address to receive a verifiable email
address credential.

(a) (b) (c)
Figure 4. Screenshots of selected wallets found in the Google Play Store 3/3. (a) esatus Wallet
asking about future behavior with verifier [30]. (b) VIDwallet with issues complying with requested
claims [30]. (c) VIDwallet receiving claims about a throwaway email address.

Based on these observations, we could not find guidance for the user to decide whether
to trust and accept the offer or request of an entity. For example, we only noticed informa-
tion about issuers and verifiers being certified once. Also, we could not see if the amount of
data requested was typical or more than required. Both design variants of Data Wallet and
esatus Wallet can either help reduce the burden or lead to just accepting everything. The
issue is that too many notifications (see cookie banners or warnings) may make the users
tired, whereas too little information may lead to a similar result. With SSI, the user has
more possibilities but also more responsibilities. Consequently, further work is required to
find suitable designs to guide users.

3.3. Further Usage and Analysis

We observed that several wallets disabled Android backups, allowed clear-text traf-
fic, and used older methods such as the message-digest algorithm 5 (MD5), secure hash
algorithm 1 (SHA1), and data encryption standard (DES) and older secure sockets layer
(SSL)/transport layer security (TLS) versions or applied custom crypto methods. In ad-
dition, we were able to gain access to the SQLite database of Data Wallet and find Alice
and Bob in the log files. For esatus Wallet, we noticed a connection to Azure. However, we
were not sure what, for example, the “Fitness Activity” is used for. In one case (Gataca
Identity), we observed debugging functionality and user certificates were allowed. More
interestingly, in the case of VIDwallet, we found a Facebook token and key in the source
code and our pictures taken of IDs on the file system.

Uddin et al. [28] describe specific application programming interface (API) calls, which
indicate feature inclusion.
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• Root detection: The app checks if it can execute the su command or if any root-enabled
apps are on the smartphone.

• Integrity check: It verifies that the app has not been tampered with and was installed
from a verified app store.

• Custom keyboard: Since keyboards store inputs independently whether they are
sensitive or not, passwords and similar information from a wallet should not be
included. One way of mitigating this is by using custom keyboards.

• Biometric authentication: The use of biometrics or two-factor authentication (2FA) as
a type of multi-factor authentication (MFA).

• Screenshot disabled: Malicious apps and users can make screenshots of credentials,
passwords, and similar. Hence, disabling this feature can help.

• Hardware secure module: The key-revealing information is stored in a secure enclave
to provide a higher level of security.

• Random generator: A secure random generator used for cryptography.

The authors specified those for crypto wallets. However, these indicators should also
apply to SSI wallets. We evaluated the selected SSI wallets based on these API calls. Most do
not include these features besides secure random generation and biometric authentication,
as shown in Table 2.

Table 2. Assessment of the selected wallets based on the criteria in [28].

Type API Signature DW eW GÍ SW LW V VID

Runtime.exec() - - - - - - lib
PackageManager.getPackageInfo() - - - - - - -
Os.stat() - - - - - - -Root Detection

Os.access() - - - - - - -

PackageManager.getPackageInfo() - - - - - - -
Context.getPackageCodePath() - - - - - - -
ZipFile.init() - - - - - - -Integrity Check

RandomAccessFile.init() - - - - - - -

KeyboardView.setKeyboard() - - - - - - -
OnKeyboardActionListener.onKey() - - - - - - -
InputMethodService.onCreateInputView() - - - - - - -
InputConnection.commitText() - - - - - - -

Custom Keyboard

InputMethod + + + + + + +

BiometricManager + + + + + + +
BiometricPrompt + + + + + + +
FingerprintManager + + + + + + +
BiometricService - - - - - - -

Biometric Authentication

FingerprintService - - - - - - -

Windows.setFlags() - - - - - - -Screenshots Disabled View.setDrawingCacheEnabled() - - - - - - -

KeyStore.getInstance() - - - - - - -
KeyGenParameterSpec.Builder.isStrongBoxBacked() - - - - - - -Hardware Security Module
StrongBoxUnavailableException - lib + - - + -

Random Generator SecureRandom + lib + + + + +

Abbreviations: DW: Data Wallet; eW: esatus Wallet; GÍ: Gataca Identity; SW: SmartWallet; LW: Lissi Wallet;
V: Verimi; VID: VIDwallet; lib: provided in a library.

3.4. Summary

Although the apps are officially released in the Play Store, we noticed some issues
during the demo workflows, such as not being able to scan QR codes (SmartWallet in case
of bigger codes), having problems loading VCs (Lissi), and invalid QR codes (VIDwallet).
Based on these issues and the updates made to the GitHub repositories, we assume that by
the time of writing this article, the wallets are in a premature stage. When productively
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using wallets, these should be securely designed, use current versions of libraries and
functionalities, and do not include any kind of trackers.

4. Methodology of the Survey

Following the methodology described by Page et al. [31], we conducted a systematic
literature review. Publications related to the threats of SSI are collected by applying specific
search terms to pre-defined publishers. The research questions filter the publications due to
exclusion criteria to assess the quality and focus of the papers’ contents. Each of the stages
is described below. The applied methodology is visualized in Figure 5.

Sources: IEEE, ACM,
Springer Link

Search 1: SSI threat
Search 2: Blockchain,

DLT, wallet, smart
contract threat

Exclusion: out of
scope, age

First analysis:
Category, content, ...

Detailed analysis:
Applicability, future

work

In
scope?

Figure 5. The methodology applied in the literature survey.

4.1. Research Questions

This article aims to systematically review threats to SSI and its elements. In particular,
we review the threats to blockchain/DLT, smart contracts, and wallets and intend to present
a detailed perspective on their application to SSI. By comparing the current SSI technologies
and the applicability of the threats, we intend to identify gaps, leading to future research.
Thereby, we receive the following research questions.

RQ1: Which current threats are known for SSI and their elements? This research question
aims to provide a full picture of possible threats known in the literature.

RQ2: Which are the known countermeasures for these threats? This research question
tries to identify known countermeasures.

RQ3: Which of these identified threats and countermeasures are actually applicable to SSI?
Since we regard various forms of these elements, some might not be relevant for
SSI. Therefore, this research question focuses on those threats and countermeasures
that are applicable.

RQ4: Which parts of SSI have not been regarded by literature and which are the next
steps? This research question aims to identify gaps, leading to future work.

RQ1 and RQ2 focus on the literature survey (Section 6 for blockchain applications
and Section 7 for SSI), whereas RQ3 and RQ4 are relevant for the following evaluation and
discussion (Section 8).
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4.2. Exclusion Criteria

We exclude the following publications.

EC1: Publications before 2020 (publication date), since the threats have to be able to apply
for SSI and not for earlier stages of SSI or its elements.

EC2: Posters and short papers, as they typically present preliminary work.
EC3: Publications in other languages than English.
EC4: Publications, which propose their own approach but do not contribute to the

threat overview.

Following EC1, we do not follow the original publications. In addition, we
remove duplicates.

4.3. Search Terms and Process

The searches were conducted in June 2023. In order to search for literature concerning
the threats of SSI or elements of it, we first search (Search 1) specifically for papers on
SSI. We use the search string “self-sovereign identity” AND (security OR attack
OR threat) as the basis for ACM, IEEE, and Springer Link. We adapt the search terms and
filters according to the publisher, as summarized in Table 3.

Table 3. Search terms for literature on SSI threats.

Publisher Search String Results Relevant

ACM [Abstract: “self-sovereign identity”] AND [[Abstract: security] OR [Abstract: attack] OR
[Abstract: threat]]

3 0

IEEE (“Abstract”:“self-sovereign identity”) AND ((“Abstract”:security) OR (“Abstract”:attack)
OR (“Abstract”:threat))

56 2

Springer Link Basis with limitation to language = English, discipline = Computer Science, and Document
publication = 2020–2023; in addition without books

69 1

As we find almost no relevant publications but want to provide a full picture, we
additionally search (Search 2) for threats to elements that might be used for SSI. These are
blockchain, DLT, smart contracts, and wallets. Hence, we apply the search string (wallets
OR blockchain OR dlt OR “smart contract”) AND (security OR attack OR threat)
as a basis and adapt it for ACM, IEEE, and Springer. The result is summarized in Table 4.

Table 4. Search terms for literature on threats for SSI elements.

