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A B S T R A C T

We consider optimal control problems governed by an elliptic variational inequality of the first
kind, namely the obstacle problem. The variational inequality is treated by penalization, which
leads to optimization problems governed by a nonsmooth semi-linear elliptic PDE. The CALi
algorithm is then applied for the efficient solution of these nonsmooth optimization problems.
The special feature of the optimization algorithm CALi is the treatment of the nonsmooth
Lipschitz-continuous operators abs, max and min, which allows to explicitly exploit the nons-
mooth structure. Stationary points are located by appropriate decomposition of the optimization
problem into so-called smooth constant abs-linearized problems. Each of these constant abs-
linearized problems can be solved by classical means. The comprehensive algorithmic concept
is presented, and its performance is discussed through examples.

. Introduction

In the present paper we consider an optimal control problem governed by an elliptic variational inequality of the first kind, more
recisely the obstacle problem. There are various important applications which are modeled by means of variational inequalities
s, e.g., elastoplasticity or piezo electricity. Due to the variational inequality constraint, these kinds of problems are nonsmooth and
on-convex, which complicates their theoretical and numerical treatment.

The focus of this paper is put on a new algorithmic realization. Therefore, we will not discuss the topic of necessary and sufficient
ptimality conditions, which is already intensively investigated in the literature. We mention, e.g., [1–9] and the references therein.

Various solution algorithms for optimal control of the obstacle problem already exist in the literature. A commonly used approach
s to regularize or penalize the variational inequality to get a semi-linear partial differential equation (PDE), where the nonlinearity
epends on the regularization parameter, see e.g., [2,3,6,10–14] and the references therein. We will also follow this approach.

In [15] a new structure exploiting optimization method to solve optimal control problems subject to elliptic semi-linear and
onsmooth equations, the so called CALi algorithm, is proposed. In contrast to the usually applied smoothing and regularization
echniques for nonsmooth optimization problems, this algorithm allows for an explicit exploitation of the structure caused by the
onsmoothness. For this purpose a special treatment of the absolute value operator, the so-called constant abs-linearization, is
pplied, depending on the level, where the nonsmoothness occurs.

The purpose of this paper is to show that this algorithm is versatile and multifunctional, so that it can also be applied to optimal
ontrol problems governed by elliptic variational inequalities (VIs) of the first kind. The main goal of this paper is to elaborate
nd illustrate the adjustment of this algorithm to exactly this class of nonsmooth optimization problems. Therefore, the considered
ptimization problems are reformulated into optimal control problems governed by nonsmooth elliptic PDEs. The CALi algorithm
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is then applied for the efficient solution of these nonsmooth optimization problems with the absolute value operator as the only
source of nonsmoothness. Due to reformulations based on the constant abs-linearization and well-known abs-linear reformulations,
this covers also (but not exclusively) nonsmoothness given by the max and min operators.

The exploitation of the given data allows a targeted and optimal decomposition of the optimization problem in order to compute
tationary points. This approach is able to solve the considered class of nonsmooth optimization problems in comparably less
ewton steps and additionally maintains reasonable convergence properties. Numerical results for nonsmooth optimization problems

llustrate the proposed approach and its performance.
An appropriate decomposition of the optimization problem into so-called smooth constant abs-linearized problems allows to

ompute the solution of the corresponding optimization problem constrained by VIs. Each of these constant abs-linearized problems
an be solved by classical means. The comprehensive algorithmic concept is presented, and its performance is discussed through
xamples.

In order to solve our problem numerically, we discretize the semi-linear PDE arising by regularization of the VI-constraint with
he help of continuous, piecewise linear finite elements for the state and piecewise constant functions for the control. Additional
esults of the present paper are the convergence rates with respect to the regularization parameter for the error in the control and
he state. Our final error estimate contains information about the coupling of the regularization parameter and the mesh size. Similar
rror estimates for another smoothing-scheme are established in [13].

This paper has the following structure.
In Section 2, we introduce the considered problem class of optimal control of obstacle problems, discuss its properties and

ropose a suitable regularization which leads to an optimization problem with nonsmooth PDE constraint. Furthermore, the solution
perators corresponding to the original and the penalized problem are also introduced and examined, as well as their relation.
ection 3 presents a reformulation of the nonsmooth optimization problem into a smooth one using the constant abs-linearization
ogether with a solution approach involving a penalty term, and introduces the resulting optimization algorithm. Moreover, the
hosen discretization approach as well as the solution of the resulting finite dimensional optimization problems are discussed.
ection 4 deals with an investigation of error estimates with respect to regularization and discretization. Numerical results for
collection of test problems are presented and analyzed in Section 5. Finally, a conclusion and an outlook are given in Section 6.

. Preliminaries

.1. Notation and problem statement

Throughout this work we use the standard notation 𝐻1
0 (𝛺) and 𝑊 𝑘,𝑝(𝛺), 𝑘 ∈ N, 1 ≤ 𝑝 ≤ ∞ for the Sobolev spaces on a domain

𝛺 ⊂ R𝑑 , 𝑑 ≥ 1. We refer to [16] for details of these spaces. As usual, the dual of 𝐻1
0 (𝛺) w.r.t. the 𝐿2-inner product is denoted by

𝐻−1(𝛺) and the symbol ⟨⋅, ⋅⟩ denotes the dual pairing between 𝐻1
0 (𝛺) and 𝐻−1(𝛺). The 𝐿2-scalar product is denoted by (⋅, ⋅).

Moreover, we introduce the bilinear form 𝑎(⋅, ⋅) ∶ 𝐻1
0 (𝛺) ×𝐻1

0 (𝛺) → R by

𝑎(𝑦, 𝑣) ∶= ∫𝛺
∇𝑦 ⋅ ∇𝑣 d𝑥.

he coercivity constant of 𝑎(⋅, ⋅) will be denoted by 𝛽, i.e.,

𝑎(𝑣, 𝑣) ≥ 𝛽‖𝑣‖2
𝐻1(𝛺)

∀𝑣 ∈ 𝐻1
0 (𝛺). (2.1)

We consider optimal control problems governed by an elliptic variational inequality of the first kind. These problems are also
known as optimal control of the (elliptic) obstacle problem (2.2b).

min
(𝑦,𝑢)∈𝐾×𝐿2(𝛺)

𝐽 (𝑦, 𝑢) ∶= 1
2
‖𝑦 − 𝑦𝑑‖2𝐿2(𝛺)

+ 𝛼
2
‖𝑢‖2

𝐿2(𝛺)
, (2.2a)

s.t. (∇𝑦,∇(𝑣 − 𝑦)) ≥ ⟨𝑢 + 𝑓, 𝑣 − 𝑦⟩ ∀𝑣 ∈ 𝐾 (2.2b)

where the closed convex set 𝐾 is defined by 𝐾 ∶= {𝑣 ∈ 𝐻1
0 (𝛺) ∶ 𝑣 ≥ 𝜓 a.e. in 𝛺} and 𝜓 denotes a given obstacle. Note that in the

case 𝜓 ≡ 0 the set 𝐾 forms a cone.
We impose the following assumptions on the data in Eq. (2.2):

(i) 𝛺 ⊂ R𝑑 (𝑑 = 1, 2, 3) is a bounded domain that is either convex and polygonal or has a 𝐶1,1-boundary.
(ii) The desired state satisfies 𝑦𝑑 ∈ 𝐿2(𝛺) and 𝛼 > 0 is a fixed real number.

(iii) The obstacle 𝜓 satisfies 𝜓 ∈ 𝑊 2,∞(𝛺), 𝛾𝜓 ≤ 0 a.e. on 𝜕𝛺, where 𝛾 ∶ 𝐻1(𝛺) → 𝐿2(𝜕𝛺) denotes the trace operator.
(iv) The given disturbance 𝑓 is a function in 𝐿2(𝛺).
2

Note that the condition 𝛾𝜓 ≤ 0 a.e. on 𝜕𝛺 is needed to ensure the existence of solutions for the obstacle problem.
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2.2. Known results and penalization of the obstacle problem

In the following, we summarize some known results about the variational inequality (2.2b) and the optimal control problem
2.2).

We start with an existence and uniqueness result.

emma 2.1. For every 𝑢 ∈ 𝐻−1(𝛺), the variational inequality (2.2b) has a unique solution 𝑦 ∈ 𝐾. Moreover, the associated solution
operator 𝑆 ∶ 𝐻−1(𝛺) → 𝐾 ⊂ 𝐻1

0 (𝛺) mapping 𝑢 to 𝑦, is globally Lipschitz continuous with Lipschitz constant 𝐿 = 1∕𝛽 with 𝛽 as in Eq. (2.1).

The proof is standard and can, for instance, be found in [17, Chapter II]. It is important to note that the control-to-state operator
is Gâteaux differentiable, if and only if the active set {𝑥 ∈ 𝛺 ∶ 𝑦(𝑥) = 𝜓(𝑥)} coincides with the fine support of the regular Borel
easure associated with −𝛥𝑦 − 𝑢 up to a set of zero 𝐻1

0 -capacity, see [1].
The continuity of 𝑆 and the weak lower semicontinuity of 𝐽 imply the following result which can be found, e.g., in [10, Chapter

]:

roposition 2.2. There exists a globally optimal solution of (2.2) which is in general not unique due to the nonlinearity of 𝑆.

In order to solve the variational inequality (2.2b) we use a common technique called penalization. The idea of this method is to
pproximate the variational inequality by a sequence of nonlinear equations. For details of penalization, we refer to [18, Chapters
and 2] and [17, Chapter IV].

Using the max-function as penalty operator the variational inequality (2.2b) can be approximated by the penalized equation

(∇𝑦,∇𝑣) − 1
𝜀 (max(0, 𝜓 − 𝑦), 𝑣) = ⟨𝑓 + 𝑢, 𝑣⟩ ∀𝑣 ∈ 𝐻1

0 (𝛺) (2.3)

with a parameter 𝜀 > 0. For every 𝑢 ∈ 𝐻−1(𝛺), Eq. (2.3) has a unique solution 𝑦𝜀(𝑢) due to the monotonicity of the max-function
(see e.g., [18, Chapter 1]). Therefore, the associated solution operator 𝑆𝜀 ∶ 𝐻−1(𝛺) → 𝐻1

0 (𝛺), mapping 𝑢 to 𝑦𝜀, is well-defined.

Lemma 2.3. The operator 𝑆𝜀 is globally Lipschitz continuous with Lipschitz constant 1∕𝛽 with 𝛽 as in Eq. (2.1).

Proof. The proof is straightforward. We set 𝑦(1)𝜀 = 𝑆𝜀(𝑢1) and 𝑦(2)𝜀 = 𝑆𝜀(𝑢2) and insert 𝑣 = 𝑦(1)𝜀 − 𝑦(2)𝜀 ∈ 𝐻1
0 (𝛺) in Eq. (2.3) with 𝑢 = 𝑢1

and 𝑢 = 𝑢2. Subtracting the arising equalities and using the coercivity of 𝑎(⋅, ⋅) leads to

𝛽‖𝑦(1)𝜀 − 𝑦(2)𝜀 ‖

2
𝐻1(𝛺)

≤ 𝑎(𝑦(1)𝜀 − 𝑦(2)𝜀 , 𝑦
(1)
𝜀 − 𝑦(2)𝜀 )

= ⟨𝑢1 − 𝑢2, 𝑦(1)𝜀 − 𝑦(2)𝜀 ⟩

+ 1
𝜀
(

max(0, 𝜓 − 𝑦(1)𝜀 ) − max(0, 𝜓 − 𝑦(2)𝜀 ), 𝑦(1)𝜀 − 𝑦(2)𝜀
)

.

he monotonicity of the max-function implies the claim. □

The following result is well-known and can be found, e.g., in [18, Chapter 1].

emma 2.4. It holds that 𝑆𝜀(𝑢) → 𝑆(𝑢) in 𝐻1
0 (𝛺) as 𝜀 → 0, where 𝑆(𝑢) denotes the solution of the variational inequality (2.2b) associated

ith 𝑢.

heorem 2.5. Let {𝑢𝜀}𝜀>0 ⊂ 𝐿2(𝛺) be a sequence that converges weakly in 𝐿2(𝛺) to 𝑢 ∈ 𝐿2(𝛺) as 𝜀 → 0. Then we have the strong
convergence

𝑆𝜀(𝑢𝜀)
𝜀→0
⟶ 𝑆(𝑢) in 𝐻1

0 (𝛺).