Publisher Search String Results Relevant

ACM [[Abstract: security] OR [Abstract: attack] OR [Abstract: threat]] AND [[Abstract: wallet]
OR [Abstract: blockchain] OR [Abstract: dlt] OR [Abstract: “smart contract”] ] AND
[E-Publication Date: (01/01/2020 TO 12/06/2023)]

830 36

IEEE ((“Abstract”:security) OR (“Abstract”:threat) OR (“Abstract”:vulnerability)) AND ((“Ab-
stract”:wallet) OR (“Abstract”:dlt) OR (“Abstract”:blockchain) OR (“Abstract”:“smart con-
tract”)) and restriction to 2020–2023, publication type (Conferences, journals, early access
articles, magazines), publisher (IEEE), and topics (blockchains, contracts, cryptocurrencies)

3356 37

Springer Link (wallet OR blockchain OR dlt OR “smart contract) AND (security OR attack OR threat) 600 27

4.4. Analysis

Next, we analyze the contents for relevance and group the remaining papers into
the categories of wallet, DLT and blockchain, smart contracts, and humans (first analysis).
During this step, we summarize all known threats, vulnerabilities, and security issues. In
the final step (detailed analysis), we evaluate the applicability of the threats to SSI. This has
several reasons: not all publications found focus on SSI and the applied technologies may
differ (such as applications and consensus algorithms). Based on the results, we identify
missing pieces, leading to future work.
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4.5. Limitations

The literature survey concentrates on the publishers of IEEE, ACM, and Springer
Link. It excludes others, where further literature could be published, and cannot be
complete. As we choose major publishers, the most known publications should be included.
The categorization is based on the title and the content of the paper. Depending on the
actual paper, other categories might be involved. We chose the most prominent one,
appearing in the title. Additionally, we exclude publications before 2020, since the field is
rapidly evolving. Lastly, we focus on threats and vulnerabilities in this survey. We note
countermeasures and summarize them per layer, but these might not be all the measures
that can be taken.

5. Overview of the Literature Survey

Based on the search with the search strategy described in the section above, we
received several results for the categories of wallets, DLT/blockchain, smart contracts, and
humans. The number of publications and their references are summarized in Table 5.

Table 5. Literature grouped into categories.

Category Publications No. of Publications

SSI [32–34] 3
Wallet [28,35–43] 10
DLT/Blockchain [44–82] 39
Smart Contracts [83–128] 46
Humans [129–133] 5

When regarding the year of publication, we notice the following distribution, as shown
in Table 6. Although SSI is gaining momentum, the number of publications focusing on
threats is constant. Wallets and humans were considered at the beginning of the search
period. Also, the number of publications regarding smart contracts and DLT seems to be
decreasing. Since we conducted the search in June, the number of publications in 2023 may
increase until the end of the year. Thereby, it is difficult to see any tendency.

Table 6. Literature grouped into categories and years.

Year SSI Wallet DLT Humans Smart Contract

2020 0 3 10 2 16
2021 1 6 13 3 15
2022 1 0 13 0 13
2023 1 1 3 0 2

all 3 10 39 5 47

Most of the included publications have no or less than ten distinct citations;
15 publications have 10–50 citations, six publications have 51–100 citations, and three
have more than 100 citations. All three provide an overview of threats or security for their
area (blockchain, smart contracts, and Ethereum).

We additionally review the categories provided by the authors, which are included
in the BibTeX files for ACM and Springer Link. We never find the category threats, but
threat model (1), security and derivations of it (16), vulnerability (2), attacks (1), and
attack detection (1). Regarding our categories, most publications state blockchain (18)
and smart contract (14) or derivations. Further categories include wallets (3), distributed
ledger technologies (2), consensus (1), and consensus algorithms, such as proof-of-work or
proof-of-authority (2). Regarding the use case, we notice cryptocurrencies (7), Bitcoin (5),
Ethereum (6), and Monero (1). Specific attacks or threats are less often stated: software
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supply chain (1), application security (1), deep fake (1), fork after withholding (FAW)
attack (1), oracle manipulator (1), reentrancy vulnerability (1), routing attack (1), selfholding
attack (1), selfish mining (1), social engineering (2), and timestamp attack (1).

Based on the content, several authors mention theft, malware, and spoofing in general.
Regarding vulnerabilities, we most often find the reentrancy vulnerability, gas-related is-
sues, issues with Ether, short addresses, unprotected suicide, integer overflow or underflow,
erroneous visibility, authentication through tx.origin (tx stands for transaction), times-
tamp dependency, selfish mining, double-spending, and transaction ordering dependence.
The Parity multi-signature wallet attack, the 51% attack, the Sybil attack, and the Eclipse
attack are the most prominent attacks. The majority of publications do not group these
vulnerabilities, issues, and attacks based on the blockchain layers, but describe them one
by one. These and other threats are outlined in the next section.

6. Results of the Blockchain Survey

In the following, we describe the result of our survey by the layers, established in
the area of blockchain: human layer (see Section 6.2), application layer (see Section 6.3),
consensus layer (see Section 6.4), data layer (see Section 6.5), and network layer (see
Section 6.6). A more detailed overview can be found in Table 7.

Table 7. Overview of the blockchain survey with layers, categories, and issues.

Layer Category Threat/Vulnerability/Attack Section

General DoS, DDoS, and more Section 6.1

Human Social engineering Phishing, Identity theft, shoulder surfing Section 6.2.1
Human errors Human errors, deanonymization Section 6.2.2
Wallet Physical threats, keyboard, backup, malware, spoofing Section 6.2.3

Application Inter-contractual Reentrancy vulnerability, gas-related issues Section 6.3.1

Contractual

Issues with Ether, upgradeable contract and backdoor, honeypot,
address issues, unprotected suicide, DoS with unexpected revert,
integer overflow/underflow, confidentiality failure, insufficient
signature information

Section 6.3.2

Contract-programming

Specific issues, delegatecall injection, erroneous visibility,
authentication through tx.origin, manipulated balance, unchecked
call return values, uninitialized storage pointer, call to unknown,
type casts, outdated compiler version, permission control

Section 6.3.3

Transaction Call-stack depth limit, timestamp dependence Section 6.3.4

Consensus Mining Honest mining assumption, misleading rewards, probabilistic finality,
transaction vulnerability, verifier’s dilemma Section 6.4.1

Timing Timing vulnerabilities, transaction order Section 6.4.2
Others Strength of algorithm, spoofing, collusion attack, and more Section 6.4.3

Data Indistinguishable chains, empty account in the state trie, trusted
third parties Section 6.5

Network Blockchain-specific Forgery attack, unlimited node creation, uncapped incoming
connections, public/fixed peer selection, sole block synchronization Section 6.6.1

Network Impersonation attack, replay attack, Sybil attack, Eclipse attack,
API exposure Section 6.6.2

Most publications focus on the cryptocurrency Ethereum. Since these may not be
applicable to SSI, we discuss the findings in Section 8. As the results of the literature survey
on SSI differ from those of the blockchain search in handled data, applications, consensus
algorithms, and involved parties, we briefly summarize these findings in the following
section (see Section 7).
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6.1. General Issues

A few publications did not fit into any layers. Huang et al. [64] include security in
their survey on blockchains without going into detail. Sayeed et al. [116] describe mali-
cious acts (for example, phishing), weak protocols, defrauding (i. e., fraudulent users), and
application bugs (for example, code errors), which can happen at each layer. Raikwar and
Gligoroski [46] outline various types of denial-of-service (DoS) or distributed DoS (DDoS)
attacks, i. e., on wallets, on cryptocurrency exchange services, on memory/transaction pools,
on mining pools, on layer-two blockchain protocols, on sharding protocols, which is under-
lined by Li et al. [61], on commit-chain operators, on smart contracts, on mixing services,
and on consensus participants. The authors describe the mitigation techniques of client
puzzles, fee-based approaches, and DoS-resistant protocols. Similarly, Mirkin et al. [62] out-
line DoS in PoW, naming it Blockchain DoS (BDoS). Hu et al. [38] analyze the amplification
spamming attack applied for DoS. This shows that there are several ways for DDoS attacks.

6.2. Human Layer

Since some publications include human aspects, such as social engineering, we add
the human layer to the blockchain layer model. Whereas most publications concentrate
on the end-user, Fröhlich et al. [131] explicitly state staff members. In the following, we
summarize the results, grouped into the categories of social engineering (see Section 6.2.1),
human errors and accidental threats (see Section 6.2.2), and wallet threats (see Section 6.2.3),
which can have various reasons. Lastly, we state some countermeasures in Section 6.2.4.

6.2.1. Social Engineering

Fröhlich et al. [132] describe attacks on the owner, forcing them to provide access to
the wallet, and betrayal. However, more variants of social engineering are applicable.

Phishing According to Wilusz and Wójtowicz [35], phishing is a form of social engi-
neering where attackers deceive victims into revealing sensitive information or installing
malware. In the field of blockchain, the variants of asking for the private key, creden-
tials, or cryptocurrency (as exchange or contribution) exist, according to Weber et al. [129].
Fröhlich et al. [131] name email phishing, ad phishing, social media phishing, voice phish-
ing, short message service (SMS) phishing, and spear-phishing. In addition, the authors
state the variants of exit scams, fraudulent cryptocurrency scams, transaction scams, im-
personation giveaway scams, and blackmail scams. Related to scams, Weber et al. [129]
describe honeypot scams as publishing the private key to a wallet containing several tokens
that do not exist.

Identity theft: Identity theft describes the usage of another’s personal identifying
information without their permission, according to Fröhlich et al. [131]. This could hap-
pen in blockchain use cases after phishing, but also following data breaches and other
attacks. Wilusz and Wójtowicz [35] outline password guessing and biometric side-passing.
Do et al. [36] apply deep fakes against liveliness detection during biometric authentication.
Attacks on third-party services, such as subscriber identity module (SIM) swapping attacks,
can have implications for the usage of wallets [35,131].

Shoulder surfing: Shoulder surfing describes the act of watching the victim type and
using this information for ill-purposes. Swambo and Poinsot [83] outline the compro-
mise of the key backup by observing. However, further variants, such as watching the
authentication on the smartphone or wallet, are possible.

6.2.2. Human Errors and Accidental Threats

Human errors and accidental threats can lead to deanonymization, among others.
Human errors: Human errors [35,131,132] are often stated in the analyzed literature.

This includes erroneous recording of access credentials, loss of access credentials (forget-
ting, destruction, equipment breakdown, and destructive catastrophes), and erroneous
transactions (misspelled address, amount, or fees) [125,131]. Issues with addresses are also
stated by Ferreira Torres et al. [101] and Ivanov et al. [130].
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Deanonymization: Deanonymization is generally named by Fröhlich et al. [131] and
others. Romiti et al. [85] explain deanonymization by heuristics and linking algorithms,
whereas Apostolaki et al. [86] use perimeter by traffic interception. Ghesmati et al. [87]
describe the following deanonymization techniques that can be applied to the cryptocur-
rency Bitcoin: heuristics, side-channel attacks, flow analysis, and auxiliary information.
Within heuristics, the authors state input ownership, change address, address reuse, single
input single output, cluster growth, and specific patterns. For side-channel attacks, they
explain time correlation, amount correlation, network layer information, and cashing out
on forks. Flow analysis is aided by transaction graphs, taint analysis, and user graphs.
Auxiliary information includes forums, websites, search engines, social networks, service
APIs, interactions, an address tag database, and others.

6.2.3. Wallet Threats

Various wallet threats can be seen. As several of these threats can be caused by human
errors, they are described in the human layer.

Physical threats: Physical threats to the wallet and the smartphone include losing and
theft (credentials and backups) [35,97,132,133]. Additionally, Fröhlich et al. [131] name the
variants of vandalism, extortion, and abduction. He et al. [42] and Li et al. [41] outline the
misuse of the debugging mode, for example, for accessibility features.

Keyboard: Uddin et al. [28] analyze the security of cryptocurrency wallets. The key-
board app uses a user dictionary, which is a database of words, locales, and frequency
counts, for predictive text inputs. This dictionary can be abused to predict mnemonic
phrases by extracting frequency information from typed words if the attacker has access to
it. However, multiple apps can have virtual keyboard permissions on a smartphone, as
explained by He et al. [41]. Hence, a custom keyboard can prevent this attack.

Backup: If the backup of the app is allowed in the AndroidManifest.xml file, the
app data is backed up using the Android Debug Bridge (ADB) command, as outlined by
Uddin et al. [28]. This enables attackers to retrieve the data. Li et al. [42] describe the impact
of unencrypted backup files. Permissions, such as recording audio, can be again misused
by attackers. This vulnerability is emphasized by Li et al. [42], explaining the issues for
external storage read and write permissions, and He et al. [41] with root privileges. Other
verifications and settings may also lead to vulnerabilities, if not done correctly. Similarly,
if components are exported, this may lead to leaked information. Both publications also
describe the problems with floating windows, which can be misused by malicious apps.

Malware: Generally, malware can be an issue [35,49,133]. Fröhlich et al. [131] dif-
ferentiate wallet/key extraction malware, transaction manipulation malware, credential
extraction malware, and ransomware. Hu et al. [38] and Fröhlich et al. [131] additionally
describe the issue of fraudulent client applications, such as the wallet, QR code scanner,
or key/wallet generator. Ohm et al. [37] point out the issue of a malicious supply chain,
which could be due to a malicious library applied in an application. This threat can be
extended to platform risks, as pointed out by Fröhlich et al. [131].

Spoofing: Several authors highlight the private key security, without going into
detail [59,74,103]. Hence, proper key management and algorithms are important [41,47,49].
Park et al. [43] and Swambo and Poinsot [83] point out the risk of reconstructing the private
key. AlFaw et al. [67] state that digital signatures, hash function, mining malware, software
flows, and user address vulnerabilities might be an issue, whereas Dabrowski et al. [40]
and Swambo and Poinsot [83] outline firmware, client software, and human-in-the-middle
(MITM) of hardware wallets. Spoofing at the user agent layer refers to the illegitimate
execution of identity actions, such as disclosing credentials or authorization. The user agent
holds the private key and VCs. These could be compromised and modified by the same
techniques applied to spoofing.
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6.2.4. Countermeasures

Information security awareness and user-centric security are important, according to
Weber et al. [129]. Buja et al. [133] propose the countermeasures of good authentication
methods, user awareness, up-to-date software, verified or legitimate software, backup, and
encryption. Fröhlich et al. [132] recommend redundant backups and awareness, whereas
Fröhlich et al. [131] outline being skeptical, accessing platforms directly instead of clicking
links, using cold storage, education, and browser extensions warning the user. In addi-
tion, the authors suggest comparing transactions, having good user interfaces, recovery
methods, redundant backups, and advanced infrastructure for advanced users. Further
recommendations by the authors include using trusted sources, 2FA as a form of MFA, a
secure passphrase, backups, moving funds to cold wallets, and checking transactions before
confirmation. Wilusz and Wójtowicz [35] outline the usage of hardware modules and vir-
tual keyboards. Dabrowski et al. [40] suggest that hardware wallets should be inspected for
the packaging, comparing the printed circuit board (PCB) with the reference picture, and
verifying the software with hashes or signatures. Agarwal et al. [96] detect phishing, spam,
and scams by applying Etherscan, a block explorer and analytics platform for Ethereum.
Apostolaki et al. [86] focus on the countermeasures of deanonymization with encrypted
traffic, fake peers, obfuscating the client’s state, routing-aware transactions’ requests and
advertisements, and applying Tor or a virtual private network (VPN). Focusing on authen-
tication, the countermeasures of cancelable biometrics, decentralized storage, liveliness
detection, device identification, and MFA are suggested by Wilusz and Wójtowicz [35].
Uddin et al. [28] and Naik et al. [42] generally outline detection functionalities, such as
regarding permissions and debugging.

6.3. Application Layer

Based on Chen et al. [90], we first provide an overview of vulnerabilities and at-
tacks on the application layer, which primarily consists of smart contracts. We use the
categories of inter-contractual (see Section 6.3.1), contractual (see Section 6.3.2), contract-
programming (see Section 6.3.3), and transaction (see Section 6.3.4). Lastly, we summarize
countermeasures in Section 6.3.5.

Some publications do not clearly differentiate their findings. Bouichou et al. [100]
enumerate the issues as privacy and control, storage accessibility, logic, compiler, authen-
tication, cryptography, initiation, wrong attribution of names, arithmetic, useless code,
user interface, time constraint, and requirement violation. Sharma and Shak [72] and
Snegireva [77] summarize them as faults and vulnerabilities, whereas Hajdu et al. [128]
map vulnerabilities to common weakness enumerations (CWEs). These can have different
reasons and occur at different places, such as contracts, programming languages, or imple-
mentation. Pise and Patil [118] differentiate smart-contract-specific and normal language
issues, such as overflows. One example is described by He et al. [95], where an Ethereum
explorer mishandled edge cases. As pointed out by Wan et al. [108], 40% of the respondents
in their survey reported having experienced at least one out of three potential security
problems related to smart contracts.