Proof. By the triangle inequality we have

‖𝑆𝜀(𝑢𝜀) − 𝑆(𝑢)‖𝐻1(𝛺) ≤ ‖𝑆𝜀(𝑢𝜀) − 𝑆𝜀(𝑢)‖𝐻1(𝛺) + ‖𝑆𝜀(𝑢) − 𝑆(𝑢)‖𝐻1(𝛺).

We observe that the second term tends to zero by Lemma 2.4. Moreover, due to Lemma 2.3 the first term can be estimated by

‖𝑆𝜀(𝑢𝜀) − 𝑆𝜀(𝑢)‖𝐻1(𝛺) ≤
1
𝛽
‖𝑢𝜀 − 𝑢‖𝐻−1(𝛺). (2.4)

y compact embeddings the right-hand side of (2.4) tends to zero for 𝜀 → 0. □

Applying Eq. (2.3) the optimal control problem (2.2) can be approximated by

min
(𝑦,𝑢)∈𝐻1

0 (𝛺)×𝐿2(𝛺)
𝐽 (𝑦, 𝑢) ∶= 1

2
‖𝑦 − 𝑦𝑑‖2𝐿2(𝛺)

+ 𝛼
2
‖𝑢‖2

𝐿2(𝛺)
, (2.5a)

s.t. (∇𝑦,∇𝑣) − 1
𝜀 (max(0, 𝜓 − 𝑦), 𝑣) = ⟨𝑓 + 𝑢, 𝑣⟩ ∀𝑣 ∈ 𝐻1

0 (𝛺). (2.5b)

Due to the continuity of 𝑆𝜀 and the weak lower semicontinuity of 𝐽 problem (2.5) has a globally optimal solution. Moreover, using
Theorem 2.5 we can argue as in [6, proof of Theorem 3.14] to show that for each strictly locally optimal pair (𝑦∗, 𝑢∗) of Eq. (2.2)

∗ ∗ 1 2
3

here is a family of local solutions (𝑦𝜀, 𝑢𝜀) of (2.5) that converges strongly to (𝑦 , 𝑢 ) in 𝐻0 (𝛺) × 𝐿 (𝛺).
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3. The constant abs-linearization

In this section we show how the nonsmooth optimization problem (2.5) can be reformulated into a closely related but smooth
ne. The reformulation is done by using the constant abs-linearization (CALi) which is introduced in [15] and based on the idea
escribed in [19,20]. Moreover, we explain how the algorithm CALi can be adapted to our class of problems, and finally we examine
finite element discretization of the reformulated optimization problem.

.1. Reformulation of the penalized optimal control problem

Throughout this section, the operator 𝓁 ∶ 𝐿2(𝛺) → 𝐿2(𝛺) is defined by

𝓁(𝑦) ∶= max(0, 𝑦).

The nonsmooth operator 𝓁 has the following properties:

Lemma 3.1.

1. The operator 𝓁(𝑦)(𝑥) = 𝓁(𝑦(𝑥)), 𝓁(⋅) ∶ 𝐿2(𝛺) → 𝐿2(𝛺) denotes an (autonomous) Nemytzkii operator induced by some nonlinear and
nonsmooth function 𝓁(.) ∶ R → R which satisfies the Carathéodory conditions, i.e., the mapping 𝑡↦ 𝓁(𝑡) is continuous on R.

2. The function 𝓁 ∶ R → R is monotonically increasing, and satisfies the growth condition

|𝓁(𝑡)| ≤ 𝐾 + 𝐿𝑔|𝑡| for all 𝑡 ∈ R (3.1)

for some constants 0 ≤ 𝐾,𝐿𝑔 <∞. Furthermore, 𝓁 is globally Lipschitz continuous, i.e.,

∃ 𝐿 > 0 ∶ |𝓁(𝑡1) − 𝓁(𝑡2)| ≤ 𝐿|𝑡1 − 𝑡2| ∀𝑡𝑖 ∈ R . (3.2)

3. The Nemytzkii operator 𝓁 is directionally differentiable, i.e.,
‖

‖

‖

‖

𝓁(𝑦 + 𝜏ℎ) − 𝓁(𝑦)
𝜏

− 𝓁′(𝑦;ℎ)
‖

‖

‖

‖𝐿2(𝛺)
→ 0 for 𝜏 → 0+, ∀𝑦, ℎ ∈ 𝐿2(𝛺), (3.3)

with 𝓁′(𝑦) being locally Lipschitz continuous and monotone.
4. The operator 𝓁 can be expressed as a finite composition of the absolute value function and Fréchet differentiable operators.

roof. The operator 𝓁(𝑦) = max(0, 𝑦) is a Nemytzkii operator induced by the pointwise non-linear and nonsmooth function
ax(0, .) ∶ R → R≥0, 𝑡 ↦ max(0, 𝑡), which satisfies the Carathéodory conditions. The function max(0, .) is obviously monotonically

increasing and satisfies the growth condition (3.1) with |𝓁(𝑡)| = |max(0, 𝑡)| ≤ |𝑡|, i.e., 𝐾 = 0, 𝐿𝑔 = 1. Furthermore, max(0, .) is globally
ipschitz-continuous with constant 𝐿 = 1.

Since the inducing function 𝓁(.) = max(0, .) ∶ R → R≥0 is directionally differentiable with

max′((0, 𝑡);ℎ) =

⎧

⎪

⎨

⎪

⎩

ℎ, if 𝑡 > 0
max(0, ℎ), if 𝑡 = 0
0, if 𝑡 < 0 ,

it is also globally Lipschitz-continuous and monotone itself. Hence,

|max′((0, 𝑡);ℎ)| ≤ |ℎ|

for all directions ℎ ∈ R. Then Lebesgue’s dominated convergence theorem implies also the directional differentiability of the induced
Nemytzkii operator. This proves the assertions 1.-3. Assertion 4. follows from Proposition 3.2, which is introduced below. □

Note that by Lemma 3.1. assertions 1. and . it follows that also the associated Nemytzkii operator 𝓁 ∶ 𝐿2(𝛺) → 𝐿2(𝛺) is
Lipschitz-continuous and monotonically increasing.

For convenience of the reader, we briefly explain the basic ideas of the structured evaluation and the constant abs-linearization
described in [15, Definitions 2.4 and 3.1]. For this purpose we introduce a new auxiliary function 𝑧, called the switching function,
for the argument of the absolute value function and 𝜎 for the sign of 𝑧. The reformulation results in a representation, where all
evaluations of the absolute value function can be clearly identified and exploited.

Before we introduce the structured evaluation, we want to recall the well-known reformulation

max(𝑣, 𝑢) = (𝑣 + 𝑢 + abs(𝑣 − 𝑢))∕2 . (3.4)

The structured evaluation allows for a useful reformulation of the considered nonsmooth formulation by introducing additional
functions 𝑧 for the argument of the absolute value evaluations. Consider the nonsmooth Lipschitz-continuous operator 𝓁 ∶ 𝐻1

0 (𝛺) →
2 1
4

𝐿 (𝛺), 𝓁(𝑦) = max(𝑣, 𝑦) with 𝑣 ∈ 𝐻 (𝛺):
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Proposition 3.2 (Structured Evaluation for max(𝑣, 𝑦)). An equivalent representation of 𝓁(𝑦) = max(𝑣, 𝑦) = 1
2 (𝑣+ 𝑦+ abs(𝑣− 𝑦)) denoted by

𝓁 can be obtained using the following procedure known as the structured evaluation which is given by

𝓁(𝑦, 𝜎𝑧) = 1
2 (𝑣 + 𝑦 + 𝜎(𝑧)𝑧) ,

with 𝑧 = 𝑣 − 𝑦, i.e. the argument of the absolute value evaluation, and 𝜎(𝑧) = sign(𝑧) so that 𝜎(𝑧)𝑧 = abs(𝑧).

The structured evaluation yields an equivalent representation of 𝓁 by 𝓁(𝑦, 𝜎𝑧) where the absolute value evaluation can be directly
xploited. At this point it is directly evident that the nonsmooth dependence exists only between 𝑧 and 𝜎. For more complicated
nd also nested nonsmooth operators such a reformulation by means of structured evaluation proves to be extremely useful, see
.g. [15,19,20]. Note that for the setting considered here, one has that 𝑧 ∈ 𝐻1(𝛺) denotes the argument of the absolute value
valuation in the corresponding nonsmooth formulation, such that in the case of 𝓁(𝑦) = max(0, 𝜓 − 𝑦) it holds that 𝑧 = 𝜓 − 𝑦.
urthermore, the function 𝜎 is a Nemytzkii operator defined by

𝜎 ∶ 𝐻1(𝛺) → 𝐿∞(𝛺), [𝜎(𝑧)](𝑥) = sign(𝑧(𝑥)) a.e. in 𝛺

s functions of 𝑧. This choice ensures that 𝜎(𝑧)𝑧 = abs(𝑧) ∈ 𝐻1(𝛺) holds. Note that the Nemytzkii operator 𝜎(𝑧) takes the values
1, 0 or 1, i.e., 𝜎(𝑧)(.) ∶ 𝛺 → {−1, 0, 1} and depends nonsmoothly on the switching function 𝑧. However, by applying the constant
bs-linearization, defined below, one reformulates the operator equation of the optimization problem at hand into a smooth one.

In the further course, we will for brevity denote the Nemytzkii operator 𝜎(𝑧) at 𝑧 by 𝜎.

xample 3.3 (Structured Evaluation for max(0, 𝑦)). Following Proposition 3.2 the structured evaluation for 𝓁(𝑦) = max(0, 𝑦) =
1
2 (𝑦 + abs(𝑦)) is then given by

𝓁(𝑦, 𝜎𝑧) = 1
2 (𝑦 + 𝜎𝑧) ,

ith 𝑧 = 𝑦, 𝜎 = sign(𝑧), 𝜎𝑧 = abs(𝑧).

efinition 3.4 (Constant Abs-Linearization). For a given nonsmooth operator equation involving the abs-operator or reformulated by
he structured evaluation in the fashion of [15, Definition 2.4] and Proposition 3.2, the constant abs-linearization of the nonsmooth
perator equation is obtained by fixing the involved function 𝜎(𝑧) to a given �̄� ∈ 𝐿∞(𝛺) with �̄�(𝑥) ∈ {−1, 1} for all 𝑥 ∈ 𝛺, releasing

the nonsmooth dependency on 𝑧.

Hence, using the constant abs-linearization, the resulting operator equation is smooth in both arguments 𝑧 and �̄�, since the
nonsmooth dependence of 𝜎 on 𝑧 has been eliminated.

Note, that in the context of constant abs-linearization, the function �̄� takes only the values 1 and −1, but no longer 0. However,
this does not influence the previous considerations, simply because if 𝑧 > 0 and �̄� = +1, or 𝑧 < 0 and �̄� = −1 respectively, then
̄ 𝑧 = abs(𝑧) is still valid. If 𝑧 = 0, then even for �̄� ≠ 0 the relationship abs(𝑧) = �̄�𝑧 = 0 is guaranteed. Hence, no longer considering
zero as a value for �̄� does not pose any limitations. However, fixing 𝜎 to a certain function �̄� according to Definition 3.4 provides a
inearization in the following sense. Since the dependency of 𝑧 and 𝜎 has been removed, the term �̄�𝑧 is now smooth and even linear
n 𝑧.

Since in the further course we will only deal with the concrete case 𝓁(𝑦) = − 1
𝜀 max(0, 𝜓 − 𝑦), let us consider a retransformation

𝑧 = 𝜓 − 𝑦, so that 𝓁(𝑦, 𝜎𝑧) = − 1
2𝜀 (𝜓 − 𝑦 + 𝜎𝑧) = − 1

2𝜀 (1 + 𝜎)(𝜓 − 𝑦).
Using the reformulation Eq. (3.4) for the max-function in Eq. (2.5b) as well as applying the constant abs-linearization problem

2.5) can be transformed into the smooth optimization problem

min
𝑦,𝑢∈𝐻1

0×𝐿
2

1
2
‖𝑦 − 𝑦𝑑‖2𝐿2(𝛺)

+ 𝛼
2
‖𝑢‖2

𝐿2(𝛺)
, (3.5a)

s.t. (∇𝑦,∇𝑣) − 1
2𝜀 ((1 + �̄�)(𝜓 − 𝑦), 𝑣) = ⟨𝑢 + 𝑓, 𝑣⟩ ∀𝑣 ∈ 𝐻1

0 (𝛺) (3.5b)

�̄�(𝜓 − 𝑦) ≥ 0 a.e. in 𝛺. (3.5c)

We will see in the further course that this way by careful choice of the fixed �̄� a very closely related but smooth optimization
problem can be created, which yields the same optimal solution as Eq. (2.5).