6.3.1. Inter-Contractual Vulnerabilities

We noticed the following inter-contractual vulnerabilities.
Reentrancy vulnerability: The reentrancy vulnerability [69,76,90,101,102,104,109,114,

116,117,119,120,122,125,126] describes a vulnerability, where an external callee contract
calls back to a function in the caller contract before the caller contract finishes and, thereby,
bypasses the due validity. One example of an attack based on the reentrancy vulnera-
bility is the decentralized autonomous organization (DAO) attack [52,69,125]. The au-
thors further divide the vulnerability into fallback function-based reentrancy and create
function-based reentrancy.

Gas-related issues: Several gas-related issues exist [69,117,126]. The king of the Ether
allows checking until the caller contract is drained of Ether or the transaction runs out of
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gas [90,114,117]. Kushwaha et al. [117] further explain DoS with block gas limits or failed
calls, gasless sends, gas costly patterns, and insufficient gas. Khan and Siami Namin [126]
state DoS, integer overflow, and wallet out of gas. The prevention is implementation-
specific (for example, using the transfer function instead of the send function to mitigate
the king of the Ether vulnerability).

6.3.2. Contractual Vulnerabilities

Smart contracts may contain vulnerabilities that allow, for example, attackers to gain
access to the contract’s funds or cause other unexpected behavior, according to Fröhlich
et al. [131]. In the following, we describe these vulnerabilities found in the literature.

Issues with Ether: Frozen or locked Ether is the ability of users to deposit their
money into their contract accounts with the inability to spend their money from those
accounts [90,102,125,126]. This was again a Parity wallet bug. Khan et al. [126] describe
stealing Ether, whereas Usman et al. [125] explain unexpected Ether.

Upgradeable contract and backdoor: If the contract developer becomes malicious, the up-
dated contract can get malicious, as outlined by Chen et al. [90]. A (deliberate) backdoor in
a smart contract can allow privileged users to withdraw funds. The functionality is typically
hidden from immediate detection when inspecting the code (see Fröhlich et al. [131]).

Honeypot: A honeypot contract is a smart contract that pretends to leak its funds to an
arbitrary user if the user sends additional funds to it. However, the funds will be trapped
so that the attacker can only retrieve them. In addition, the attacker can earn the money the
victims send to the contract, as outlined by Fröhlich et al. [131].

Address issues: Leaking Ether to an arbitrary address describes the fact that the contract’s
funds can be withdrawn by any caller due to failure to check a caller’s identity [90,103]
or utilizing short addresses [73,90,101,116,119]. This might be applied in combination
with social engineering and can (partly) be prevented by enforcing authentication on the
functions for sending funds. Similarly, Ether can be lost to orphan addresses [90]. If money
is sent to an orphan address, Ethereum automatically registers that address. Hence, the
money is effectively lost.

Unprotected suicide: A contract can be killed by the owner using the suicide or self-
destruct method [90,103,105,117,120,126]. This vulnerability was first observed during an
attack against the Parity wallet and is caused by inadequate authentication enforced by a
contract. Following this, it can be mitigated by enforcing adequate authentication methods,
meaning that a suicide operation must be approved by multiple parties.

DoS with unexpected revert: The transaction is reverted due to a caller contract encoun-
tering a failure in the external call or the callee contract. This deliberately performs the
revert operation to disrupt the execution of the caller contract [90,103,126].

Integer overflow or underflow: This vulnerability occurs when the result of an
arithmetic operation falls outside of range due to no proper validation [69,101–103,114,
116,117,119,120,122,126]. It was first observed during an attack against the BeautyChain
(BEC) tokens, as outlined by Chen et al. [90]. The issue is that neither the Solidity compiler
nor the Ethereum virtual machine (EVM) provides integer overflow or underflow detection.
However, the vulnerability can be prevented by the SafeMath library [134]. Generally,
arithmetic bugs, such as unchecked mathematics, can be seen as vulnerabilities.

Confidentiality failure: Restricting the visibility or function does not assure that the
variable or function is confidential due to the public nature of blockchain, as explained
by Chen et al [90]. The public nature of transactions provides transparency, but also
information about the parties involved and their interactions. Hence, privacy breaches can
have severe consequences.

Insufficient signature information: A digital signature can be valid for multiple trans-
actions, for example, if the sender sends money to multiple recipients through a proxy
contract. If the signature does not provide the due information, a malicious recipient can
replay the message multiple times to withdraw more money. This can be prevented by
adding due information in each message, as outlined by Chen et al. [90].
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6.3.3. Contract-Programming Vulnerabilities

Smart contracts are programmed either in a domain-specific programming language
(DSL), such as Ethereum’s Solidity, or in high-level languages, such as Go, Java, and Node.js.
The latter has the advantage of reducing the developer’s learning cost, as pointed out by
Brotsis et al. [99]. Kushwaha [117] outlines vulnerabilities due to features of the EVM,
such as immutability, missing orphan proof, vulnerabilities due to immutable bugs or
mistakes, and Ether lost in the transfer. Chen et al. [90] highlight programming issues.
Yang et al. [93] detail this by logical issues, centralization, volatile code, coding style,
cost optimization, language-specific, control flow, math operations, inconsistency, data
flow, and misconfiguration. Kushwaha et al. [117] additionally add uncontrolled resource
consumption, external dependence, malleable entropy sources, insufficient authorization,
improper validation, useless and repeated code, variable-sized parameters, improper access
control, hash collision, unprotected Ether withdrawal, floating pragma, and delegate call.
In the following, we briefly explain vulnerabilities found during our survey.

Delegatecall injection: This vulnerability was first observed during an attack against the
Parity wallet. In order to facilitate code reuse, the EVM provides operation code (opcode,
i.e., delegatecall) for inserting a callee contract’s bytecode into the bytecode of the caller
contract. As described by [90,116,120], malicious callee contracts can directly modify the
state variables of the caller contracts. Similarly, fault injection might be possible, according
to Hajdu et al. [128] and Muralidhara et al. [80]. Muralidhara et al. [80] additionally add
code injection and structured query language (SQL) injection.

Erroneous visibility: If the function’s visibility is not properly specified, it can provide
unauthorized access [90,116,117,119,120,122]. This was first observed in an attack against
the Parity wallet. As a countermeasure, Solidity makes it mandatory to specify function
visibility starting with version 0.5.0 [135]. Similarly, Usman et al. [125] describe shadowing.

Authentication through tx.origin: tx.origin is a variable in Solidity and refers to the
externally owned account (EOA) that initiated the transaction. It can be misused if it is
applied to a contract and compromised by a phishing attack [90,103,117,120,126]. Hence,
the authors of Solidity recommend not to use tx.origin for authorization [136].

Manipulated balance: This vulnerability can also be called forcing Ether to contracts,
according to Chen et al. [90]. It occurs if a control-flow decision relies on the value of
this.balance or address(this).balance, which can be used by an attacker to obtain the
money. As a countermeasure, balance should not be used.

Unchecked call return values: This vulnerability is also called mishandled
exceptions [90,114,126]. According to Chen et al. [90], it has two variants: gasless send and
unchecked send. Similarly, Kushwaha et al. [117] outline improper exception handling and
mishandling, and Ferreira Torres et al. [101] and Ashouri [102] unhandled exceptions.

Uninitialized storage pointer: This vulnerability was caused by Solidity’s treatment
of uninitialized compound local variables (overwriting from slot 0) and is eliminated by
version 0.5.0 [135], according to Chen et al. [90].

Call to unknown: This vulnerability occurs if a function that does not exist in the target
contract is called. Calling a non-existent function triggers the fallback function, posing a
reentrancy attack risk, as described by Kushwaha et al. [117] and Chen et al. [90]. This was
used in the Parity multi-signature wallet attacks [90,101,114,120,126]. Kushwaha et al. [117]
generally describe fallback functions as a possible vulnerability. The erroneous constructor
name vulnerability existed in Solidity until version 0.4.22. It allowed everyone to become
the owner of the contract due to any incorrect name of a constructor function. It was first
observed in the Rubixi contract, as outlined by Chen et al. [90].