Following the same procedure as in [15], we treat the inequality constraint (3.5c) with a penalty approach such that the objective
functional (3.5a) is modified to

min
𝑦,𝑢

𝐽 (𝑦, 𝑢) + 𝜈 ∫𝛺

(

max(−�̄�(𝜓 − 𝑦), 0)
)4
𝑑𝑥 (3.6)

with a penalty factor 𝜈 > 0. In this framework, as well as in the remainder of this paper, 𝜈 describes a non-negative constant penalty
parameter for the inequality condition on �̄�(𝜓 − 𝑦). Here, the exponent 4 ensures that the target function is twice continuously
differentiable despite the max function that is used for the formulation of the penalty function. The modified optimization problem,
i.e. the penalized CAL problem formulation, then reads as

min 𝐽 (𝑦, 𝑢) + 𝜈
(

max(−�̄�(𝜓 − 𝑦), 0)
)4
𝑑𝑥 (3.7a)
5

𝑦,𝑢 ∫𝛺
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s.t. (∇𝑦,∇𝑣) − 1
2𝜀 ((1 + �̄�)(𝜓 − 𝑦), 𝑣) = ⟨𝑢 + 𝑓, 𝑣⟩ ∀𝑣 ∈ 𝐻1

0 (𝛺). (3.7b)

The modified objective functional is then coupled with the equality constraint (3.5b) using Lagrange multipliers, resulting in the
following Lagrange function

(𝑦, 𝑢, 𝜆
𝑃𝐷𝐸

) = 𝐽 (𝑦, 𝑢) + 𝜈 ∫𝛺
max(−�̄�(𝜓 − 𝑦), 0)4 d𝛺 +

(

∇𝜆
𝑃𝐷𝐸

,∇𝑦
)

+
(

𝜆
𝑃𝐷𝐸

,− 1
2𝜀 ((1 + �̄�)(𝜓 − 𝑦)) − (𝑢 + 𝑓 )

)

.
(3.8)

It shall be pointed out that even if in this work the definition of the switching function was transformed back, so that the
ormulation of the operator 𝓁 without 𝑧 was considered, the reformulations by means of the switching function 𝑧 are very helpful and
specially useful. They allow to directly recognize and exploit the individual absolute value evaluations, even for more complicated
nd also nested nonsmooth operators. Moreover, in [15] the optimality discussion requires and exploits the Lagrange multipliers
orresponding to the equality constraint which defines the switching functions.

.2. The algorithm CALi

Before we introduce our algorithm for the solution of problem (3.5), we want to investigate a specific choice for the fixed �̄�.

efinition 3.5. For some 𝜓 ∈ 𝑊 2,∞(𝛺) and 𝑦𝑑 ∈ 𝐿2(𝛺) we denote by �̄�𝜓 which is defined by

�̄�𝜓 = sign(𝜓 − 𝑦𝑑 ) =

{

+1, on 𝛺+ ∶= {𝑥 ∈ 𝛺 ∶ 𝑦𝑑 (𝑥) ≤ 𝜓(𝑥)}
−1, on 𝛺− ∶= {𝑥 ∈ 𝛺 ∶ 𝑦𝑑 (𝑥) > 𝜓(𝑥)} ,

(3.9)

he fixed �̄� with respect to the desired state 𝑦𝑑 and the obstacle 𝜓 according to constant abs-linearization in Definition 3.4 by virtue
f the respective structured evaluation of max(0, 𝜓 − 𝑦).

Note that due to this choice of the sign function, it holds that �̄�𝜓 = +1 where 𝑦𝑑 = 𝜓 and �̄�𝜓 = −1 where 𝑦𝑑 = −𝜓 . This is done
o ensure, that the regularization term does not vanish completely from the problem formulation.

As already discussed in [15], the choice of the specific �̄� is crucial, since it determines the decomposition of the domain of
he underlying optimization problem. In the following, we want to emphasize the domain decomposition due to the constant abs-
inearization and motivate the choice of �̄�𝜓 . For this purpose we will first consider the domain decomposition given by − sign(𝑦𝑑 )
ith the desired state 𝑦𝑑 , i.e.,

− sign(𝑦𝑑 (𝑥)) =

{

−1, for 𝑥 ∈ 𝛺≥0
𝑑 ∶= {𝑥 ∈ 𝛺|𝑦𝑑 (𝑥) ≥ 0},

+1, for 𝑥 ∈ 𝛺<0
𝑑 ∶= {𝑥 ∈ 𝛺|𝑦𝑑 (𝑥) < 0} .

(3.10)

ote that �̄� = − sign(𝑦𝑑 ) defined by Eq. (3.10) corresponds exactly to �̄�𝜓 for 𝜓 ≡ 0, i.e.,

�̄�0 =

{

−1, for 𝑥 ∈ 𝛺−,
+1, for 𝑥 ∈ 𝛺+ .

ence, every fixed �̄� and especially �̄�𝜓 analogous to Eq. (3.10) correspondingly decomposes the domain 𝛺 into subdomains such
hat 𝛺 = 𝛺+ ∪𝛺− with �̄�(𝑥) = +1 on 𝛺+ and �̄�(𝑥) = −1 on 𝛺−. We consider the following example.

xample 3.6 (Domain Decomposition by �̄�). In order to motivate the choice of a specific �̄� and to illustrate the corresponding domain
ecomposition, we examine the following obstacle problem from [21], where we replaced the domain 𝛺1 by 𝛺:

𝛺 = (0, 1)2 ⊆ R2, 𝑦𝑑 (𝑥1, 𝑥2) = − sin(𝜋𝑥1) sin(𝜋𝑥2), 𝑓 (𝑥1, 𝑥2) = −2𝜋2 sin(𝜋𝑥1) sin(𝜋𝑥2)

and 𝜓(𝑥1, 𝑥2) = −0.25

ote that due to the chosen data the optimal state is given by

𝑦∗ =

{

𝜓, on 𝛺+ ∶= {𝑥 ∈ 𝛺 ∶ 𝑦𝑑 (𝑥) < 𝜓(𝑥)}
𝑦𝑑 , on 𝛺− ∶= {𝑥 ∈ 𝛺 ∶ 𝑦𝑑 (𝑥) ≥ 𝜓(𝑥)}

nd due to the choice of 𝑓 , 𝑦∗ can be attained for all controls 𝑢 ≤ 0 and hence especially for 𝑢∗ ≡ 0. Consequently, 𝜓−𝑦∗ corresponds
xactly to the function

{

0, on 𝛺+

𝜓 − 𝑦𝑑 , on 𝛺− .

herefore, we choose the signature function

�̄� = �̄�𝜓 =

{

+1, on 𝛺+

−1, on 𝛺−

orrespondingly. Based on these considerations we usually set �̄� = �̄�𝜓 as defined in Definition 3.5. This choice is reasonable according
∗

6

o the specifications in [15] for the cases considered here, whenever the function 𝑦 = max(𝜓, 𝑦𝑑 ) can be reached as a feasible state.
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Fig. 1. The different optimal control problems and their relation.

Due to the decomposition of the domain 𝛺 into 𝛺 = 𝛺+ ∪𝛺− provided by �̄�𝜓 Eq. (3.5b) can be reformulated as

∫𝛺
∇𝑦 ⋅ ∇𝑣 d𝑥 − 1

2𝜀 ∫𝛺+
(1 + �̄�𝜓 )(𝜓 − 𝑦)𝑣 d𝑥 − 1

2𝜀 ∫𝛺−
(1 + �̄�𝜓 )(𝜓 − 𝑦)𝑣 d𝑥 = ∫𝛺

(𝑢 + 𝑓 )𝑣 d𝑥

⇔∫𝛺
∇𝑦 ⋅ ∇𝑣 d𝑥 − 1

𝜀 ∫𝛺+
(𝜓 − 𝑦)𝑣 d𝑥 = ∫𝛺

(𝑢 + 𝑓 )𝑣 d𝑥 .

Motivated by [15] and the previous examinations, we propose the method stated in Algorithm 1 to solve the optimization problem
(3.6) with constraint (3.5b).

Algorithm 1 CALi

nput: Initial values: �̄�𝜓 , 𝐲0,𝐮0
Parameter: 𝛼, 𝜈, 𝜀 ≥ 0

Solve problem (3.6) subject to (3.5b) for �̄� = �̄�𝜓 to obtain 𝐲∗,𝐮∗,𝝀𝑷𝑫𝑬∗

utput: 𝐲∗,𝐮∗

Since the proposed algorithm is essentially motivated by the special handling of the absolute value function, i.e., the constant
abs-linearization, we call the resulting optimization algorithm CALi for Constant Abs-Linearization.

Fig. 1 shows the three main optimal control problems considered in this paper and how the original obstacle optimal control
problem transforms into the regularized constant abs-linearized (CAL) problem formulation.

It should be noted that the solution of the smooth reformulated penalized problems can be accomplished with traditional methods
of smooth optimization. For the numerical results shown in Section 5, we used a finite-element-approach based on FEniCS [22] to
discretize the PDEs and to describe the other constraints in combination with a Newton method for the solution of the smooth
modified constant abs-linearized problems. For the initial state, control and signature function �̄�𝜓 , the non-linear variational
Lagrange problem is solved by Newton’s method using the derivatives calculated within FEniCS.

Note that at this point the careful choice of �̄� allows the algorithm to get by without an update for �̄�. However, in Section 5 we
will also present a case where such an update could have been required. However strategies to efficiently updating this �̄�, so that
a sequence of related smooth optimization problems with associated solutions that further reduce the objective function value of
the original problem and eventually lead to a minimal solution is obtained, are nontrivial. For the time being, these investigations
remain the subject of current and future research. Nevertheless, such update strategies would always require the successive solution
of CAL problems, which are studied and addressed in this paper.
7
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3.3. The discrete system

We will discretize the considered systems with linear finite elements. For this purpose, we introduce a family of meshes {Tℎ}.
he mesh Tℎ consists of open triangles 𝑇 and the mesh width is defined by

ℎ ∶= max
𝑇∈Tℎ

ℎ𝑇 with ℎ𝑇 ∶= diam(𝑇 ).

Moreover, we assume that Tℎ is quasi-uniform in the sense of [23].
For the discretization of system (2.2) we introduce the space of piecewise linear functions

𝑉 ℎ ∶= {𝑣ℎ ∈ 𝐻1
0 (𝛺) ∶ 𝑣ℎ|𝑇 ∈ P1(𝑇 ) ∀𝑇 ∈ Tℎ},

here P1 denotes the space of polynomials of degree ≤ 1. The nodal basis of 𝑉 ℎ is given by {𝜉1,… , 𝜉𝑛}. Moreover, we define the
space of piecewise constant functions by

𝑈ℎ ∶= span{𝑒𝑇 ∶ 𝑇 ∈ Tℎ},

where 𝑒𝑇 ∶ 𝛺 → R is the characteristic function for the simplex 𝑇 ∈ Tℎ.
For a given function 𝑦ℎ ∈ 𝑉 ℎ we denote by 𝐲 = (𝑦1,… , 𝑦𝑛)𝑇 ∈ R𝑛 its vector of coefficients with respect to the basis {𝜉1,… , 𝜉𝑛},

i.e.,

𝑦ℎ(𝑥) =
𝑛
∑

𝑖=1
𝑦𝑖𝜉𝑖(𝑥) .

Similarly, every discretized control function in the space 𝑈ℎ with 𝐮 = (𝑢1,… , 𝑢𝑚)𝑇 ∈ R𝑚 can be written as

𝑢ℎ(𝑥) =
𝑚
∑

𝑖=1
𝑢𝑖𝑒𝑇𝑖 (𝑥) ,

where 𝑚 is the total number of elements 𝑇 in the triangulation Tℎ.
One has to take into account that the operators max and abs are non-linear. The above representations yield the following

discretization for some non-linear operator 𝓁 (once again we can consider 𝓁(𝑦) = max(0, 𝑦) or 𝓁(𝑦) = abs(𝑦)):

𝓁(𝑦ℎ) = 𝓁

( 𝑛
∑

𝑖=1
𝑦𝑖𝜉𝑖

)

and

(𝓁(𝑦ℎ), 𝑣ℎ) = ∫𝛺
𝓁(𝑦ℎ)𝑣ℎ d𝑥 ≈

∑

𝑇∈Tℎ
∫𝑇

𝓁(𝑦ℎ)𝑣ℎ d𝑥 . (3.11)

The integrals over the elements 𝑇 ∈ Tℎ are approximated by some quadrature formula

∑

𝑇∈Tℎ
∫𝑇

𝓁(𝑦ℎ)𝑣ℎ d𝑥 ≈
∑

𝑇∈Tℎ

𝑛𝑘
∑

𝑘=1
𝜔𝑘 𝓁

( 𝑛
∑

𝑖=1
𝑦𝑖𝜉𝑖(𝑥𝑘)

) 𝑛
∑

𝑗=1
𝜉𝑗 (𝑥𝑘) , (3.12)

with 𝑛𝑘 quadrature points per element 𝑇 and corresponding weights 𝜔𝑘.
Hence, the naturally arising discretization for some nonsmooth operator equation like (2.5b) in the finite element context is per

quadrature point, which increases the total number of absolute value evaluations.
The signature function �̄� is discretized similarly to the state 𝑦, such that �̄�ℎ ∈ 𝑉 ℎ with the coefficient vector �̄� = (�̄�1,… , �̄�𝑛)𝑇 ∈ R𝑛.
As seen in Eq. (3.12), we would like to point out that the number of nonsmooth functions 𝓁 in the discrete problem is per

quadrature point. As already discussed in [15], this is not in perfect alignment with a representation of some finite element function
like the state 𝑦. The consequent choice of this discretization leads to an increase of the polynomial degree due to the multiplication
�̄�(𝝍 − 𝐲) in the discrete representation of the operator 𝓁 opposed to the operator 𝓁. However, this type of discretization allows
for a straightforward implementation with FEniCS. Accordingly, the given expressions for the signature function is projected onto
the space 𝑉 ℎ. Thus, �̄�ℎ has as many entries as 𝑦ℎ. Consequently, �̄�ℎ attains only the values +1 and −1 on the corresponding mesh
points. However, within an element 𝑇 ∈ Tℎ the function �̄�ℎ can be linear and might go through zero to ensure the chosen sign
constellation. See Example 3.7 for an illustrative example.

Example 3.7. For 𝛺 = (0, 1) × (0, 1) let �̄� be given by

�̄� =

{

+1, if 𝑥1, 𝑥2 <
1
2

−1, else .
(3.13)

Then Fig. 2 illustrates a very coarse discretization of 𝛺 into triangles and the discretization of �̄� over the discretized domain. It
reveals that �̄�ℎ attains only the values +1 and −1, respectively, at the corresponding vertices of the triangulation. On the elements
of the triangulation, where one of the points takes a different sign than the other two, �̄�ℎ shows a linear progression between these
values.
8
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Fig. 2. (Left) surface plot of �̄�ℎ over 𝛺ℎ with edges of the mesh and (right) mesh point values of �̄�ℎ corresponding to Eq. (3.13).

Using the above notation the discretization of the optimization problem (2.5) where the variational inequality is approximated
by the penalized equation Eq. (2.5b) is given by:

min
(𝑦ℎ ,𝑢ℎ)∈𝑉 ℎ×𝑈ℎ

𝐽 (𝑦ℎ, 𝑢ℎ), (3.14a)

s.t. (∇𝑦ℎ,∇𝑣ℎ) − 1
𝜀 (max(𝜓ℎ − 𝑦ℎ, 0ℎ), 𝑣ℎ) = (𝑢ℎ, 𝑣ℎ) + (𝑓ℎ, 𝑣ℎ) ∀𝑣ℎ ∈ 𝑉 ℎ (3.14b)

Here, we set 𝜓ℎ = 𝐼ℎ𝜓 , where 𝐼ℎ ∶ 𝐶(�̄�) → 𝑉 ℎ denotes the standard Lagrange interpolation operator. Due to the continuous
embedding 𝑊 2,∞(𝛺) ↪ 𝐶(�̄�), we have that 𝐼ℎ𝜓 is well-defined. Further 𝑓ℎ ∶= 𝑃 ℎ𝑓 , where 𝑃 ℎ ∶ 𝐿2(𝛺) → 𝑈ℎ is the 𝐿2-projection
onto the space of piecewise constant functions.

Inserting Eq. (3.11) into Eq. (3.14b) and replacing 𝑣 by 𝜉 leads to:

∫𝛺

𝑛
∑

𝑘=1
∇𝜉𝑗 (𝑥) ⋅ ∇𝜉𝑘(𝑥)𝑦𝑘 −

1
𝜀
𝓁

( 𝑛
∑

𝑖=1
𝑦𝑖𝜉𝑖(𝑥)

)

𝜉𝑗 (𝑥) d𝑥

= ∫𝛺

( 𝑚
∑

𝑠=1
𝑢𝑠𝑒𝑇𝑠 (𝑥)

)

𝜉𝑗 (𝑥) d𝑥 + ∫𝛺

( 𝑚
∑

𝑡=1
𝑓𝑡𝑒𝑇𝑡 (𝑥)

)

𝜉𝑗 (𝑥) d𝑥 ,

(3.15)

for 1 ≤ 𝑗 ≤ 𝑛. Here 𝓁(𝑦) is given by 𝓁(𝑦) = max(𝜓ℎ − 𝑦, 0) and hence the second term on the left-hand side is particularly given by

∫𝛺
𝓁

( 𝑛
∑

𝑖=1
𝑦𝑖𝜉𝑖(𝑥)

)

𝜉𝑗 (𝑥) d𝑥 = ∫𝛺
max

( 𝑛
∑

𝑖=1
(𝜓𝑖 − 𝑦𝑖)𝜉𝑖(𝑥), 0

)

𝜉𝑗 (𝑥) d𝑥.

By defining

𝐴𝑗𝑘 ∶= ∫𝛺
∇𝜉𝑗 (𝑥) ⋅ ∇𝜉𝑘(𝑥) d𝑥 = (∇𝜉𝑗 ,∇𝜉𝑘),

𝑏𝑘(𝑦ℎ) ∶= ∫𝛺
𝓁

( 𝑛
∑

𝑖=1
𝑦𝑖𝜉𝑖(𝑥)

)

𝜉𝑘(𝑥) d𝑥

and

𝑔𝑗 ∶= ∫𝛺

( 𝑚
∑

𝑠=1
𝑢𝑠𝑒𝑇𝑠 (𝑥)

)

𝜉𝑗 (𝑥) d𝑥 + ∫𝛺

( 𝑚
∑

𝑡=1
𝑓𝑡𝑒𝑇𝑡 (𝑥)

)

𝜉𝑗 (𝑥) d𝑥 ,

Eq. (3.15) can be rewritten as
𝑛
∑

𝑘=1
𝐴𝑗𝑘𝑦𝑘 −

1
𝜀
𝑏𝑘(𝑦ℎ) = 𝑔𝑗 for 1 ≤ 𝑗 ≤ 𝑛 .

Here 𝐴𝑗𝑘 represent the entries of the stiffness matrix 𝐴. The discretization of the PDE results in a non-linear system of algebraic
equations, which we abbreviate as

𝐴𝐲 − 1
𝜀
𝐛(𝐲) = (𝐮𝑇 + 𝐟𝑇 )𝐸 , (3.16)

with the control matrix 𝐸𝑖𝑗 ∶= (𝑒𝑇𝑖 , 𝜉𝑗 ) and 𝐲 = (𝑦1,… , 𝑦𝑛)𝑇 denoting the finite-element approximation belonging to the right-hand
side given by the discrete control 𝑢 and the discrete perturbation 𝑓 . To this end, the function 𝑦ℎ|𝑇𝑘 on the linear element 𝑇𝑘 is realized
in terms of its values at the vertices of 𝑇𝑘. Note that in the above algebraic system the vectors 𝒖 and 𝒇 as well as the matrices 𝐴,𝐸
are constant since they are independent of the unknowns 𝑦1,… , 𝑦𝑛. However, as previously mentioned, this non-linear algebraic
equation is assumed to be based on a reasonable approximation of the integral via quadrature.

The resulting discrete objective functional reads as

min
(𝐲,𝐮)∈R𝑛×R𝑚

𝐽 (𝐲,𝐮) = 1
2
(𝐲 − 𝐲𝑑 )𝑇𝑀(𝐲 − 𝐲𝑑 ) +

𝛼
2
𝐮𝑇𝐷𝐮 .

Herein 𝑀 ∈ R𝑛×𝑛 denotes the mass matrix 𝑀𝑖𝑗 = (𝜉𝑖, 𝜉𝑗 ) and 𝐷 the control mass matrix with the entries 𝐷𝑖𝑗 = (𝑒𝑇𝑖 , 𝑒𝑇𝑗 ), where 𝐷 is
a diagonal matrix because the interior of the triangles are disjunct to each other.
9
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Analogous to the previously deduced discretization, the discrete version of the constant abs-linearized problem Eq. (3.7) with
he added penalty approximation is given by:

min
(𝑦ℎ ,𝑢ℎ)∈𝑉 ℎ×𝑈ℎ

𝐽 (𝑦ℎ, 𝑢ℎ) + 𝜈 ∫𝛺
max

(

−�̄�ℎ(𝜓ℎ − 𝑦ℎ), 0
)4 d𝑥

s.t. (∇𝑦ℎ,∇𝑣ℎ) − 1
2𝜀

(

(1 + �̄�ℎ)(𝜓ℎ − 𝑦ℎ), 𝑣ℎ
)

= (𝑢ℎ, 𝑣ℎ) + (𝑓ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉 ℎ .
(3.17)

Under consideration of Eq. (3.17), it becomes clear that the inequality constraint from Eq. (3.5c) is enforced per quadrature point
via our penalty approach. We assume that the optimization problem Eq. (3.17) fulfills some kind of constraint qualification to
ensure the existence of the Lagrange multipliers. The corresponding discrete Lagrange functional related to the penalized constant
abs-linearized problem of system Eq. (3.17) is now given by

(𝑦ℎ, 𝑢ℎ, 𝜆ℎ
𝑃𝐷𝐸

) = 𝐽 (𝑦ℎ, 𝑢ℎ) +
(

∇𝜆ℎ
𝑃𝐷𝐸

,∇𝑦ℎ
)

+ 𝜈 ∫𝛺

(

max(−�̄�ℎ(𝜓ℎ − 𝑦ℎ), 0)
)4

d𝑥

+
(

𝜆ℎ
𝑃𝐷𝐸

,− 1
2𝜀 (1 + �̄�

ℎ)(𝜓ℎ − 𝑦ℎ) − 𝑢ℎ − 𝑓ℎ
)

.
(3.18)

The KKT system corresponding to Eq. (3.18) with e.g., �̄�ℎ = (�̄�𝜓 )ℎ is then solved with a non-linear variational Newton solver.

. Error estimates

In this section we will prove an error estimate for the 𝐿2-error of the control, i.e., for ‖𝑢∗𝜀,ℎ − 𝑢
∗
‖𝐿2(𝛺) under the assumption that

a quadratic growth condition holds. Here 𝑢∗ and 𝑢∗𝜀,ℎ ∈ 𝐿2(𝛺), respectively, denote locally optimal solutions of (2.2) and (3.14),
espectively. In order to derive an error bound, we adapt the technique introduced in [14]. The proof is based on a quadratic growth
ondition and the 𝐿2-error estimates for the state presented in [24,25], respectively.

In order to simplify the notation we introduce the reduced functionals

𝑔 ∶ 𝐿2(𝛺) → R, 𝑔(𝑢) ∶= 𝐽 (𝑆(𝑢), 𝑢)

𝑔𝜀 ∶ 𝐿2(𝛺) → R, 𝑔𝜀(𝑢) ∶= 𝐽 (𝑆𝜀(𝑢), 𝑢)

𝑔𝜀,ℎ ∶ 𝐿2(𝛺) → R, 𝑔𝜀,ℎ(𝑢) ∶= 𝐽 (𝑆𝜀,ℎ(𝑢), 𝑢).