Type casts: In Solidity, a contract can call another contract by directly referencing the
callee’s contract’s instance. Here, a type cast issue can happen. A type cast is if one type is
explicitly or implicitly converted to another. According to Solidity [136], types that do not
occupy 32 bytes might contain “dirty higher order bits”, which pose a risk if msg.data is
accessed. Such a type cast can mislead EVM to run the attacker’s contract [90,114,126].
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Outdated compiler version: An outdated compiler version can contain bugs and thus
make the compiled contract vulnerable, as outlined by Chen et al. [90] and Yang et al. [93].

Permission control: This vulnerability describes the improper use of msg.origin and
msg.sender, as explained by He et al. [122]. msg.origin is the address of the EOA that
originated the transaction; msg.sender is the address of the caller of the smart contract,
which can be an EOA or a smart contract. With Ethereum Request for Comment (ERC)-4337
(account abstraction) [137], not only EOAs but also smart contracts have the ability to
issue transactions on behalf of a user. This has the advantage of avoiding changes to the
consensus-layer protocol.

6.3.4. Transaction Irregularities

Kushwaha et al. [117] outline the design features of the Ethereum blockchain that can
cause vulnerabilities and irregularities, such as a malleable miner, a lack of transactional
privacy, transaction ordering dependency, and an untrustworthy data feed.

Call-stack depth limit: The EVM’s call-stack has a hard limit of 1024 frames. If a contract
calls another contract, the call-stack depth increases by one. If the number of nested calls
exceeds 1024, Solidity throws an exception and aborts the call. This can be misused by
an attacker. The hard fork [138] for the Ethereum improvement proposal (EIP)-150 called
Tangerine Whistle [139] re-defines the gas consumption rules of external calls to make it
impossible to reach these 1024 frames. This vulnerability is described by Chen et al. [90].

Timestamp dependence: If a contract uses the block.timestamp as a part of a triggering
condition when executing a critical operation or as the source of randomness, this could
be manipulated by a malicious miner [69,90,103,116,117,119,120,122,125,126]. Generally,
randomness is an issue, according to He et al. [122]. The initial private seeds, such as
block.number, block.timestamp, block.difficulty, or blockhash, are fully controlled
by miners. Consequently, a malicious miner can manipulate these values.

6.3.5. Countermeasures

We found various countermeasures. These comprise checking the smart contract and veri-
fying the source code [131], logic analysis [101], security tools [103,116,117,120,122,124,126], flow
analysis [115], visualization tools, disassembler and decompiler, linter, and miscellaneous
tools [103], static and dynamic analysis [103,119,120], symbolic execution, formal verifica-
tion [103], differential fuzzing [107], deep learning [109], and verification of identities [122],
among others. Ivanov et al. [106] propose a taxonomy with static analysis, symbolic
execution, fuzzing, formal analysis, machine learning methods, execution tracing, and
transaction interception. Kissoon and Bekaroo [121] suggest open web application security
project (OWASP) top 10, smart contract security verification standard (SCSVS), tools (code
translation, static, and dynamic), fuzzing, and machine learning. Ahmadjee et al. [54] apply
spoofing, tampering, repudiation, information disclosure, denial of service, and elevation
of privilege (STRIDE) and MITRE. Van Landuyt et al. [48] try threat modeling, whereas
Samanta et al. [49] apply game theory. Chen et al. [70] regard standardization, whereas
Leng et al. [71] propose process security, data security, and infrastructure security.

6.4. Consensus Layer

As laid out by Brotsis et al. [99], the consensus protocol is the most critical component
of a distributed ledger. According to the authors, Hyperledger Fabric and a crash fault
tolerant (CFT) consensus protocol can be considered ideal in a confident network, such
as an enterprise environment. However, non-confident networks also exisit, such as
with cryptocurrencies. Following, we describe mining (see Section 6.4.1), timing (see
Section 6.4.2), and other issues (see Section 6.4.3). Lastly, we briefly state countermeasures
in Section 6.4.4.
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6.4.1. Mining Issues

Several mining issues are explained. Specific attacks are the nothing-at-stake attack for
PoS, pre-computation attack in PoW+PoS hybrid mode, the long-range attack in PoS, which
is similar to the 51% attack (all described by Yu et al. [47]), the mining pool attack [49],
and the private attack for PoS [60]. Furthermore, the flood and loot attack [94] and the
wormhole attack [59] are outlined in the literature. The following vulnerabilities and attacks
were named more often or are more generally applicable.

Honest mining assumption: Honest mining should be the most profitable mining strategy,
which is not true. Selfish mining exploits the probabilistic finality vulnerability, the honest
mining assumption vulnerability, and the rewards for uncle blocks vulnerability. Miners
may withhold new blocks and selectively publish some blocks to earn an unfair share of
rewards [51,52,67,76,80,81,90,103]. Wang et al. [76] additionally describe stubborn mining
and the block-withholding attack. Miners can make a profit by taking bribes and changing
their strategy to benefit the bribers [53,67,90]. Chen et al. [90] distinguish in-band bribery
and out-of-band bribery. A similar attack is the fork after withholding (FAW) [67,76,91].
The attacker divides the computational power into two parts: one part mines the mining
pool and the other part mines the victim pool. The attack combines selfish mining and
block-withholding attacks. In the first case, the attacker finds a block in the innocent pool
and uploads it normally. In the second case, the attacker finds a block in the target pool
and discards it. Fore case three, the attacker finds a block, while others outside the victim
pool also find one. The attacker submits their block to fork the blockchain. In the fourth
case, others find a block and the attacker cannot do anything. In the first three cases, the
attacker earns more money.

Misleading rewards: The rewards for the uncle block vulnerability refer to the uncle-
rewarding mechanism, which was introduced to cope with the increase in stale blocks.
This mechanism has the side effect of rewarding uncle blocks and, hence, selfish-mining.
Ethereum adopted a PoW puzzle called Ethash [140] (former Ethereum’s PoW mining
algorithm), which is a modified version of the Dagger-Hashimoto algorithm. According to
Chen et al. [90], miners are able to divide the task of searching for a puzzle solution into
multiple smaller tasks, which are outsourced.

Probabilistic finality: This vulnerability in PoW and PoS protocols refers to the fact
that the Ethereum blockchain can only achieve a probabilistic rather than a deterministic
assurance that a new block will be finalized in the blockchain, according to Haugum
et al. [90] and Chen et al. [59]. The deeper a block is contained in the blockchain, the more
likely it is that it will not be reverted. The 51% attack [33,47,49,52,67,72–77,80,90,103,131],
also called the majority attack, describes the fact when a single user or group of users gets
control of more than 50% of the hashing power in a PoW blockchain. In a PoS blockchain,
this could happen in specific cases, as outlined by Hao [75]. Successful attackers obtain
the power to prevent new transactions from being completed, to reorder new transactions,
to effectively rewrite sections of the blockchain, and to reverse transactions. The latter
can lead to a problem known as double-spending [49,51,52,57,59,68,74,76,77,80,97,98,103].
The malicious user attempts to deceive the system by spending the same Bitcoin (BTC)
more than once within a short timeframe. Other reasons for double-spending are race
attacks, Finney attacks, and Vector76 attacks [51,67,97]. Iqbal and Matulevicius [68] add
Sybil-based double-spending, PoS long-range attack, time advantage, Eclipse-based double-
spending, border gateway protocol (BGP) hijacking, and a 0-confirmation race attack. As
Ahmed et al. [33] state, larger networks are less prone to this attack and a trust-authority
node can be introduced. Similarly, Fröhlich et al. [131] recommend using well-known
networks.

Transaction vulnerability: In a flooding attack, the attacker issues numerous transactions,
which leads to a flooding of the backlog of transactions since they wait to be confirmed,
as outlined by Fröhlich et al. [131]. In a poisoning attack, as explained by Sato et al. [44]
and Sharma and Shah [72], the attacker prepares a malicious or illegal file, embeds the file
into the flexible space of a transaction, and broadcasts the transaction in the blockchain
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network. The malicious file is embedded into the blockchain through the mining process
and then shared among the network participants. The file could contain privacy-related
information, malware, or illegal content. Similarly, balance attacks, resource exhaustion
attacks, and incorrect transaction attacks are described.