Moreover, let 𝑢∗, 𝑢∗𝜀 and 𝑢∗𝜀,ℎ ∈ 𝐿2(𝛺) be locally optimal solutions of (2.2), (3.5) and (3.14), respectively.
At this point we want to emphasize that if �̄� is chosen suitably the discrete optimization problem

min
(𝑦ℎ ,𝑢ℎ)∈𝑉 ℎ×𝑈ℎ

𝐽 (𝑦ℎ, 𝑢ℎ)

s.t. (∇𝑦ℎ,∇𝑣ℎ) − 1
2𝜀

(

(1 + �̄�ℎ)(𝜓ℎ − 𝑦ℎ), 𝑣ℎ
)

= (𝑢ℎ, 𝑣ℎ) + (𝑓ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉 ℎ

�̄�ℎ(𝜓ℎ − 𝑦ℎ) ≥ 0 a.e. in 𝛺

(4.1)

is just a reformulation of problem (3.14) and consequently also the optimal state as well as the optimal control of the two problems
are the same. Since problem (3.14) is more convenient for the error analysis, we always consider problem (3.14) instead of (4.1) in
this section. However, the reader should be aware that the error estimates are also valid for (4.1).

Fig. 3 presents the relation between the considered problems and reformulations together with their discrete counterpart.
We make the following assumptions for our error analysis:

Assumption 4.1.

(i) 𝑢, 𝑓 ∈ 𝐿∞(𝛺)
(ii) There holds a quadratic growth condition, i.e., there are 𝜌, 𝛿 > 0 such that

𝑔(𝑢∗) ≤ 𝑔(𝑢) − 𝛿‖𝑢 − 𝑢∗‖2
𝐿2(𝛺)

∀𝑢 ∈ 𝐵𝜌(𝑢∗), (4.2)

where 𝐵𝜌(𝑢∗) ∶= {𝑢 ∈ 𝐿2(𝛺) ∶ ‖𝑢 − 𝑢∗‖𝐿2(𝛺) ≤ 𝜌}.
(iii) �̄� is chosen suitably such that the discrete problem (3.14) is just a reformulation of (4.1) and consequently the optimal state

and the optimal control of the two problems coincide.

emark 4.2. For the obstacle problem, the quadratic growth condition (4.2) holds if 𝑢∗ satisfies some second-order sufficient
optimality conditions (cf. [6]).

We start with an 𝐿2-error estimate of the regularization error for the state, which is proven in [24] for a convex and polygonal
domain and in [25] for a domain with 𝐶1,1-boundary.

Theorem 4.3. Let 𝑦 and 𝑦𝜀 be the solutions of (2.2b) and (2.5b), respectively. Then there holds the estimate

‖𝑦 − 𝑦𝜀‖𝐿∞(𝛺) ≤ 𝐶𝜀
10

with a constant 𝐶 > 0 independent of 𝜀.
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Fig. 3. Relation between the considered problems and their discrete counterpart.

Next, we state an 𝐿2-error estimate of the discretization error for the state, which is proven in [24].

Theorem 4.4. Let 𝛺 be a bounded domain which is convex and polygonal. Moreover, let 𝑦𝜀 and 𝑦𝜀,ℎ be the solutions of (2.5b) respectively
(3.14b). In addition, assume that the obstacle satisfies 𝜓 < 0 on the boundary. Then there exist constants 𝜀𝑑 > 0 and ℎ𝑑 > 0 such that for
all 𝜀 ≤ 𝜀𝑑 and ℎ ≤ ℎ𝑑 there holds

‖𝑦𝜀 − 𝑦𝜀,ℎ‖𝐿2(𝛺) ≤ 𝐶ℎ2| logℎ|2
(

‖𝑓‖𝐿∞(𝛺) + ‖𝑢‖𝐿∞(𝛺) + ‖𝛥𝜓‖𝐿∞(𝛺)
)

with a constant 𝐶 > 0 independent of ℎ.

Remark 4.5. The same convergence rate is also shown in [25], where the boundary is assumed to be smooth, i.e., of class 𝐶1,1. It
is worth noting that the condition 𝜓 < 0 on the boundary is not necessary if the boundary is smooth.

We continue with some preparatory lemmas which are needed for our error analysis. Throughout the remainder of this paper,
et (𝜀𝑛, ℎ𝑛)𝑛∈N ⊂ R2

>0 denote a sequence converging to zero.

emma 4.6. Assume that 𝜓 < 0 on the boundary, 𝜀𝑛 ≤ 𝜀𝑑 and ℎ𝑛 ≤ ℎ𝑑 with 𝜀𝑑 and ℎ𝑑 as in Theorem 4.4. Let {𝑢𝜀𝑛 ,ℎ𝑛} be a sequence
that converges strongly in 𝐻−−1(𝛺) to 𝑢 ∈ 𝐻−1(𝛺) as 𝑛→ ∞. Denote the solution of the discretized Eq. (3.14b) corresponding to 𝑢𝜀𝑛 ,ℎ𝑛 by
𝑦𝜀𝑛 ,ℎ𝑛 and the solution of (2.2b) corresponding to 𝑢 by 𝑦. Then 𝑦𝜀𝑛 ,ℎ𝑛 → 𝑦 in 𝐻1

0 (𝛺).

Proof. We have

‖𝑦 − 𝑦𝜀𝑛 ,ℎ𝑛‖𝐻1(𝛺) = ‖𝑆(𝑢) − 𝑆𝜀𝑛 ,ℎ𝑛 (𝑢𝜀𝑛 ,ℎ𝑛 )‖𝐻1(𝛺)

≤ ‖𝑆(𝑢) − 𝑆(𝑢𝜀𝑛 ,ℎ𝑛 )‖𝐻1(𝛺) + ‖𝑆(𝑢𝜀𝑛 ,ℎ𝑛 ) − 𝑆𝜀𝑛 ,ℎ𝑛 (𝑢𝜀𝑛 ,ℎ𝑛 )‖𝐻1(𝛺).

By Theorem 2.5 we have

‖𝑆(𝑢) − 𝑆(𝑢𝜀𝑛 ,ℎ𝑛 )‖𝐻1(𝛺)
𝑛→∞
⟶ 0.

Moreover, applying the triangle inequality leads to

‖𝑆(𝑢𝜀𝑛 ,ℎ𝑛 ) − 𝑆𝜀𝑛 ,ℎ𝑛 (𝑢𝜀𝑛 ,ℎ𝑛 )‖𝐻1(𝛺) ≤ ‖𝑆(𝑢𝜀𝑛 ,ℎ𝑛 ) − 𝑆𝜀𝑛 (𝑢𝜀𝑛 ,ℎ𝑛 )‖𝐻1(𝛺)

+ ‖𝑆𝜀𝑛 (𝑢𝜀𝑛 ,ℎ𝑛 ) − 𝑆𝜀𝑛 ,ℎ𝑛 (𝑢𝜀𝑛 ,ℎ𝑛 )‖𝐻1(𝛺).

Theorem 4.3 and the standard finite element error estimate for the 𝐻1-norm yield

‖𝑆(𝑢𝜀𝑛 ,ℎ𝑛 ) − 𝑆𝜀𝑛 ,ℎ𝑛 (𝑢𝜀𝑛 ,ℎ𝑛 )‖𝐻1(𝛺) ≤ 𝐶(𝜀𝑛 + ℎ𝑛)
𝑛→∞
⟶ 0,

which concludes the proof. □

Lemma 4.7. Suppose that 𝑢∗ satisfies the quadratic growth condition (4.2). Then there is a sequence {𝑢∗𝜀𝑛 ,ℎ𝑛} of locally optimal solutions
∗ ∗ 2
11

to (3.17) with 𝑢𝜀𝑛 ,ℎ𝑛 → 𝑢 in 𝐿 (𝛺) as 𝑛→ ∞.
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Proof. Based on Lemma 4.6 the following proof is standard (see also [14, Lemma 5.5], where an analogous result is proven).
Nevertheless, for later purpose and for convenience of the reader, we sketch the arguments. Following the classical localization
argument from [26], we define the following discrete problems:

min
𝑢∈𝐵𝜌(𝑢∗)

𝑔𝜀𝑛 ,ℎ𝑛 (𝑢), (4.3)

here 𝐵𝜌(𝑢∗) denotes the closed 𝐿2-ball from (4.2). By standard arguments, the above problem admits a globally optimal solution
or every 𝑛 < ∞, denoted by 𝑢∗𝜀𝑛 ,ℎ𝑛 . Due to the constraint this sequence is bounded in 𝐿2(𝛺) and thus admits a weakly convergent
ubsequence with limit �̃� ∈ 𝐿2(𝛺), which, by compact embedding, converges strongly in 𝐻−1(𝛺). By Lemma 4.6 the associated states
∗
𝜀𝑛 ,ℎ𝑛

∶= 𝑆𝜀𝑛 ,ℎ𝑛 (𝑢
∗
𝜀𝑛 ,ℎ𝑛

) converge strongly to �̃� ∶= 𝑆(�̃�). The weak lower semicontinuity of the objective functional along with the
solated local optimality of 𝑢∗ implies �̃� = 𝑢∗. Moreover, the Tikhonov term in the objective functional yields the norm convergence
f 𝑢∗𝜀𝑛 ,ℎ𝑛 so that 𝑢∗𝜀𝑛 ,ℎ𝑛 → 𝑢∗ in 𝐿2(𝛺). This implies that 𝑢∗𝜀𝑛 ,ℎ𝑛 is in the interior of 𝐵𝜌(𝑢∗) for 𝑛 sufficiently large and, therefore, 𝑢∗𝜀𝑛 ,ℎ𝑛

is a local solution of (3.14). □

Lemma 4.8. Let {𝑢∗𝜀𝑛 ,ℎ𝑛} be the sequence of Lemma 4.7. Then {𝑢∗𝜀𝑛 ,ℎ𝑛} is uniformly bounded in 𝐻
1(𝛺).

roof. Analogously to [27, Corollary 4.5] one can derive the following optimality system for (3.17): For every locally optimal
olution 𝑢∗𝜀𝑛 ,ℎ𝑛 of (3.17) with associated state 𝑦∗𝜀𝑛 ,ℎ𝑛 , there exist an adjoint state 𝑝∗𝜀𝑛 ,ℎ𝑛 ∈ 𝑉 ℎ and a multiplier 𝜇∗𝜀𝑛 ,ℎ𝑛 ∈ 𝐿∞(𝛺) such that

𝑎(𝑝∗𝜀𝑛 ,ℎ𝑛 , 𝑣
ℎ) + (𝜇∗𝜀𝑛 ,ℎ𝑛𝑝

∗
𝜀𝑛 ,ℎ𝑛

, 𝑣ℎ) = (𝑦∗𝜀𝑛 ,ℎ𝑛 − 𝑦𝑑 , 𝑣
ℎ) ∀𝑣ℎ ∈ 𝑉 ℎ (4.4)

𝜇∗𝜀𝑛 ,ℎ𝑛 (𝑥) ∈ 𝜕𝑐 max(𝑦∗𝜀𝑛 ,ℎ𝑛 (𝑥)) a.e. in 𝛺

𝑝∗𝜀𝑛 ,ℎ𝑛 (𝑥) + 𝛼𝑢
∗
𝜀𝑛 ,ℎ𝑛

(𝑥) = 0 a.e. in 𝛺, (4.5)

where 𝜕𝑐 max ∶ R ⇉ [0, 1𝜀 ] denotes the convex subdifferential of the function 𝜉(𝑦) = − 1
𝜀 max(𝜓−𝑦, 0). Testing Eq. (4.4) with 𝑝∗𝜀𝑛 ,ℎ𝑛 ∈ 𝑉 ℎ,

the coercivity of 𝑎(⋅, ⋅) and Hölder’s inequality leads to

𝛽‖𝑝∗𝜀𝑛 ,ℎ𝑛‖
2
𝐻1(𝛺)

≤ (∇𝑝∗𝜀𝑛 ,ℎ𝑛 ,∇𝑝
∗
𝜀𝑛 ,ℎ𝑛

) = (𝑦∗𝜀𝑛 ,ℎ𝑛 − 𝑦𝑑 , 𝑝
∗
𝜀𝑛 ,ℎ𝑛

) − (𝜇∗𝜀𝑛 ,ℎ𝑛𝑝
∗
𝜀𝑛 ,ℎ𝑛

, 𝑝∗𝜀𝑛 ,ℎ𝑛 )

≤ ‖𝑦∗𝜀𝑛 ,ℎ𝑛 − 𝑦𝑑‖𝐿2(𝛺)‖𝑝
∗
𝜀𝑛 ,ℎ𝑛

‖𝐻1(𝛺).