Verifier’s dilemma: If the verification of a new transaction requires nontrivial compu-
tation efforts, miners are subject to attacks. If miners verify a computationally nontrivial
transaction, they spend a significant amount of time. If miners accept the transaction
without verification, then the blockchain may include an incorrect transaction. The resource
exhaustion attack and the incorrect transaction attack, see Chen et al. [90], exploit this
vulnerability, which can be mitigated by adding a gas limit and providing an incentive
for honest miners. Wang et al. [88] describe a related issue for practical Byzantine fault
tolerance (PBFT). A view is the period of time for which a given node is the primary. In a
view change, the view is switched to another primary. The first attack requires a malicious
primary to trigger the view change, whereas the second attack has the constraint of a
timeout to trigger the view change.

6.4.2. Timing Issues

We found the following vulnerabilities related to timing and the transaction order.
Timing vulnerabilities: Side-chains are independent blockchains that employ their

own consensus models to enhance transaction processing time. The transaction history is
periodically updated on the main-chain and an old version is located on the side-chain.
Hence, side-chains are vulnerable to timing attacks between the updates, as outlined
by Haugum et al. [59]. Zhang et al. [66] describe a time-manipulation attack, which is
applicable to proof-of-authority (PoA), another consensus algorithm.

Transaction order: Transaction ordering dependence (TOD) or front running refers to
the state of blockchains depending on the execution order of transactions [90,102,103,110,
116,119,120,126]. If the order of two transactions calling the same contract changes the final
outcome, adversaries can exploit this property. Transactions are publicly broadcast on the
network. Malicious actors can offer a higher gas price to have their transactions assembled
into blocks sooner than the specific one. This vulnerability can be mitigated by hiding
transactions or introducing a guard condition. According to Varun et al. [113], the following
variants exist: displacement, insertion, and suppression. The authors apply machine
learning for detection. Tjiam et al. [110] describe the sandwich attack as the simplest and
most commonly encountered subtype of specialized frontrunning. The authors additionally
state the variant of guaranteeing the transaction order to guarantee a profit from sandwich
attacks. According to them, design paradigms against TOD are off-chain computation
and tx batching, bypassing the memory pool (mempool), and commit-reveal on rollups.
In a sandwich attack, as described by Wang et al. [92] and Tjam et al. [110], attackers
take advantage of the transaction confirmation being delayed, causing financial losses for
victims. The authors further state the countermeasures of no-profit and non-observable
transactions. Similarly, in the liveliness attack based on Shah and Chopade [52] and
Haugum et al. [59], the attackers delay the confirmation time of a target transaction.

6.4.3. Other Issues

According to Yu et al. [47], the security of blockchain depends on the strength of
cryptographic encryption algorithms. The authors further explain that rainbow tables
and quantum computing in the future might be issues. The latter is emphasized by
Sharma and Shak [72]. In a replacement attack, the attacker tries to pass the data integrity
check by replacing the challenged signature and block with an unchallenged block and
signature, according to Ahmed et al. [33]. In a collusion attack, the attacker exploits false
data injection [33,59,79]. According to Wang et al. [79], this can be against write-only,
read-only, read-write, or delete-related transactions. Wijaya et al. [89] outline zero-mixin
transactions and cascade effects, hard fork problems, and closed-set transaction attacks
for Monero, whereas Sharma and Shak [72] and Islam et al. [73] generally name issues
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of forking. Tjiam et al. [110] explain oracle manipulation with the countermeasures of
using time-weighted average prices and consulting m-of-n reporters within the oracle
architecture.

6.4.4. Countermeasures

Several countermeasures can be found in the literature, ranging from a zero-block
algorithm against selfish mining attacks without timestamps, randomly selecting mining
groups, and increasing the minimal cost of attack to fuzzing, symbolic execution, and
formal verification (see Sifra [123]) to detecting compromised blockchain nodes using a
server-side authentication process and thwarting their activities before getting updated in
the ledger (see Ajayi and Saadawi [78]).

6.5. Data Layer

Within the data layer, we found the following three vulnerabilities and issues.
Indistinguishable chains: Ethereum uses the elliptic curve digital signature algorithm

(ECDSA) to sign transactions. Prior to the hard fork for EIP-155 [141] (simple replay
attack protection), each transaction consisted of six fields. However, the signatures are not
chain-specific. Hence, a transaction for one chain can be reused for another chain. With
indistinguishable chains, a transaction could be used in another chain (cross-chain replay
attack), as outlined by Chen et al. [90]. By including chainID, this vulnerability in Ethereum
is eliminated.

Empty account in the state trie: An empty account is an account with zero nonce, zero
balance, and no code or storage associated with it. It is functionally equivalent to a non-
existing account, except that it is included in the Ethereum state trie. An attacker can create
numerous empty accounts to cause a DoS attack. With the hard fork for EIP-161 [142], this
vulnerability was eliminated, according to Chen et al. [90].

Trusted third parties: These trusted third parties belong to all layers, but the data layer is
the most prominent. Fröhlich et al. [131] describe the issues of not updating wallets and not
following laws. Swambo end Poinsot [83] outline access to the location of servers and the
compromise of servers by software or human vulnerability. Yan et al. [56] generally point
out that third parties can be adversaries. Hence, according to the authors, users should not
rely on a single platform and make backups.

6.6. Network Layer

Generally, centralization and misconfiguration can be issues, according to Yang
et al. [93]. Similarly, account hijacking is described at each layer, including the network
layer. Brotsis et al. [99] outline the compromised membership service provider and iden-
tified endorsers at Hyperledger Fabric. In the following, we describe blockchain-specific
(see Section 6.6.1) and general network issues (see Section 6.6.2). Lastly, we summarize
countermeasures found in the literature.

6.6.1. Blockchain-Specific Issues

The following issues, vulnerabilities, and attacks are either specific to peer-to-peer
(P2P) networks or blockchains.

Forgery attack: After acquiring the desired identity, the attacker can forge themselves
as a legitimate entity, such as the verifier, according to Ahmed et al. [33]. Hu et al. [38]
describe unforgeability as a countermeasure.

Unlimited node creation: According to Chen et al. [90], an attacker could create an
unlimited number of nodes and use these nodes to monopolize the incoming and outgoing
connections of victim nodes. Hence, isolating the victims from the other peers in the
network. By restricting the node generation process, this vulnerability can be mitigated.

Uncapped incoming connections: Each node can have a total number of maximal peer
connections, but there is no upper limit on incoming connections. Hence, this can be used
by an attacker to establish incoming connections to a victim node so that they have no
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outgoing connections. By introducing an upper limit on incoming connections (see Geth
v1.8), this vulnerability can be mitigated (see Chen et al. [90]).

Public/fixed peer selection: Both vulnerabilities have been discovered in the Geth client
(using the Ethereum network with a modified Kademlia distributed hash table (DHT)) and
have been fixed. If a node needs to locate a target node, it queries the 16 nodes in its bucket
that are relatively close to the target node and asks each of these nodes to return the 16 IDs
of their neighbors that are closer to the target node. The process iterates until the target
node is reached. The mapping from node IDs to buckets is public. Hence, an attacker can
craft node IDs that can land in a victim node’s buckets and insert malicious node IDs into
the victim node’s routing table. The fixed peer selection refers to the client fetching the
heads of randomly chosen buckets when selecting nodes from its routing table to establish
outbound connections. As the nodes are sorted by activity, an attacker could make its node
the first one, as outlined by Chen et al. [90].

Sole block synchronization: According to Chen et al. [90], this vulnerability allows an
attacker to partition the Ethereum network without monopolizing the connections of a
victim. Ethereum allows a client to synchronize with one other client at a time. If the other
client is malicious and deliberately delays the synchronization, the blockchain at the victim
is stalled and the victim rejects every subsequent block.

6.6.2. Network Issues

One network issue is message loss, as outlined by Ameen et al. [63]. Snegireva [67]
and Muralidhara and Usha [80] name delay and DDoS, whereas AlFaw et al. [67] and
Wang et al. [76] describe transaction malleability. Further network issues are routing
attacks (see Zaghloul [97]), border gateway protocol (BGP) hijacking attacks (see Shah
and Chopade [52] and Gupta et al. [103]), and DoS via route hijacking (see Tochner [65]).
Following, we describe the most commonly stated attacks.

Impersonation attack: In an impersonation attack, the attacker tries to impersonate
a trusted entity, as outlined by Ahmed et al. [33]. This could be a node in this case.
Countermeasures are identification, authentication, and session keys.