Here we used that (𝜇∗𝜀𝑛 ,ℎ𝑛𝑝
∗
𝜀𝑛 ,ℎ𝑛

, 𝑝∗𝜀𝑛 ,ℎ𝑛 ) ≥ 0 due to the monotonicity of the max-function. Due to Eq. (4.5) we arrive at

‖𝑢∗𝜀𝑛 ,ℎ𝑛‖𝐻1(𝛺) =
1
𝛼
‖𝑝∗𝜀𝑛 ,ℎ𝑛‖𝐻1(𝛺) ≤

1
𝛼𝛽

‖𝑦∗𝜀𝑛 ,ℎ𝑛 − 𝑦𝑑‖𝐿2(𝛺) ≤
1
𝛼𝛽

(

‖𝑦∗𝜀𝑛 ,ℎ𝑛‖𝐿2(𝛺) + ‖𝑦𝑑‖𝐿2(𝛺)

)

.

The boundedness of 𝑦∗𝜀𝑛 ,ℎ𝑛 in 𝐿2(𝛺) implies the claim. □

Theorem 4.9. Suppose that 𝑢∗ satisfies the quadratic growth condition (4.2) and 𝜓 < 0 on the boundary. Then there exist constants 𝜀𝑑 > 0
and ℎ𝑑 > 0 such that for all 𝜀 ≤ 𝜀𝑑 and ℎ ≤ ℎ𝑑 one has

‖𝑢∗𝜀,ℎ − 𝑢
∗
‖𝐿2(𝛺) ≤ 𝐶

(

𝜀1∕2 + ℎ| logℎ|
)

with constant 𝐶 > 0 independent of 𝜀 and ℎ.

Proof. The proof follows the lines of [14, Theorem 5.8]. As seen in the proof of Lemma 4.7, 𝑢∗𝜀,ℎ is a global solution of (4.3) and
therefore

𝑔𝜀,ℎ(𝑢∗𝜀,ℎ) ≤ 𝑔𝜀,ℎ(𝑢∗). (4.6)

Moreover, for 𝜀 and ℎ sufficiently small, we have 𝑢∗𝜀,ℎ ∈ 𝐵𝜌(𝑢∗). Therefore, the quadratic growth condition (4.2) and (4.6) imply

𝛿‖𝑢∗𝜀,ℎ − 𝑢
∗
‖

2
𝐿2(𝛺)

≤ 𝑔(𝑢∗𝜀,ℎ) − 𝑔𝜀,ℎ(𝑢
∗
𝜀,ℎ) + 𝑔𝜀,ℎ(𝑢

∗) − 𝑔(𝑢∗) + 𝑔𝜀,ℎ(𝑢∗𝜀,ℎ) − 𝑔𝜀,ℎ(𝑢
∗)

≤ |𝑔(𝑢∗𝜀,ℎ) − 𝑔𝜀,ℎ(𝑢
∗
𝜀,ℎ)| + |𝑔𝜀,ℎ(𝑢∗) − 𝑔(𝑢∗)|. (4.7)

We split the first term of (4.7) into two terms

|𝑔(𝑢∗𝜀,ℎ) − 𝑔𝜀,ℎ(𝑢
∗
𝜀,ℎ)| ≤ |𝑔(𝑢∗𝜀,ℎ) − 𝑔𝜀(𝑢

∗
𝜀,ℎ)| + |𝑔𝜀(𝑢∗𝜀,ℎ) − 𝑔𝜀,ℎ(𝑢

∗
𝜀,ℎ)|. (4.8)

For the first term in (4.8) we get

|𝑔(𝑢∗𝜀,ℎ) − 𝑔𝜀(𝑢
∗
𝜀,ℎ)| =

1
2
|

|

|

‖𝑆(𝑢∗𝜀,ℎ) − 𝑦𝑑‖
2
𝐿2(𝛺)

− ‖𝑆𝜀(𝑢∗𝜀,ℎ) − 𝑆(𝑢
∗
𝜀,ℎ) + 𝑆(𝑢

∗
𝜀,ℎ) − 𝑦𝑑‖

2
𝐿2(𝛺)

|

|

|

≤ 1
2
‖𝑆𝜀(𝑢∗𝜀,ℎ) − 𝑆(𝑢

∗
𝜀,ℎ)‖

2
𝐿2(𝛺)

+ ‖𝑆𝜀(𝑢∗𝜀,ℎ) − 𝑆(𝑢
∗
𝜀,ℎ)‖𝐿2(𝛺)‖𝑆(𝑢

∗
𝜀,ℎ) − 𝑦𝑑‖𝐿2(𝛺).
12
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The boundedness of {𝑢∗𝜀,ℎ} in 𝐻1(𝛺) by Lemma 4.8 and the Lipschitz continuity of the operator 𝑆 (cf. Lemma 2.1) imply that
‖𝑆(𝑢∗𝜀,ℎ) − 𝑦𝑑‖𝐿2(𝛺) is bounded. Hence, by Theorem 4.3 we obtain

|𝑔(𝑢∗𝜀,ℎ) − 𝑔𝜀(𝑢
∗
𝜀,ℎ)| ≤ 𝐶𝜀.

nalogously we obtain for the second term in Eq. (4.8) the estimate

|𝑔𝜀(𝑢∗𝜀,ℎ) − 𝑔𝜀,ℎ(𝑢
∗
𝜀,ℎ)| ≤

1
2
‖𝑆𝜀,ℎ(𝑢∗𝜀,ℎ) − 𝑆𝜀(𝑢

∗
𝜀,ℎ)‖

2
𝐿2(𝛺)

+ ‖𝑆𝜀,ℎ(𝑢∗𝜀,ℎ) − 𝑆𝜀(𝑢
∗
𝜀,ℎ)‖𝐿2(𝛺)‖𝑆𝜀(𝑢

∗
𝜀,ℎ) − 𝑦𝑑‖𝐿2(𝛺).

Note that ‖𝑆𝜀(𝑢∗𝜀,ℎ) − 𝑦𝑑‖𝐿2(𝛺) is bounded due to the boundedness of {𝑢∗𝜀,ℎ} in 𝐻1(𝛺) and the Lipschitz continuity of the operator 𝑆𝜀
(cf. Lemma 2.3). Thus, Theorem 4.4 implies

|𝑔𝜀(𝑢∗𝜀,ℎ) − 𝑔𝜀,ℎ(𝑢
∗
𝜀,ℎ)| ≤ 𝐶ℎ2| logℎ|2.

Applying the same arguments to the second term of (4.7) completes the proof. □

The previous theorem implies the following result:

orollary 4.10. Let 𝜀 = 𝐶ℎ2 ≤ 𝜀𝑑 for 𝐶 > 0 arbitrary. Under the assumptions that 𝑢∗ satisfies the quadratic growth condition (4.2) and
𝜓 < 0 on the boundary, there exists ℎ𝑑 > 0 such that for all ℎ ≤ ℎ𝑑 it holds

‖𝑢∗𝜀,ℎ − 𝑢
∗
‖𝐿2(𝛺) ≤ 𝐶ℎ| logℎ|.

Note that in the case of a suitable choice of �̄� the CAL problem formulation (3.5) and the nonsmooth penalty problem (2.5) (as
well as their discrete pendants (3.14) and (4.1)) coincide, so that it remains to investigate error estimates for the discrete penalized
CAL problem formulation (3.17) with increasing parameter 𝜈.

Here one has to consider that the unsatisfied inequality constraint affects the argument by a bi-quadratic penalty of the violation
multiplied by the penalty parameter 𝜈. However, since this influence is compensated by the original objective functional 𝐽 (𝑦, 𝑢),
minimizing

𝐽 (𝑦, 𝑢) + 𝜈 ∫𝛺
(max(−�̄�(𝜓 − 𝑦), 0))4 d𝑥

can result in a solution that would not be feasible for the original optimal control problem, if the value of the penalty parameter 𝜈
is small relative to the original objective functional value 𝐽 (𝑦, 𝑢). However, if the value of the penalty parameter 𝜈 is suitably large,
the penalty for each violated constraint will increase the objective value so that minimizing the penalized objective functional
will consequently yield a feasible solution for the non-smooth penalized optimal control problem (3.14). By increasing 𝜈, the
corresponding solution will therefore approach the feasible set of (3.14) and minimize the original objective functional 𝐽 (𝑦, 𝑢).
As a matter of principle, the solution corresponding to the penalized CAL problem then converges to a solution of (3.14) as 𝜈 → ∞.

5. Numerical results

In this section we test the performance of the algorithm CALi for the numerical solution of optimization problems of the form
Eq. (2.2). For this purpose we present three different test examples taken from [9,12,21]. In all three examples the computational
domain is chosen as the unit square 𝛺 = (0, 1)2 and for the fixed �̄� we use �̄� = �̄�𝜓 as introduced in Definition 3.4. For all tests
we take 𝜈 = 1000 and 𝑦0 = 𝑢0 ≡ 0 as initial guess for Newton’s method. We initialize our 𝜀-homotopy with 𝜀 = 1.0 and decrease
the value of the penalization parameter constantly until the linear system in Newton’s method is too ill-conditioned and Newton’s
method does not converge in under 20 steps, where an absolute error of 10−12 is pursued within the respective Newton procedure.
For each 𝜀 < 1.0 we take the solution of the constant abs-linearized and penalized problem, i.e., Eq. (3.6), at the preceding value of
𝜀 as starting value for the current Newton iteration.

Besides the number of Newton steps, we also present the value ‖

‖

‖

�̄�𝑧 − |𝑧|‖‖
‖𝐿2(𝛺)

, which measures the violation of the condition
̄ 𝑧 = |𝑧| with 𝑧 = 𝜓 − 𝑦. Furthermore, following [9] the value 𝜇− ∶= min𝑘∈− (𝑦𝑘 − 𝜓𝑘), with − ∶= {𝑘 ∈ 1,… , 𝑛 ∶ 𝑦𝑘 − 𝜓𝑘 < 0} is
also documented, which denotes the violation of the obstacle constraint 𝑦 ≥ 𝜓 a.e. in 𝛺. As the penalty parameter 𝜀 decreases, 𝜇−
typically should tend to zero.

We use the finite-element discretization introduced in Section 3. All the computations are done within the open source finite
element environment FEniCS, version 2019.1.0, using the Python interface.

As a first example we consider once again Example 3.6.

Example 5.1. The obstacle problem is constructed with

𝑦𝑑 (𝑥1, 𝑥2) = − sin(𝜋𝑥1) sin(𝜋𝑥2), 𝑓 (𝑥1, 𝑥2) = −2𝜋2 sin(𝜋𝑥1) sin(𝜋𝑥2), 𝜓(𝑥1, 𝑥2) = −0.25

We have already discussed that the optimal state is given by

𝑦∗ = max(𝜓, 𝑦𝑑 ) =

{

𝜓, on 𝛺+ ∶= {𝑥 ∈ 𝛺 ∶ 𝑦𝑑 (𝑥) < 𝜓(𝑥)}
−

13

𝑦𝑑 , on 𝛺 ∶= {𝑥 ∈ 𝛺 ∶ 𝑦𝑑 (𝑥) ≥ 𝜓(𝑥)}
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Fig. 4. Solution 𝑦 with adjoint 𝜆
𝑃𝐷𝐸

and control 𝑢 for Example 5.1 with 𝑦𝑑 and max(𝜓, 𝑦𝑑 ) for �̄� ≡ �̄�𝜓 .

Fig. 5. Convergence plot of the obstacle violation |𝜇−
| (green curve) and the 𝐿2-error for the state 𝑦 (blue curve) for Example 5.1 with ℎ = 5.05e-03 and 𝛼 = 1.0

for decreasing 𝜀 values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

with 𝑦∗|𝜕𝛺 = 0 and the optimal control is given by 𝑢∗ ≡ 0. The numerical results for this example considering different values for
the parameters 𝛼, 𝜀 and different mesh sizes are provided in Table 1. As expected, we see that 𝜇− tends to zero as 𝜀 decreases (see
also Fig. 5) and the value ‖�̄�𝑧− |𝑧|‖𝐿2(𝛺) is quite small. Moreover, we observe that except for 𝜀 = 1 only 2 Newton steps are needed
to solve the problem. Fig. 4 illustrates the desired state 𝑦𝑑 , the fixed �̄�𝜓 , the solutions 𝑦, 𝜆

𝑃𝐷𝐸
and 𝑢 obtained with CALi using the

parameters 𝛼 = 1.0, 𝜀 = 1𝑒 − 06 and ℎ = 7.728𝑒 − 03 as well as the exact solution 𝑦∗ = max(𝑦𝑑 , 𝜓).

Example 5.2. The data for the second example are chosen as:

𝑦𝑑 = 𝑦∗ + 𝜉∗ − 𝛼𝛥𝑦∗, 𝑓 = −𝛥𝑦∗ − 𝑦∗ − 𝜉∗, 𝜓 = 0.0

with

𝑦∗ =

{

160
(

𝑥31 − 𝑥
2
1 + 0.25𝑥1

)(

𝑥32 − 𝑥
2
2 + 0.25𝑥2

)

, in (0, 0.5)2
14

0, else
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Table 1
Numerical results for Example 5.1.
ℎ 𝛼 𝜀 ‖𝑦 − 𝑦∗‖𝐿2 (𝛺) ‖�̄�𝑧−|𝑧|‖𝐿2 (𝛺) 𝜇− # Newton

3.009e−02 1.0 1.0 2.17e−01 1.3e−05 −5.295e−01 4
3.009e−02 1.0 1e−02 7.09e−02 1.8e−05 −1.570e−02 2
3.009e−02 1.0 1e−04 3.87e−03 2.2e−05 −1.935e−03 2

1.571e−02 1.0 1.0 2.16e−01 1.6e−06 −7.188e−01 4
1.571e−02 1.0 1e−02 7.09e−02 1.2e−04 −5.281e−02 2
1.571e−02 1.0 1e−04 1.55e−03 2.1e−05 −1.970e−03 2

7.728e−03 1.0 1.0 2.16e−01 6.6e−07 −7.188e−01 4
7.728e−03 1.0 1e−02 7.09e−02 1.4e−04 −5.281e−02 2
7.728e−03 1.0 1e−04 1.60e−03 2.4e−05 −1.970e−03 2
7.728e−03 1.0 1e−06 1.04e−03 3.0e−08 −7.130e−04 2

3.009e−02 1e−01 1.0 3.01e−01 1.3e−05 −7.181e−01 6
3.009e−02 1e−01 1e−02 7.09e−02 1.7e−04 −1.570e−02 2
3.009e−02 1e−01 1e−04 3.88e−03 2.3e−05 −1.969e−03 2

2.210e−02 1e−01 1.0 3.02e−01 2.7e−06 −7.193e−01 6
2.210e−02 1e−01 1e−02 7.10e−02 1.6e−04 −1.571e−02 2
2.210e−02 1e−01 1e−04 6.17e−03 2.0e−05 −1.971e−03 2

1.571e−02 1e−01 1.0 3.02e−01 1.5e−06 −7.194e−01 6
1.571e−02 1e−01 1e−02 7.10e−02 1.7e−03 −1.571e−02 2
1.571e−02 1e−01 1e−04 6.23e−03 2.1e−05 −1.971e−03 2
1.571e−02 1e−01 1e−06 4.44e−03 3.1e−08 −9.987e−04 2

7.728e−03 1e−01 1.0 3.02e−01 6.3e−07 −7.194e−01 6
7.728e−03 1e−01 1e−02 7.10e−02 1.7e−03 −1.570e−02 2
7.728e−03 1e−01 1e−04 7.24e−03 2.4e−05 −1.970e−03 2
7.728e−03 1e−01 1e−06 1.44e−03 3.0e−08 −7.130e−04 2

1.571e−02 1e−03 1.0 3.11e−01 9.2e−07 −7.397e−01 9
1.571e−02 1e−03 1e−02 8.37e−02 9.5e−04 −1.938e−01 2
1.571e−02 1e−03 1e−04 6.81e−03 2.1e−05 −1.978e−03 2
1.571e−02 1e−03 1e−06 4.44e−03 3.1e−08 −9.988e−04 2

1.571e−02 1e−05 1.0 3.16e−01 9.3e−07 −7.500e−01 10
1.571e−02 1e−05 1e−02 2.82e−01 1.3e−06 −6.679e−01 2
1.571e−02 1e−05 1e−04 6.13e−03 2.0e−05 −2.714e−03 2
1.571e−02 1e−05 1e−06 4.07e−03 3.2e−08 −1.006e−03 2

and

𝜉∗ = max
(

0,−2|𝑥1 − 0.8| − 2|𝑥1𝑥2 − 0.3| + 0.5
)

,

according to [4, Example 5.1]. Note that by construction the optimal control is 𝑢∗ = 𝑦∗. The numerical results for this example
considering different values for the parameters 𝛼, 𝜀 and different mesh sizes are provided in Table 2. Following [4] the results in
Table 2 were computed with a Newton solver tolerance of ℎ2

2 . We observe that for all combinations of parameter values except for
𝜀 = 1.0 only one Newton iteration is required to obtain a residual norm below 10−12.

In [4] this example has the title ‘‘lack of strict complementarity’’ due to the fact that the active set at the solution contains
a subset where strict complementarity fails to hold, i.e., the biactive set has a positive measure. It is precisely this lack of strict
complementarity that poses a challenge, since the active constraint gradients at the solution are linearly dependent.

The numerical solutions for the parameters 𝛼 = 1.0 and 𝜀 = 10−8 are displayed in Fig. 6. We would like to point out that the
solution of the state in Fig. 6 differs from Figure 2 in [4] by a factor of 10−1 since the scaling factor is missing at the corresponding
xis in [4, Figure 2].

Fig. 7 shows the decay of the obstacle violation |𝜇−| for Example 5.2 with ℎ = 7.728e-03 and 𝛼 = 1.0 for decreasing 𝜀 values in
log–log-scale.

The theoretical results of Section 4 show that the overall error consists of two contributions, namely the regularization error,
.e. ‖𝑦∗𝜀 − 𝑦∗‖𝐿2(𝛺) resp. ‖𝑢∗𝜀 − 𝑢∗‖𝐿2(𝛺), and the discretization error, i.e. ‖𝑦∗𝜀,ℎ − 𝑦

∗
𝜀‖𝐿2(𝛺) resp. ‖𝑢∗𝜀,ℎ − 𝑢

∗
𝜀‖𝐿2(𝛺). In order to numerically

ascertain the approximation properties of the presented solution method, these errors were computed for different penalization
parameters and different mesh sizes. Fig. 8 shows the convergence plot for the 𝐿2-regularization-errors of the state and the control
with fixed mesh size ℎ and decreasing 𝜀 values for Example 5.2 in a log–log-scale. Representational for the numerical test, Fig. 8

suggests an approximation order of (𝜀) for the 𝐿2-error of the state and (𝜀
1
2 ) for the 𝐿2-error of the control which confirms our

theoretical results derived in Section 4.
Moreover, we observed that for a penalty parameter 𝜀 ≤ ℎ2, the approximation error remained almost constant, i.e., the

approximation error is dominated by the discretization error provided that 𝜀 is sufficiently small, see e.g., Fig. 9. This observation
is in agreement with the theory of Section 4.
15
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Fig. 6. Solution 𝑦 (upper left), control 𝑢 (lower right) and adjoint 𝜆
𝑃𝐷𝐸

(lower left) for Example 5.2 with 𝜉∗ (upper right) for 𝛼 = 1.0 and 𝜀 = 10−8.

Fig. 7. Convergence plot of the obstacle violation for Example 5.2 with ℎ = 7.728e-03 and 𝛼 = 1.0 for decreasing 𝜀 values.

Fig. 10 shows convergence plot of the 𝐿2-error of the control 𝑢 with 𝛼 = 1.0 for decreasing 𝜀 for different mesh sizes ℎ. Fig. 11
shows convergence plots for the 𝐿2-errors ‖𝑦∗𝜀,ℎ − 𝑦∗‖𝐿2(𝛺) and ‖𝑢∗𝜀,ℎ − 𝑢∗‖𝐿2(𝛺) for Example 5.2 in a log–log-scale for decreasing
mesh size ℎ and fixed parameter 𝜀 = 10−9. The observations in Fig. 11 suggest an approximation order of (ℎ) for the 𝐿2-error of
the control and (ℎ2) for the 𝐿2-error of the state. Similar observations were made for other test cases, such that once again the
theoretically determined results of Section 4 have been numerically verified.

A successive approach with a heuristic switching strategy The following example has a special feature in contrast to the previous ones,
since the function max(𝜓, 𝑦𝑑 ) does not provide the optimal signature function �̄� and thus �̄�𝜓 does not yield the constant abs-linearized
(CAL) problem formulation which provides the optimal solution 𝑦∗. We present this example as an outlook for further research on
optimal strategies for generating �̄� or a sequence of �̄�-signature functions together with an efficient switching strategy such that the
corresponding final CAL problem provides the optimal solution.
16
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Fig. 8. Convergence plot of the 𝐿2 error of the state (left, blue curve) and the control (right, green curve) for Example 5.2 with 𝛼 = 1.0 and ℎ = 6.4e-03 for
decreasing 𝜀. The dashed lines show the rates of increase in magnitude, i.e., the approximation order with respect to 𝜀 for the 𝐿2 error of the state (left, orange

dashed line), which is of order (𝜀) and the control (right, red dashed line), which is of order (𝜀
1
2 ), in the respective cases considered. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Convergence plot of the 𝐿2-error of the state 𝑦 for Example 5.2 with 𝛼 = 1.0 for decreasing 𝜀 for different mesh sizes ℎ.

However, this choice of �̄� is not always a priori straightforward or even goal-directed. In fact, the class of optimization problems
where �̄� can be chosen based on the desired state is a special case. Thus, in other cases, an efficient successive switching of the
sign choice in �̄� becomes necessary until an optimal �̄� is found which provides optimal solutions to the original problem. Such a
switching strategy was developed and studied in [28]. In the following example, we adapt it and apply it in a purposeful manner
for the here considered optimal control problems constrained by obstacle problems.

Example 5.3. For this example of an obstacle problem we choose the following data:

𝑦𝑑 (𝑥1, 𝑥2) = −5𝑥1 − 𝑥2 + 1, 𝑓 (𝑥1, 𝑥2) = −𝑥1 + 0.5, 𝜓(𝑥1, 𝑥2) = 0.0 .

This example corresponds to Example 2 from [9]. At this point it turns out that a choice of �̄� similar as before is not purposeful.
Therefore, an adaptive strategy becomes necessary.
17
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Fig. 10. Convergence plot of the 𝐿2-error of the control 𝑢 for Example 5.2 with 𝛼 = 1.0 for decreasing 𝜀 for different mesh sizes ℎ.