Replay attack: In a replay attack, the attacker logs the session and resends the session
or portions of it. Ahmed et al. [33] and Sharma and Shak [72] describe that the replay
attack is one of the most frequent blockchain vulnerabilities. The authors explain that
they are possible because the blockchain might be changed due to chain bifurcations or
hard forks. In addition, Sharma and Shak [72] outline nonce tokens and timestamps as
countermeasures. Based on EIP-155 [141], replay attacks have been an issue at Ethereum.

Sybil attack: The Sybil attack [33,50,52,58,59,67,68,76,97] refers to a malicious node
with several valid IDs, which are used to block users’ transactions and disconnect network
connections. Iqbal and Matulevicius [68] describe the variations of breaking the consensus
protocol attack, generating fake transactions attack, tampering nodes reputation, nodes
isolation (partition) attack, routing table insertion attack, Sybil-based linking (deanonymiza-
tion) attack, and Sybil-based DoS/DDoS attack. Countermeasures include a chain of trust
mechanisms and consensus mechanisms, such as PoW and PoS, which are not prone to
this attack. Zaghloul et al. [97] describe the limitation of outbound connections to single
Internet protocol (IP) addresses.

Eclipse attack: The Eclipse attack is an attack against the process of establishing node
information and connecting nodes in the blockchain. By acting as a MITM, the attacker
intercepts communication and data exchange. Known countermeasures are checking IP
addresses and using random IP addresses [51,59,72,73,76,80,97,103]. Ahmed et al. [33]
outline the countermeasures of nonce and authentication against MITM attacks.

API exposure: Generally, application programming interfaces can be exposed or require
no authentication. The remote procedure call (RPC) API exposure vulnerability was first
observed during an attack against the Geth and Parity clients. The JSON-RPC of Ethereum
clients provides APIs to communicate with the network. Although the API should only
be available locally, the standard port 8545 for JSON-RPC was accessible remotely in the
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clients by default in the described attack. The vulnerability can be mitigated by configuring
listening ports, adding access control to RPC calls, and generally practicing proper API
design and configuration, as described by Chen et al. [90].

6.6.3. Countermeasures

Again, several generic countermeasures are stated. This includes attack-defense trees
(see Eisentraut et al. [45]), machine learning, and analyzing commit messages (see Yi
et al. [55]), as well as generally applying security features.

7. Results of the SSI Survey

Following, we briefly outline the findings of our literature survey concerning the
security of SSI. Here, we initially found three publications. Since Rayhan Ahmed et al. [33]
mainly describe the current state of blockchain and SSI and outline ten attacks on the
consensus and network layers, we described in Sections 6.4 and 6.6, we disregard the
publication in this section. Hence, we focus on Naik et al. [32] and Grüner et al. [34]. Naik
et al. [32] first identify assets and potential attacks before generating an attack tree for each
identified attack. Grüner et al. [34] apply STRIDE to the various components of SSI. In the
following, we summarize and combine the results of both approaches.

7.1. Human and Credential Exchange Layer

Naik et al. [32] have identified three attacks and generated for each of them an attack
tree. In order to obtain fake credentials, a user may either create fake credentials at an issuer,
spoof the issuer, amend issued credentials, or steal credentials. To create fake credentials at
an issuer, the attacker either has to obtain admin credentials (malware or social engineering)
or store fake credential data (accessing the issuer host or updating data). For spoofing,
three variants exist: creating a replica issuer host, publishing a fake issuer DID to the SSI
network, or reducing trust in the original issuer (by applying either the Sybil or Eclipse
attack). To amend issued credentials, the attacker has to obtain the issuer’s private key
(i. e., access the issuer host and locate the private key, which could be done by malware or a
social engineering attack) or sign the updated credential in the wallet. To steal credentials,
the attacker has to either steal a wallet (steal the phone or attack the user’s cloud storage)
or impersonate the user (obtain credentials and request credentials).

Naik et al. [32] additionally describe the threat of obtaining personal data. Here, the
authors identify three vectors: unauthorized access to the user’s wallet, credential creep,
and background data attack. To get unauthorized access to the wallet, the attacker needs
to receive the user credentials (using malware or a social engineering attack) and access
the wallet (stealing the phone or gaining remote access to the wallet). Credential creep
is possible by requesting additional data or user profiling (multiple verifier requests for
credentials and linking DID to identify the user). In a background data attack, the attacker
has to obtain a sensitive dataset and link data via a verifier request.

7.2. Communication Layer

Grüner et al. [34] apply the STRIDE model to the user agent. Thereby, the authors
recognize spoofing (acquiring the private key, stealing or covertly accessing the user agent
device, and exploiting the recovery mechanism of the identity), tampering with the user
agent’s data, repudiating identity actions (deliberately disclosing the private key, revoking
an identity, and deliberately losing the user agent device), revealing confidential identity
information, denying identity actions (stealing or breaking the user agent device, deleting
the private key, and exploiting identity revocation), and elevation of privileges on the user
agent (not applicable). In addition, the VC is stored, which again can be manipulated.
Here, the authors determine spoofing (self-attested claims), tampering (changing VC value),
repudiating (deleting the VC), revealing confidential VC information (gaining unauthorized
access and requesting unnecessary data), denying VC store serviceability, and elevating
privileges on the VC store.
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Grüner et al. [34] regard the organizational agent. By applying STRIDE, they identify
spoofing (misusing an identity), tampering (manipulating a configuration), repudiation
(illegitimate revocing a VC), revealing confidential identity information (not applicable),
denying identity actions, and elevating privileges (taking-over a role). Similarly, the authors
analyze the trust and data stores. For spoofing and tampering, the authors recognize
circumventing VC verification and manipulating trusted issuers; for revealing confidential
information, they state the disclosure of trusted issuers. The other categories are not
SSI-specific, according to the authors.

By utilizing STRIDE, Grüner et al. [34] identify in the area of communication the issues
of spoofing and tampering (spoofing communication partner), repudiation (disputing a
message), and revealing confidential information (intercepting traffic).

7.3. Repository Technology Layer

Grüner et al. [34] analyze the identity holder, verifier, and issuer nodes. Here, the
authors find spoofing (propagating a forged message), tampering with the node (manip-
ulating state and configuration), and denying node serviceability (resetting or closing
connections and flooding connections). The other categories either are not applicable or
have no specific threats to SSI.

Naik et al. [32] analyze DoS attacks. The authors identify three variants: deny services
to the host, BDoS, and disrupt the SSI operational framework. In order to deny services to
the host, the various entities could be flooded. The authors further name volume-based
attacks, protocol-based attacks, application layer attacks, buffer overflow attacks, and
radio frequency (RF) interference attacks. To target the blockchain, the following attacks
are stated: flood blockchain nodes, resource depletion attacks, increase fake validators,
discourage validators participation, Sybil attacks, and Eclipse attacks. Lastly, to disrupt the
SSI operational framework, the governance framework or the regulatory framework could
be interrupted.

Additionally, Grüner et al. [34] evaluate verifiable data registries (VDRs). Here, the
authors recognize spoofing, tampering, and repudiation by exploiting smart contract
vulnerabilities. The serviceability could be denied by deactivating VDR smart contracts
and manipulating the blockchain configuration. Privileges could be elevated by taking
over the VDR owner, holder, or issuer role. The disclosure of confidential information is
not applicable, according to the authors.

8. Application and Discussion of the Results

So far, we have summarized the findings of our literature survey on blockchain ap-
plications in genral (see Section 6) and SSI (see Section 7). Thereby, we have answered the
research questions RQ1 and RQ2. However, since blockchain applications on cryptocur-
rencies (the most common application in the literature found) are different from those for
SSI, we first apply these results to SSI in Section 8.1. For this step, we still use the layers of
blockchain. The application of the results to SSI should answer RQ3. Next, in Section 8.2,
we summarize the findings and combine them with the survey on SSI threats. Lastly, we
outline future work based on the layers of SSI in Section 8.3 and, thereby, answer RQ4.

8.1. Application on SSI

We included 101 publications in our literature survey concerning threats to elements
of SSI, such as wallets, DLT, humans, and smart contracts. We categorized the threats based
on the blockchain layers. During the analysis of the literature survey, we noticed that most
publications concern cryptocurrencies, especially Ethereum. Ethereum uses smart contracts
to transfer ETH. Originally, Ethereum applied PoW and changed to PoS in 2022, which
reduces energy consumption [143]. Nonetheless, cryptocurrencies are different from SSI,
which may have consequences for the applied technologies and, hence, threats. In the
following, we discuss the application of the threats to SSI layer by layer.
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8.1.1. Human Layer

Similarly to cryptocurrencies, the SSI stack includes a human layer, in which the end-
user uses their wallet to access services. Additionally, humans administrate servers, interact
within the service desk, and provide the governance layer, among others. The categories of
social engineering, human errors, and wallet threats also apply to SSI. However, successful
attacks have other consequences for the users since SSI handles identity-related data. Fur-
thermore, the described issues are more general, especially concerning social engineering.

8.1.2. Application Layer

Although smart contracts can be applied in SSI, they are, at least currently, most
likely not used in SSI infrastructures. The literature focuses on Solidity, the programming
language of Ethereum. Based on the statistics provided in Section 5, we notice a decline
in publications on that topic. Hence, most threats outlined in Section 6.3 could be applied
to SSI but are less relevant. One exception is the threat of transaction irregularities, which
could work on SSI. Following, the threats on the application layer have to be regarded.

8.1.3. Consensus Layer

Most publications within the consensus layer focus on PoW and PoS, either explic-
itly or implicitly. However, PoW and PoS are typically not chosen for SSI. For example,
Hyperledger Indy uses a variant of redundant Byzantine fault tolerance (RBFT) called
Plenum [144] as the consensus algorithm, whereas Hyperledger Fabric lets the administra-
tors choose [145]. Following, the literature found for our survey and, hence, the threats,
might not be applicable to SSI.

8.1.4. Data Layer

The rare findings concerning the data layer can probably be applied to SSI. However,
there might be more threats, which still have to be analyzed.

8.1.5. Network Layer

The vulnerabilities and attacks found in the network layer can be divided into
blockchain- or P2P-specific issues (for P2P, see, for example, Schäfer et al. [146]) and
general network issues. The blockchain-specific and network-related items can be applied
to SSI. However, some issues, such as impersonation, Sybil attack, and Eclipse attack, might
be mitigated due to governance and configuration.

8.2. Summary

We identified several threats (RQ1) and some countermeasures (RQ2). Based on the
discussion in the previous section, we notice that not every threat and attack can be applied
to SSI, whereas some descriptions are of a generic nature (RQ3). Although the human layer
can be applied to SSI, it has to be regarded in more detail. The threats of the application
layer are most likely not applicable to SSI. Nonetheless, SSI has applications, such as wallets
and agents, and VC that are sent between entities. The first results can be found in the
literature for SSI, but more work is required. The consensus algorithms of cryptocurrencies
outlined in the literature and SSI diverge. Hence, those applied for SSI, such as RBFT, and
their implementations have to be evaluated. Although the threats of the data layer can
be applied, we found only a few threats in the literature. Thus, this might require future
work. Lastly, the threats and attacks concerning the network layer can be applied to SSI.
Some might be mitigated by governance, which is added as a layer in the following section.
Here, we also found the most known threats to SSI. One issue with the analysis of threats
to SSI is that the area is still progressing. Hence, the threats are rather generic and not
specific for one or a few implementations. If SSI should be enrolled in a certain use case,
the threats have to be evaluated for the setting, including the chosen implementations. For
example, threats to Hyperledger Indy might be different from those to Hyperledger Fabric,
and the type of wallet (smartphone app, cloud, or hybrid wallet) also plays a role. Since



Appl. Sci. 2024, 14, 139 26 of 35

several threats cannot be applied to SSI directly, the countermeasures have to be regarded
specifically for SSI.

8.3. Future Work

Based on our findings, we identify the following topics for future work per layer
(RQ4). In general, the analysis of threats should include current implementations.

8.3.1. Governance Layer

Most publications focus on technology, but not on governance. However, governance
provides a framework for the operation of blockchain and, hence, SSI. This includes
a general framework for the operation, a trust framework describing the interactions
and trust of the participants, an agent and wallet framework, suggesting specific types
and versions, and a utility framework, focusing on methods and similar. Governance
can have an impact on security by, for example, recommending vulnerable versions of
agents. Consequently, more work is required on the topic of governance, including security
management. Within security management, security incidents have to be taken care of,
among others.

8.3.2. Human Layer

We found five publications out of 101 focusing on human aspects of security related
to blockchain. Ten further publications included blockchain wallets and their security.
Humans and wallets are considered in Section 7, analyzing the threats to SSI. Nonetheless,
several aspects still have to be explored. For example, studies may indicate how to mitigate
phishing in this context and what role the user interface (UI) plays. In Section 3, we
evaluated several SSI wallets on the market. Although they seem to follow some design
rules, we recognized some issues with the UI and security. Further studies may provide
a design guide and awareness-raising designs to mitigate threats. Another question is
how to raise the security and privacy awareness of users and trigger secure actions. The
importance of this question is emphasized by Graux [147]. Also, the implications of SSI for
social engineering attacks in general can be analyzed, not only focusing on phishing.

8.3.3. Credential Exchange Layer

Based on our results in Section 3, the threats to wallets should be analyzed more
thoroughly. This includes static and dynamic analysis of SSI wallets for different OSs and
not only Android. Here, a test suite could partially automate the analysis. The results may
lead to best practice guides and more secure wallets. These can be followed by developers
and consortia. Another complex topic is the supply chain in this respect. Wallets, like
several other software products, use various libraries, which could be malicious or at least
buggy. A methodology to analyze these dependencies could help.

8.3.4. Communication Layer

The implementations for data exchange and their protocols should be analyzed. The
early formal analysis for OpenID4VP over Bluetooth Low Energy (BLE) by Felix Linker
(Provided within the standardization mailing list.) led to improvements during the stan-
dardization process. This approach could be adapted to various protocols. In addition,
implementations can be analyzed, for example, with static and dynamic code analysis.
Although various publications focus on consensus algorithms, those applied in the SSI
context are typically not regarded. Hence, this is another topic for future work. We addi-
tionally searched for the security of zero-knowledge proofs, which can be applied in SSI,
and especially their implementations. However, we found no publications on that topic.

8.3.5. Repository Technology Layer

Although several vulnerabilities and issues in the DID networks layer are already
known, a more thorough analysis is required. This is especially true since differences in
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blockchain for cryptocurrencies exist, governance plays a role in this layer, and the threats
may depend on the actual implementation. The analysis of the vulnerabilities could involve
the verification within a testbed.

9. Conclusions

Identity management is a critical component in developing and deploying digital
services in various fields. With the increasing digitalization, the demand for reliable and
secure identity management is greater than ever. Currently, a handful of commercial
providers dominate the field and, thereby, are in a position to aggregate metadata and
receive a profile of user activities. To give control back to the users, SSI was established.
With the progress of the scientific approach and the partial adoption planned in the new
eIDAS regulation, security becomes more relevant. In order to provide first insights, we
analyzed current SSI wallets on the market as motivation. Then, we conducted a literature
survey on the threats, vulnerabilities, and security of SSI and its elements. We applied the
gathered results to SSI if possible and discussed future work. Based on our survey, several
aspects related to the threats to SSI are still uncovered and require more research. This is
essential before adopting SSI for identity management.
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FAW Fork after withholding
HTLC hash time locked contract
IP Internet protocol
JAR Java archive
JSON Java Script Object Notation
MD5 Message-digest algorithm 5
mempool Memory pool
MFA Multi-factor authentication
MITM Human-in-the-middle
OIDC OpenID Connect
opcode operation code
OpenID4VP OpenID for Verifiable Presentations
OS Operating system
OSI Open Systems Interconnection
OWASP Open web application security project
P2P Peer-to-peer
PBFT Practical Byzantine fault tolerance
PCB Printed circuit board
PIN Personal identification number
PKI Public key infrastructure
PoA Proof-of-authority
PoS Proof-of-stake
PoW Proof-of-work
QR Quick response
RBFT Redundant Byzantine fault tolerance
RF Radio frequency
RPC Remote procedure call
SCSVS Smart contract security verification standard
SHA Secure hash algorithm
SIM Subscriber identity module
SIOP Self Issued OpenID Provider
SMS Short message service
SQL Structured query language
SSI Self-sovereign identity
SSL Secure sockets layer
STRIDE Spoofing, tampering, repudiation, information disclosure, denial of service, and

elevation of privilege
TCP Transmission control protocol
TLS Transport layer security
TOD Transaction-ordering dependency
tx Transaction
UI User interface
VDR Verifiable data registries
VC Verifiable credential
VPN Virtual private network
XML extensible markup language
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