Fig. 11. Convergence plot of the discretization error for Example 5.2, i.e., 𝐿2-error of the control 𝑢 (left, green curve) and the state 𝑦 (right, blue curve) with
𝛼 = 1.0 and 𝜀 = 10−9 for decreasing mesh size ℎ. The dashed lines show the rates of increase in magnitude, i.e., the approximation order with respect to the
mesh size ℎ for the control (left, red dashed line), which is of order (ℎ) and for the 𝐿2 error of the state (right, orange dashed line), which is of order (ℎ2),
in the respective cases considered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We follow and adapt here the heuristic strategy, presented in [28].
We initially choose �̄� = �̄�𝜓 and explore the optimality conditions in order to adopt �̄� and to find an optimal choice for �̄�.
In [15,29] optimality conditions for the CAL problem are derived and a function 𝑟(�̄�) is introduced, which especially provides

information on whether the chosen �̄� leads to an optimal CAL problem formulation. The theory concerning the optimality conditions
18
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Table 2
Numerical results for Example 5.2.
ℎ 𝛼 𝜀 ‖�̄�𝑧−|𝑧|‖𝐿2 (𝛺) 𝜇− # Newton

3.009e−02 1.0 1.0 1.4e−07 −5.162e−03 2
3.009e−02 1.0 1e−03 3.9e−11 −3.791e−04 1
3.009e−02 1.0 1e−06 2.2e−14 −1.437e−06 1
3.009e−02 1.0 1e−09 2.4e−20 −1.531e−09 1
3.009e−02 1.0 1e−12 2.4e−26 −1.373e−12 1

1.571e−02 1.0 1.0 7.5e−08 −5.220e−03 2
1.571e−02 1.0 1e−03 1.9e−11 −3.819e−04 1
1.571e−02 1.0 1e−06 1.3e−13 −4.688e−06 1
1.571e−02 1.0 1e−09 1.8e−19 −5.689e−09 1
1.571e−02 1.0 1e−12 2.5e−25 −6.061e−12 1

7.728e−03 1.0 1.0 1.2e−07 −5.019e−03 2
7.728e−03 1.0 1e−03 5.2e−11 −3.811e−04 1
7.728e−03 1.0 1e−06 1.4e−15 −1.390e−06 1
7.728e−03 1.0 1e−09 4.1e−21 −1.235e−09 1
7.728e−03 1.0 1e−12 4.1e−27 −1.236e−12 1

3.009e−02 1e−01 1.0 1.4e−08 −3.865e−03 2
3.009e−02 1e−01 1e−03 3.9e−11 −3.716e−04 1
3.009e−02 1e−01 1e−06 2.2e−14 −1.293e−06 1
3.009e−02 1e−01 1e−09 2.4e−20 −1.373e−09 1
3.009e−02 1e−01 1e−12 2.4e−26 −1.373e−12 1

2.210e−02 1e−01 1.0 2.2e−08 −3.751e−03 2
2.210e−02 1e−01 1e−03 7.6e−10 −3.768e−04 1
2.210e−02 1e−01 1e−06 2.4e−13 −5.291e−06 1
2.210e−02 1e−01 1e−09 2.8e−19 −5.876e−09 1
2.210e−02 1e−01 1e−12 3.7e−25 −6.124e−12 1

1.571e−02 1e−01 1.0 1.2e−08 −3.799e−03 2
1.571e−02 1e−01 1e−03 1.9e−11 −3.818e−04 1
1.571e−02 1e−01 1e−06 1.3e−13 −4.688e−06 1
1.571e−02 1e−01 1e−09 1.8e−19 −5.690e−09 1
1.571e−02 1e−01 1e−12 2.5e−25 −6.061e−12 1

7.728e−03 1e−01 1.0 1.9e−08 −3.900e−03 2
7.728e−03 1e−01 1e−03 1.0e−11 −3.816e−04 1
7.728e−03 1e−01 1e−06 1.7e−15 −9.199e−07 1
7.728e−03 1e−01 1e−09 4.1e−21 −1.235e−09 1
7.728e−03 1e−01 1e−12 4.1e−27 −1.236e−12 1

1.571e−02 1e−03 1.0 3.2e−07 −4.167e−03 6
1.571e−02 1e−03 1e−03 3.1e−11 −3.816e−04 1
1.571e−02 1e−03 1e−06 1.3e−13 −4.756e−06 1
1.571e−02 1e−03 1e−09 1.9e−19 −5.781e−09 1

1.571e−02 1e−05 1.0 4.5e−09 −4.568e−04 8
1.571e−02 1e−05 1e−03 9.6e−11 −3.557e−04 1
1.571e−02 1e−05 1e−06 1.9e−13 −5.187e−06 1
1.571e−02 1e−05 1e−09 2.7e−19 −6.385e−09 1

and the function 𝑟(�̄�) can be adapted completely analogously to our setting. This leads to the function 𝑟 defined by

𝑟(�̄�) ∶= 𝜆𝑃
𝜕𝓁(𝑦,�̄�𝑧)
𝜕𝑧𝑘

− �̄�𝜆,

ith Lagrange multiplier 𝜆𝑃 corresponding to the state equation with 𝓁 and 𝜆 corresponding to the equality condition (𝜓 − 𝑦 = 𝑧)
efining the switching function 𝑧. According to [15] the choice of the corresponding �̄� function is unfavorable, if 𝑟(�̄�) < 0, since it

does not lead to a CAL problem which also provides an optimal solution for the associated non-smooth optimization problem with
PDE constraint (2.3). For details on the function 𝑟(.), we refer to [15].

Hence for instances where 𝑟(�̄�) < 0 one has to switch the signs of �̄� at the corresponding mesh points in order to approach an
optimal �̄� and thus an optimal solution. In [28] a heuristic switching strategy was introduced. Accordingly, one switches the signs of
̄ exactly on those mesh points where the product �̄�ℎ𝜆ℎ is large. This leads to an iterative switching procedure of which an abstract
illustration is given in Fig. 12.

Fig. 13 shows the evolution of the sign function �̄� by applying this heuristic strategy.
Indeed, calculations for the choice of �̄� = �̄�𝜓 show that 𝑟(�̄�𝜓 ) < 0, e.g. 𝑟(�̄�𝜓 ) = −2.352202𝑒 + 01 for 𝜀 = 1𝑒 − 6. Whereas, for

̄ = − sign(𝑓 ), it holds that 𝑟(�̄�) ≥ 0, so e.g. 𝑟(�̄�) = 2.692266𝑒 + 03 for 𝜀 = 1𝑒 − 6. Thus, it becomes clear that the choice �̄�𝜓 is not
goal-directed in every case, and thus further research is needed for the a priori optimal choice of �̄� or strategies for generating a
sequence of �̄� functions that converges to a �̄�∗ with corresponding optimal CAL problem in the sense that a computed solution is
already optimal for the originally considered optimization problem constrained by an obstacle problem.
19
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Fig. 12. Abstract illustration of the successive SCALi procedure via successive solution of CAL-problems [28].

Fig. 13. Evolution of the sign function �̄� in Example 5.3 due to local sign-switchings according to the heuristic strategy [28].

Fig. 14. Convergence plot of the absolute obstacle violation |𝜇−
| for decreasing 𝜀 for Example 5.3 with �̄� from Eq. (5.1) and 𝛼 = 0.1.

This heuristic swapping strategy yields as an optimal choice of �̄� as

�̄�((𝑥1, 𝑥2)) =

{

−1, 𝑥1 ≤ 0.5
+1, else,

for (𝑥1, 𝑥2) ∈ 𝛺 . (5.1)

The numerical results for this example considering different values for the parameters 𝛼, 𝜀 and different mesh sizes are provided in
Table 3. Once again, strict complementarity, however, is not satisfied, which makes this problem a further challenge.

Similar to [9] we observe a reduction in the absolute obstacle violation proportional to the reduction in the penalty parameter
𝜀, see e.g., Fig. 14.
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Fig. 15. Optimal control 𝑢 and optimal state 𝑦 for Example 5.3 with �̄� in Eq. (5.1) for 𝛼 = 0.1.

Table 3
Numerical results for Example 5.3 with �̄� from Eq. (5.1) and a Newton tolerance of 10−15.
ℎ 𝛼 𝜀 ‖�̄�𝑧−|𝑧|‖𝐿2 (𝛺) 𝜇− # Newton

3.009e−02 1e−01 1.0 1.2e−03 −6.288e−02 10
3.009e−02 1e−01 1e−01 7.1e−04 −4.434e−02 4
3.009e−02 1e−01 1e−02 2.6e−05 −8.103e−03 4
3.009e−02 1e−01 1e−03 1.4e−07 −9.451e−04 3
3.009e−02 1e−01 1e−04 3.3e−10 −9.566e−05 2
3.009e−02 1e−01 1e−05 1.5e−12 −7.008e−06 2
3.009e−02 1e−01 1e−06 3.7e−14 −1.064e−06 2

1.571e−02 1e−01 1.0 1.1e−03 −6.290e−02 10
1.571e−02 1e−01 1e−01 6.9e−04 −4.409e−02 4
1.571e−02 1e−01 1e−02 2.3e−05 −7.672e−03 4
1.571e−02 1e−01 1e−03 8.4e−08 −7.816e−04 3
1.571e−02 1e−01 1e−04 9.1e−11 −5.458e−05 2
1.571e−02 1e−01 1e−05 1.4e−12 −5.906e−06 2
1.571e−02 1e−01 1e−06 5.8e−14 −1.626e−06 2

7.728e−03 1e−01 1.0 1.2e−03 −6.283e−02 10
7.728e−03 1e−01 1e−01 7.2e−04 −4.434e−02 4
7.728e−03 1e−01 1e−02 2.7e−05 −8.168e−03 4
7.728e−03 1e−01 1e−03 1.7e−07 −1.018e−03 3
7.728e−03 1e−01 1e−04 1.7e−09 −1.780e−04 2
7.728e−03 1e−01 1e−05 2.7e−11 −3.665e−05 2
7.728e−03 1e−01 1e−06 6.4e−14 −3.038e−06 2

4.714e−03 1e−01 1.0 1.2e−03 −6.283e−02 10
4.714e−03 1e−01 1e−01 7.1e−04 −4.426e−02 4
4.714e−03 1e−01 1e−02 2.6e−05 −8.023e−03 4
4.714e−03 1e−01 1e−03 1.4e−07 −9.521e−04 3
4.714e−03 1e−01 1e−04 1.0e−09 −1.464e−04 2
4.714e−03 1e−01 1e−05 8.6e−12 −2.326e−05 2
4.714e−03 1e−01 1e−06 3.0e−14 −7.392e−07 2

Fig. 15 shows the optimal control 𝑢 as well as the optimal state 𝑦 for �̄� from Eq. (5.1) and 𝛼 = 0.1.
Although the procedure presented here and the corresponding algorithm works impeccably for a large class of optimization

problems with obstacle conditions and allows an explicit structure exploitation, which records a reduction in the number of required
Newton steps, there are also optimization problems like Example 5.3 where the choice and fixation of �̄� does not lead directly to
the optimal CAL problem without further analysis and effort.

In these cases the heuristic switching strategy proves to be useful, efficient and purposeful. However, a non heuristic approach
and further development of the efficient strategy to switch between different �̄� and associated problem formulations constitutes
subject of ongoing research.

6. Conclusion

We investigated a regularization approach for obstacle optimization problems, which results in optimal control problems
constrained by a genuinely nonsmooth PDE. The presented and discussed solution method for this class of optimization problems
is based on constant abs-linearization, which enables the optimization without any substitute assumptions for the nonsmoothness.
The key idea is to generate a suitable reformulation of the nonsmooth PDE constrained regularized problem, the so-called constant
abs-linearized problem, which can be solved using conventional methods for smooth optimization problems.

The type of discretization employed here was also presented and critically examined. Moreover, error estimates for the state and
the control are derived, which contain information about the coupling of the regularization and the mesh size.
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Finally, three different obstacle problems were considered and numerical results illustrating the performance of the presented
lgorithm were demonstrated and evaluated. The corresponding numerical results are very promising and also clearly confirm the
heoretically derived error estimates.

The analysis and the numerical results have shown that it is useful as well as purposeful to rewrite the considered obstacle
ptimization problem by means of penalization and constant abs-linearization into a smooth but strongly related problem. By
rofoundly choosing the signature function �̄�, one obtains a subproblem of the penalized nonsmooth problem, which is itself smooth
nd can be solved efficiently and effectively by means of standard optimization methods. In this paper we have shown that in certain
ases the choice of �̄�𝜓 = sign(𝜓 −𝑦𝑑 ) provides the optimal signature function. However, the choice of the signature function �̄� seems

to be a delicate issue in general.
We therefore suggest and consider further research on a strategy for a generally advantageous choice of �̄� as well as a strategy

for switching from one �̄�𝑖, i.e., a concrete subproblem to the next �̄�𝑖+1 by cleverly switching certain signs on certain areas in the
underlying domain. By means of such a procedure, the constant abs-linearization can be successively applied. The resulting problems
are smooth and can be solved as before with the usual methods of smooth optimization.

Another aspect of further research comprises the consideration of suitable regularization methods for optimization problems
constrained by variational inequalities of the second kind into similar nonsmooth PDE constrained optimization problems and
applying the algorithm CALi for their efficient solution.
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